1
|
Polyzos SA, Anastasilakis K, Cundy T, Kita M. Long-Term Denosumab Treatment in Adults with Juvenile Paget Disease. Calcif Tissue Int 2025; 116:60. [PMID: 40223037 PMCID: PMC11994531 DOI: 10.1007/s00223-025-01370-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/01/2025] [Indexed: 04/15/2025]
Abstract
Juvenile Paget disease (JPD) is a very rare disease, mainly caused by biallelic inactivating mutations in the TNFRSF11B gene that encodes osteoprotegerin. Owing to its rarity, the treatment of JPD is largely empirical. Accelerated bone turnover as assessed by biochemical markers, such as alkaline phosphatase (ALP), can be suppressed by bisphosphonate treatment, but it relapses if bisphosphonate treatment is discontinued. In this report, we describe our experience with long-term denosumab treatment in two adults with JPD, homozygous for the "Balkan" mutation (966_969delTGACinsCTT) in TNFRSF11B. Subject 1 started denosumab in age 35 and subject 2 in age 34. Both continue treatment until today, for 13.5 and 12 years, respectively. ALP was steadily normalized in both. Bone pain decreased and mobility improved. Hearing did not further deteriorate and no new fracture occurred. Vision remained unchanged in subject 2, but subject 1 experienced sudden vision loss of the right eye at age 46, which was successfully managed with intravitreal treatment with anti-vascular endothelial growth factor medications. In conclusion, long-term denosumab administration in adults with JPD, who had been previously treated with bisphosphonates, was safe and effective in terms of the skeletal disease, but it may not prevent the emergence of retinopathy.
Collapse
Affiliation(s)
- Stergios A Polyzos
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | | - Tim Cundy
- Faculty of Medical & Health Sciences, University of Auckland, Auckland, New Zealand
| | - Marina Kita
- Department of Endocrinology, Ippokration General Hospital, Thessaloniki, Greece
| |
Collapse
|
2
|
Simmons JH, Mancilla EE, Mumm S, Dahir KM, Duan S, Aamodt KI, Lawrence JT, Carrigan RB, Whyte MP. Duplications within exon 1 of TNFRSF11A encoding receptor activator of nuclear factor-kappa B (RANK) are associated with tendon avulsion. Bone 2025; 197:117486. [PMID: 40222603 DOI: 10.1016/j.bone.2025.117486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/21/2025] [Accepted: 04/06/2025] [Indexed: 04/15/2025]
Abstract
INTRODUCTION Different length in-frame duplications within exon 1 of TNFRSF11A encoding receptor activator of nuclear factor-kappa B (RANK) increase osteoclast action and cause rapid turnover bone disease. Complications include deafness, fractures, immobilization hypercalcemia, tooth resorption, and painful skeletal deformities. We investigated two siblings and their father and an unrelated girl with this autosomal dominant dento-osseous phenotype who suffered tendon avulsions. PATIENTS A 13-year-old boy, his 16-year-old sister, and their 43-year-old father, all with hearing loss and progressive tooth root resorption, have a heterozygous 27-bp duplication within exon 1 of TNFRSF11A. Within 3 years, the siblings suffered seven tendon avulsions with minimal trauma, including the distal Achilles, triceps, and quadriceps tendons. Alendronate was given weekly, which decreased bone turnover markers (BTMs) and treated mild immobilization hypercalcemia following tendon repairs. Their father suffered an Achilles tendon avulsion without a clear mechanism at 20 years of age. An unrelated 10-year-old girl with hearing loss and progressive tooth root resorption was heterozygous de novo for a 12-bp duplication within exon 1 of TNFRSF11A. Alendronate was given weekly. At age 15 years, she bilaterally avulsed her triceps while playing volleyball and then avulsed her Achilles tendon two months later. CONCLUSIONS Tendon avulsion seems to be a complication of constitutive RANK activation from select duplications of TNFRSF11A, but its precise pathogenesis and the impact of bisphosphonate therapy remain uncertain. Bisphosphonate therapy can treat or prevent associated immobilization hypercalcemia and decrease BTMs in people with constitutive RANK activation from such mutations.
Collapse
Affiliation(s)
- Jill H Simmons
- Division of Endocrinology and Diabetes, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37212, USA.
| | - Edna E Mancilla
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Steven Mumm
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children, St. Louis, MO 63110, USA; Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Kathryn M Dahir
- Division of Endocrinology and Diabetes, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37212, USA.
| | - Shenghui Duan
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Kristie I Aamodt
- Division of Endocrinology and Diabetes, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37212, USA.
| | - John T Lawrence
- Division of Orthopedics, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Robert B Carrigan
- Division of Orthopedics, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Michael P Whyte
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children, St. Louis, MO 63110, USA; Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
3
|
Bhardwaj M, Begum F, Singh D, Krupanidhi S, Yadav VK, Sahoo DK, Patel A, Singh S. Identification of Biomarkers Associated With Paget's Disease of Bone and Bone Metastasis From Breast Cancer Patients. Cancer Rep (Hoboken) 2024; 7:e70003. [PMID: 39233667 PMCID: PMC11375332 DOI: 10.1002/cnr2.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/22/2024] [Accepted: 08/11/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND The bone is among the most frequently chosen sites for the metastatic spread of breast cancer. The prediction of biomarkers for BM (Bone Metastasis) and PDB (Paget's disease of bone) initiated from breast cancer could be critically important in categorizing individuals with a higher risk and providing targeted treatment for PDB and BM. AIMS This research aims to investigate the common key candidate biomarkers that contribute to BM-BCa (Bone metastasis of breast cancer) and PDB by employing network decomposition and functional enrichment studies. METHODS AND RESULTS This research analyzed high-throughput transcriptome sequencing (RNA-Seq). For this work, the dataset (GSE121677) was downloaded from GEO (Gene Expression Omnibus), and DEGs were identified using Galaxy and R script 4.3. Using STRING (Search Tool for the Retrieval of Interacting Genes), high-throughput research created a protein-protein interaction network (PPIN). The BM-PDB-interactome was created using Cytoscape 3.9.1 and PDB biomarkers, with the top 3% DEGs from BM-BCa. Functional Enrichment Analysis (Funrich 3.1.3) and DAVID 6.8 performed functional and gene set enrichment analysis (GSEA) of putatively essential biomarkers. TCGA (The Cancer Genome Atlas) validated the discovered genes. Based on our research, we identified 1262 DEGs; among these DEGs, 431 genes were upregulated, and 831 genes were downregulated. During the third growth of the interactome, 20 more genes were pinned to the BM-PDB interactome. RAC2, PIAS1, EP300, EIF2S1, and LRP6 are among the additional 25% of genes identified to interact with the BM-PDB interactome. To corroborate the findings of the research presented, additional functional and gene set enrichment analyses have been performed. CONCLUSION Of the five reported genes (RAC2, PIAS1, EP300, EIF2S1, and LRP6), RAC2 was identified to function as the common key potential biomarker in the BM-PDB interactome analysis and validated by TCGA in the study presented.
Collapse
Affiliation(s)
- Mahima Bhardwaj
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research (Deemed to Be University), Guntur, Andhra Pradesh, India
| | - Farhana Begum
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research (Deemed to Be University), Guntur, Andhra Pradesh, India
| | - Duleswar Singh
- Department of Biotechnology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Srirama Krupanidhi
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research (Deemed to Be University), Guntur, Andhra Pradesh, India
| | - Virendra Kumar Yadav
- Department of Biotechnology, Faculty of Energy Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Ashish Patel
- Department of Lifesciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Sachidanand Singh
- Marwadi University Research Center, Marwadi University, Rajkot, Gujarat, India
| |
Collapse
|
4
|
Valea A, Nistor C, Ciobica ML, Sima OC, Carsote M. Endocrine Petrified Ear: Associated Endocrine Conditions in Auricular Calcification/Ossification (A Sample-Focused Analysis). Diagnostics (Basel) 2024; 14:1303. [PMID: 38928718 PMCID: PMC11202653 DOI: 10.3390/diagnostics14121303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Petrified ear (PE), an exceptional entity, stands for the calcification ± ossification of auricular cartilage (CAC/OAC); its pathogenic traits are still an open matter. Endocrine panel represents one of the most important; yet, no standard protocol of assessments is available. Our objective was to highlight most recent PE data and associated endocrine (versus non-endocrine) ailments in terms of presentation, imagery tools, hormonal assessments, biopsy, outcome, pathogenic features. This was a comprehensive review via PubMed search (January 2000-March 2024). A total of 75 PE subjects included: 46 case reports/series (N = 49) and two imagery-based retrospective studies (N = 26) with CAC/OAC prevalence of 7-23% (N = 251) amid routine head/temporal bone CT scans. Endocrine PE (EPE): N = 23, male/female ratio = 10.5; average age = 56.78, ranges: 22-79; non-EPE cohort: N = 26; male/female ratio = 1.88, mean age = 49.44; ranges: 18-75 (+a single pediatric case).The longest post-diagnosis follow-up was of 6-7 years. The diagnosis of PE and endocrine anomalies was synchronous or not (time gap of 10-20 years). A novel case in point (calcified EPE amid autoimmune poly-endocrine syndrome type 2 with a 10-year post-diagnosis documented follow-up) was introduced. We re-analyzed EPE and re-classified another five subjects as such. Hence, the final EPE cohort (N = 50) showed: adrenal insufficiency was the most frequent endocrine condition (36%) followed by hypopituitarism (22%) and hypothyroidism (18%); 39% of the patients with adrenal failure had Addison's disease; primary type represented 72% of all cases with hypothyroidism; an endocrine autoimmune (any type) component was diagnosed in 18%. We propose the term of "endocrine petrified ear" and a workflow algorithm to assess the potential hormonal/metabolic background in PE.
