1
|
Tawaratsumida H, Iuchi T, Masuda Y, Ide T, Maesako S, Miyazaki T, Ijuin T, Maeda S, Taniguchi N. Zoledronate alleviates subchondral bone collapse and articular cartilage degeneration in a rat model of rotator cuff tear arthropathy. Osteoarthritis Cartilage 2025; 33:101-115. [PMID: 39153568 DOI: 10.1016/j.joca.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/26/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
OBJECTIVE To evaluate the humeral head bone volume of patients with cuff tear arthropathy (CTA) and examine the therapeutic effect of zoledronate in a rat modified model of CTA (mCTA). DESIGN The bone mass in patients with CTA was measured using Hounsfield units from CT images. The mCTA was induced by transecting the rotator cuff, biceps brachii tendon, and superior half of the joint capsule in adult rat shoulders. A single subcutaneous injection of zoledronate was followed by bone histomorphometry and immunohistochemistry of the humeral head, as well as the Murine Shoulder Arthritis Score (MSAS) assessment. RESULTS The humeral head bone volume was decreased in patients with CTA. In the mCTA model, M1 macrophages were increased in the synovium and were decreased by zoledronate treatment. The increased expressions of TNF-α, IL-1β and IL-6 in mCTA synovium and articular cartilage were suppressed in the zoledronate-treated mCTA group. The expression of catabolic enzymes in the articular cartilage and MSAS showed similar results. The zoledronate-treated mCTA group showed a decreased subchondral bone collapse with a decreased RANKL/OPG expression ratio and a suppressed number of osteoclasts compared with the control mCTA group. The enhanced expressions of HMGB1 and S100A9 in the mCTA shoulders were eliminated in the zoledronate-treated mCTA group. CONCLUSIONS The humeral head subchondral bone was decreased in patients with CTA. In the mCTA model, the collapse and osteoarthritic changes were prevented by zoledronate administration. Zoledronate seemed to suppress the number of M1 macrophages in the synovium and osteoclasts in the subchondral bone.
Collapse
Affiliation(s)
- Hiroki Tawaratsumida
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima 890-8520, Japan.
| | - Tomohiro Iuchi
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima 890-8520, Japan; Department of Medical Joint Materials, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima 890-8520, Japan.
| | - Yusuke Masuda
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima 890-8520, Japan; Department of Locomotory Organ Regeneration, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima 890-8520, Japan.
| | - Takayuki Ide
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima 890-8520, Japan.
| | - Shingo Maesako
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima 890-8520, Japan; Department of Bone and Joint Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima 890-8520, Japan.
| | - Takasuke Miyazaki
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima 890-8520, Japan.
| | - Toshiro Ijuin
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima 890-8520, Japan.
| | - Shingo Maeda
- Department of Bone and Joint Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima 890-8520, Japan.
| | - Noboru Taniguchi
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima 890-8520, Japan; Department of Medical Joint Materials, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima 890-8520, Japan; Department of Locomotory Organ Regeneration, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima 890-8520, Japan; Department of Bone and Joint Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima 890-8520, Japan.
| |
Collapse
|
2
|
Ehrnsperger M, Taheri S, Pann P, Schilling AF, Grässel S. Differential effects of alendronate on chondrocytes, cartilage matrix and subchondral bone structure in surgically induced osteoarthritis in mice. Sci Rep 2024; 14:25026. [PMID: 39443554 PMCID: PMC11500094 DOI: 10.1038/s41598-024-75758-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
Bisphosphonates (BP) are considered a treatment option for osteoarthritis (OA) due to reduction of OA-induced microtrauma in the bone marrow, stabilization of subchondral bone (SB) layer and pain reduction. The effects of high-dose alendronate (ALN) treatment on SB and articular cartilage after destabilization of the medial meniscus (DMM) or Sham surgery of male C57Bl/6J mice were analyzed. We performed serum analysis; histology and immunohistochemistry to assess the severity of OA and a possible pain symptomatology. Subsequently, the ratio of bone volume to total volume (BV/TV), epiphyseal trabecular morphology and the bone mineral density (BMD) was analyzed by nanoCT. Serum analysis revealed a reduction of ADAMTS5 level. The histological evaluation displayed no protective effect of ALN-treatment on cartilage erosion. NanoCT-analysis of the medial epiphysis revealed an increase of BV/TV in ALN-treated mice. Only the DMM group had significantly higher SB volume accompanied by decreased subchondral bone surface. Furthermore Nano-CT analysis revealed an increase in trabecular density and number, a decreased BMD and reduced osteophyte formation in the ALN mice. ALN treatment affected bone micro-architecture by reducing osteophytosis with simultaneous increasing subchondral bone plate thickness, trabecular thickness and BMD. Accordingly, ALN cannot be considered as a potential treatment strategy in general, however in a subgroup of patients with high bone turnover in an early-stage of OA, ALN might be an option when applied during a restricted time frame.
Collapse
Affiliation(s)
- Marianne Ehrnsperger
- Clinic of Orthopedic Surgery, Exp. Orthopedics, University of Regensburg, ZMB im Biopark 1, Am Biopark 9, Regensburg, Germany
| | - Shahed Taheri
- Department of Trauma Surgery, Orthopedics and Plastic Surgery, University Medicine Göttingen, Göttingen, Germany
| | - Patrick Pann
- Clinic of Orthopedic Surgery, Exp. Orthopedics, University of Regensburg, ZMB im Biopark 1, Am Biopark 9, Regensburg, Germany
| | - Arndt F Schilling
- Department of Trauma Surgery, Orthopedics and Plastic Surgery, University Medicine Göttingen, Göttingen, Germany
| | - Susanne Grässel
- Clinic of Orthopedic Surgery, Exp. Orthopedics, University of Regensburg, ZMB im Biopark 1, Am Biopark 9, Regensburg, Germany.
| |
Collapse
|
3
|
Liang J, Hu J, Hong X, Zhou M, Xia G, Hu L, Luo S, Quan K, Yan J, Wang S, Fan S. Amentoflavone maintaining extracellular matrix homeostasis and inhibiting subchondral bone loss in osteoarthritis by inhibiting ERK, JNK and NF-κB signaling pathways. J Orthop Surg Res 2024; 19:662. [PMID: 39407273 PMCID: PMC11481797 DOI: 10.1186/s13018-024-05075-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Amentoflavone (AF), a plant biflavone isolated from Selaginella sinensis ethanol extract, is characterized by anti-inflammatory and anti-oxidant properties. According to previous studies, inflammation and oxidative stress are closely related to the pathophysiology of osteoarthritis (OA). However, the effects and mechanisms of AF on OA have not been elucidated.To investigate the inhibitory effects and its molecular mechanism of AF on extracellular matrix (ECM) degradation stimulated by IL-1β as well as subchondral bone loss induced by RANKL in mice chondrocytes. Quantitative PCR was used to detect the mRNA expression of genes related to inflammation, ECM, and osteoclast differentiation. Protein expression level of iNOS, COX-2, MMP13, ADAMTS5, COL2A1, SOX9, NFATc1, c-fos, JNK, ERK, P65, IκBα was measured by western blotting. The levels of TNF-α and IL-6 in the supernatants were measured by ELISA. The amount of ECM in chondrocytes was measured using toluidine blue staining. The levels of Aggrecan and Col2a1 in chondrocytes were measured using immunofluorescence. Tartrate-resistant acid phosphatase (TRAP) staining, F-actin staining and immunofluorescence were used to detect the effect of AF on osteoclast differentiation and bone resorption. The effect of AF on destabilization of the medial meniscus (DMM)-induced OA mice can be detected in hematoxylin-eosin (H&E) staining, Safranin O green staining and immunohistochemistry.AF might drastically attenuated IL-1β-stimulated inflammation and reduction of ECM formation by blocking ERK and NF-κB signaling pathways in chondrocytes. Meanwhile, AF suppressed the formation of osteoclasts and the resorption of bone function induced by RANKL. In vivo, AF played a protective role by stabilizing cartilage ECM and inhibiting subchondral bone loss in destabilization of the medial meniscus (DMM)-induced OA mice, further proving its protective effect in the development of OA. Our study show that AF alleviated OA by suppressing ERK, JNK and NF-κB signaling pathways in OA models in vitro and DMM-induced OA mice, suggesting that AF might be a potential therapeutic agent in the treatment of OA.
Collapse
Affiliation(s)
- Jianhui Liang
- Department of Orthopedics, Nanchang Hongdu Hospital of TCM, Nanchang, China
| | - Jiawei Hu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Xin Hong
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Ming Zhou
- Department of Orthopedics, Nanchang Hongdu Hospital of TCM, Nanchang, China
| | - Guoming Xia
- Department of Orthopedics, Nanchang Hongdu Hospital of TCM, Nanchang, China
| | - Liangshen Hu
- Department of Orthopedics, Nanchang Hongdu Hospital of TCM, Nanchang, China
| | - Song Luo
- Department of Orthopedics, Nanchang Hongdu Hospital of TCM, Nanchang, China
| | - Kun Quan
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Jianbin Yan
- Department of Orthopedics, Nanchang Hongdu Hospital of TCM, Nanchang, China
| | - Song Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China.
| | - Shaoyong Fan
- Department of Orthopedics, Nanchang Hongdu Hospital of TCM, Nanchang, China.
| |
Collapse
|
4
|
Zhou F, Chen M, Qian Y, Yuan K, Han X, Wang W, Guo JJ, Chen Q, Li B. Enhancing Endogenous Hyaluronic Acid in Osteoarthritic Joints with an Anti-Inflammatory Supramolecular Nanofiber Hydrogel Delivering HAS2 Lentivirus. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400542. [PMID: 38593309 DOI: 10.1002/smll.202400542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/24/2024] [Indexed: 04/11/2024]
Abstract
Osteoarthritis (OA) management remains challenging because of its intricate pathogenesis. Intra-articular injections of drugs, such as glucocorticoids and hyaluronic acid (HA), have certain limitations, including the risk of joint infection, pain, and swelling. Hydrogel-based therapeutic strategies have attracted considerable attention because of their enormous therapeutic potential. Herein, a supramolecular nanofiber hydrogel is developed using dexamethasone sodium phosphate (DexP) as a vector to deliver lentivirus-encoding hyaluronan synthase 2 (HAS2) (HAS2@DexP-Gel). During hydrogel degradation, HAS2 lentivirus and DexP molecules are slowly released. Intra-articular injection of HAS2@DexP-Gel promotes endogenous HA production and suppresses synovial inflammation. Additionally, HAS2@DexP-Gel reduces subchondral bone resorption in the anterior cruciate ligament transection-induced OA mice, attenuates cartilage degeneration, and delays OA progression. HAS2@DexP-Gel exhibited good biocompatibility both in vitro and in vivo. The therapeutic mechanisms of the HAS2@DexP-Gel are investigated using single-cell RNA sequencing. HAS2@DexP-Gel optimizes the microenvironment of the synovial tissue by modulating the proportion of synovial cell subpopulations and regulating the interactions between synovial fibroblasts and macrophages. The innovative nanofiber hydrogel, HAS2@DexP-Gel, effectively enhances endogenous HA production while reducing synovial inflammation. This comprehensive approach holds promise for improving joint function, alleviating pain, and slowing OA progression, thereby providing significant benefits to patients.
Collapse
Affiliation(s)
- Feng Zhou
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Medical 3D Printing Center, Orthopedic Institute, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Muchao Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Yufan Qian
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Medical 3D Printing Center, Orthopedic Institute, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Kai Yuan
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Xuequan Han
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Center for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Weishan Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832099, P. R. China
| | - Jiong Jiong Guo
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Medical 3D Printing Center, Orthopedic Institute, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Qian Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Bin Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Medical 3D Printing Center, Orthopedic Institute, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| |
Collapse
|
5
|
Wang H, Yuan T, Wang Y, Liu C, Li D, Li Z, Sun S. Osteoclasts and osteoarthritis: Novel intervention targets and therapeutic potentials during aging. Aging Cell 2024; 23:e14092. [PMID: 38287696 PMCID: PMC11019147 DOI: 10.1111/acel.14092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/31/2024] Open
Abstract
Osteoarthritis (OA), a chronic degenerative joint disease, is highly prevalent among the aging population, and often leads to joint pain, disability, and a diminished quality of life. Although considerable research has been conducted, the precise molecular mechanisms propelling OA pathogenesis continue to be elusive, thereby impeding the development of effective therapeutics. Notably, recent studies have revealed subchondral bone lesions precede cartilage degeneration in the early stage of OA. This development is marked by escalated osteoclast-mediated bone resorption, subsequent imbalances in bone metabolism, accelerated bone turnover, and a decrease in bone volume, thereby contributing significantly to the pathological changes. While the role of aging hallmarks in OA has been extensively elucidated from the perspective of chondrocytes, their connection with osteoclasts is not yet fully understood. There is compelling evidence to suggest that age-related abnormalities such as epigenetic alterations, proteostasis network disruption, cellular senescence, and mitochondrial dysfunction, can stimulate osteoclast activity. This review intends to systematically discuss how aging hallmarks contribute to OA pathogenesis, placing particular emphasis on the age-induced shifts in osteoclast activity. It also aims to stimulate future studies probing into the pathological mechanisms and therapeutic approaches targeting osteoclasts in OA during aging.
