1
|
Wang Y, Hu J, Sun L, Zhou B, Lin X, Zhang Q, Wang O, Jiang Y, Xia W, Xing X, Li M. Correlation of serum DKK1 level with skeletal phenotype in children with osteogenesis imperfecta. J Endocrinol Invest 2024; 47:2785-2795. [PMID: 38744806 PMCID: PMC11473575 DOI: 10.1007/s40618-024-02380-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024]
Abstract
PURPOSE We aim to detect serum DKK1 level of pediatric patients with OI and to analyze its relationship with the genotype and phenotype of OI patients. METHODS A cohort of pediatric OI patients and age-matched healthy children were enrolled. Serum levels of DKK1 and bone turnover biomarkers were measured by enzyme-linked immunosorbent assay. Bone mineral density (BMD) was measured by Dual-energy X-ray absorptiometry. Pathogenic mutations of OI were detected by next-generation sequencing and confirmed by Sanger sequencing. RESULTS A total of 62 OI children with mean age of 9.50 (4.86, 12.00) years and 29 healthy children were included in this study. The serum DKK1 concentration in OI children was significantly higher than that in healthy children [5.20 (4.54, 6.32) and 4.08 (3.59, 4.92) ng/mL, P < 0.001]. The serum DKK1 concentration in OI children was negatively correlated with height (r = - 0.282), height Z score (r = - 0.292), ALP concentration (r = - 0.304), lumbar BMD (r = - 0.276), BMD Z score of the lumbar spine and femoral neck (r = - 0.32; r = - 0.27) (all P < 0.05). No significant difference in serum DKK1 concentration was found between OI patients with and without vertebral compression fractures. In patients with spinal deformity (22/62), serum DKK1 concentration was positively correlated with SDI (r = 0.480, P < 0.05). No significant correlation was observed between serum DKK1 concentration and the annual incidence of peripheral fractures, genotype and types of collagen changes in OI children. CONCLUSION The serum DKK1 level was not only significantly elevated in OI children, but also closely correlated to their skeletal phenotype, suggesting that DKK1 may become a new biomarker and a potential therapeutic target of OI.
Collapse
Affiliation(s)
- Y Wang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Beijing, 100730, Dongcheng District, China
| | - J Hu
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Beijing, 100730, Dongcheng District, China
| | - L Sun
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Beijing, 100730, Dongcheng District, China
| | - B Zhou
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Beijing, 100730, Dongcheng District, China
| | - X Lin
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Beijing, 100730, Dongcheng District, China
| | - Q Zhang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Beijing, 100730, Dongcheng District, China
| | - O Wang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Beijing, 100730, Dongcheng District, China
| | - Y Jiang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Beijing, 100730, Dongcheng District, China
| | - W Xia
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Beijing, 100730, Dongcheng District, China
| | - X Xing
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Beijing, 100730, Dongcheng District, China
| | - M Li
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Beijing, 100730, Dongcheng District, China.
| |
Collapse
|
2
|
Giraldo-Osorno PM, Wirsig K, Asa'ad F, Omar O, Trobos M, Bernhardt A, Palmquist A. Macrophage-to-osteocyte communication: Impact in a 3D in vitro implant-associated infection model. Acta Biomater 2024; 186:141-155. [PMID: 39142531 DOI: 10.1016/j.actbio.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/23/2024] [Accepted: 08/04/2024] [Indexed: 08/16/2024]
Abstract
Macrophages and osteocytes are important regulators of inflammation, osteogenesis and osteoclastogenesis. However, their interactions under adverse conditions, such as biomaterial-associated infection (BAI) are not fully understood. We aimed to elucidate how factors released from macrophages modulate osteocyte responses in an in vitro indirect 3D co-culture model. Human monocyte-derived macrophages were cultured on etched titanium disks and activated with either IL-4 cytokine (anti-inflammatory M2 phenotype) or Staphylococcus aureus secreted virulence factors to simulate BAI (pro-inflammatory M1 phenotype). Primary osteocytes in collagen gels were then stimulated with conditioned media (CM) from these macrophages. The osteocyte response was analyzed by gene expression, protein secretion, and immunostaining. M1 phenotype macrophages were confirmed by IL-1β and TNF-α secretion, and M2 macrophages by ARG-1 and MRC-1.Osteocytes receiving M1 CM revealed bone inhibitory effects, denoted by reduced secretion of bone formation osteocalcin (BGLAP) and increased secretion of the bone inhibitory sclerostin (SOST). These osteocytes also downregulated the pro-mineralization gene PHEX and upregulated the anti-mineralization gene MEPE. Additionally, exhibited pro-osteoclastic potential by upregulating pro-osteoclastic gene RANKL expression. Nonetheless, M1-stimulated osteocytes expressed a higher level of the potent pro-osteogenic factor BMP-2 in parallel with the downregulation of the bone inhibitor genes DKK1 and SOST, suggesting a compensatory feedback mechanisms. Conversely, M2-stimulated osteocytes mainly upregulated anti-osteoclastic gene OPG expression, suggesting an anti-catabolic effect. Altogether, our findings demonstrate a strong communication between M1 macrophages and osteocytes under M1 (BAI)-simulated conditions, suggesting that the BAI adverse effects on osteoblastic and osteoclastic processes in vitro are partly mediated via this communication. STATEMENT OF SIGNIFICANCE: Biomaterial-associated infections are major challenges and the underlying mechanisms in the cellular interactions are missing, especially among the major cells from the inflammatory side (macrophages as the key cell in bacterial clearance) and the regenerative side (osteocyte as main regulator of bone). We evaluated the effect of macrophage polarization driven by the stimulation with bacterial virulence factors on the osteocyte function using an indirect co-culture model, hence mimicking the scenario of a biomaterial-associated infection. The results suggest that at least part of the adverse effects of biomaterial associated infection on osteoblastic and osteoclastic processes in vitro are mediated via macrophage-to-osteocyte communication.