Collapse
Affiliation(s)
- Ana Valea
- Department of Endocrinology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
- Clinical County Hospital, 400347 Cluj-Napoca, Romania
| | - Claudiu Nistor
- Department 4-Cardio-Thoracic Pathology, Thoracic Surgery II Discipline, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- “Dr. Carol Davila” Central Military Emergency University Hospital, 010242 Bucharest, Romania;
| | - Mihai-Lucian Ciobica
- “Dr. Carol Davila” Central Military Emergency University Hospital, 010242 Bucharest, Romania;
- Department of Internal Medicine and Gastroenterology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Oana-Claudia Sima
- PhD Doctoral School, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- “C.I. Parhon” National Institute of Endocrinology, 011683 Bucharest, Romania;
| | - Mara Carsote
- “C.I. Parhon” National Institute of Endocrinology, 011683 Bucharest, Romania;
- Department of Endocrinology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
5
|
Vanderniet JA, Szymczuk V, Högler W, Beck-Nielsen SS, Uday S, Merchant N, Crane JL, Ward LM, Boyce AM, Munns CF. Management of RANKL-mediated Disorders With Denosumab in Children and Adolescents: A Global Expert Guidance Document. J Clin Endocrinol Metab 2024; 109:1371-1382. [PMID: 38041865 PMCID: PMC11031248 DOI: 10.1210/clinem/dgad657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 12/04/2023]
Abstract
CONTEXT Denosumab is an effective treatment for many receptor activator of nuclear factor kappa-B ligand (RANKL)-mediated disorders but there are potential safety considerations and limited data to guide its use in children and adolescents. OBJECTIVE This document seeks to summarize the evidence and provide expert opinion on safe and appropriate use of denosumab in pediatric RANKL-mediated disorders. PARTICIPANTS Ten experts in pediatric bone and mineral medicine from 6 countries with experience in the use of denosumab participated in the creation of this document. EVIDENCE Data were sourced from the published literature, primarily consisting of case reports/series and review articles because of the lack of higher level evidence. Expert opinion of the authors was used substantially when no published data were available. CONCLUSION Denosumab is an effective treatment for RANKL-mediated disorders in children and adolescents but is often not curative and, in some cases, is best used in conjunction with surgical or other medical treatments. Careful multidisciplinary planning is required to define the goals of treatment and expert oversight needed to manage the risk of mineral abnormalities. Substantive, collaborative research efforts are needed to determine optimal treatment regimens and minimize risks.
Collapse
Affiliation(s)
- Joel A Vanderniet
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney and Institute of Endocrinology and Diabetes, The Children’s Hospital at Westmead, Sydney, NSW 2145, Australia
| | - Vivian Szymczuk
- Metabolic Bone Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20814, USA
| | - Wolfgang Högler
- Department of Paediatrics and Adolescent Medicine, Johannes Kepler University Linz, Linz 4020, Austria
| | - Signe S Beck-Nielsen
- Centre for Rare Diseases, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Aarhus N DK-8200, Denmark
| | - Suma Uday
- Department of Endocrinology and Diabetes, Birmingham Women's and Children's Hospital and Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TG, UK
| | - Nadia Merchant
- Division of Endocrinology and Diabetes, Children's National Hospital, Washington, DC 20010, USA
| | - Janet L Crane
- Department of Pediatrics and Department of Orthopedic Surgery, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Leanne M Ward
- Department of Pediatrics, University of Ottawa and Division of Endocrinology, Children's Hospital of Eastern Ontario, Ottawa, Ontario K1H 8L1, Canada
| | - Alison M Boyce
- Metabolic Bone Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20814, USA
| | - Craig F Munns
- Child Health Research Centre and Mayne Academy of Paediatrics, University of Queensland, Brisbane, QLD 4101, Australia
| |
Collapse
|
6
|
Craven M, Vajravelu ME, Shekdar KV, Levine MA, Mumm S, Whyte MP, Mancilla EE. Early identification of a 12-bp tandem duplication in TNFRSF11A encoding receptor activator of nuclear factor-kappa B (RANK): Clinical characterization and response to bisphosphonate therapy. Bone 2023; 170:116698. [PMID: 36740137 PMCID: PMC10406616 DOI: 10.1016/j.bone.2023.116698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/04/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Ultra-rare mendelian osteolytic disorders caused by different length in-frame activating duplications within exon 1 of TNFRSF11A encoding receptor activator of nuclear factor-kappa B (RANK) comprise familial expansile osteolysis (FEO), expansile skeletal hyperphosphatasia (ESH), early-onset familial Paget's disease of bone (PDB2), juvenile Paget's disease 2 (JPD2), and panostotic expansile bone disease (PEBD). FEO typically presents with childhood-onset deafness followed by resorption of permanent dentition, and then appendicular bone pain, fractures, and deformities from progressive focal expansile osteolytic lesions emerging from a background of generalized high bone turnover. An 18-bp duplication in TNFRSF11A has been reported in all kindreds with FEO, whereas a 12-bp duplication was found in the young man with PEBD complicated by a massive jaw tumor. We report the clinical course and successful treatment with bisphosphonates of a girl with the 12-bp duplication yet a skeletal phenotype seemingly milder than PEBD. CASE PRESENTATION AND DISCUSSION This 10-year-old girl presented for dental and orthodontic treatment and was found to have progressive external tooth root resorption. Speech delay was identified at age 18 months, and audiological evaluation showed both conductive and sensorineural hearing loss subsequently treated with a cochlear implant at age 3 years. Biochemical studies indicated increased bone turnover with elevated urinary N-telopeptide levels and serum alkaline phosphatase in the upper normal range. Low lumbar spine bone mineral density (BMD) was revealed by dual-energy X-ray absorptiometry, but whole-body Technetium-99 m bone scintigraphy was normal. Genetic testing identified the identical de novo 12-bp duplication within exon 1 of TNFRSF11A harbored by the young man with PEBD and massive jaw tumor. Bisphosphonate treatment, initiated with one dose of intravenous zoledronic acid that caused prolonged hypocalcemia, then comprised weekly oral alendronate that decreased bone turnover markers and normalized her BMD. CONCLUSION Constitutive activation of RANK signaling should be considered a possible cause in any young person with rapid bone turnover, particularly in the context of early-onset deafness and/or root resorption of permanent teeth. Early diagnosis and anti-resorptive treatment, given judiciously to avoid sudden and prolonged hypocalcemia, may prevent further skeletal disease.
Collapse
Affiliation(s)
- Meghan Craven
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Mary Ellen Vajravelu
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Karuna V Shekdar
- Division of Neuro-Radiology, Department of Radiology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Michael A Levine
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Steven Mumm
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110, USA; Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children-St. Louis, St. Louis, MO 63110, USA.
| | - Michael P Whyte
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110, USA; Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children-St. Louis, St. Louis, MO 63110, USA.
| | - Edna E Mancilla
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
7
|
Saito-Hakoda A, Kikuchi A, Takahashi T, Yokoyama Y, Himori N, Adachi M, Ikeda R, Nomura Y, Takayama J, Kawashima J, Katsuoka F, Fujishima F, Yamaguchi T, Ito A, Hanita T, Kanno J, Aizawa T, Nakazawa T, Kawase T, Tamiya G, Yamamoto M, Fujiwara I, Kure S. Familial Paget's disease of bone with ocular manifestations and a novel TNFRSF11A duplication variant (72dup27). J Bone Miner Metab 2023; 41:193-202. [PMID: 36520195 DOI: 10.1007/s00774-022-01392-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Paget's disease of bone (PDB) is a skeletal disorder characterized by disorganized bone remodeling due to abnormal osteoclasts. Tumor necrosis factor receptor superfamily member 11A (TNFRSF11A) gene encodes the receptor activator of nuclear factor kappa B (RANK), which has a critical role in osteoclast function. There are five types of rare PDB and related osteolytic disorders due to TNFRSF11A tandem duplication variants so far, including familial expansile osteolysis (84dup18), expansile skeletal hyperphosphatasia (84dup15), early-onset familial PDB (77dup27), juvenile PDB (87dup15), and panostotic expansile bone disease (90dup12). MATERIALS AND METHODS We reviewed a Japanese family with PDB, and performed whole-genome sequencing to identify a causative variant. RESULTS This family had bone symptoms, hyperphosphatasia, hearing loss, tooth loss, and ocular manifestations such as angioid streaks or early-onset glaucoma. We identified a novel duplication variant of TNFRSF11A (72dup27). Angioid streaks were recognized in Juvenile Paget's disease due to loss-of-function variants in the gene TNFRSF11B, and thought to be specific for this disease. However, the novel recognition of angioid streaks in our family raised the possibility of occurrence even in bone disorders due to TNFRSF11A duplication variants and the association of RANKL-RANK signal pathway as the pathogenesis. Glaucoma has conversely not been reported in any case of Paget's disease. It is not certain whether glaucoma is coincidental or specific for PDB with 72dup27. CONCLUSION Our new findings might suggest a broad spectrum of phenotypes in bone disorders with TNFRSF11A duplication variants.