Collapse
Affiliation(s)
- Haojue Wang
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Tao Yuan
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Yi Wang
- Department of Joint SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Changxing Liu
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Dengju Li
- Department of Joint SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Ziqing Li
- Department of Joint SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Shui Sun
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Department of Joint SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| |
Collapse
|
6
|
Bei M, Zheng Z, Xiao Y, Liu N, Cao X, Tian F, Zhang L, Wu X. Effects of alendronate on cartilage lesions and micro-architecture deterioration of subchondral bone in patellofemoral osteoarthritic ovariectomized rats with patella-baja. J Orthop Surg Res 2024; 19:197. [PMID: 38528611 DOI: 10.1186/s13018-024-04677-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/14/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Patellofemoral osteoarthritis (PFJOA) is a subtype of knee OA, which is one of the main causes of anterior knee pain. The current study found an increased prevalence of OA in postmenopausal women, called postmenopausal OA. Therefore, we designed the ovariectomized rat model of patella baja-induced PFJOA. Alendronate (ALN) inhibits osteoclast-mediated bone loss, and has been reported the favorable result of a potential intervention option of OA treatment. However, the potential effects of ALN treatment on PFJOA in the ovariectomized rat model are unknown and need further investigation prior to exploration in the clinical research setting. In this study, the effects of ALN on articular cartilage degradation and subchondral bone microstructure were assessed in the ovariectomized PFJOA rat model for 10 weeks. METHODS Patella baja and estrogen withdrawal were induced by patellar ligament shortening (PLS) and bilateral ovariectmomy surgeries in 3-month-old female Sprague-Dawley rats, respectively. Rats were randomly divided into five groups (n = 8): Sham + V; OVX + V, Sham + PLS + V, OVX + PLS + V, OVX + PLS + ALN (ALN: 70 μg/kg/week). Radiography was performed to evaluate patellar height ratios, and the progression of PFJOA was assessed by macroscopic and microscopic analyses, immunohistochemistry and micro-computed tomography (micro-CT). RESULTS Our results found that the patella baja model prepared by PLS can successfully cause degeneration of articular cartilage and subchondral bone, resulting in changes of PFJOA. OVX caused a decrease in estrogen levels in rats, which aggravated the joint degeneration caused by PFJOA. Early application of ALN can delay the degenerative changes of articular cartilage and subchondral bone microstructure in castrated PFJOA rat to a certain extent, improve and maintain the micrometabolism and structural changes of cartilage and subchondral bone. CONCLUSION The early application of ALN can delay the destruction of articular cartilage and subchondral bone microstructure in castrated PFJOA rat to a certain extent.
Collapse
Affiliation(s)
- Mingjian Bei
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital Affiliated to Capital Medical University, Xinjiekoudongjie 31, Xicheng Dis, Beijing, 100035, People's Republic of China
| | - Zhiyuan Zheng
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, People's Republic of China
| | - Yaping Xiao
- The Department of Orthopedic Surgery, Wuhan Third Hospital, Tongren Hospital of Wuhan University, No. 241, Pengliuyang Road, Wuhan, 430000, People's Republic of China
| | - Ning Liu
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, People's Republic of China
| | - Xuehui Cao
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, People's Republic of China
| | - Faming Tian
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, People's Republic of China
| | - Liu Zhang
- Department of Orthopedic Surgery, Emergency General Hospital, Xibahenanli 29, Chaoyang District, Beijing, 100028, People's Republic of China
| | - Xinbao Wu
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital Affiliated to Capital Medical University, Xinjiekoudongjie 31, Xicheng Dis, Beijing, 100035, People's Republic of China.
| |
Collapse
|
7
|
Kim GM, Kim J, Lee JY, Park MC, Lee SY. IgSF11 deficiency alleviates osteoarthritis in mice by suppressing early subchondral bone changes. Exp Mol Med 2023; 55:2576-2585. [PMID: 38036734 PMCID: PMC10767117 DOI: 10.1038/s12276-023-01126-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 12/02/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease. While it is classically characterized by articular cartilage destruction, OA affects all tissues in the joints and is thus also accompanied by local inflammation, subchondral bone changes, and persistent pain. However, our understanding of the underlying subchondral bone dynamics during OA progression is poor. Here, we demonstrate the contribution of immunoglobulin superfamily 11 (IgSF11) to OA subchondral bone remodeling by using a murine model. In particular, IgSF11 was quickly expressed by differentiating osteoclasts and upregulated in subchondral bone soon after destabilization-of-the-medial-meniscus (DMM)-induced OA. In mice, IgSF11 deficiency not only suppressed subchondral bone changes in OA but also blocked cartilage destruction. The IgSF11-expressing cells in OA subchondral bone were found to be involved in osteoclast maturation and bone resorption and colocalized with receptor-activator of nuclear-factor κ-B (RANK), the key osteoclast differentiation factor. Thus, our study shows that blocking early subchondral bone changes in OA can ameliorate articular cartilage destruction in OA.
Collapse
Affiliation(s)
- Gyeong Min Kim
- Department of Life Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
- The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jihee Kim
- Department of Life Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
- The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - June-Yong Lee
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, and Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Min-Chan Park
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea
| | - Soo Young Lee
- Department of Life Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea.
- The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, 03760, Republic of Korea.
- Multitasking Macrophage Research Center, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
8
|
Lambova SN, Ivanovska N, Stoyanova S, Belenska-Todorova L, Georgieva E, Batsalova T, Moten D, Apostolova D, Dzhambazov B. Changes in the Subchondral Bone, Visfatin, and Cartilage Biomarkers after Pharmacological Treatment of Experimental Osteoarthritis with Metformin and Alendronate. Int J Mol Sci 2023; 24:10103. [PMID: 37373251 DOI: 10.3390/ijms241210103] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Subchondral bone that has intense communication with the articular cartilage might be a potential target for pharmacological treatment in the early stages of osteoarthritis (OA). Considering the emerging data about the role of adipokines in the pathogenesis of OA, the administration of drugs that influence their level is also intriguing. Metformin and alendronate were administered in mice with collagenase-induced OA (CIOA) as a monotherapy and in combination. Safranin O staining was used for the assessment of changes in subchondral bone and articular cartilage. Before and after treatment, serum levels of visfatin and biomarkers of cartilage turnover (CTX-II, MMP-13, and COMP) were assessed. In the current study, the combined administration of alendronate and metformin in mice with CIOA led to the protection against cartilage and subchondral bone damage. In mice with CIOA, metformin led to a decrease in visfatin level. In addition, treatment with metformin, alendronate, or their combination lowered the level of cartilage biomarkers (CTX-II and COMP), while the level of MMP-13 was not influenced. In conclusion, personalized combination treatment in OA according to clinical phenotype, especially in the early stages of the disease, might lead to the identification of a successful disease-modifying therapeutic protocol in OA.
Collapse
Affiliation(s)
- Sevdalina Nikolova Lambova
- Department of Propaedeutics of Internal Diseases, Faculty of Medicine, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| | - Nina Ivanovska
- Department of Immunology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Stela Stoyanova
- Department of Developmental Biology, Paisii Hilendarski University of Plovdiv, 4000 Plovdiv, Bulgaria
| | | | - Elenka Georgieva
- Department of Developmental Biology, Paisii Hilendarski University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Tsvetelina Batsalova
- Department of Developmental Biology, Paisii Hilendarski University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Dzhemal Moten
- Department of Developmental Biology, Paisii Hilendarski University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Desislava Apostolova
- Department of Developmental Biology, Paisii Hilendarski University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Balik Dzhambazov
- Department of Developmental Biology, Paisii Hilendarski University of Plovdiv, 4000 Plovdiv, Bulgaria
| |
Collapse
|
9
|
Wu Z, Yuan K, Zhang Q, Guo JJ, Yang H, Zhou F. Antioxidant PDA-PEG nanoparticles alleviate early osteoarthritis by inhibiting osteoclastogenesis and angiogenesis in subchondral bone. J Nanobiotechnology 2022; 20:479. [DOI: 10.1186/s12951-022-01697-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 11/02/2022] [Indexed: 11/17/2022] Open
Abstract
AbstractAccumulating evidence suggests that osteoclastogenesis and angiogenesis in subchondral bone are critical destructive factors in the initiation and progression of osteoarthritis (OA). Herein, methoxypolyethylene glycol amine (mPEG-NH2) modified polydopamine nanoparticles (PDA-PEG NPs) were synthesized for treating early OA. The cytotoxicity and reactive oxygen species (ROS) scavenging ability of PDA-PEG NPs were evaluated. The effects of PDA-PEG NPs on osteoclast differentiation and vessel formation were then evaluated. Further, PDA-PEG NPs were administrated to anterior cruciate ligament transection (ACLT)-induced OA mice. Results demonstrated that PDA-PEG NPs had low toxicity both in vitro and in vivo. PDA-PEG NPs could inhibit osteoclastogenesis via regulating nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. Moreover, PDA-PEG NPs suppressed osteoclast-related angiogenesis via down-regulating platelet-derived growth factor-BB (PDGF-BB). In vivo, PDA-PEG NPs inhibited subchondral bone resorption and angiogenesis, further rescuing cartilage degradation in OA mice. In conclusion, we demonstrated that PDA-PEG NPs deployment could be a potential therapy for OA.
Graphical Abstract
Collapse
|
10
|
Folate-based radiotracers for nuclear imaging and radionuclide therapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Diterbutyl phthalate attenuates osteoarthritis in ACLT mice via suppressing ERK/c-fos/NFATc1 pathway, and subsequently inhibiting subchondral osteoclast fusion. Acta Pharmacol Sin 2022; 43:1299-1310. [PMID: 34381182 PMCID: PMC9061820 DOI: 10.1038/s41401-021-00747-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/17/2021] [Indexed: 12/11/2022]
Abstract
Osteoarthritis (OA) is the most common arthritis with a rapidly increasing prevalence. Disease progression is irreversible, and there is no curative therapy available. During OA onset, abnormal mechanical loading leads to excessive osteoclastogenesis and bone resorption in subchondral bone, causing a rapid subchondral bone turnover, cyst formation, sclerosis, and finally, articular cartilage degeneration. Moreover, osteoclast-mediated angiogenesis and sensory innervation in subchondral bone result in abnormal vascularization and OA pain. The traditional Chinese medicine Panax notoginseng (PN; Sanqi) has long been used in treatment of bone diseases including osteoporosis, bone fracture, and OA. In this study we established two-dimensional/bone marrow mononuclear cell/cell membrane chromatography/time of flight mass spectrometry (2D/BMMC/CMC/TOFMS) technique and discovered that diterbutyl phthalate (DP) was the active constituent in PN inhibiting osteoclastogenesis. Then we explored the therapeutic effect of DP in an OA mouse model with anterior cruciate ligament transaction (ACLT). After ACLT was conducted, the mice received DP (5 mg·kg-1·d-1, ip) for 8 weeks. Whole knee joint tissues of the right limb were harvested at weeks 2, 4, and 8 for analysis. We showed that DP administration impeded overactivated osteoclastogenesis in subchondral bone and ameliorated articular cartilage deterioration. DP administration blunted aberrant H-type vessel formation in subchondral bone marrow and alleviated OA pain assessed in Von Frey test and thermal plantar test. In RANKL-induced RAW264.7 cells in vitro, DP (20 μM) retarded osteoclastogenesis by suppressing osteoclast fusion through inhibition of the ERK/c-fos/NFATc1 pathway. DP treatment also downregulated the expression of dendritic cell-specific transmembrane protein (DC-STAMP) and d2 isoform of the vacuolar (H+) ATPase V0 domain (Atp6v0d2) in the cells. In conclusion, we demonstrate that DP prevents OA progression by inhibiting abnormal osteoclastogenesis and associated angiogenesis and neurogenesis in subchondral bone.
Collapse
|
12
|
Xie J, Yuan X, Mao W, Cai H, Gao K, Lv Z, Wang H, Ma C. 99Tc-Methylene Diphosphonate Treatment is Safe and Efficacious for Osteoporosis in Postmenopausal Differentiated Thyroid Cancer Patients Undergoing TSH Suppression: A Three-Center Non-Randomized Clinical Study. Cancer Manag Res 2022; 14:995-1005. [PMID: 35283644 PMCID: PMC8906701 DOI: 10.2147/cmar.s354471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/23/2022] [Indexed: 11/23/2022] Open
Abstract
Objective To investigate the effects of 99Tc-methylene diphosphonate (99Tc-MDP) on osteoporosis (OS) in postmenopausal patients with differentiated thyroid cancer (DTC) under thyroid stimulating hormone (TSH) suppression. Patients and Methods Patients (n = 142) were divided into two groups: (1) 99Tc-MDP (n = 70) and (2) alendronate (n = 72) treatments (NCT 02304757). Bone mineral density (BMD) in the lumbar spine and hip was evaluated by DXA, along with bone turnover markers, safety, and quality of life (QOL) using SF-36 at three time points: before treatment and at 6 and/or 12 months after treatment. Results The percentage change of BMD in total lumbar spine or hip showed no significant difference throughout the study (P > 0.025). 99Tc-MDP and alendronate treatment alone significantly increased BMD in the lumbar spine, but alendronate treatment also significantly increased BMD in total hip at 6 and 12 months, as compared with the baseline. There were no significant differences in the results of the SF-36 scores between the two treatment groups at any time during the whole study period. 99Tc-MDP significantly increased bone formation markers of osteocalcin at 6 and 12 months (P all < 0.05), PINP at 12 months (P = 0.001), and bone resorption markers of β-CTX at 6 and 12 months (p < 0.05) as compared with the alendronate treated group. No adverse event was observed in the 99Tc-MDP treatment group compared with alendronate (P = 0.014). Conclusion 99Tc-MDP was as efficacious as alendronate in the improvement of lumbar BMD for DTC patients with OS under TSH stimulation. 99Tc-MDP was shown to be safe and improved patients’ QOL.