Collapse
Affiliation(s)
- Akiko Saito-Hakoda
- Department of Pediatrics, JR Sendai Hospital, 1-1-5, Itsutsubashi, Aoba-ku, Sendai, Miyagi, 980-8508, Japan.
- Department of Pediatrics, Tohoku University Hospital, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan.
| | - Atsuo Kikuchi
- Department of Pediatrics, Tohoku University Hospital, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Tadahisa Takahashi
- Department of Orthopaedic Surgery, Tohoku University Hospital, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Yu Yokoyama
- Department of Ophthalmology, Tohoku University Hospital, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Noriko Himori
- Department of Ophthalmology, Tohoku University Hospital, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
- Department of Aging Vision Healthcare, Tohoku University Graduate School of Biomedical Engineering, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Mika Adachi
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Hospital, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Ryoukichi Ikeda
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Hospital, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Yuri Nomura
- Department of Otorhinolaryngology, Senen Rifu Hospital, 2-2-108, Aobadai, Rifu-chō, Miyagi-gun, Miyagi, 981-0133, Japan
| | - Jun Takayama
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
- Department of AI and Innovative Medicine, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
- Department of Rare Disease Genomics, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
- Statistical Genetics Team, RIKEN Center for Advanced Intelligence Project, 1-4-1, Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan
| | - Junko Kawashima
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
| | - Fumiki Katsuoka
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
| | - Fumiyoshi Fujishima
- Department of Pathology, Tohoku University Hospital, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Takehiko Yamaguchi
- Department of Pathology, Dokkyo Medical University Nikko Medical Center, 632, Takatoku, Nikko, Tochigi, 321-2593, Japan
| | - Akiyo Ito
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Takushi Hanita
- Department of Pediatrics, Tohoku University Hospital, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Junko Kanno
- Department of Pediatrics, Tohoku University Hospital, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Toshimi Aizawa
- Department of Orthopaedic Surgery, Tohoku University Hospital, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Hospital, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Tetsuaki Kawase
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Hospital, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Gen Tamiya
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
- Department of AI and Innovative Medicine, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
- Department of Rare Disease Genomics, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
- Statistical Genetics Team, RIKEN Center for Advanced Intelligence Project, 1-4-1, Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan
| | - Masayuki Yamamoto
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
| | - Ikuma Fujiwara
- Department of Pediatrics, Sendai City Hospital, 1-1-1, Asutonagamachi, Taihaku-ku, Sendai, Miyagi, 982-8502, Japan
| | - Shigeo Kure
- Department of Pediatrics, Tohoku University Hospital, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
- Miyagi Children's Hospital, 4-3-17, Ochiai, Aoba-ku, Sendai, Miyagi, 989-3126, Japan
| |
Collapse
|
8
|
Gennari L, Rendina D, Merlotti D, Cavati G, Mingiano C, Cosso R, Materozzi M, Pirrotta F, Abate V, Calabrese M, Falchetti A. Update on the pathogenesis and genetics of Paget’s disease of bone. Front Cell Dev Biol 2022; 10:932065. [PMID: 36035996 PMCID: PMC9412102 DOI: 10.3389/fcell.2022.932065] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
Studies over the past two decades have led to major advances in the pathogenesis of Paget’s disease of bone (PDB) and particularly on the role of genetic factors. Germline mutations of different genes have been identified, as a possible cause of this disorder, and most of the underlying pathways are implicated in the regulation of osteoclast differentiation and function, whereas other are involved in cell autophagy mechanisms. In particular, about 30 different germline mutations of the Sequestosome 1 gene (SQSTM1) have been described in a significant proportion of familial and sporadic PDB cases. The majority of SQSTM1 mutations affect the ubiquitin-binding domain of the protein and are associated to a more severe clinical expression of the disease. Also, germline mutations in the ZNF687 and PFN1 genes have been associated to severe, early onset, polyostotic PDB with increased susceptibly to neoplastic degeneration, particularly giant cell tumor. Mutations in the VCP (Valosin Containing Protein) gene cause the autosomal dominant syndrome “Inclusion Body Myopathy, PDB, Fronto-temporal Dementia,” characterized by pagetic manifestations, associated with myopathy, amyotrophic lateral sclerosis and fronto-temporal dementia. Moreover, germline mutations in the TNFRSF11A gene, which encodes for RANK, were associated with rare syndromes showing some histopathological, radiological, and clinical overlap with PDB and in two cases of early onset PDB-like disease. Likewise, genome wide association studies performed in unrelated PDB cases identified other potential predisposition genes and/or susceptibility loci. Thus, it is likely that polygenic factors are involved in the PDB pathogenesis in many individuals and that modifying genes may contribute in refining the clinical phenotype. Moreover, the contribution of somatic mutations of SQSTM1 gene and/or epigenetic mechanisms in the pathogenesis of skeletal pagetic abnormalities and eventually neoplastic degeneration, cannot be excluded. Indeed, clinical and experimental observations indicate that genetic susceptibility might not be a sufficient condition for the clinical development of PDB without the concomitant intervention of viral infection, in primis paramixoviruses, and/or other environmental factors (e.g., pesticides, heavy metals or tobacco exposure), at least in a subset of cases. This review summarizes the most important advances that have been made in the field of cellular and molecular biology PDB over the past decades.
Collapse
Affiliation(s)
- Luigi Gennari
- Department of Medicine Surgery and Neurosciences, University of Siena Italy, Siena, Italy
- *Correspondence: Luigi Gennari, ; Alberto Falchetti,
| | - Domenico Rendina
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Daniela Merlotti
- Department of Medical Sciences, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Guido Cavati
- Department of Medicine Surgery and Neurosciences, University of Siena Italy, Siena, Italy
| | - Christian Mingiano
- Department of Medicine Surgery and Neurosciences, University of Siena Italy, Siena, Italy
| | - Roberta Cosso
- Unit of Rehabilitation Medicine, San Giuseppe Hospital, Istituto Auxologico Italiano, Piancavallo, Italy
| | - Maria Materozzi
- Department of Medicine Surgery and Neurosciences, University of Siena Italy, Siena, Italy
- Age Related Diseases Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | - Filippo Pirrotta
- Department of Medicine Surgery and Neurosciences, University of Siena Italy, Siena, Italy
| | - Veronica Abate
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Marco Calabrese
- Department of Medicine Surgery and Neurosciences, University of Siena Italy, Siena, Italy
| | - Alberto Falchetti
- Experimental Research Laboratory on Bone Metabolism, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Auxologico Italiano, Milano, Italy
- *Correspondence: Luigi Gennari, ; Alberto Falchetti,
| |
Collapse
|
9
|
Höppner J, Steff K, Lobert F, Heyer CM, Hauffa BP, Grasemann C. Rhizomelia and Impaired Linear Growth in a Girl with Juvenile Paget Disease: The Natural History of the Condition. Horm Res Paediatr 2022; 94:151-158. [PMID: 34261073 DOI: 10.1159/000517164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/10/2021] [Indexed: 11/19/2022] Open
Abstract
In ultra-rare bone diseases, information on growth during childhood is sparse. Juvenile Paget disease (JPD) is an ultra-rare disease, characterized by loss of function of osteoprotegerin (OPG). OPG inhibits osteoclast activation via the receptor activator of nuclear factor-κB (RANK) pathway. In JPD, overactive osteoclasts result in inflammatory-like bone disease due to grossly elevated bone resorption. Knowledge on the natural history of JPD, including final height and growth, is limited. Most affected children receive long-term antiresorptive treatment, mostly with bisphosphonates, to contain bone resorption, which may affect growth. In this study, we report the follow-up of height, growth velocity, and skeletal maturation in a 16-year-old female patient with JPD. The patient was treated with cyclic doses of pamidronate starting at 2.5 years of age and with 2 doses of denosumab at the age of 8 years, when pamidronate was paused. In the following years, a sustainable decline in a height z-score and a stunted pubertal growth spurt; despite appropriate maturation of the epiphyseal plates of the left hand, the proximal right humerus and both femora were observed. Whether this reflects the growth pattern in JPD or might be associated to the antiresorptive treatments is unclear, since there is very limited information available on the effect of bisphosphonates and denosumab on growth and the growth plate in pediatric patients. Studies are needed to understand the natural history of an ultra-rare bone disease and to assess the effects of antiresorptive treatment on the growing skeleton.
Collapse
Affiliation(s)
- Jakob Höppner
- Center for Rare Diseases Ruhr CeSER, Ruhr-University Bochum and Witten/Herdecke University, Bochum, Germany
| | - Katja Steff
- Department of Pediatrics II, University Hospital Essen and University of Duisburg-Essen, Essen, Germany.,Department of Pediatrics, St. Vinzenz -Hospital Dinslaken, Dinslaken, Germany
| | - Felix Lobert
- Technische Universität Dresden, Dresden, Germany
| | - Christoph M Heyer
- Institute of Pediatric Radiology, St.-Josef Hospital Bochum, Ruhr-University Bochum, Bochum, Germany
| | - Berthold P Hauffa
- Department of Pediatrics II, University Hospital Essen and University of Duisburg-Essen, Essen, Germany
| | - Corinna Grasemann
- Center for Rare Diseases Ruhr CeSER, Ruhr-University Bochum and Witten/Herdecke University, Bochum, Germany.,Department of Pediatrics, St.-Josef Hospital Bochum, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
10
|
Prata AR, Saraiva J, Salgado M, Estanqueiro P. Juvenile Paget's Disease: Report of a successful treatment throughout the complete growth of a patient with a missense TNFRSF11B mutation. Joint Bone Spine 2021; 88:105243. [PMID: 34166796 DOI: 10.1016/j.jbspin.2021.105243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/09/2021] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Juvenile Paget's Disease (JPD) is an ultra-rare inherited osteopathy featuring markedly accelerated bone turnover. Several clinical characteristics have been reported, including bone deformities developing in childhood and hearing loss. CASE REPORT We report the case of a 2 ¾-year-old girl that presented with progressive bowing of both legs since the age of 2, lower limb pain and frequent falls with one consequent femur fracture. Plain radiographs revealed osteoectasia of the long bone's diaphysis, and laboratory tests showed extremely high serum total alkaline phosphatase levels. A missense mutation on the gene TNFRSF11B was identified in homozygosity, and the diagnosis of JPD was made. Treatment with bisphosphonates was initiated early and markedly improved lower limb bowing and pain. The patient reached adulthood with normal height, minor bone deformities, and no functional impairment. Despite the good skeletal symptom's response, bisphosphonates failed to prevent or improve sensorineural hearing loss. CONCLUSIONS In this clinical case, early treatment with bisphosphonates was effective for the treatment of JPD skeletal deformities. New therapeutic strategies need to be developed to better control the extraskeletal manifestations of JPD.
Collapse
Affiliation(s)
- Ana Rita Prata
- Rheumatology Unit, Hospitais da Universidade de Coimbra, Centro Hospitalar e Universitário de Coimbra, Praceta Professor Mota Pinto, 3004-561 Coimbra, Portugal.
| | - Jorge Saraiva
- Medical Genetics Unit, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Avenida Afonso Romão, 3000-602 Coimbra, Portugal; University Clinic of Pediatrics, Faculty of Medicine, University of Coimbra, Rua Larga 2, 3000-370 Coimbra, Portugal; Clinical Academic Center of Coimbra, Rua Larga 2, 3000-370 Coimbra, Portugal
| | - Manuel Salgado
- Pediatric Rheumatology Unit, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Avenida Afonso Romão, 3000-602 Coimbra, Portugal
| | - Paula Estanqueiro
- Pediatric Rheumatology Unit, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Avenida Afonso Romão, 3000-602 Coimbra, Portugal
| |
Collapse
|
11
|
Xue JY, Ikegawa S, Guo L. Genetic disorders associated with the RANKL/OPG/RANK pathway. J Bone Miner Metab 2021; 39:45-53. [PMID: 32940787 DOI: 10.1007/s00774-020-01148-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/20/2020] [Indexed: 10/23/2022]
Abstract
The RANKL/OPG/RANK signalling pathway is a major regulatory system for osteoclast formation and activity. Mutations in TNFSF11, TNFRSF11B and TNFRSF11A cause defects in bone metabolism and development, thereby leading to skeletal disorders with changes in bone density and/or morphology. To date, nine kinds of monogenic skeletal diseases have been found to be causally associated with TNFSF11, TNFRSF11B and TNFRSF11A mutations. These diseases can be divided into two types according to the mutation effects and the resultant pathogenesis. One is caused by the mutations inducing constitutional RANK activation or OPG deficiency, which increase osteoclastogenesis and accelerate bone turnover, resulting in juvenile Paget's disease 2, Paget disease of bone 2, familial expansile osteolysis, expansile skeletal hyperphosphatasia, panostotic expansile bone disease, and Paget disease of bone 5. The other is caused by the de-activating mutations in TNFRSF11A or TNFSF11, which decrease osteoclastogenesis and elevate bone density, resulting in osteopetrosis, autosomal recessive 2 and 7, and dysosteosclerosis. Here we reviewed the current knowledge about these genetic disorders with paying particular attention to the updating genotype-phenotype association in the TNFRSF11A-caused diseases.
Collapse
Affiliation(s)
- Jing-Yi Xue
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, 4-6-1 Minato-ku, Tokyo, 108-8639, Japan
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, 4-6-1 Minato-ku, Tokyo, 108-8639, Japan.
| | - Long Guo
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, 4-6-1 Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
12
|
Xue JY, Wang Z, Smithson SF, Burren CP, Matsumoto N, Nishimura G, Ikegawa S, Guo L. The third case of TNFRSF11A-associated dysosteosclerosis with a mutation producing elongating proteins. J Hum Genet 2020; 66:371-377. [PMID: 33037392 DOI: 10.1038/s10038-020-00831-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/03/2020] [Accepted: 08/19/2020] [Indexed: 11/09/2022]
Abstract
Dysosteosclerosis (DOS) is a distinct form of sclerosing bone disease characterized by platyspondyly and progressive osteosclerosis. DOS is genetically heterogeneous. Three causal genes, SLC29A3, CSF1R, and TNFRSF11A are reported. TNFRSF11A-associated DOS has been identified in two patients; however, TNFRSF11A is also a causal gene for osteopetrosis, autosomal recessive 7 (OP-AR7). Whole-exome sequencing in a patient with sclerosing bone disease identified novel compound heterozygous variants (c.414_427 + 7del, c.1664del) in TNFRSF11A. We examined the impact of the two variants on five splicing isoforms of TNFRSF11A by RT-PCR. We found that c.1664del resulted in elongated proteins (p.S555Cfs*121, etc.), while c.414_427 + 7del generated two aberrant splicing products (p.A139Wfs*19 and p.E132Dfs*19) that lead to nonsense mediated mRNA decay (NMD). In the previous two cases of TNFRSF11A-associated DOS, their mutations produced truncated TNFRSF11A protein isoforms. The mutations in all three cases thus contrast with TNFRSF11A mutations reported in OP-AR7, which does not generated truncated or elongated TNFRSF11A proteins. Thus, we identified the third case of TNFRSF11A-associated DOS and reinforced the genotype-phenotype correlation that aberrant protein-producing TNFRSF11A mutations cause DOS.
Collapse
Affiliation(s)
- Jing-Yi Xue
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan.,Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Zheng Wang
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan.,Department of Medical Genetics, Institute of Basic Medical Sciences, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Sarah F Smithson
- Bristol Medical School Translational Health Sciences, University of Bristol, Bristol, UK.,Department of Clinical Genetics, St Michaels Hospital, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Christine P Burren
- Bristol Medical School Translational Health Sciences, University of Bristol, Bristol, UK.,Department of Paediatric Endocrinology, Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Gen Nishimura
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan.
| | - Long Guo
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan.
| |
Collapse
|
13
|
Whyte MP, Ma NS, Mumm S, Gottesman GS, McAlister WH, Nenninger AR, Bijanki VN, Ericson KL, Magnusson P. Persistent idiopathic hyperphosphatasemia from bone alkaline phosphatase in a healthy boy. Bone 2020; 138:115459. [PMID: 32474245 DOI: 10.1016/j.bone.2020.115459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 11/19/2022]
Abstract
Alkaline phosphatase (ALP) in humans comprises a family of four cell-surface phosphomonoester phosphohydrolase isozymes. Three genes separately encode the "tissue-specific" ALPs whereas the fourth gene encodes ubiquitous homodimeric "tissue-nonspecific" ALP (TNSALP) richly expressed in bone, liver, kidney, and developing teeth. TNSALP monomers have five putative N-linked glycosylation sites where different post-translational modifications account for this isozyme's distinctive physicochemical properties in different organs. Three bone-derived TNSALP (BALP) isoforms (B/I, B1, and B2) are present in healthy serum, whereas a fourth BALP isoform (B1x) can circulate in chronic kidney disease. Herein, we report a healthy boy with persistent hyperphosphatasemia due to BALP levels two- to threefold higher than age-appropriate reference values. High-performance liquid chromatography, electrophoresis, heat inactivation, catalysis inhibition, and polyethylene glycol precipitation revealed increased serum B/I, B1, and B2 differing from patterns found in skeletal diseases. B/I was ~23-fold elevated. Absence of mental retardation and physical stigmata excluded Mabry syndrome, the ALP-anchoring disorder causing hyperphosphatasemia. Routine biochemical studies indicated intact mineral homeostasis. Serum N-terminal propeptide of type I procollagen (P1NP) level was normal, but C-terminal cross-linking telopeptide of type I collagen (CTX) level was elevated. However, radiological studies showed no evidence for a generalized skeletal disturbance. Circulating pyridoxal 5'-phosphate, a TNSALP natural substrate, was not low despite the laboratory hyperphosphatasemia, thereby suggesting BALP phosphohydrolase activity was not elevated endogenously. Mutation analysis of the ALPL gene encoding TNSALP revealed no defect. His non-consanguineous healthy parents had serum total ALP activity and BALP protein levels that were normal. Our patient's sporadic idiopathic hyperphosphatasemia could reflect altered post-translational modification together with increased expression and/or impaired degradation of BALP.