Collapse
Affiliation(s)
- Jianhao Xie
- Department of Nuclear Medicine, Tenth People’s Hospital of Tongji University, Shanghai, People’s Republic of China
- Department of Orthopaedic, Beijing Jishuitan Hospital, Beijing, People’s Republic of China
| | - XueYu Yuan
- Department of Nuclear Medicine, Tenth People’s Hospital of Tongji University, Shanghai, People’s Republic of China
| | - Weiqing Mao
- Department of Nuclear Medicine, Tenth People’s Hospital of Tongji University, Shanghai, People’s Republic of China
| | - Haidong Cai
- Department of Nuclear Medicine, Tenth People’s Hospital of Tongji University, Shanghai, People’s Republic of China
| | - Kejia Gao
- Department of Nuclear Medicine, Shanghai No. 4 People’s Hospital, Shanghai, People’s Republic of China
| | - Zhongwei Lv
- Department of Nuclear Medicine, Tenth People’s Hospital of Tongji University, Shanghai, People’s Republic of China
- Correspondence: Zhongwei Lv; Chao Ma, Tel/Fax +86-21-66302075, Email ;
| | - Hui Wang
- Department of Nuclear Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People’s Republic of China
| | - Chao Ma
- Department of Nuclear Medicine, Tenth People’s Hospital of Tongji University, Shanghai, People’s Republic of China
| |
Collapse
|
13
|
Hodgkinson T, Amado IN, O'Brien FJ, Kennedy OD. The role of mechanobiology in bone and cartilage model systems in characterizing initiation and progression of osteoarthritis. APL Bioeng 2022. [DOI: 10.1063/5.0068277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Tom Hodgkinson
- Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Isabel N. Amado
- Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Fergal J. O'Brien
- Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Advanced Materials Bio-Engineering Research Centre (AMBER), Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
| | - Oran D. Kennedy
- Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Advanced Materials Bio-Engineering Research Centre (AMBER), Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
14
|
Hu W, Cai C, Li Y, Kang F, Chu T, Dong S. Farnesoid X receptor agonist attenuates subchondral bone osteoclast fusion and osteochondral pathologies of osteoarthritis via suppressing JNK1/2/NFATc1 pathway. FASEB J 2022; 36:e22243. [PMID: 35224782 DOI: 10.1096/fj.202101717r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/04/2022] [Accepted: 02/17/2022] [Indexed: 11/11/2022]
Abstract
Osteoarthritis (OA) is a prevalent degenerative disease of the joint, featured by articular cartilage destruction and subchondral bone marrow lesions. Articular cartilage and subchondral bone constitute an osteochondral unit that guarantees joint homeostasis. During OA initiation, activated osteoclasts in subchondral bone ultimately result in impaired capacities of the subchondral bone in response to mechanical stress, followed by the degradation of overlying articular cartilage. Thus, targeting osteoclasts could be a potential therapeutic option for treating OA. Here, we observed that farnesoid X receptor (FXR) expression and osteoclast fusion and activity in subchondral bone were concomitantly changed during early-stage OA in the OA mouse model established by anterior cruciate ligament transection (ACLT). Then, we explored the therapeutic effects of FXR agonist GW4064 on the osteochondral pathologies in ACLT mice. We showed that GW4064 obviously ameliorated subchondral bone deterioration, associated with reduction in tartrate-resistant acid phosphatase (TRAP) positive multinuclear osteoclast number, as well as articular cartilage degradation, which were blocked by the treatment with FXR antagonist Guggulsterone. Mechanistically, GW4064 impeded osteoclastogenesis through inhibiting subchondral bone osteoclast fusion via suppressing c-Jun N-terminal kinase (JNK) 1/2/nuclear factor of activated T-cells 1 (NFATc1) pathway. Taken together, our results present evidence for the protective effects of GW4064 against OA by blunting osteoclast-mediated aberrant subchondral bone loss and subsequent cartilage deterioration. Therefore, GW4064 demonstrates the potential as an alternative therapeutic option against OA for further drug development.
Collapse
Affiliation(s)
- Wenhui Hu
- Department of Biomedical Materials Science, College of Biomedical Engineering, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chenhui Cai
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuheng Li
- Department of Biomedical Materials Science, College of Biomedical Engineering, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fei Kang
- Department of Biomedical Materials Science, College of Biomedical Engineering, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tongwei Chu
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, College of Biomedical Engineering, Third Military Medical University (Army Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
15
|
Zhu M, Xu Q, Yang X, Zhan H, Zhang B, Liu X, Dai M. Vindoline Attenuates Osteoarthritis Progression Through Suppressing the NF-κB and ERK Pathways in Both Chondrocytes and Subchondral Osteoclasts. Front Pharmacol 2022; 12:764598. [PMID: 35095488 PMCID: PMC8790248 DOI: 10.3389/fphar.2021.764598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Disruption of extracellular matrix (ECM) homeostasis and subchondral bone remodeling play significant roles in osteoarthritis (OA) pathogenesis. Vindoline (Vin), an indole alkaloid extracted from the medicinal plant Catharanthus roseus, possesses anti-inflammatory properties. According to previous studies, inflammation is closely associated with osteoclast differentiation and the disorders of the homeostasis between ECM. Although Vin has demonstrated effective anti-inflammatory properties, its effects on the progression of OA remain unclear. We hypothesized that Vin may suppress the progress of OA by suppressing osteoclastogenesis and stabilizing ECM of articular cartilage. Therefore, we investigated the effects and molecular mechanisms of Vin as a treatment for OA in vitro and in vivo. In the present study, we found that Vin significantly suppressed RANKL-induced osteoclast formation and obviously stabilized the disorders of the ECM homeostasis stimulated by IL-1β in a dose-dependent manner. The mRNA expressions of osteoclast-specific genes were inhibited by Vin treatment. Vin also suppressed IL-1β-induced mRNA expressions of catabolism and protected the mRNA expressions of anabolism. Moreover, Vin notably inhibited the activation of RANKL-induced and IL-1β-induced NF-κB and ERK pathways. In vivo, Vin played a protective role by inhibiting osteoclast formation and stabilizing cartilage ECM in destabilization of the medial meniscus (DMM)-induced OA mice. Collectively, our observations provide a molecular-level basis for Vin’s potential in the treatment of OA.
Collapse
Affiliation(s)
- Meisong Zhu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Qiang Xu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Xinmin Yang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Haibo Zhan
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Bin Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Xuqiang Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Min Dai
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| |
Collapse
|
16
|
Aizah N, Chong PP, Kamarul T. Early Alterations of Subchondral Bone in the Rat Anterior Cruciate Ligament Transection Model of Osteoarthritis. Cartilage 2021; 13:1322S-1333S. [PMID: 31569963 PMCID: PMC8804754 DOI: 10.1177/1947603519878479] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE Advances in research have shown that the subchondral bone plays an important role in the propagation of cartilage loss and progression of osteoarthritis (OA), but whether the subchondral bone changes precede or lead to articular cartilage loss remains debatable. In order to elucidate the subchondral bone and cartilage changes that occur in early OA, an experiment using anterior cruciate ligament transection (ACLT) induced posttraumatic OA model of the rat knee was conducted. DESIGN Forty-two Sprague Dawley rats were divided into 2 groups: the ACLT group and the nonoperated control group. Surgery was conducted on the ACLT group, and subsequently rats from both groups were sacrificed at 1, 2, and 3 weeks postsurgery. Subchondral bone was evaluated using a high-resolution peripheral quantitative computed tomography scanner, while cartilage was histologically evaluated and scored. RESULTS A significant reduction in the subchondral trabecular bone thickness and spacing was found as early as 1 week postsurgery in ACLT rats compared with the nonoperated control. This was subsequently followed by a reduction in bone mineral density and bone fractional volume at week 2, and finally a decrease in the trabecular number at week 3. These changes occurred together with cartilage degeneration as reflected by an increasing Mankin score over all 3 weeks. CONCLUSIONS Significant changes in subchondral bone occur very early in OA concurrent with surface articular cartilage degenerative change suggest that factors affecting bone remodeling and resorption together with cartilage matrix degradation occur very early in the disease.
Collapse
Affiliation(s)
- Nik Aizah
- National Orthopaedic Centre of
Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery,
Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia,Nik Aizah, National Orthopaedic Centre of
Excellence for Research and Learning (NOCERAL), Department of Orthopaedic
Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603,
Malaysia.
| | - Pan Pan Chong
- National Orthopaedic Centre of
Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery,
Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Tunku Kamarul
- National Orthopaedic Centre of
Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery,
Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Ziemian SN, Ayobami OO, Rooney AM, Kelly NH, Holyoak DT, Ross FP, van der Meulen MCH. Low bone mass resulting from impaired estrogen signaling in bone increases severity of load-induced osteoarthritis in female mice. Bone 2021; 152:116071. [PMID: 34171515 PMCID: PMC8863567 DOI: 10.1016/j.bone.2021.116071] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/04/2021] [Accepted: 06/18/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Reduced subchondral bone mass and increased remodeling are associated with early stage OA. However, the direct effect of low subchondral bone mass on the risk and severity of OA development is unclear. We sought to determine the role of low bone mass resulting from a bone-specific loss of estrogen signaling in load-induced OA development using female osteoblast-specific estrogen receptor-alpha knockout (pOC-ERαKO) mice. METHODS Osteoarthritis was induced by cyclic mechanical loading applied to the left tibia of 26-week-old female pOC-ERαKO and littermate control mice at peak loads of 6.5N, 7N, or 9N for 2 weeks. Cartilage damage and thickness, osteophyte development, and joint capsule fibrosis were assessed from histological sections. Subchondral bone morphology was analyzed by microCT. The correlation between OA severity and intrinsic bone parameters was determined. RESULTS The loss of ERα in bone resulted in an osteopenic subchondral bone phenotype, but did not directly affect cartilage health. Following two weeks of cyclic tibial loading to induce OA pathology, pOC-ERαKO mice developed more severe cartilage damage, larger osteophytes, and greater joint capsule fibrosis compared to littermate controls. Intrinsic bone parameters negatively correlated with measures of OA severity in loaded limbs. CONCLUSIONS Subchondral bone osteopenia resulting from bone-specific loss of estrogen signaling was associated with increased severity of load-induced OA pathology, suggesting that reduced subchondral bone mass directly exacerbates load-induced OA development. Bone-specific changes associated with estrogen loss may contribute to the increased incidence of OA in post-menopausal women.
Collapse
Affiliation(s)
| | | | | | | | | | - F Patrick Ross
- Hospital for Special Surgery, New York, NY, United States of America
| | - Marjolein C H van der Meulen
- Cornell University, Ithaca, NY, United States of America; Hospital for Special Surgery, New York, NY, United States of America.
| |
Collapse
|
18
|
Jiang A, Xu P, Sun S, Zhao Z, Tan Q, Li W, Song C, Leng H. Cellular alterations and crosstalk in the osteochondral joint in osteoarthritis and promising therapeutic strategies. Connect Tissue Res 2021; 62:709-719. [PMID: 33397157 DOI: 10.1080/03008207.2020.1870969] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/28/2020] [Indexed: 02/03/2023]
Abstract
Osteoarthritis (OA) is a joint disorder involving cartilage degeneration and subchondral bone sclerosis. The bone-cartilage interface is implicated in OA pathogenesis due to its susceptibility to mechanical and biological factors. The crosstalk between cartilage and the underlying subchondral bone is elevated in OA due to multiple factors, such as increased vascularization, porosity, microcracks and fissures. Changes in the osteochondral joint are traceable to alterations in chondrocytes and bone cells (osteoblasts, osteocytes and osteoclasts). The phenotypes of these cells can change with the progression of OA. Aberrant intercellular communications among bone cell-bone cell and bone cell-chondrocyte are of great importance and might be the factors promoting OA development. An appreciation of cellular phenotypic changes in OA and the mechanisms by which these cells communicate would be expected to lead to the development of targeted drugs with fewer side effects.
Collapse
Affiliation(s)
- Ai Jiang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Peng Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Shang Sun
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Zhenda Zhao
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Qizhao Tan
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Weishi Li
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education Lisbon Portugal
| | - Chunli Song
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Lab of Spine Diseases, Beijing, China
| | - Huijie Leng
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| |
Collapse
|
19
|
Zhang X, Cai G, Jones G, Laslett LL. Intravenous bisphosphonates do not improve knee pain or bone marrow lesions in people with knee osteoarthritis: a meta-analysis. Rheumatology (Oxford) 2021; 61:2235-2242. [PMID: 34687305 DOI: 10.1093/rheumatology/keab786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/11/2021] [Accepted: 10/18/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE To summarise effects of intravenous bisphosphonates (IVBP) in patients with symptomatic knee osteoarthritis (OA) and bone marrow lesions (BMLs), using a meta-analysis of randomized controlled trials (RCTs). METHODS Literature databases were searched for placebo-controlled RCTs of IVBPs for knee OA from inception, and included validated pain and function scales, BML size, and incidence of adverse events. Efficacy was compared using standardized mean differences (SMD) and risk ratios (RR) with fixed-effect or random-effects models. Methodological quality was assessed using the Cochrane risk of bias tool, heterogeneity was assessed by I2 statistics. RESULTS We included 428 patients in 4 RCTs of 2-24 months duration; most patients (84%) received zoledronic acid (ZA). Risk of bias was low-moderate. IVBP had large effect sizes on pain within 3 months (SMD= -2.33 (95% confidence interval= -3.02, -1.65)) mainly driven by neridronate (resulting in substantial heterogeneity, I 2=92%) with no effect for ZA alone. Differences in knee function were statistically significant at 3 months (SMD=-0.22 (-0.43, -0.01), I 2=0.2%). Effect sizes for pain did not reach statistical significance at any other time point. IVBPs improved a semi-quantitative measure of BML size within 6 months (SMD= -0.52 (-0.89, -0.14), I 2=0%) but not at 12 months or two years. Adverse events (RR = 1.19 (1.00, 1.41) I 2=52%), occurred more frequently with IVBP. CONCLUSION ZA has no effect on knee pain, possibly a short-term effect on BML size and higher rates of adverse events. Neridronate may improve pain in the short term, but this is based on a single trial.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.,Menzies Institute for Medical Research, University of Tasmania, Tasmania, Australia.,Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Guoqi Cai
- Menzies Institute for Medical Research, University of Tasmania, Tasmania, Australia
| | - Graeme Jones
- Menzies Institute for Medical Research, University of Tasmania, Tasmania, Australia
| | - Laura L Laslett
- Menzies Institute for Medical Research, University of Tasmania, Tasmania, Australia
| |
Collapse
|
20
|
Yajun W, Jin C, Zhengrong G, Chao F, Yan H, Weizong W, Xiaoqun L, Qirong Z, Huiwen C, Hao Z, Jiawei G, Xinchen Z, Shihao S, Sicheng W, Xiao C, Jiacan S. Betaine Attenuates Osteoarthritis by Inhibiting Osteoclastogenesis and Angiogenesis in Subchondral Bone. Front Pharmacol 2021; 12:723988. [PMID: 34658862 PMCID: PMC8511433 DOI: 10.3389/fphar.2021.723988] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/13/2021] [Indexed: 12/28/2022] Open
Abstract
Osteoarthritis (OA) is the most common type of arthritis with no effective therapy. Subchondral bone and overlying articular cartilage are closely associated and function as “osteo-chondral unit” in the joint. Abnormal mechanical load leads to activated osteoclast activity and increased bone resorption in the subchondral bone, which is implicated in the onset of OA pathogenesis. Thus, inhibiting subchondral bone osteoclast activation could prevent OA onset. Betaine, isolated from the Lycii Radicis Cortex (LRC), has been demonstrated to exert anti-inflammatory, antifibrotic and antiangiogenic properties. Here, we evaluated the effects of betaine on anterior cruciate ligament transection (ACLT)-induced OA mice. We observed that betaine decreased the number of matrix metalloproteinase 13 (MMP-13)-positive and collagen X (Col X)-positive cells, prevented articular cartilage proteoglycan loss and lowered the OARSI score. Betaine decreased the thickness of calcified cartilage and increased the expression level of lubricin. Moreover, betaine normalized uncoupled subchondral bone remodeling as defined by lowered trabecular pattern factor (Tb.pf) and increased subchondral bone plate thickness (SBP). Additionally, aberrant angiogenesis in subchondral bone was blunted by betaine treatment. Mechanistically, we demonstrated that betaine suppressed osteoclastogenesis in vitro by inhibiting reactive oxygen species (ROS) production and subsequent mitogen-activated protein kinase (MAPK) signaling. These data demonstrated that betaine attenuated OA progression by inhibiting hyperactivated osteoclastogenesis and maintaining microarchitecture in subchondral bone.