Collapse
Affiliation(s)
- Michael P Whyte
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children, St. Louis, MO 63110, USA; Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110, USA.
| | - Nina S Ma
- Division of Endocrinology, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| | - Steven Mumm
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children, St. Louis, MO 63110, USA; Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110, USA.
| | - Gary S Gottesman
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children, St. Louis, MO 63110, USA.
| | - William H McAlister
- Mallinckrodt Institute of Radiology, Washington University School of Medicine at St. Louis Children's Hospital, St. Louis, MO 63110, USA.
| | - Angela R Nenninger
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children, St. Louis, MO 63110, USA.
| | - Vinieth N Bijanki
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children, St. Louis, MO 63110, USA.
| | - Karen L Ericson
- Department of Chemistry, Purdue University-Fort Wayne, Fort Wayne, IN 46805, USA.
| | - Per Magnusson
- Department of Clinical Chemistry and Department of Biomedical and Clinical Sciences, Linköping University, SE-58185 Linköping, Sweden.
| |
Collapse
|
14
|
Whyte MP, Campeau PM, McAlister WH, Roodman GD, Kurihara N, Nenninger A, Duan S, Gottesman GS, Bijanki VN, Sedighi H, Veis DJ, Mumm S. Juvenile Paget's Disease From Heterozygous Mutation of SP7 Encoding Osterix (Specificity Protein 7, Transcription Factor SP7). Bone 2020; 137:115364. [PMID: 32298837 PMCID: PMC8054448 DOI: 10.1016/j.bone.2020.115364] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/09/2020] [Accepted: 04/12/2020] [Indexed: 02/08/2023]
Abstract
Juvenile Paget's disease (JPD) became in 1974 the commonly used name for ultra-rare heritable occurrences of rapid bone remodeling throughout of the skeleton that present in infancy or early childhood as fractures and deformity hallmarked biochemically by marked elevation of serum alkaline phosphatase (ALP) activity (hyperphosphatasemia). Untreated, JPD can kill during childhood or young adult life. In 2002, we reported that homozygous deletion of the gene called tumor necrosis factor receptor superfamily, member 11B (TNFRSF11B) encoding osteoprotegerin (OPG) explained JPD in Navajos. Soon after, other bi-allelic loss-of-function TNFRSF11B defects were identified in JPD worldwide. OPG inhibits osteoclastogenesis and osteoclast activity by decoying receptor activator of nuclear factor κ-B (RANK) ligand (RANKL) away from its receptor RANK. Then, in 2014, we reported JPD in a Bolivian girl caused by a heterozygous activating duplication within TNFRSF11A encoding RANK. Herein, we identify mutation of a third gene underlying JPD. An infant girl began atraumatic fracturing of her lower extremity long-bones. Skull deformity and mild hearing loss followed. Our single investigation of the patient, when she was 15 years-of-age, showed generalized osteosclerosis and hyperostosis. DXA revealed a Z-score of +5.1 at her lumbar spine and T-score of +3.3 at her non-dominant wrist. Biochemical studies were consistent with positive mineral balance and several markers of bone turnover were elevated and included striking hyperphosphatasemia. Iliac crest histopathology was consistent with rapid skeletal remodeling. Measles virus transcripts, common in classic Paget's disease of bone, were not detected in circulating mononuclear cells. Then, reportedly, she responded to several months of alendronate therapy with less skeletal pain and correction of hyperphosphatasemia but had been lost to our follow-up. After we detected no defect in TNFRSF11A or B, trio exome sequencing revealed a de novo heterozygous missense mutation (c.926C>G; p.S309W) within SP7 encoding the osteoblast transcription factor osterix (specificity protein 7, transcription factor SP7). Thus, mutation of SP7 represents a third genetic cause of JPD.
Collapse
Affiliation(s)
- Michael P Whyte
- Center For Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Philippe M Campeau
- Department of Pediatrics, University of Montreal, Montreal, Quebec H3T 1C5, Canada.
| | - William H McAlister
- Mallinckrodt Institute of Radiology, Washington University School of Medicine at St. Louis Children's Hospital, St. Louis, MO 63110, USA.
| | - G David Roodman
- Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Nori Kurihara
- Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Angela Nenninger
- Center For Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA.
| | - Shenghui Duan
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Gary S Gottesman
- Center For Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA.
| | - Vinieth N Bijanki
- Center For Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA.
| | - Homer Sedighi
- Department of Plastic Surgery, Washington University School of Medicine at St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | - Deborah J Veis
- Center For Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Steven Mumm
- Center For Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
15
|
Whyte MP, Amalnath SD, McAlister WH, McKee MD, Veis DJ, Huskey M, Duan S, Bijanki VN, Alur S, Mumm S. Hypophosphatemic osteosclerosis, hyperostosis, and enthesopathy associated with novel homozygous mutations of DMP1 encoding dentin matrix protein 1 and SPP1 encoding osteopontin: The first digenic SIBLING protein osteopathy? Bone 2020; 132:115190. [PMID: 31843680 PMCID: PMC7271119 DOI: 10.1016/j.bone.2019.115190] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 01/20/2023]
Abstract
The SIBLINGs are a subfamily of the secreted calcium-binding phosphoproteins and comprise five small integrin-binding ligand N-linked glycoproteins [dentin matrix protein-1 (DMP1), secreted phosphoprotein-1 (SPP1) also called osteopontin (OPN), integrin-binding sialoprotein (IBSP) also called bone sialoprotein (BSP), matrix extracellular phosphoglycoprotein (MEPE), and dentin sialophosphoprotein (DSPP)]. Each SIBLING has at least one "acidic, serine- and aspartic acid-rich motif" (ASARM) and multiple Ser-x-Glu/pSer sequences that when phosphorylated promote binding of the protein to hydroxyapatite for regulation of biomineralization. Mendelian disorders from loss-of-function mutation(s) of the genes that encode the SIBLINGs thus far involve DSPP causing various autosomal dominant dysplasias of dentin but without skeletal disease, and DMP1 causing autosomal recessive hypophosphatemic rickets, type 1 (ARHR1). No diseases have been reported from gain-of-function mutation(s) of DSPP or DMP1 or from alterations of SPP1, IBSP, or MEPE. Herein, we describe severe hypophosphatemic osteosclerosis and hyperostosis associated with skeletal deformity, short stature, enthesopathy, tooth loss, and high circulating FGF23 levels in a middle-aged man and young woman from an endogamous family living in southern India. Both shared novel homozygous mutations within two genes that encode a SIBLING protein: stop-gain ("nonsense") DMP1 (c.556G>T,p.Glu186Ter) and missense SPP1 (c.769C>T,p.Leu266Phe). The man alone also carried novel heterozygous missense variants within two additional genes that condition mineral homeostasis and are the basis for autosomal recessive disorders: CYP27B1 underlying vitamin D dependent rickets, type 1, and ABCC6 underlying both generalized arterial calcification of infancy, type 2 and pseudoxanthoma elasticum (PXE). By immunochemistry, his bone contained high amounts of OPN, particularly striking surrounding osteocytes. We review how our patients' disorder may represent the first digenic SIBLING protein osteopathy.
Collapse
Affiliation(s)
- Michael P Whyte
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110, USA.
| | - S Deepak Amalnath
- Department of Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry 605006, India
| | - William H McAlister
- Mallinckrodt Institute of Radiology, Washington University School of Medicine at St. Louis Children's Hospital, St. Louis, MO 63110, USA.
| | - Marc D McKee
- Faculty of Dentistry and Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada.
| | - Deborah J Veis
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110, USA.
| | - Margaret Huskey
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110, USA.
| | - Shenghui Duan
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110, USA.
| | - Vinieth N Bijanki
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA.
| | - Suhas Alur
- Department of Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry 605006, India
| | - Steven Mumm
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110, USA.
| |
Collapse
|
16
|
Ono T, Hayashi M, Sasaki F, Nakashima T. RANKL biology: bone metabolism, the immune system, and beyond. Inflamm Regen 2020; 40:2. [PMID: 32047573 PMCID: PMC7006158 DOI: 10.1186/s41232-019-0111-3] [Citation(s) in RCA: 304] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022] Open
Abstract
Receptor activator of NF-κB (RANK) ligand (RANKL) induces the differentiation of monocyte/macrophage-lineage cells into the bone-resorbing cells called osteoclasts. Because abnormalities in RANKL, its signaling receptor RANK, or decoy receptor osteoprotegerin (OPG) lead to bone diseases such as osteopetrosis, the RANKL/RANK/OPG system is essential for bone resorption. RANKL was first discovered as a T cell-derived activator of dendritic cells (DCs) and has many functions in the immune system, including organogenesis, cellular development. The essentiality of RANKL in the bone and the immune systems lies at the root of the field of "osteoimmunology." Furthermore, this cytokine functions beyond the domains of bone metabolism and the immune system, e.g., mammary gland and hair follicle formation, body temperature regulation, muscle metabolism, and tumor development. In this review, we will summarize the current understanding of the functions of the RANKL/RANK/OPG system in biological processes.
Collapse
Affiliation(s)
- Takehito Ono
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8549 Japan
- Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8549 Japan
| | - Mikihito Hayashi
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8549 Japan
- Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8549 Japan
| | - Fumiyuki Sasaki
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8549 Japan
- Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8549 Japan
| | - Tomoki Nakashima
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8549 Japan
- Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8549 Japan
| |
Collapse
|
17
|
Abstract
Cytokines and hematopoietic growth factors have traditionally been thought of as regulators of the development and function of immune and blood cells. However, an ever-expanding number of these factors have been discovered to have major effects on bone cells and the development of the skeleton in health and disease (Table 1). In addition, several cytokines have been directly linked to the development of osteoporosis in both animal models and in patients. In order to understand the mechanisms regulating bone cells and how this may be dysregulated in disease states, it is necessary to appreciate the diverse effects that cytokines and inflammation have on osteoblasts, osteoclasts, and bone mass. This chapter provides a broad overview of this topic with extensive references so that, if desired, readers can access specific references to delve into individual topics in greater detail.
Collapse
Affiliation(s)
- Joseph Lorenzo
- Departments of Medicine and Orthopaedic Surgery, UConn Health, Farmington, CT, USA.
| |
Collapse
|
18
|
Naot D, Wilson LC, Allgrove J, Adviento E, Piec I, Musson DS, Cundy T, Calder AD. Juvenile Paget's disease with compound heterozygous mutations in TNFRSF11B presenting with recurrent clavicular fractures and a mild skeletal phenotype. Bone 2020; 130:115098. [PMID: 31655221 DOI: 10.1016/j.bone.2019.115098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/19/2019] [Accepted: 10/02/2019] [Indexed: 01/03/2023]
Abstract
Juvenile Paget's disease (JPD) is a rare recessively-inherited bone dysplasia. The great majority of cases described to date have had homozygous mutations in TNFRSF11B, the gene encoding osteoprotegerin. We describe a boy who presented with recurrent clavicular fractures following minor trauma (8 fractures from age 2 to 11). He was of normal height and despite mild lateral bowing of the thighs and anterior bowing of the shins he remained physically active. Abnormal modelling was noted in ribs and humeri on clavicular radiographs, and a skeletal survey at the age of 7 showed generalised diaphyseal expansion of the long bones with thickening of the periosteal and endosteal surfaces of the cortices. On biochemical evaluation, serum alkaline phosphatase was noted to be persistently elevated. The diagnosis of JPD was confirmed by the finding of compound heterozygous mutations in TNFRSF11B: a maternally-inherited A>G missense mutation at position 1 of the first amino acid codon (previously reported) and a paternally-inherited splice acceptor site mutation in intron 3 at a highly conserved position (not previously reported). Bioinformatics analysis suggested both mutations were disease-causing. Compound heterozygote mutations in TNFRSF11B causing JPD have been previously reported only once - in a boy who also had a relatively mild skeletal phenotype. The milder features may lead to delay in diagnosis and diagnostic confusion with other entities, but the extraskeletal features of JPD may nonetheless develop.
Collapse
Affiliation(s)
- Dorit Naot
- Department of Medicine, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Louise C Wilson
- Great Ormond Street Hospital, Great Ormond Street, London WC1N 3JH, United Kingdom.
| | - Jeremy Allgrove
- Great Ormond Street Hospital, Great Ormond Street, London WC1N 3JH, United Kingdom.
| | - Eleanor Adviento
- Department of Medicine, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | | | - David S Musson
- Department of Medicine, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Tim Cundy
- Department of Medicine, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Alistair D Calder
- Great Ormond Street Hospital, Great Ormond Street, London WC1N 3JH, United Kingdom.
| |
Collapse
|
19
|
Blockade of the angiotensin II type 1 receptor increases bone mineral density and left ventricular contractility in a mouse model of juvenile Paget disease. Eur J Pharmacol 2019; 859:172519. [PMID: 31271743 DOI: 10.1016/j.ejphar.2019.172519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 06/19/2019] [Accepted: 07/01/2019] [Indexed: 12/29/2022]
Abstract
Juvenile Paget disease (JPD1), an autosomal-recessive disorder, is characterized by extremely rapid bone turnover due to osteoprotegerin deficiency. Its extra-skeletal manifestations, such as hypertension and heart failure, suggest a pathogenesis with shared skeletal and cardiovascular system components. In spite of this, the effects of anti-hypertensive drugs on bone morphometry remain unknown. We administered an angiotensin II type 1 receptor blocker, olmesartan (5 mg/kg/day) to 8-week-old male mice lacking the osteoprotegerin gene, with and without 1 μg/kg/min of angiotensin II infusion for 14 days. Olmesartan treatment decreased systolic blood pressure, and echocardiography showed increased left ventricular systolic contractility. Three-dimensional micro-computed tomography scans demonstrated that olmesartan treatment increased trabecular bone volume (sham, +176%; angiotensin II infusion, +335%), mineral density (sham, +150%; angiotensin II infusion, +313%), and trabecular number (sham, +407%; angiotensin II infusion, +622%) in the tibia. Olmesartan increased cortical mineral density (sham, +19%; angiotensin II infusion, +24%), decreased the cortical bone section area (sham, -16%; angiotensin II infusion, -18%), decreased thickness (sham, -18%; angiotensin II infusion, -31%), and decreased the lacunar area (sham, -41%; angiotensin II infusion, -27%) in the tibia. Similar trend was observed in the femur. Moreover, olmesartan decreased angiotensin II-induced increases in tartrate-resistant acid phosphatase concentrations in plasma, but it affected neither type I procollagen N-terminal propeptides, nor the receptor activator of nuclear factor kappa-B ligand. Our data suggest that blockade of the angiotensin II type 1 receptor improves bone vulnerability, and helps to maintain the heart's structural integrity in osteoprotegerin-deficient mice.
Collapse
|
20
|
Ralston SH, Taylor JP. Rare Inherited forms of Paget's Disease and Related Syndromes. Calcif Tissue Int 2019; 104:501-516. [PMID: 30756140 PMCID: PMC6779132 DOI: 10.1007/s00223-019-00520-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 12/21/2018] [Indexed: 12/14/2022]
Abstract
Several rare inherited disorders have been described that show phenotypic overlap with Paget's disease of bone (PDB) and in which PDB is a component of a multisystem disorder affecting muscle and the central nervous system. These conditions are the subject of this review article. Insertion mutations within exon 1 of the TNFRSF11A gene, encoding the receptor activator of nuclear factor kappa B (RANK), cause severe PDB-like disorders including familial expansile osteolysis, early-onset familial PDB and expansile skeletal hyperphosphatasia. The mutations interfere with normal processing of RANK and cause osteoclast activation through activation of nuclear factor kappa B (NFκB) independent of RANK ligand stimulation. Recessive, loss-of-function mutations in the TNFRSF11B gene, which encodes osteoprotegerin, cause juvenile PDB and here the bone disease is due to unopposed activation of RANK by RANKL. Multisystem proteinopathy is a disorder characterised by myopathy and neurodegeneration in which PDB is often an integral component. It may be caused by mutations in several genes including VCP, HNRNPA1, HNRNPA2B1, SQSTM1, MATR3, and TIA1, some of which are involved in classical PDB. The mechanisms of osteoclast activation in these conditions are less clear but may involve NFκB activation through sequestration of IκB. The evidence base for management of these disorders is somewhat limited due to the fact they are extremely rare. Bisphosphonates have been successfully used to gain control of elevated bone remodelling but as yet, no effective treatment exists for the treatment of the muscle and neurological manifestations of MSP syndromes.
Collapse
Affiliation(s)
- Stuart H Ralston
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK.
| | - J Paul Taylor
- Howard Hughes Medical Institute and Department of Cell and Molecular Biology, St Jude's Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
21
|
Van Hul W, Boudin E, Vanhoenacker FM, Mortier G. Camurati-Engelmann Disease. Calcif Tissue Int 2019; 104:554-560. [PMID: 30721323 DOI: 10.1007/s00223-019-00532-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 01/28/2019] [Indexed: 12/12/2022]
Abstract
Camurati-Engelmann disease or progressive diaphyseal dysplasia is a rare autosomal dominant sclerosing bone dysplasia. Mainly the skull and the diaphyses of the long tubular bones are affected. Clinically, the patients suffer from bone pain, easy fatigability, and decreased muscle mass and weakness in the proximal parts of the lower limbs resulting in gait disturbances. The disease-causing mutations are located within the TGFβ-1 gene and expected to or thought to disrupt the binding between TGFβ1 and its latency-associated peptide resulting in an increased signaling of the pathway and subsequently accelerated bone turnover. In preclinical studies, it was shown that targeting the type I receptor ameliorates the high bone turnover. In patients, treatment options are currently mostly limited to corticosteroids that may relieve the pain, and improve the muscle weakness and fatigue. In this review, the clinical and radiological characteristics as well as the molecular genetics of this condition are discussed.
Collapse
Affiliation(s)
- Wim Van Hul
- Department of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium.
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43, 2650, Edegem, Belgium.
| | - Eveline Boudin
- Department of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Filip M Vanhoenacker
- AZ Sint-Maarten, Antwerp University Hospital and Ghent University, Mechelen, Belgium
| | - Geert Mortier
- Department of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
22
|
Gonc EN, Ozon A, Buyukyilmaz G, Alikasifoglu A, Simsek OP, Kandemir N. Acquired resistance to pamidronate treated effectively with zoledronate in juvenile Paget's disease. Osteoporos Int 2018; 29:1471-1474. [PMID: 29502293 DOI: 10.1007/s00198-018-4443-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/12/2018] [Indexed: 12/19/2022]
Abstract
Juvenile Paget's disease (JPD) is a rare autosomal recessive osteopathy. There is still a question about the most effective treatment modality in long-term prognosis. A 9-month-old boy who suffered from bone pain and deformities with a very high alkaline phosphatase level was diagnosed as JPD by radiographic findings. Genetic analysis showed a homozygous large deletion in TNFRSF11B gene encoding osteoprotegerin. Clinical improvement was observed with intravenous pamidronate therapy. However, the effect of drug reduced in time so the annual dose per kilogram body weight was increased after 2 years. Despite this increment, bone fractures developed and bone pain recurred with high-ALP levels, which suggested resistance to pamidronate. Switching to zoledronate resulted a significant improvement in bone findings radiographically and ALP level. Severe hypocalcemia requiring intravenous calcium treatment complicated the first dose of zoledronate, but not recurred thereafter. Intravenous pamidronate therapy is effective in reducing bone pain, improving bone deformities and motor development in infantile onset JPD. However, this effect can be transient. Switching to another bisphosphonate like zoledronate may provide long-term clinical and biochemical improvement as an alternative treatment in case of resistance to pamidronate therapy.