Collapse
Affiliation(s)
- Wang Yajun
- Graduate Management Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Cui Jin
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Gu Zhengrong
- Department of Orthopedics, Luodian Hospital, Shanghai, China
| | - Fang Chao
- Graduate Management Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hu Yan
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China.,Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Weng Weizong
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Li Xiaoqun
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhou Qirong
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chen Huiwen
- Graduate Management Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhang Hao
- Graduate Management Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Guo Jiawei
- Graduate Management Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhuang Xinchen
- Graduate Management Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Sheng Shihao
- Graduate Management Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wang Sicheng
- Institute of Translational Medicine, Shanghai University, Shanghai, China.,Department of Orthopedics, Zhongye Hospital, Shanghai, China
| | - Chen Xiao
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Su Jiacan
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China.,Institute of Translational Medicine, Shanghai University, Shanghai, China.,Shanghai Clinical Research Center for Aging and Medicine, Shanghai, China
| |
Collapse
|
21
|
Ziemian SN, Witkowski AM, Wright TM, Otero M, van der Meulen MCH. Early inhibition of subchondral bone remodeling slows load-induced posttraumatic osteoarthritis development in mice. J Bone Miner Res 2021; 36:2027-2038. [PMID: 34155675 PMCID: PMC8815449 DOI: 10.1002/jbmr.4397] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 06/08/2021] [Accepted: 06/16/2021] [Indexed: 01/13/2023]
Abstract
Posttraumatic osteoarthritis (PTOA) is associated with abnormal and increased subchondral bone remodeling. Inhibiting altered remodeling immediately following joint damage can slow PTOA progression. Clinically, however, inhibiting remodeling when significant joint damage is already present has minimal effects in slowing further disease progression. We sought to determine the treatment window following PTOA initiation in which inhibiting remodeling can attenuate progression of joint damage. We hypothesized that the most effective treatment would be to inhibit remodeling immediately after PTOA initiation. We used an animal model in which a single bout of mechanical loading was applied to the left tibia of 26-week-old male C57Bl/6 mice at a peak load of 9 N to initiate load-induced PTOA development. Following loading, we inhibited bone remodeling using daily alendronate (ALN) treatment administered either immediately or with 1 or 2 weeks' delay up to 3 or 6 weeks post-loading. A vehicle (VEH) treatment group controlled for daily injections. Cartilage and subchondral bone morphology and osteophyte development were analyzed and compared among treatment groups. Inhibiting remodeling using ALN immediately after load-induced PTOA initiation reduced cartilage degeneration, slowed osteophyte formation, and preserved subchondral bone volume compared to VEH treatment. Delaying the inhibition of bone remodeling at 1 or 2 weeks similarly attenuated cartilage degeneration at 6 weeks, but did not slow the development of osteoarthritis (OA)-related changes in the subchondral bone, including osteophyte formation and subchondral bone erosions. Immediate inhibition of subchondral bone remodeling was most effective in slowing PTOA progression across the entire joint, indicating that abnormal bone remodeling within the first week following PTOA initiation played a critical role in subsequent cartilage damage, subchondral bone changes, and overall joint degeneration. These results highlight the potential of anti-resorptive drugs as preemptive therapies for limiting PTOA development after joint injury, rather than as disease-modifying therapies after joint damage is established. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Sophia N Ziemian
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Ana M Witkowski
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Timothy M Wright
- HSS Research Institute, Hospital for Special Surgery, New York, New York, USA
| | - Miguel Otero
- HSS Research Institute, Hospital for Special Surgery, New York, New York, USA
| | - Marjolein C H van der Meulen
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA.,HSS Research Institute, Hospital for Special Surgery, New York, New York, USA.,Sibley School of Mechanical & Aerospace Engineering, Cornell University, New York, New York, USA
| |
Collapse
|
22
|
Aarntzen EHJG, Noriega-Álvarez E, Artiko V, Dias AH, Gheysens O, Glaudemans AWJM, Lauri C, Treglia G, van den Wyngaert T, van Leeuwen FWB, Terry SYA. EANM recommendations based on systematic analysis of small animal radionuclide imaging in inflammatory musculoskeletal diseases. EJNMMI Res 2021; 11:85. [PMID: 34487263 PMCID: PMC8421483 DOI: 10.1186/s13550-021-00820-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/02/2021] [Indexed: 11/26/2022] Open
Abstract
Inflammatory musculoskeletal diseases represent a group of chronic and disabling conditions that evolve from a complex interplay between genetic and environmental factors that cause perturbations in innate and adaptive immune responses. Understanding the pathogenesis of inflammatory musculoskeletal diseases is, to a large extent, derived from preclinical and basic research experiments. In vivo molecular imaging enables us to study molecular targets and to measure biochemical processes non-invasively and longitudinally, providing information on disease processes and potential therapeutic strategies, e.g. efficacy of novel therapeutic interventions, which is of complementary value next to ex vivo (post mortem) histopathological analysis and molecular assays. Remarkably, the large body of preclinical imaging studies in inflammatory musculoskeletal disease is in contrast with the limited reports on molecular imaging in clinical practice and clinical guidelines. Therefore, in this EANM-endorsed position paper, we performed a systematic review of the preclinical studies in inflammatory musculoskeletal diseases that involve radionuclide imaging, with a detailed description of the animal models used. From these reflections, we provide recommendations on what future studies in this field should encompass to facilitate a greater impact of radionuclide imaging techniques on the translation to clinical settings.
Collapse
Affiliation(s)
- Erik H J G Aarntzen
- Inflammation and Infection Committee EANM, Vienna, Austria
- Department of Medical Imaging, Radboud University Nijmegen Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Edel Noriega-Álvarez
- Inflammation and Infection Committee EANM, Vienna, Austria
- Department of Nuclear Medicine, General University Hospital of Ciudad Real, Ciudad Real, Spain
| | - Vera Artiko
- Inflammation and Infection Committee EANM, Vienna, Austria
- Center for Nuclear Medicine Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - André H Dias
- Inflammation and Infection Committee EANM, Vienna, Austria
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Olivier Gheysens
- Inflammation and Infection Committee EANM, Vienna, Austria
- Department of Nuclear Medicine, Cliniques Universitaires Saint-Luc and Institute of Clinical and Experimental Research (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Andor W J M Glaudemans
- Inflammation and Infection Committee EANM, Vienna, Austria.
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen Medical Imaging Center, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| | - Chiara Lauri
- Inflammation and Infection Committee EANM, Vienna, Austria
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, "Sapienza" University of Rome, 00161, Rome, Italy
| | - Giorgio Treglia
- Inflammation and Infection Committee EANM, Vienna, Austria
- Clinic of Nuclear Medicine, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Faculty of Biology and Medicine, Università Della Svizzera Italiana, Lugano, Switzerland
| | - Tim van den Wyngaert
- Bone and Joint Committee EANM, Vienna, Austria
- Antwerp University Hospital Belgium, Edegem, Belgium
- Molecular Imaging Center Antwerp (MICA) - IPPON, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Fijs W B van Leeuwen
- Translational Molecular Imaging and Therapy Committee EANM, Vienna, Austria
- Department of Radiology, Interventional Molecular Imaging Laboratory, Leiden University Medical Center, Leiden, The Netherlands
| | - Samantha Y A Terry
- Inflammation and Infection Committee EANM, Vienna, Austria.
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor Lambeth Wing, St Thomas' Hospital, London, SE1 7EH, UK.
| |
Collapse
|
23
|
von Kaeppler EP, Wang Q, Raghu H, Bloom MS, Wong H, Robinson WH. Interleukin 4 promotes anti-inflammatory macrophages that clear cartilage debris and inhibits osteoclast development to protect against osteoarthritis. Clin Immunol 2021; 229:108784. [PMID: 34126239 DOI: 10.1016/j.clim.2021.108784] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Osteoarthritis (OA), the leading cause of joint failure, is characterized by breakdown of articular cartilage and remodeling of subchondral bone in synovial joints. Despite the high prevalence and debilitating effects of OA, no disease-modifying drugs exist. Increasing evidence, including genetic variants of the interleukin 4 (IL-4) and IL-4 receptor genes, implicates a role for IL-4 in OA, however, the mechanism underlying IL-4 function in OA remains unknown. Here, we investigated the role of IL-4 in OA pathogenesis. METHODS Il4-, myeloid-specific-Il4ra-, and Stat6-deficient and control mice were subjected to destabilization of the medial meniscus to induce OA. Macrophages, osteoclasts, and synovial explants were stimulated with IL-4 in vitro, and their function and expression profiles characterized. RESULTS Mice lacking IL-4, IL-4Ra in myeloid cells, or STAT6 developed exacerbated cartilage damage and osteophyte formation relative to WT controls. In vitro analyses revealed that IL-4 downregulates osteoarthritis-associated genes, enhances macrophage phagocytosis of cartilage debris, and inhibits osteoclast differentiation and activation via the type I receptor. CONCLUSION Our findings demonstrate that IL-4 protects against osteoarthritis in a myeloid and STAT6-dependent manner. Further, IL-4 can promote an immunomodulatory microenvironment in which joint-resident macrophages polarize towards an M2 phenotype and efficiently clear pro-inflammatory debris, and osteoclasts maintain a homeostatic level of activity in subchondral bone. These findings support a role for IL-4 modulation of myeloid cell types in maintenance of joint health and identify a pathway that could provide therapeutic benefit for osteoarthritis.
Collapse
Affiliation(s)
- Ericka P von Kaeppler
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, United States of America; VA Palo Alto Health Care System, Palo Alto, CA, United States of America
| | - Qian Wang
- VA Palo Alto Health Care System, Palo Alto, CA, United States of America; Division of Immunology and Rheumatology, Stanford University, Stanford, CA, United States of America
| | - Harini Raghu
- VA Palo Alto Health Care System, Palo Alto, CA, United States of America; Division of Immunology and Rheumatology, Stanford University, Stanford, CA, United States of America
| | - Michelle S Bloom
- VA Palo Alto Health Care System, Palo Alto, CA, United States of America; Division of Immunology and Rheumatology, Stanford University, Stanford, CA, United States of America
| | - Heidi Wong
- VA Palo Alto Health Care System, Palo Alto, CA, United States of America; Division of Immunology and Rheumatology, Stanford University, Stanford, CA, United States of America
| | - William H Robinson
- VA Palo Alto Health Care System, Palo Alto, CA, United States of America; Division of Immunology and Rheumatology, Stanford University, Stanford, CA, United States of America.
| |
Collapse
|
24
|
Hyaluronic acid-alendronate conjugate: A macromolecular drug delivery system for intra-articular treatment of osteoarthritis. OSTEOARTHRITIS AND CARTILAGE OPEN 2021; 3:100159. [DOI: 10.1016/j.ocarto.2021.100159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/05/2021] [Accepted: 03/12/2021] [Indexed: 01/01/2023] Open
|
25
|
Wang T, Guo Y, Shi XW, Gao Y, Zhang JY, Wang CJ, Yang X, Shu Q, Chen XL, Fu XY, Xie WS, Zhang Y, Li B, Guo CQ. Acupotomy Contributes to Suppressing Subchondral Bone Resorption in KOA Rabbits by Regulating the OPG/RANKL Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:8168657. [PMID: 34335838 PMCID: PMC8298142 DOI: 10.1155/2021/8168657] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/11/2020] [Accepted: 04/11/2021] [Indexed: 01/19/2023]
Abstract
Subchondral bone lesions, as the crucial inducement for accelerating cartilage degeneration, have been considered as the initiating factor and the potential therapeutic target of knee osteoarthritis (KOA). Acupotomy, the biomechanical therapy guided by traditional Chinese meridians theory, alleviates cartilage deterioration by correcting abnormal mechanics. Whether this mechanical effect of acupotomy inhibits KOA subchondral bone lesions is indistinct. This study aimed to investigate the effects of acupotomy on inhibiting subchondral bone resorption and to define the possible mechanism in immobilization-induced KOA rabbits. After KOA modeling, 8 groups of rabbits (4w/6w acupotomy, 4w/6w electroacupuncture, 4w/6w model, and 4w/6w control groups) received the indicated intervention for 3 weeks. Histological and bone histomorphometry analyses revealed that acupotomy prevented both cartilage surface erosion and subchondral bone loss. Further, acupotomy suppressed osteoclast activity and enhanced osteoblast activity in KOA subchondral bone, showing a significantly decreased expression of tartrate-resistant acid phosphatase (TRAP), matrix metalloproteinases-9 (MMP-9), and cathepsin K (Ctsk) and a significantly increased expression of osteocalcin (OCN); this regulation may be mediated by blocking the decrease in osteoprotegerin (OPG) and the increase in NF-κB receptor activated protein ligand (RANKL). These findings indicated that acupotomy inhibited osteoclast activity and promoted osteoblast activity to ameliorate hyperactive subchondral bone resorption and cartilage degeneration in immobilization-induced KOA rabbits, which may be mediated by the OPG/RANKL signaling pathway. Taken together, our results indicate that acupotomy may have therapeutic potential in KOA by restoring the balance between bone formation and bone resorption to attenuate subchondral bone lesions.