Collapse
Affiliation(s)
- E N Gonc
- Division of Pediatric Endocrinology, Hacettepe University Faculty of Medicine, 06100, Ankara, Turkey.
| | - A Ozon
- Division of Pediatric Endocrinology, Hacettepe University Faculty of Medicine, 06100, Ankara, Turkey
| | - G Buyukyilmaz
- Division of Pediatric Endocrinology, Hacettepe University Faculty of Medicine, 06100, Ankara, Turkey
| | - A Alikasifoglu
- Division of Pediatric Endocrinology, Hacettepe University Faculty of Medicine, 06100, Ankara, Turkey
| | - O P Simsek
- Division of Pediatric Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - N Kandemir
- Division of Pediatric Endocrinology, Hacettepe University Faculty of Medicine, 06100, Ankara, Turkey
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW The group of sclerosing bone disorders encompasses a variety of disorders all marked by increased bone mass. In this review, we give an overview of the genetic causes of this heterogeneous group of disorders and briefly touch upon the value of these findings for the development of novel therapeutic agents. RECENT FINDINGS Advances in the next-generation sequencing technologies are accelerating the molecular dissection of the pathogenic mechanisms underlying skeletal dysplasias. Throughout the years, the genetic cause of these disorders has been extensively studied which resulted in the identification of a variety of disease-causing genes and pathways that are involved in bone formation by osteoblasts, bone resorption by osteoclasts, or both processes. Due to this rapidly increasing knowledge, the insights into the regulatory mechanisms of bone metabolism are continuously improving resulting in the identification of novel therapeutic targets for disorders with reduced bone mass and increased bone fragility.
Collapse
Affiliation(s)
- Raphaël De Ridder
- Centre of Medical Genetics, University of Antwerp & University Hospital Antwerp, Antwerp, Belgium
| | - Eveline Boudin
- Centre of Medical Genetics, University of Antwerp & University Hospital Antwerp, Antwerp, Belgium
| | - Geert Mortier
- Centre of Medical Genetics, University of Antwerp & University Hospital Antwerp, Antwerp, Belgium
| | - Wim Van Hul
- Centre of Medical Genetics, University of Antwerp & University Hospital Antwerp, Antwerp, Belgium.
| |
Collapse
|
24
|
Abstract
Juvenile Paget disease (JPD) is a rare disorder, mainly caused by mutations in the gene TNFRSF11B that encodes osteoprotegerin (OPG). Loss of OPG action causes generalized, extremely rapid bone turnover. The clinical manifestations are both skeletal - progressive skeletal deformity that develops in childhood - and extra-skeletal, including hearing loss, retinopathy, vascular calcification and internal carotid artery aneurysm formation. The severity of the phenotype seems to be related to the severity of TNFRSF11B gene deactivation. JPD is characterized biochemically by very high alkaline phosphatase activity, as well as other bone turnover markers. Bisphosphonates are commonly used to reduce the greatly accelerated bone turnover and can ameliorate the skeletal phenotype, if started early enough in childhood and continued at least until growth is complete. Limited evidence from patients treated with recombinant OPG or denosumab also provided favorable results. Recombinant OPG would represent a replacement treatment, but it is unavailable for clinical use. It seems that life-long treatment with anti-resorptives is required, since the disease is reactivated after treatment discontinuation. An international collaborating network for the continuous registration and follow-up of JPD patients could be helpful in the future.
Collapse
Affiliation(s)
- Stergios A Polyzos
- First Department of Pharmacology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Tim Cundy
- Department of Medicine, Faculty of Medical & Health Sciences, University of Auckland, New Zealand
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
25
|
Kumar SRR, Bagalad BS, Manohar CB, Kuberappa PH. Intermediate Type of Juvenile Paget's Disease: A Rare Case in Indian Population. Contemp Clin Dent 2017; 8:175-178. [PMID: 28566875 PMCID: PMC5426156 DOI: 10.4103/ccd.ccd_1097_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Juvenile Paget's disease (JPD), a rare genetic skeletal disorder characterized by accelerated bone turnover with elevated levels of serum alkaline phosphatase, presents in early childhood. We report a female patient with typical features of JPD with dental finding who remained undiagnosed until 18 years of age. Scarcity of this disease in the Indian literature and need for timely diagnosis to avert progression of disease thus incited us to report this case.
Collapse
Affiliation(s)
- S Ravi Raja Kumar
- Department of Oral Pathology and Microbiology, Saint Joseph Dental College, Eluru, Andhra Pradesh, India
| | - Bhavana S Bagalad
- Department of Oral Pathology and Microbiology, Saint Joseph Dental College, Eluru, Andhra Pradesh, India
| | - Ch Balakrishna Manohar
- Department of Oral Pathology and Microbiology, Saint Joseph Dental College, Eluru, Andhra Pradesh, India
| | - Puneeth H Kuberappa
- Department of Oral Pathology and Microbiology, Saint Joseph Dental College, Eluru, Andhra Pradesh, India
| |
Collapse
|
26
|
Grasemann C, Unger N, Hövel M, Arweiler-Harbeck D, Herrmann R, Schündeln MM, Müller O, Schweiger B, Lausch E, Meissner T, Kiewert C, Hauffa BP, Shaw NJ. Loss of Functional Osteoprotegerin: More Than a Skeletal Problem. J Clin Endocrinol Metab 2017; 102:210-219. [PMID: 27809640 DOI: 10.1210/jc.2016-2905] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/31/2016] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Juvenile Paget's disease (JPD), an ultra-rare, debilitating bone disease due to loss of functional osteoprotegerin (OPG), is caused by recessive mutations in TNFRFSF11B. A genotype-phenotype correlation spanning from mild to very severe forms is described. AIM This study aimed to describe the complexity of the human phenotype of OPG deficiency in more detail and to investigate heterozygous mutation carriers for clinical signs of JPD. PATIENTS We investigated 3 children with JPD from families of Turkish, German, and Pakistani descent and 19 family members (14 heterozygous). RESULTS A new disease-causing 4 bp-duplication in exon 1 was detected in the German patient, and a microdeletion including TNFRFSF11B in the Pakistani patient. Skeletal abnormalities in all affected children included bowing deformities and fractures, contractures, short stature and skull involvement. Complex malformation of the inner ear and vestibular structures (2 patients) resulted in early deafness. Patients were found to be growth hormone deficient (2), displayed nephrocalcinosis (1), and gross motor (3) and mental (1) retardation. Heterozygous family members displayed low OPG levels (12), elevated bone turnover markers (7), and osteopenia (6). Short stature (1), visual impairment (2), and hearing impairment (1) were also present. CONCLUSION Diminished OPG levels cause complex changes affecting multiple organ systems, including pituitary function, in children with JPD and may cause osteopenia in heterozygous family members. Diagnostic and therapeutic measures should aim to address the complex phenotype.
Collapse
Affiliation(s)
- Corinna Grasemann
- Pediatric Endocrinology and Diabetology, Klinik für Kinderheilkunde II and
- Center for Rare Bone Diseases, EZSE and Departments of
| | - Nicole Unger
- Center for Rare Bone Diseases, EZSE and Departments of
- Endocrinology, Diabetology, and Metabolism
| | - Matthias Hövel
- Center for Rare Bone Diseases, EZSE and Departments of
- Orthopedics and Trauma Surgery
| | | | - Ralf Herrmann
- Pediatric Neonatology, Klinik für Kinderheilkunde I and
| | - Michael M Schündeln
- Pediatric Hematology and Oncology, Klinik für Kinderheilkunde III and Departments of
| | | | - Bernd Schweiger
- Radiology and Neuroradiology, University Hospital Essen and The University of Duisburg-Essen, 45122 Essen, Germany
| | - Ekkehart Lausch
- Pediatric Genetics, Children's Hospital, University of Freiburg, 79106 Freiburg, Germany
| | - Thomas Meissner
- Department of General Paediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital Düsseldorf, 40225 Düsseldorf, Germany
| | - Cordula Kiewert
- Pediatric Endocrinology and Diabetology, Klinik für Kinderheilkunde II and
| | - Berthold P Hauffa
- Pediatric Endocrinology and Diabetology, Klinik für Kinderheilkunde II and
| | - Nick J Shaw
- Department of Endocrinology and Diabetes, Birmingham Children's Hospital, Birmingham B4 6 NH, United Kingdom; and
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B4 6 NH, United Kingdom
| |
Collapse
|
27
|
Novack DV, Mbalaviele G. Osteoclasts-Key Players in Skeletal Health and Disease. Microbiol Spectr 2016; 4:10.1128/microbiolspec.MCHD-0011-2015. [PMID: 27337470 PMCID: PMC4920143 DOI: 10.1128/microbiolspec.mchd-0011-2015] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Indexed: 12/12/2022] Open
Abstract
The differentiation of osteoclasts (OCs) from early myeloid progenitors is a tightly regulated process that is modulated by a variety of mediators present in the bone microenvironment. Once generated, the function of mature OCs depends on cytoskeletal features controlled by an αvβ3-containing complex at the bone-apposed membrane and the secretion of protons and acid-protease cathepsin K. OCs also have important interactions with other cells in the bone microenvironment, including osteoblasts and immune cells. Dysregulation of OC differentiation and/or function can cause bone pathology. In fact, many components of OC differentiation and activation have been targeted therapeutically with great success. However, questions remain about the identity and plasticity of OC precursors and the interplay between essential networks that control OC fate. In this review, we summarize the key principles of OC biology and highlight recently uncovered mechanisms regulating OC development and function in homeostatic and disease states.
Collapse
Affiliation(s)
- Deborah Veis Novack
- Musculoskeletal Research Center, Division of Bone and Mineral Diseases, Department of Medicine
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Gabriel Mbalaviele
- Musculoskeletal Research Center, Division of Bone and Mineral Diseases, Department of Medicine
| |
Collapse
|
28
|
Cildir G, Low KC, Tergaonkar V. Noncanonical NF-κB Signaling in Health and Disease. Trends Mol Med 2016; 22:414-429. [PMID: 27068135 DOI: 10.1016/j.molmed.2016.03.002] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 12/18/2022]
Abstract
Noncanonical NF-κB signaling differs from canonical NF-κB signaling by being activated through different cell surface receptors, cytoplasmic adaptors, and NF-κB dimers. Under normal physiological conditions, this noncanonical pathway has been implicated in diverse biological processes, including lymphoid organogenesis, B cell maturation, osteoclast differentiation, and various functions of other immune cells. Recently, dysfunction of this pathway has also been causally associated with numerous immune-mediated pathologies and human malignancies. Here, we summarize the core elements as well as the recently identified novel regulators of the noncanonical NF-κB signaling pathway. The involvement of this pathway in different pathologies and the potential therapeutic options that are currently envisaged are also discussed.
Collapse
Affiliation(s)
- Gökhan Cildir
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore
| | - Kee Chung Low
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore; Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia.
| |
Collapse
|
29
|
Gottesman GS, Madson KL, McAlister WH, Nenninger A, Wenkert D, Mumm S, Whyte MP. Auricular ossification: A newly recognized feature of osteoprotegerin-deficiency juvenile Paget disease. Am J Med Genet A 2016; 170A:978-85. [PMID: 26762549 DOI: 10.1002/ajmg.a.37536] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/04/2015] [Indexed: 01/19/2023]
Abstract
We report auricular ossification (AO) affecting the elastic cartilage of the ear as a newly recognized feature of osteoprotegerin (OPG)-deficiency juvenile Paget disease (JPD). AO and auricular calcification refer interchangeably to rigid pinnae, sparing the ear lobe, from various etiologies. JPD is a rare Mendelian disorder characterized by elevated serum alkaline phosphatase activity accompanied by skeletal pain and deformity from rapid bone turnover. Autosomal recessive transmission of loss-of-function mutations within TNFRSF11B encoding OPG accounts for most JPD (JPD1). JPD2 results from heterozygous constitutive activation of TNFRSF11A encoding RANK. Other causes of JPD remain unknown. In 2007, we reported a 60-year-old man with JPD1 who described hardening of his external ears at age 45 years, after 4 years of treatment with bisphosphonates (BPs). Subsequently, we noted rigid pinnae in a 17-year-old boy and 14-year-old girl, yet pliable pinnae in a 12-year-old boy, each with JPD1 and several years of BP treatment. Cranial imaging indicated cortical bone within the pinnae of both teenagers. Radiologic studies of our three JPD patients without mutations in TNFRSF11B showed normal auricles. Review of the JPD literature revealed possible AO in several reports. Two of our JPD1 patients had experienced difficult tracheal intubation, raising concern for mineralization of laryngeal elastic cartilage. Thus, AO is a newly recognized feature of JPD1, possibly exacerbated by BP treatment. Elastic cartilage at other sites in JPD1 might also ossify, and warrants investigation.
Collapse
Affiliation(s)
- Gary S Gottesman
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospital for Children, St. Louis, Missouri
| | - Katherine L Madson
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospital for Children, St. Louis, Missouri
| | - William H McAlister
- Mallinckrodt Institute of Radiology, Washington University School of Medicine at St. Louis Children's Hospital, St. Louis, Missouri
| | - Angela Nenninger
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospital for Children, St. Louis, Missouri
| | - Deborah Wenkert
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospital for Children, St. Louis, Missouri
| | - Steven Mumm
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospital for Children, St. Louis, Missouri.,Division of Bone and Mineral Diseases at Barnes-Jewish Hospital, Washington University School of Medicine, St. Louis, Missouri
| | - Michael P Whyte
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospital for Children, St. Louis, Missouri.,Division of Bone and Mineral Diseases at Barnes-Jewish Hospital, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
30
|
Abstract
Paget's disease of bone is generally diagnosed in individuals aged >50 years, usually manifests in one or several bones and is initiated by osteoclast-induced osteolytic lesions. Subsequently, over a period of many years, osteoblastic activity can result in sclerosis and deformation of bone. The prevalence of Paget's disease is highest in the UK and in countries where a large number of residents have ancestors from the UK. Currently, in many countries, the prevalence of the disorder has decreased. A considerable number of affected patients have a family history of Paget's disease and the disorder has an autosomal dominant pattern of inheritance but with incomplete penetrance. A large number of mutations in SQSTM1 (which encodes sequestosome-1; also known as ubiquitin-binding protein p62) seem to account for the susceptibility to develop Paget's disease in some families; the involvement of other genes is currently under investigation. In addition to a genetic cause, environmental factors have been proposed to have a role in the pathogenesis of Paget's disease. Although most evidence has been presented for measles virus as an aetiologic factor, some studies have not confirmed its involvement. The decreasing incidence of Paget's disease, which could be attributed to measles vaccination along with the measles virus nucleocapsid protein induction of Paget's disease lesions in transgenic mice, supports an aetiologic role of the virus.
Collapse
Affiliation(s)
- Frederick R Singer
- John Wayne Cancer Institute, Providence Saint Johns Health Center, 2200 Santa Monica Boulevard, Santa Monica, CA 90404, USA
| |
Collapse
|
31
|
Greenblatt MB, Park KH, Oh H, Kim JM, Shin DY, Lee JM, Lee JW, Singh A, Lee KY, Hu D, Xiao C, Charles JF, Penninger JM, Lotinun S, Baron R, Ghosh S, Shim JH. CHMP5 controls bone turnover rates by dampening NF-κB activity in osteoclasts. ACTA ACUST UNITED AC 2015. [PMID: 26195726 PMCID: PMC4516796 DOI: 10.1084/jem.20150407] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Physiological bone remodeling requires that bone formation by osteoblasts be tightly coupled to bone resorption by osteoclasts. However, relatively little is understood about how this coupling is regulated. Here, we demonstrate that modulation of NF-κB signaling in osteoclasts via a novel activity of charged multivesicular body protein 5 (CHMP5) is a key determinant of systemic rates of bone turnover. A conditional deletion of CHMP5 in osteoclasts leads to increased bone resorption by osteoclasts coupled with exuberant bone formation by osteoblasts, resembling an early onset, polyostotic form of human Paget's disease of bone (PDB). These phenotypes are reversed by haploinsufficiency for Rank, as well as by antiresorptive treatments, including alendronate, zolendronate, and OPG-Fc. Accordingly, CHMP5-deficient osteoclasts display increased RANKL-induced NF-κB activation and osteoclast differentiation. Biochemical analysis demonstrated that CHMP5 cooperates with the PDB genetic risk factor valosin-containing protein (VCP/p97) to stabilize the inhibitor of NF-κBα (IκBα), down-regulating ubiquitination of IκBα via the deubiquitinating enzyme USP15. Thus, CHMP5 tunes NF-κB signaling downstream of RANK in osteoclasts to dampen osteoclast differentiation, osteoblast coupling and bone turnover rates, and disruption of CHMP5 activity results in a PDB-like skeletal disorder.
Collapse
Affiliation(s)
- Matthew B Greenblatt
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115 Department of Medicine and Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Kwang Hwan Park
- Department of Medicine and Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065 Department of Microbiology, Brain Korea 21 PLUS Project for Medical Sciences and Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea Department of Microbiology, Brain Korea 21 PLUS Project for Medical Sciences and Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Hwanhee Oh
- Department of Medicine and Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Jung-Min Kim
- Department of Medicine and Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Dong Yeon Shin
- Department of Medicine and Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Jae Myun Lee
- Department of Microbiology, Brain Korea 21 PLUS Project for Medical Sciences and Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Jin Woo Lee
- Department of Microbiology, Brain Korea 21 PLUS Project for Medical Sciences and Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Anju Singh
- National Center for Advancing Translational Sciences/National Institutes of Health, Rockville, MD 20850
| | - Ki-young Lee
- Department of Molecular Cell Biology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Dorothy Hu
- Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114
| | - Changchun Xiao
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| | - Julia F Charles
- Department of Medicine, Division of Rheumatology, Allergy, and Immunology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Sutada Lotinun
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115 Department of Physiology and STAR on Craniofacial and Skeletal Disorders, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Roland Baron
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115
| | - Sankar Ghosh
- Department of Microbiology and Immunology, Columbia University, College of Physicians and Surgeons, New York, NY 10032
| | - Jae-Hyuck Shim
- Department of Medicine and Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|