Collapse
Affiliation(s)
- Tong Wang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yan Guo
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine affiliated with Capital Medical University, Beijing 100010, China
| | - Xiao-Wei Shi
- Massage Department, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yang Gao
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jia-Yi Zhang
- Traditional Chinese Medicine Department, Beijing Nankou Hospital, Beijing 102200, China
| | - Chun-Jiu Wang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xue Yang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qi Shu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xi-Lin Chen
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xin-Yi Fu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wen-Shan Xie
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yi Zhang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Bin Li
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine affiliated with Capital Medical University, Beijing 100010, China
| | - Chang-Qing Guo
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
26
|
Subchondral bone microenvironment in osteoarthritis and pain. Bone Res 2021; 9:20. [PMID: 33731688 PMCID: PMC7969608 DOI: 10.1038/s41413-021-00147-z] [Citation(s) in RCA: 249] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/20/2021] [Accepted: 02/01/2021] [Indexed: 01/31/2023] Open
Abstract
Osteoarthritis comprises several joint disorders characterized by articular cartilage degeneration and persistent pain, causing disability and economic burden. The incidence of osteoarthritis is rapidly increasing worldwide due to aging and obesity trends. Basic and clinical research on osteoarthritis has been carried out for decades, but many questions remain unanswered. The exact role of subchondral bone during the initiation and progression osteoarthritis remains unclear. Accumulating evidence shows that subchondral bone lesions, including bone marrow edema and angiogenesis, develop earlier than cartilage degeneration. Clinical interventions targeting subchondral bone have shown therapeutic potential, while others targeting cartilage have yielded disappointing results. Abnormal subchondral bone remodeling, angiogenesis and sensory nerve innervation contribute directly or indirectly to cartilage destruction and pain. This review is about bone-cartilage crosstalk, the subchondral microenvironment and the critical role of both in osteoarthritis progression. It also provides an update on the pathogenesis of and interventions for osteoarthritis and future research targeting subchondral bone.
Collapse
|
27
|
Abstract
The prevalence of osteoarthritis (OA) and the burden associated with the disease are steadily increasing worldwide, representing a major public health challenge for the coming decades. The lack of specific treatments for OA has led to it being recognized as a serious disease that has an unmet medical need. Advances in the understanding of OA pathophysiology have enabled the identification of a variety of potential therapeutic targets involved in the structural progression of OA, some of which are promising and under clinical investigation in randomized controlled trials. Emerging therapies include those targeting matrix-degrading proteases or senescent chondrocytes, promoting cartilage repair or limiting bone remodelling, local low-grade inflammation or Wnt signalling. In addition to these potentially disease-modifying OA drugs (DMOADs), several targets are being explored for the treatment of OA-related pain, such as nerve growth factor inhibitors. The results of these studies are expected to considerably reshape the landscape of OA management over the next few years. This Review describes the pathophysiological processes targeted by emerging therapies for OA, along with relevant clinical data and discussion of the main challenges for the further development of these therapies, to provide context for the latest advances in the field of pharmaceutical therapies for OA.
Collapse
|
28
|
Pang C, Wen L, Lu X, Luo S, Qin H, Zhang X, Zhu B, Luo S. Ruboxistaurin maintains the bone mass of subchondral bone for blunting osteoarthritis progression by inhibition of osteoclastogenesis and bone resorption activity. Biomed Pharmacother 2020; 131:110650. [PMID: 32882584 DOI: 10.1016/j.biopha.2020.110650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
Osteoarthritis (OA) is a common degenerative disease with a series of changes occurring in aging cartilage, such as increased oxidative stress, decreased markers of healthy cartilage and alterations in the autophagy pathway. And increasing evidence indicates that osteoarthritis affects the whole joint, including both cartilage and subchondral bone. The agents that can effectively suppress chondrocyte degradation and subchondral bone deterioration are crucial for the prevention and treatment of OA. Ruboxistaurin (RU), an orally active protein kinase C inhibitor, can reduce macrophage adhesion to endothelial cells and relieve the local inflammation when applicating in diabetes and kinds of aging-related vasculopathy, which were realized by its effects on decreasing inflammatory cytokines' expression and increasing cell anti-oxidative stress ability. However, whether ruboxistaurin protects against OA remains unknown. In this study, we investigated the therapeutic effects of ruboxistaurin in an anterior cruciate ligament transection (ACLT)-induced OA model by preventing the bone mass loss of subchondral bone. We found that ruboxistaurin can effectively alleviate ACLT-induced osteoarthritis, as demonstrated by the phenomenon of correcting pathological bone loss caused by osteoclasts overactivated in the early stage of osteoarthritis and protecting against articular cartilage degeneration. Moreover, we found that ruboxistaurin inhibited osteoclast formation and resorption activity by suppressing the expressions of osteoclast-related genes and (PKCδ/MAPKs) signaling cascade. Taken together, these results show that ruboxistaurin may be a potential therapeutic agent for rescuing abnormal subchondral bone deterioration and cartilage degradation in OA and reverses the vicious cycle related to osteoarthritis.
Collapse
Affiliation(s)
- Cong Pang
- Department of Orthopedics, The Ninth Affiliated Hospital of Guangxi Medical University, Beihai, Guangxi, China; Department of Orthopedics, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang, China
| | - Liangbao Wen
- Department of Neurosurgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xuanyuan Lu
- Department of Orthopedics, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang, China
| | - Shanchao Luo
- Guangxi Postdoctoral Innovation Practice Base, The Ninth Affiliated Hospital of Guangxi Medical University, Beihai, Guangxi, China
| | - Haikuo Qin
- Department of Orthopedics, The Ninth Affiliated Hospital of Guangxi Medical University, Beihai, Guangxi, China
| | - Xuehui Zhang
- Department of Nuclear Medicine, The Ninth Affiliated Hospital of Guangxi Medical University, Beihai, Guangxi, China
| | - Bikang Zhu
- Department of Orthopedics, The Ninth Affiliated Hospital of Guangxi Medical University, Beihai, Guangxi, China
| | - Shixing Luo
- Department of Orthopedics, The Ninth Affiliated Hospital of Guangxi Medical University, Beihai, Guangxi, China.
| |
Collapse
|
29
|
Pang C, Wen L, Qin H, Zhu B, Lu X, Luo S. Sotrastaurin, a PKC inhibitor, attenuates RANKL-induced bone resorption and attenuates osteochondral pathologies associated with the development of OA. J Cell Mol Med 2020; 24:8452-8465. [PMID: 32652826 PMCID: PMC7412701 DOI: 10.1111/jcmm.15404] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/29/2020] [Accepted: 05/03/2020] [Indexed: 12/19/2022] Open
Abstract
Osteoarthritis (OA) is a common degenerative disease that affects the musculoskeletal structure of the whole joint, which is characterized by progressive destruction of both articular cartilage and subchondral bone. Treatment of the bone pathologies, particularly osteoclast‐mediated subchondral bone loss in the early stages of OA, could prevent subsequent cartilage degeneration and progression of OA. In the present study, the PKC inhibitor, Sotrastaurin, was found to inhibit RANKL‐induced osteoclast formation in vitro in a dose‐ and time‐dependent manner. In particular, SO exerted its anti‐osteoclastic effect predominantly at the early stages of RANKL stimulation, suggesting inhibitory effects on precursor cell fusion. Using mature osteoclasts cultured on bovine bone discs, we showed that SO also exerts anti‐resorptive effects on mature osteoclasts bone resorptive function. Mechanistically, SO attenuates the early activation of the p38, ERK and JNK signalling pathways, leeding to impaired induction of crucial osteoclast transcription factors c‐Jun, c‐Fos and NFATc1. We also showed that SO treatment significantly inhibited the phosphorylation of PKCδ and MARCKS, an upstream regulator of cathepsin K secretion. Finally, in animal studies, SO significantly alleviates the osteochondral pathologies of subchondral bone destruction as well as articular cartilage degeneration following DMM‐induced OA, markedly improving OARSI scores. The reduced subchondral bone loss was associated with marked reductions in TRAP(+) osteoclasts in the subchondral bone tissue. Collectively, our data provide evidence for the protective effects of SO against OA by preventing aberrant subchondral bone and articular cartilage changes. Thus, SO demonstrates potential for further development as an alternative therapeutic option against OA.
Collapse
Affiliation(s)
- Cong Pang
- Department of Orthopedics, The Ninth Affiliated Hospital of Guangxi Medical University, Beihai, China.,Department of Orthopedics, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Liangbao Wen
- Department of Neurosurgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Haikuo Qin
- Department of Orthopedics, The Ninth Affiliated Hospital of Guangxi Medical University, Beihai, China
| | - Bikang Zhu
- Department of Orthopedics, The Ninth Affiliated Hospital of Guangxi Medical University, Beihai, China
| | - Xuanyuan Lu
- Department of Orthopedics, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Shixing Luo
- Department of Orthopedics, The Ninth Affiliated Hospital of Guangxi Medical University, Beihai, China
| |
Collapse
|
30
|
Li H, Li Z, Pi Y, Chen Y, Mei L, Luo Y, Xie J, Mao X. MicroRNA-375 exacerbates knee osteoarthritis through repressing chondrocyte autophagy by targeting ATG2B. Aging (Albany NY) 2020; 12:7248-7261. [PMID: 32335541 PMCID: PMC7202526 DOI: 10.18632/aging.103073] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 03/24/2020] [Indexed: 12/12/2022]
Abstract
Objective: This study aimed to explore the underlying mechanism of miR-375 in exacerbating osteoarthritis (OA). Results: MiR-375 expression were upregulated in OA cartilage tissues, whereas ATG2B expression was decreased. MiR-375 targeted ATG2B 3’ UTR and inhibited its expression in the chondrocytes, and then suppressed autophagy and promoted endoplasmic reticulum stress (ERs). The apoptosis rate of chondrocytes was increased after being transfected with miR-375 mimics. In vivo results further verified that inhibition of miR-375 could relieve OA-related symptoms. Conclusion: miR-375 can inhibit the expression of ATG2B in chondrocytes, suppress autophagy and promote the ERs. It suggests that miR-375 could be considered to be a key therapy target for OA. Methods: Differential expression analyses for mRNA and miRNA microarray datasets from ArrayExpress were performed. MiR-375 and ATG2B expressions in cartilage tissues were detected by qRT-PCR. Dual luciferase assay was applied to verify the targeting relationship between ATG2B and miR-375. In vitro, the role of miR-375 on chondrocyte autophagy and ERs was investigated by western blot and immunofluorescence. The apoptotic rate was quantified by flow cytometry. In vivo, OA mice model was established, HE and Safranin O and Fast Green staining, as well as the OARSI and modified Mankin scores, were applied to measure the OA cartilage damage severity.
Collapse
Affiliation(s)
- Hongxing Li
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zhiling Li
- Center of Health Management, The Central Hospital of Shaoyang, Shaoyang 422000, Hunan, China
| | - Yigang Pi
- Department of Orthopedics, The Central Hospital of Shaoyang, Shaoyang 422000, Hunan, China
| | - Yang Chen
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Lin Mei
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yong Luo
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jingping Xie
- Department of Orthopedics, The Central Hospital of Shaoyang, Shaoyang 422000, Hunan, China
| | - Xinzhan Mao
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| |
Collapse
|
31
|
Dai G, Xiao H, Liao J, Zhou N, Zhao C, Xu W, Xu W, Liang X, Huang W. Osteocyte TGFβ1‑Smad2/3 is positively associated with bone turnover parameters in subchondral bone of advanced osteoarthritis. Int J Mol Med 2020; 46:167-178. [PMID: 32319543 PMCID: PMC7255453 DOI: 10.3892/ijmm.2020.4576] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 04/02/2020] [Indexed: 12/22/2022] Open
Abstract
Subchondral sclerosis is considered the main characteristic of advanced osteoarthritis, in which bone remodeling mediated by transforming growth factor β (TGFβ) signaling plays an indispensable role in the metabolism. Osteocytes have been identified as pivotal regulators of bone metabolism, due to their mechanosensing and endocrine function. Therefore, the aim of the present study was to investigate the association between osteocyte TGFβ signal and subchondral sclerosis. Knee tibia plateau samples were collected from osteoarthritic patients and divided into three groups: The full cartilage, partial cartilage and full defect groups. Next, changes in osteocyte TGFβ signaling and subchondral bone structure underlying various types of cartilage erosion were detected. Bone mineral density (BMD) assay, histology [hematoxylin and eosin, Safranin‑O/Fast green, and tartrate resistant acid phosphatase (TRAP) staining], and reverse transcription‑quantitative PCR mainly detected structural alterations, osteogenic and osteoclastic activity in the cartilage and subchondral bone. The activation of the TGFβ signaling pathway in the subchondral bone was detected by immunohistochemistry and western blotting. The association between osteocyte TGFβ and the regulation of bone metabolism was analyzed by correlation analysis, and further proven in vitro. It was confirmed that the BMD of the subchondral bone increased and underwent sclerosis in the partial cartilage and full defect groups. Additional observation included the thinning of the area of calcified cartilage, in which a bone island formed locally, with subchondral bone plate thickening and increased trabecular bone volume. TRAP staining suggested an increase in bone resorption in subchondral underlying areas of the partial cartilage and full defect groups. Immunohistochemistry results confirmed the activation of osteocyte TGFβ in subchondral underlying areas with severe cartilage erosion. Moreover, osteocyte phosphorylated‑Smad2/3 was positively correlated with subchondral BMD, alkaline phosphatase and osteopontin mRNA expression, but it was negatively correlated with TRAP+ cells. Furthermore, it was confirmed in vitro that osteocyte TGFβ signaling could regulate the osteogenic and osteoclastic activity of the mesenchymal stem cells. This study illustrated that osteocyte TGFβ signaling is positively associated with the remodeling of subchondral bone in advanced osteoarthritis and provides a preliminary theoretical basis for further investigations of the role and mechanism of osteocyte TGFβ in subchondral of osteoarthritis.
Collapse
Affiliation(s)
- Guangming Dai
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Haozhuo Xiao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Junyi Liao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Nian Zhou
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Chen Zhao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wei Xu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wenjuan Xu
- Institute of Life and Science Research, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xi Liang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wei Huang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
32
|
Zhu Z, Bai X, Wang H, Li X, Sun G, Zhang P. A study on the mechanism of Wnt inhibitory factor 1 in osteoarthritis. Arch Med Sci 2020; 16:898-906. [PMID: 32542093 PMCID: PMC7286342 DOI: 10.5114/aoms.2020.95667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/26/2017] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION In our study we aimed to investigate the mechanism of Wnt inhibitory factor 1 (WIF1) on regulating chondrocyte proliferation and apoptosis via reactive oxygen species (ROS) and the Wnt/βcatenin signaling pathway in osteoarthritis (OA). MATERIAL AND METHODS Osteoarthritis chondrocytes were treated with interleukin 1β (IL-1β) to simulate an inflammatory condition. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot were applied for detecting WIF1 expression in OA chondrocytes. MTT assay and flow cytometry were carried out to analyze the cell proliferation and apoptosis. Content of ROS was detected using flow cytometry, and activity of the Wnt/βcatenin signaling pathway was detected using immunofluorescence, western blot and luciferase reporter assay. Western blot and enzyme-linked immunosorbent assay (ELISA) were performed to detect the expression of apoptosis-related proteins and secretion of matrix metalloproteinases (MMPs). RESULTS WIF1 expression in OA chondrocytes was significantly lower than in normal chondrocytes. After WIF1 cDNA transfection, the aberrantly high ROS level in OA chondrocytes was down-regulated, which led to the increase of proliferation and reduction of apoptosis. The Wnt/βcatenin signaling pathway was suppressed by WIF1 overexpression and the secretion of MMPs was therefore reduced. CONCLUSIONS Up-regulation of WIF1 would promote proliferation and suppress apoptosis of OA chondrocytes through eliminating ROS production and reduce secretion of MMPs via blocking the Wnt/βcatenin signaling pathway.
Collapse
Affiliation(s)
| | - Xizhuang Bai
- Corresponding author: Xizhuang Bai MD, Department of Sports Medicine and Joint Surgery, The People’s Hospital of China Medical University, 33 Wenyi Road Shenhe District, Shenyang 110016 Liaoning, China, Phone: +86 024 24016114, E-mail:
| | | | | | | | | |
Collapse
|
33
|
Zhang J, Fu B, Chen X, Chen D, Yang H. Protocatechuic acid attenuates anterior cruciate ligament transection-induced osteoarthritis by suppressing osteoclastogenesis. Exp Ther Med 2019; 19:232-240. [PMID: 31853294 PMCID: PMC6909799 DOI: 10.3892/etm.2019.8189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/02/2019] [Indexed: 01/03/2023] Open
Abstract
Osteoarthritis (OA) is related to over-proliferation or differentiation of osteoclasts. Although protocatechuic acid (PCA) has been identified to inhibit osteoclast differentiation and stimulate apoptosis in mature osteoclasts, whether it can relieve OA is still unknown. The present study aimed to investigate the effect of PCA on anterior cruciate ligament transection (ACLT)-induced OA and the potential mechanisms of action behind this effect. ACLT was performed on rats, which were then treated with or without PCA. C-terminal telopeptide of type I collagen (CTX-I) and CTX-II were tested in knee joint protein extracts by ELISA. Damage to cartilage was evaluated using Safranin-O/Fast Green staining. Osteoclast-related gene and protein expression was assessed through reverse transcription-quantitative PCR and western blotting. Tartrate-resistant acid phosphatase (TRAP) staining and functional bone resorption pit assays were performed using RAW264.7 murine macrophage cells to determine the effects of PCA on osteoclastic formation and function, respectively, in vitro. Finally, the activity of osteoclastogenesis-related signaling pathways was evaluated by western blotting. Levels of CTX-II were relatively decreased and Safranin-O/fast green staining indicated milder changes in the articular cartilage in the PCA treatment group. PCA downregulated osteoclast specific markers and suppressed receptor activator of nuclear factor-κB ligand-induced formation of TRAP-positive multinucleated cells, bone-resorption and pit formation. Mitogen-activated protein kinase (MAPK) and Akt signaling as well as the downstream factors, were downregulated by PCA. In conclusion, the present study demonstrated that PCA attenuated ACLT-induced OA by suppressing osteoclastogenesis by inhibiting the MAPK, ATK and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Jialin Zhang
- Department of Orthopedics, General Hospital of Ningxia Medical University, Ningxia, Gansu 750004, P.R. China
| | - Bin Fu
- Department of Orthopedics, General Hospital of Ningxia Medical University, Ningxia, Gansu 750004, P.R. China
| | - Xiaolei Chen
- Department of Orthopedics, General Hospital of Ningxia Medical University, Ningxia, Gansu 750004, P.R. China
| | - Desheng Chen
- Department of Orthopedics, General Hospital of Ningxia Medical University, Ningxia, Gansu 750004, P.R. China
| | - Hao Yang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
34
|
Chin KY, Wong SK, Japar Sidik FZ, Abdul Hamid J, Abas NH, Mohd Ramli ES, Afian Mokhtar S, Rajalingham S, Ima Nirwana S. The Effects of Annatto Tocotrienol Supplementation on Cartilage and Subchondral Bone in an Animal Model of Osteoarthritis Induced by Monosodium Iodoacetate. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16162897. [PMID: 31412648 PMCID: PMC6720523 DOI: 10.3390/ijerph16162897] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 12/18/2022]
Abstract
Osteoarthritis is a degenerative joint disease which primarily affects the articular cartilage and subchondral bones. Since there is an underlying localized inflammatory component in the pathogenesis of osteoarthritis, compounds like tocotrienol with anti-inflammatory properties may be able to retard its progression. This study aimed to determine the effects of oral tocotrienol supplementation on the articular cartilage and subchondral bone in a rat model of osteoarthritis induced by monosodium iodoacetate (MIA). Thirty male Sprague-Dawley rats (three-month-old) were randomized into five groups. Four groups were induced with osteoarthritis (single injection of MIA at week 0) and another served as the sham group. Three of the four groups with osteoarthritis were supplemented with annatto tocotrienol at 50, 100 and 150 mg/kg/day orally for five weeks. At week 5, all rats were sacrificed, and their tibial-femoral joints were harvested for analysis. The results indicated that the groups which received annatto tocotrienol at 100 and 150 mg/kg/day had lower histological scores and cartilage remodeling markers. Annatto tocotrienol at 150 mg/kg/day significantly lowered the osteocalcin levels and osteoclast surface of subchondral bone. In conclusion, annatto tocotrienol may potentially retard the progression of osteoarthritis. Future studies to confirm its mechanism of joint protection should be performed.
Collapse
Affiliation(s)
- Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia.
| | - Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
| | | | - Juliana Abdul Hamid
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
| | - Nurul Hafizah Abas
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
| | - Elvy Suhana Mohd Ramli
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
| | - Sabarul Afian Mokhtar
- Department of Orthopedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
| | - Sakthiswary Rajalingham
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
| | - Soelaiman Ima Nirwana
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
| |
Collapse
|
35
|
Lin X, Zhang HQ, Shou LH, Shen XL, Zhang ZX. Efficacy of vitamin D plus calcium with/without alendronate on bone metabolism in immunologic thrombocytopenic purpura patients with steroid treatment: Nine-month results of a randomized, double-blinded, controlled trial. Exp Ther Med 2019; 18:1391-1398. [PMID: 31363377 DOI: 10.3892/etm.2019.7694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 12/31/2018] [Indexed: 11/06/2022] Open
Abstract
Bone loss is a prominent complication in immunologic thrombocytopenic purpura (ITP) patients with steroid treatment. Anti-osteoporotic medications are applied as a therapeutic strategy to prevent bone deterioration in ITP patients. However, the skeletal protective effect of alendronate (ALN) in ITP patients has been rarely reported. The present study was performed to determine whether ALN reduces bone loss in ITP patients. A total of 40 ITP patients with steroid treatment were randomized into a placebo group [n=20; caltrate D (CalD)] and an ALN (10 mg/day) + CalD group (n=20). The patients received CalD or CalD + ALN treatment for 9 months. The primary outcomes were bone mineral density (BMD) in the lumbar vertebrae (L1-L4), femoral neck and total hip, as well as bone metabolism markers. The results indicated that the BMD of the lumbar vertebrae (L1-L4), femoral neck and total hip was significantly increased after ALN + CalD treatment for at 6 and 9 months compared with the baseline. Compared with CalD treatment alone, CalD combined with ALN significantly elevated the BMD at the three skeletal sites at 9 months. Compared with the baseline levels or CalD treatment alone, ALN together with CalD treatment markedly reduced urinary Ca excretion and the serum levels of the bone resorption markers tartrate resistant acid phosphatase 5b and C-terminal telopeptides of type 1 collagen, at 9 months. In conclusion, treatment with ALN together with CalD significantly elevated the BMD at three skeletal sites, and inhibited urinary Ca excretion and the activity of bone resorption markers in patients with ITP.
Collapse
Affiliation(s)
- Xia Lin
- Department of Hematology, The First People's Hospital of Huzhou, The First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang 313000, P.R. China
| | - Hui-Qi Zhang
- Department of Hematology, The First People's Hospital of Huzhou, The First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang 313000, P.R. China
| | - Li-Hong Shou
- Department of Hematology, Huzhou Central Hospital, Huzhou, Zhejiang 313003, P.R. China
| | - Xiang-Li Shen
- Department of Hematology, The First People's Hospital of Huzhou, The First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang 313000, P.R. China
| | - Zong-Xin Zhang
- Clinical Laboratory, Huzhou Central Hospital, Huzhou, Zhejiang 313003, P.R. China
| |
Collapse
|
36
|
|
37
|
Zhou F, Mei J, Yuan K, Han X, Qiao H, Tang T. Isorhamnetin attenuates osteoarthritis by inhibiting osteoclastogenesis and protecting chondrocytes through modulating reactive oxygen species homeostasis. J Cell Mol Med 2019; 23:4395-4407. [PMID: 30983153 PMCID: PMC6533508 DOI: 10.1111/jcmm.14333] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/22/2019] [Accepted: 03/19/2019] [Indexed: 12/20/2022] Open
Abstract
Increasing evidence indicates that osteoarthritis (OA) is a musculoskeletal disease affecting the whole joint, including both cartilage and subchondral bone. Reactive oxygen species (ROS) have been demonstrated to be one of the important destructive factors during early‐stage OA development. The objective of this study was to investigate isorhamnetin (Iso) treatment on osteoclast formation and chondrocyte protection to attenuate OA by modulating ROS. Receptor activator of nuclear factor‐kappa B ligand (RANKL) was used to establish the osteoclast differentiation model in bone marrow macrophages (BMMs) in vivo. H2O2 was used to induce ROS, which could further cause chondrocyte apoptosis. We demonstrated that Iso suppressed RANKL‐induced ROS generation, which could mediate osteoclastogenesis. Moreover, we found that Iso inhibited osteoclast formation and function by suppressing the expression of osteoclastogenesis‐related genes and proteins. We proved that Iso inhibited RANKL‐induced activation of mitogen‐activated protein kinase activation of mitogen‐activated protein kinase (MAPK), nuclear factor‐kappa B (NF‐κB) and AKT signalling pathways in BMMs. In addition, Iso inhibited ROS‐induced chondrocyte apoptosis by regulating apoptosis‐related proteins. Moreover, Iso was administered to an anterior cruciate ligament transection (ACLT)‐induced OA mouse model. The results indicated that Iso exerted beneficial effects on inhibiting excessive osteoclast activity and chondrocyte apoptosis, which further remedied cartilage damage. Overall, our data showed that Iso is an effective candidate for treating OA.
Collapse
Affiliation(s)
- Feng Zhou
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. of China
| | - Jingtian Mei
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. of China
| | - Kai Yuan
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. of China
| | - Xiuguo Han
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. of China
| | - Han Qiao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. of China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. of China
| |
Collapse
|
38
|
Deveza LA, Bierma-Zeinstra SMA, van Spil WE, Oo WM, Saragiotto BT, Neogi T, van Middelkoop M, Hunter DJ. Efficacy of bisphosphonates in specific knee osteoarthritis subpopulations: protocol for an OA Trial Bank systematic review and individual patient data meta-analysis. BMJ Open 2018; 8:e023889. [PMID: 30573485 PMCID: PMC6303587 DOI: 10.1136/bmjopen-2018-023889] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 08/06/2018] [Accepted: 11/05/2018] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION Randomised clinical trials to date investigating the efficacy of bisphosphonates in knee osteoarthritis (OA) have found divergent results, with a recent meta-analysis finding no superiority of these drugs over placebo. Whether particular patient subgroups are more likely to benefit from this therapy than others is still unclear. We aim to investigate the effects of bisphosphonates compared with a control group (placebo, no treatment, another active treatment) on clinical and structural outcomes in specific knee OA subpopulations with possible distinct rates of subchondral bone turnover. METHODS AND ANALYSIS Medline, Embase, Scopus, Web of Sciences and Cochrane Central Register of Controlled Trials will be searched from inception to February 2018. Randomised clinical trials will be eligible if they reported at least one potential treatment effect modifier at baseline: gender, menopausal status, age, body mass index, radiographic stage, knee pain severity, presence of bone marrow lesions, levels of biochemical markers of bone turnover (serum and/or urinary) and systemic bone mineral density status. Authors of original trials will be contacted to obtain individual patient data from each study. Risk of bias will be assessed using the Cochrane Collaboration's tool. The primary outcomes will include pain and radiographic joint space width loss. Studies using other MRI-based assessment of disease progression will also be eligible. Outcomes will be grouped into short-term (≤3 months), intermediate-term (>3 months; ≤12 months) and long-term (>12 months). Regression models will be used, adding an interaction term for each subgroup of interest to determine possible subgroup effects. There was no source of funding for this study. ETHICS AND DISSEMINATION Dissemination of our findings is planned to occur through conference presentations, publication in peer-reviewed journals and social media. No formal ethics approval is generally required as no new data collection will be undertaken. PROSPERO REGISTRATION NUMBER CRD42018093327.
Collapse
Affiliation(s)
- Leticia A Deveza
- Rheumatology Department, Royal North Shore Hospital and Institute of Bone and Joint Research, Kolling Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Sita M A Bierma-Zeinstra
- Department of Orthopedic Surgery, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
- Department of General Practice, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Willem Evert van Spil
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Win Min Oo
- Rheumatology Department, Royal North Shore Hospital and Institute of Bone and Joint Research, Kolling Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Bruno T Saragiotto
- School of Public Health, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
- Centre for Pain, Health and Lifestyle, Sydney, New South Wales, Australia
| | - Tuhina Neogi
- Clinical Epidemiology Research and Training Unit, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | - David J Hunter
- Rheumatology Department, Royal North Shore Hospital and Institute of Bone and Joint Research, Kolling Institute, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
39
|
de Oliveira N, Oliveira J, de Souza Moraes L, Weiss SG, Chaves LH, Casagrande TC, Deliberador TM, Giovanini AF, Zielak JC, Scariot R. Bone repair in craniofacial defects treated with different doses of alendronate: a histological, histomorphometric, and immunohistochemical study. Clin Oral Investig 2018; 23:2355-2364. [PMID: 30302611 DOI: 10.1007/s00784-018-2670-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 09/26/2018] [Indexed: 01/09/2023]
Abstract
OBJECTIVE The objective of the study is to evaluate bone repair in rats treated with different alendronate doses. MATHERIALS AND METHODS Sixty female rats ovariectomized were randomly divided in three groups: group C (control group), group A1 (ALN/1 mg/kg), and A2 (ALN/ 3 mg/kg). Each animal received subcutaneous applications of sodium alendronate at a dose correspondent to group A1 or A2 three times a week, while the control group received 0.9% saline solution. After 4 weeks of application, a critical defect was created in the calvaria of animals of all groups. The defect was filled by particulate autogenous bone. The applications were maintained until euthanasia, which occurred 15 and 60 days after the surgical procedure. The pieces were sent for histological, histomorphometric and immunohistochemical analysis. The data were submitted to statistical analysis with significance level of 0.05. RESULTS The descriptive histological analysis demonstrated an increase in bone neoformation in both groups treated with alendronate when compared to the control group. The histomorphometric analysis showed an increase in the amount of neoformed bone in A1 and A2 groups when compared to group C, both at 15 days (p = 0.0002) and at 60 days (p = 0.001). In the immunohistochemical analysis, it was possible to observe a difference in immunolabeling just for Mmp2 at the time of 60 days in A1 (p = 0.001) and A2 (p = 0.023) when compared to the control group. CONCLUSION Systemic delivery of alendronate, regardless of the dose, increased the amount of bone neoformation. CLINICAL RELEVANCE Prescription of sodium alendronate at 1 mg/kg for improvement of bone neoformation in bone graft procedures.
Collapse
Affiliation(s)
- Naylin de Oliveira
- School of Health Sciences, Department of Dentistry, Positivo University, Curitiba, Paraná, Brazil
| | - Jefferson Oliveira
- School of Health Sciences, Department of Dentistry, Positivo University, Curitiba, Paraná, Brazil
| | - Letícia de Souza Moraes
- School of Health Sciences, Department of Dentistry, Positivo University, Curitiba, Paraná, Brazil
| | - Suyany Gabriely Weiss
- School of Health Sciences, Department of Dentistry, Positivo University, Curitiba, Paraná, Brazil
| | - Luís Henrique Chaves
- School of Health Sciences, Department of Dentistry, Positivo University, Curitiba, Paraná, Brazil
| | | | - Tatiana Miranda Deliberador
- School of Health Sciences, Department of Dentistry, Positivo University, 5300 Professor Pedro Viriato Parigot de Souza Street, Campo Comprido, Curitiba, PR, 81280-330, Brazil
| | - Allan Fernando Giovanini
- School of Health Sciences, Department of Dentistry, Positivo University, 5300 Professor Pedro Viriato Parigot de Souza Street, Campo Comprido, Curitiba, PR, 81280-330, Brazil
| | - João César Zielak
- School of Health Sciences, Department of Dentistry, Positivo University, 5300 Professor Pedro Viriato Parigot de Souza Street, Campo Comprido, Curitiba, PR, 81280-330, Brazil
| | - Rafaela Scariot
- School of Health Sciences, Department of Dentistry, Positivo University, 5300 Professor Pedro Viriato Parigot de Souza Street, Campo Comprido, Curitiba, PR, 81280-330, Brazil.
| |
Collapse
|
40
|
Haj-Mirzaian A, Guermazi A, Roemer FW, Bowes MA, Conaghan PG, Demehri S. Bisphosphonates intake and its association with changes of periarticular bone area and three-dimensional shape: data from the Osteoarthritis Initiative (OAI). Osteoarthritis Cartilage 2018; 26:564-568. [PMID: 29330102 DOI: 10.1016/j.joca.2018.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/07/2017] [Accepted: 01/02/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine the association between bisphosphonate treatment with the change of periarticular bone area and three-dimensional (3D) shape in participants of the Osteoarthritis Initiative (OAI) study. DESIGN Using propensity score (PS) matching method in females, 48 bisphosphonate users and 105 non-users, who were matched for osteoarthritis (OA) and osteoporosis (OP) related factors were included. Baseline and 24-month magnetic resonance imaging (MRI)-based periarticular bone area and 3D shape measurements were used. The association between bisphosphonate intake and 24-month interval changes of the periarticular bone area and 3D shape were evaluated using paired Wilcoxon signed rank test. We used conditional logistic regression models for determining the association between bisphosphonate intake and periarticular bone change, defined using the standard deviation of difference (SDD) and reliable change index (RCI) methods. P-values have been adjusted for multiple comparisons using Benjamini & Hochberg procedure and false discovery rate (FDR)-adjusted P-values were reported. RESULTS The 24-month interval increases in the periarticular bone area in medial side of tibia were significantly greater in non-users than users (FDR-adjusted P-value: 0.002). There was an approaching significance trend for lower medial tibial periarticular bone area expansion in bisphosphonate users in comparison with non-users (For 1SDD change, odds ratio 95% confidence interval (OR (95% CI)): 0.514 (0.271-0.975), FDR-adjusted P-value: 0.085) (For 1.96RCI change, OR (95% CI): 0.552 (0.309-0.986), FDR-adjusted P-value: 0.085). CONCLUSIONS Bisphosphonate intake was associated with a reduction in the odds (approaching but not achieving significance) of expansion periarticular bone area, specifically in the medial tibial sub-region.
Collapse
Affiliation(s)
- A Haj-Mirzaian
- Musculoskeletal Radiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - A Guermazi
- Department of Radiology, Boston University School of Medicine, Boston, MA, USA.
| | - F W Roemer
- Department of Radiology, Boston University School of Medicine, Boston, MA, USA; Department of Radiology, University of Erlangen-Nuremberg, Erlangen, Germany.
| | - M A Bowes
- Imorphics Ltd, Kilburn House, Manchester, UK.
| | - P G Conaghan
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, NIHR Leeds Biomedical Research Centre, Leeds, UK.
| | - S Demehri
- Musculoskeletal Radiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
41
|
Vaysbrot EE, Osani MC, Musetti MC, McAlindon TE, Bannuru RR. Are bisphosphonates efficacious in knee osteoarthritis? A meta-analysis of randomized controlled trials. Osteoarthritis Cartilage 2018; 26:154-164. [PMID: 29222056 DOI: 10.1016/j.joca.2017.11.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/25/2017] [Accepted: 11/27/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To clarify the effects of bisphosphonates in knee osteoarthritis (OA) using an up-to-date meta-analysis of randomized controlled trials (RCTs). DESIGN The protocol is registered in PROSPERO (CRD42017073449). We searched MEDLINE, EMBASE, Google Scholar, Web of Science, and Cochrane Database from inception until August 2017. We included only RCTs comparing any bisphosphonates vs placebo in knee OA patients and reporting validated pain and function scales, radiographic progression, and adverse events (AEs) outcomes. We excluded studies using active comparators or concomitant medications besides non-steroidal anti-inflammatory drugs (NSAIDs) and acetaminophen. We calculated standardized mean differences (SMDs) to account for variation in outcome scales. Random effects meta-analyses were performed. RESULTS We included seven RCTs (3013 patients, 69% female); most patients (N = 2767) received oral risedronate. No pain or function outcomes, regardless of dose, route, time point or measuring instrument, revealed statistically significant results (end of trial pain SMD = -0.16 [95% confidence interval (CI): -0.34, 0.02]). Similarly, we found no statistically significant effect on radiographic progression (risk ratio = 0.98 [95% CI: 0.77, 1.26]). One small RCT in patients with bone marrow lesions (BMLs) suggested a reduction in BML size at 6 months. Bisphosphonates displayed good tolerability, with no statistically significant differences in AE outcomes vs placebo. CONCLUSIONS Contrary to prior reviews, our analysis showed that bisphosphonates neither provide symptomatic relief nor defer radiographic progression in knee OA. However, these agents may still be beneficial in certain subsets of patients who display high rates of subchondral bone turnover. Future studies should be directed at defining such OA subsets and investigating the effects of bisphosphonates in those patients.
Collapse
Affiliation(s)
- E E Vaysbrot
- Center for Treatment Comparison and Integrative Analysis (CTCIA), Division of Rheumatology, Tufts Medical Center, 800 Washington Street, 02111 Boston, MA, USA
| | - M C Osani
- Center for Treatment Comparison and Integrative Analysis (CTCIA), Division of Rheumatology, Tufts Medical Center, 800 Washington Street, 02111 Boston, MA, USA
| | - M-C Musetti
- Center for Treatment Comparison and Integrative Analysis (CTCIA), Division of Rheumatology, Tufts Medical Center, 800 Washington Street, 02111 Boston, MA, USA
| | - T E McAlindon
- Center for Treatment Comparison and Integrative Analysis (CTCIA), Division of Rheumatology, Tufts Medical Center, 800 Washington Street, 02111 Boston, MA, USA
| | - R R Bannuru
- Center for Treatment Comparison and Integrative Analysis (CTCIA), Division of Rheumatology, Tufts Medical Center, 800 Washington Street, 02111 Boston, MA, USA.
| |
Collapse
|
42
|
Contrast enhanced μCT imaging of early articular changes in a pre-clinical model of osteoarthritis. Osteoarthritis Cartilage 2018; 26:118-127. [PMID: 29107695 DOI: 10.1016/j.joca.2017.10.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 10/18/2017] [Accepted: 10/23/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The objective of this study was to characterize early osteoarthritis (OA) development in cartilage and bone tissues in the rat medial meniscus transection (MMT) model using non-destructive equilibrium partitioning of an ionic contrast agent micro-computed tomography (EPIC-μCT) imaging. Cartilage fibrillation, one of the first physiological developments in OA, was quantified in the rat tibial plateau as three-dimensional (3D) cartilage surface roughness using a custom surface-rendering algorithm. METHODS Male Lewis rats underwent MMT or sham-operation in the left leg. At 1- and 3-weeks post-surgery, the animals (n = 7-8 per group) were euthanized and the left legs were scanned using EPIC-μCT imaging to quantify cartilage and bone parameters. In addition, a custom algorithm was developed to measure the roughness of 3D surfaces. This algorithm was validated and used to quantify cartilage surface roughness changes as a function of time post-surgery. RESULTS MMT surgery resulted in significantly greater cartilage damage and subchondral bone sclerosis with the damage increasing in both severity and area from 1- to 3-weeks post-surgery. Analysis of rendered 3D surfaces could accurately distinguish early changes in joints developing OA, detecting significant increases of 45% and 124% in surface roughness at 1- and 3-weeks post-surgery respectively. CONCLUSION Disease progression in the MMT model progresses sequentially through changes in the cartilage articular surface, extracellular matrix composition, and then osteophyte mineralization and subchondral bone sclerosis. Cartilage surface roughness is a quantitative, early indicator of degenerative joint disease in small animal OA models and can potentially be used to evaluate therapeutic strategies.
Collapse
|
43
|
Role of subchondral bone properties and changes in development of load-induced osteoarthritis in mice. Osteoarthritis Cartilage 2017; 25:2108-2118. [PMID: 28919430 PMCID: PMC5688000 DOI: 10.1016/j.joca.2017.08.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 08/25/2017] [Accepted: 08/30/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Animal models recapitulating post-traumatic osteoarthritis (OA) suggest that subchondral bone (SCB) properties and remodeling may play major roles in disease initiation and progression. Thus, we investigated the role of SCB properties and its effects on load-induced OA progression by applying a tibial loading model on two distinct mouse strains treated with alendronate (ALN). DESIGN Cyclic compression was applied to the left tibia of 26-week-old male C57Bl/6 (B6, low bone mass) and FVB (high bone mass) mice. Mice were treated with ALN (26 μg/kg/day) or vehicle (VEH) for loading durations of 1, 2, or 6 weeks. Changes in articular cartilage and subchondral and epiphyseal cancellous bone were analyzed using histology and microcomputed tomography. RESULTS FVB mice exhibited thicker cartilage, a thicker SCB plate, and higher epiphyseal cancellous bone mass and tissue mineral density than B6 mice. Loading induced cartilage pathology, osteophyte formation, and SCB changes; however, lower initial SCB mass and stiffness in B6 mice did not attenuate load-induced OA severity compared to FVB mice. By contrast, FVB mice exhibited less cartilage damage, and slower-growing and less mature osteophytes. In B6 mice, inhibiting bone remodeling via ALN treatment exacerbated cartilage pathology after 6 weeks of loading, while in FVB mice, inhibiting bone remodeling protected limbs from load-induced cartilage loss. CONCLUSIONS Intrinsically lower SCB properties were not associated with attenuated load-induced cartilage loss. However, inhibiting bone remodeling produced differential patterns of OA pathology in animals with low compared to high SCB properties, indicating that these factors do influence load-induced OA progression.
Collapse
|
44
|
Zhao C, Liu Q, Wang K. Artesunate attenuates ACLT-induced osteoarthritis by suppressing osteoclastogenesis and aberrant angiogenesis. Biomed Pharmacother 2017; 96:410-416. [DOI: 10.1016/j.biopha.2017.10.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 09/18/2017] [Accepted: 10/02/2017] [Indexed: 01/22/2023] Open
|
45
|
Das Neves Borges P, Vincent TL, Marenzana M. Automated assessment of bone changes in cross-sectional micro-CT studies of murine experimental osteoarthritis. PLoS One 2017; 12:e0174294. [PMID: 28334010 PMCID: PMC5363908 DOI: 10.1371/journal.pone.0174294] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 03/07/2017] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE The degradation of articular cartilage, which characterises osteoarthritis (OA), is usually paired with excessive bone remodelling, including subchondral bone sclerosis, cysts, and osteophyte formation. Experimental models of OA are widely used to investigate pathogenesis, yet few validated methodologies for assessing periarticular bone morphology exist and quantitative measurements are limited by manual segmentation of micro-CT scans. The aim of this work was to chart the temporal changes in periarticular bone in murine OA by novel, automated micro-CT methods. METHODS OA was induced by destabilisation of the medial meniscus (DMM) in 10-week old male mice and disease assessed cross-sectionally from 1- to 20-weeks post-surgery. A novel approach was developed to automatically segment subchondral bone compartments into plate and trabecular bone in micro-CT scans of tibial epiphyses. Osteophyte volume, as assessed by shape differences using 3D image registration, and by measuring total epiphyseal volume was performed. RESULTS Significant linear and volumetric structural modifications in subchondral bone compartments and osteophytes were measured from 4-weeks post-surgery and showed progressive changes at all time points; by 20 weeks, medial subchondral bone plate thickness increased by 160±19.5 μm and the medial osteophyte grew by 0.124±0.028 μm3. Excellent agreement was found when automated measurements were compared with manual assessments. CONCLUSION Our automated methods for assessing bone changes in murine periarticular bone are rapid, quantitative, and highly accurate, and promise to be a useful tool in future preclinical studies of OA progression and treatment. The current approaches were developed specifically for cross-sectional micro-CT studies but could be applied to longitudinal studies.
Collapse
Affiliation(s)
| | - Tonia L. Vincent
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford, United Kingdom
| | - Massimo Marenzana
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford, United Kingdom
| |
Collapse
|
46
|
Svensson CM, Hoffmann B, Irmler IM, Straßburger M, Figge MT, Saluz HP. Quantification of arthritic bone degradation by analysis of 3D micro-computed tomography data. Sci Rep 2017; 7:44434. [PMID: 28290525 PMCID: PMC5349516 DOI: 10.1038/srep44434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/07/2017] [Indexed: 12/19/2022] Open
Abstract
The use of animal models of arthritis is a key component in the evaluation of therapeutic strategies against the human disease rheumatoid arthritis (RA). Here we present quantitative measurements of bone degradation characterised by the cortical bone profile using glucose-6-phosphate isomerase (G6PI) induced arthritis. We applied micro-computed tomography (μCT) during three arthritis experiments and one control experiment to image the metatarsals of the hind paws and to investigate the effect of experimental arthritis on their cortical bone profile. For measurements of the cortical profile we automatically identified slices that are orthogonal to individual metatarsals, thereby making the measurements independent of animal placement in the scanner. We measured the average cortical thickness index (CTI) of the metatarsals, as well as the thickness changes along the metatarsal. In this study we introduced the cortical thickness gradient (CTG) as a new measure and we investigated how arthritis affects this measure. We found that in general both CTI and CTG are able to quantify arthritic progression, whilst CTG was found to be the more sensitive measure.
Collapse
Affiliation(s)
- Carl-Magnus Svensson
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Bianca Hoffmann
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Beutenbergstrasse 11a, 07745 Jena, Germany.,Cell and Molecular Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Beutenbergstrasse 11a, 07745 Jena, Germany.,Friedrich Schiller University Jena, Germany
| | - Ingo M Irmler
- Institute of Immunology, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany
| | - Maria Straßburger
- Transfer Group Anti-infectives, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Marc Thilo Figge
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Beutenbergstrasse 11a, 07745 Jena, Germany.,Friedrich Schiller University Jena, Germany
| | - Hans Peter Saluz
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Beutenbergstrasse 11a, 07745 Jena, Germany.,Cell and Molecular Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Beutenbergstrasse 11a, 07745 Jena, Germany
| |
Collapse
|
47
|
Hummel M, Whiteside GT. Measuring and realizing the translational significance of preclinical in vivo studies of painful osteoarthritis. Osteoarthritis Cartilage 2017; 25:376-384. [PMID: 27592040 DOI: 10.1016/j.joca.2016.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/15/2016] [Accepted: 08/17/2016] [Indexed: 02/02/2023]
Abstract
In this communication, we discuss some key issues surrounding the translation of preclinical efficacy studies in models of painful osteoarthritis (OA) to the clinical arena. We highlight potential pitfalls which could negatively impact successful translation. These include lack of alignment between a model + endpoint and the intended clinical population, employing testing strategies in animals that are not appropriate for the targeted human population such as pre-emptive treatment and lastly, underestimating the magnitude of the efficacy signal in animals that may be needed to see an effect in the clinical population. Through careful analysis, we highlight the importance of each pitfall by providing relevant examples that will hopefully improve future chances of optimizing translation in the area of OA pain research. We advocate advancing publications directed at comparing methods, outcomes and conclusions between preclinical and clinical studies, regardless of whether the findings are positive or negative, are important for improving the potential for a desired successful translation from the bench to bedside.
Collapse
Affiliation(s)
- M Hummel
- Discovery Research, Purdue Pharma L.P., 6 Cedar Brook Drive, Cranbury, NJ 08512, USA
| | - G T Whiteside
- Discovery Research, Purdue Pharma L.P., 6 Cedar Brook Drive, Cranbury, NJ 08512, USA.
| |
Collapse
|
48
|
Osteoarthritis of the hip joint in elderly patients is most commonly atrophic, with low parameters of acetabular dysplasia and possible involvement of osteoporosis. Arch Osteoporos 2017; 12:30. [PMID: 28332125 PMCID: PMC5362671 DOI: 10.1007/s11657-017-0325-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 03/08/2017] [Indexed: 02/03/2023]
Abstract
UNLABELLED As elderly patients with hip osteoarthritis aged, acetabular dysplasia parameters decreased (Sharp's angle, acetabular roof obliquity angle, and acetabular head index) and the incidence of the atrophic type increased. Vertebral body fracture was more frequent in the atrophic type, suggesting the involvement of osteoporosis at the onset of hip osteoarthritis. INTRODUCTION Osteoarthritis (OA) is associated with increased bone formation at a local site. However, excessive bone resorption has also been found to occur in the early stages of OA. Osteoporosis may be involved in the onset of OA in elderly patients. We conducted a cross-sectional radiographic study of patients with hip OA and examined the association between age and factors of acetabular dysplasia (Sharp's angle, acetabular roof obliquity angle, and acetabular head index) as well as the osteoblastic response to determine the potential involvement of osteoporosis. METHODS This study included 366 patients (58 men, 308 women) who had undergone total hip arthroplasty for the diagnosis of hip OA. We measured the parameters of acetabular dysplasia using preoperative frontal X-ray images and evaluated each patient according to Bombelli classification of OA (hypertrophic, normotrophic, or atrophic type). RESULTS As the patients aged, the parameters of acetabular dysplasia decreased. The incidence of the atrophic type of OA was significantly higher in older patients. Vertebral body fractures were more frequent in the atrophic type than in the other types. Additionally, the index of acetabular dysplasia was lower in the atrophic type. By contrast, the hypertrophic type was present in relatively younger patients and was associated with an increased index of acetabular dysplasia. CONCLUSION In elderly patients with hip OA, the parameters of acetabular dysplasia decreased and the incidence of the atrophic type increased as the patients aged. The frequency of vertebral body fracture was high in patients with the atrophic type, suggesting the involvement of osteoporosis in the onset of hip OA.
Collapse
|
49
|
Pouran B, Arbabi V, Bleys RL, René van Weeren P, Zadpoor AA, Weinans H. Solute transport at the interface of cartilage and subchondral bone plate: Effect of micro-architecture. J Biomech 2016; 52:148-154. [PMID: 28063646 DOI: 10.1016/j.jbiomech.2016.12.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 12/06/2016] [Accepted: 12/20/2016] [Indexed: 11/17/2022]
Abstract
Cross-talk of subchondral bone and articular cartilage could be an important aspect in the etiology of osteoarthritis. Previous research has provided some evidence of transport of small molecules (~370Da) through the calcified cartilage and subchondral bone plate in murine osteoarthritis models. The current study, for the first time, uses a neutral diffusing computed tomography (CT) contrast agent (iodixanol, ~1550Da) to study the permeability of the osteochondral interface in equine and human samples. Sequential CT monitoring of diffusion after injecting a finite amount of contrast agent solution onto the cartilage surface using a micro-CT showed penetration of the contrast molecules across the cartilage-bone interface. Moreover, diffusion through the cartilage-bone interface was affected by thickness and porosity of the subchondral bone as well as the cartilage thickness in both human and equine samples. Our results revealed that porosity of the subchondral plate contributed more strongly to the diffusion across osteochondral interface compared to other morphological parameters in healthy equine samples. However, thickness of the subchondral plate contributed more strongly to the diffusion in slightly osteoarthritic human samples.
Collapse
Affiliation(s)
- Behdad Pouran
- Department of Orthopedics, UMC Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands.
| | - Vahid Arbabi
- Department of Orthopedics, UMC Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Ronald Law Bleys
- Department of Anatomy, UMC Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - P René van Weeren
- Department of Equine Sciences, Faculty of Veterinary Medicine, University of Utrecht, Yalelaan 112, 3584 CM Utrecht, The Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Harrie Weinans
- Department of Orthopedics, UMC Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands; Department of Rheumatology, UMC Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
50
|
Zhou Y, Tao H, Li Y, Deng M, He B, Xia S, Zhang C, Liu S. Berberine promotes proliferation of sodium nitroprusside-stimulated rat chondrocytes and osteoarthritic rat cartilage via Wnt/β-catenin pathway. Eur J Pharmacol 2016; 789:109-118. [PMID: 27445236 DOI: 10.1016/j.ejphar.2016.07.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 07/05/2016] [Accepted: 07/16/2016] [Indexed: 01/07/2023]
Abstract
Berberine chloride (BBR) is an isoquinoline derivative alkaloid isolated from medicinal herbs, including Coptis chinensis and Berberis aristate. This compound plays significant roles in the treatment of osteoarthritis (OA). The purpose of this study was to investigate the effects of BBR on the proliferation of sodium nitroprusside (SNP)-stimulated chondrocytes in vitro, the articular cartilage in a rat OA model, as well as to discuss the molecular mechanisms underlying these effects. In vitro, we demonstrated that BBR led to cell proliferation, increased the cell population in S-phase and decreased that in G0/G1-phase; moreover, the F-actin remodeling in SNP-stimulated chondrocytes were prevented. In addition, BBR markedly up-regulated β-catenin, c-Myc, and cyclin D1 expression of genes and proteins, and down-regulated glycogen synthase kinase-3β (GSK-3β) and matrix metalloproteinase-7 (MMP-7) expression. Notably, inhibition of the Wnt/β-catenin pathway by XAV939 partially blocked these effects. The in vivo results suggested that BBR promoted β-catenin protein level and enhanced proliferating cell nuclear antigen (PCNA) expression in osteoarthritic rat cartilage. In conclusion, these findings indicate that BBR promotes SNP-stimulated chondrocyte proliferation by promoting G1/S phase transition and synthesis of PCNA in cartilage through activation of Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China; Department of Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China; Laboratory of Clinical Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China
| | - Haiying Tao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China; Laboratory of Clinical Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China
| | - Yaming Li
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China; Laboratory of Clinical Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China
| | - Ming Deng
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China; Laboratory of Clinical Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China
| | - Bin He
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China
| | - Shaoqiang Xia
- Department of Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China; Laboratory of Clinical Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China
| | - Chun Zhang
- Department of Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China; Laboratory of Clinical Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China
| | - Shiqing Liu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China; Department of Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China.
| |
Collapse
|