Collapse
Affiliation(s)
- Paula Milena Giraldo-Osorno
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Katharina Wirsig
- Faculty of Medicine, Centre for Translational Bone, Joint and Soft Tissue Research, Technische Universität Dresden, Germany
| | - Farah Asa'ad
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Omar Omar
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Margarita Trobos
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anne Bernhardt
- Faculty of Medicine, Centre for Translational Bone, Joint and Soft Tissue Research, Technische Universität Dresden, Germany.
| | - Anders Palmquist
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
3
|
Sun M, Lu Y, Zhang H, Jiang W, Wang W, Huang X, Zhang S, Xiang D, Tang B, Chen Y, Chen T, Lian C, Zhang J. Multifunctional Composite Scaffold with Nanosilver, Graphene Oxide, and Macrophage Membrane Vesicles for Sequential Treatment of Infected Bone Defects. Adv Healthc Mater 2024; 13:e2400346. [PMID: 38684106 DOI: 10.1002/adhm.202400346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/02/2024] [Indexed: 05/02/2024]
Abstract
The management of infected bone defects poses a significant clinical challenge, and current treatment modalities exhibit various limitations. This study focuses on the development of a multifunctional composite scaffold comprising nanohydroxyapatite/polyethyleneglycol diacrylate matrix, silver nanoparticles, graphene oxide (GO), sodium alginate, and M2-type macrophage membrane vesicles (MVs) to enhance the healing of infected bone defects. The composite scaffold demonstrates several key features: first, it releases sufficient quantities of silver ions to effectively eliminate bacteria; second, the controlled release of MVs leads to a notable increase in M2-type macrophages, thereby significantly mitigating the inflammatory response. Additionally, GO acts synergistically with nanohydroxyapatite to enhance osteoinductive activity, thereby fostering bone regeneration. Through meticulous in vitro and in vivo investigations, the composite scaffold exhibits broad-spectrum antimicrobial effects, robust immunomodulatory capabilities, and enhanced osteoinductive activity. This multifaceted composite scaffold presents a promising approach for the sequential treatment of infected bone defects, addressing the antimicrobial, immunomodulatory, and osteogenic aspects. This study introduces innovative perspectives and offers new and effective treatment alternatives for managing infected bone defects.
Collapse
Affiliation(s)
- Mingjie Sun
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yang Lu
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hongrui Zhang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Weiqian Jiang
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 401336, China
| | - Wenzhao Wang
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Xiao Huang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Shichun Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 401336, China
| | - Dulei Xiang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Boyu Tang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yu Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Tingmei Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Chengjie Lian
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jian Zhang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
4
|
Starlinger J, Santol J, Kaiser G, Sarahrudi K. Close negative correlation of local and circulating Dickkopf-1 and Sclerostin levels during human fracture healing. Sci Rep 2024; 14:6524. [PMID: 38499638 PMCID: PMC10948769 DOI: 10.1038/s41598-024-55756-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/27/2024] [Indexed: 03/20/2024] Open
Abstract
Wnt signaling is critically involved in fracture healing. Existing data predominantly relies on rodent models. Here, we explored local and circulating Dickkopf-1 (DKK1) levels in patients with respect to fracture healing and explore its association to sclerostin (SOST). 69 patients after surgical stabilization of long bone fractures of which six patients had impaired fracture healing were included in this study. Life-style and patient related factors with a known effect on DKK1 and SOST were recorded. DKK1 and SOST concentrations were measured using enzyme-linked immunosorbent assay (ELISA) at the fracture site and in circulation. DKK1 and SOST showed a close inverse correlation. In fracture hematoma and immediately after trauma DKK1 levels were significantly reduced while SOST levels were significantly increased, compared to healthy control. Postoperatively, DKK1 peaked at week 2 and SOST at week 8, again demonstrating a close negative correlation. Age and smoking status affected the balance of DKK1 and SOST, while type 2 diabetes and sex did not demonstrate a significant influence. Early postoperative elevation of SOST without compensatory DKK1 decrease was associated with fracture non-union in younger patients (< 50a). The close inverse correlation and very rapid dynamics of DKK1 and SOST locally as well as systemically suggest their critical involvement during human fracture healing. Importantly, as immediate compensatory feedback mechanism are apparent, we provide evidence that dual-blockade of DKK1 and SOST could be critical to allow for therapeutic efficiency of Wnt targeted therapies for fracture healing.
Collapse
Affiliation(s)
- Julia Starlinger
- Department of Orthopedics and Trauma-Surgery, General Hospital Vienna, Medical University Vienna, Vienna, Austria.
| | - Jonas Santol
- Department of Orthopedics and Trauma-Surgery, General Hospital Vienna, Medical University Vienna, Vienna, Austria
- Department of Surgery, HPB Center, Viennese Health Network, Clinic Favoriten, Sigmund Freud Private University, Vienna, Austria
- Division of Hepatobiliary and Pancreas Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Georg Kaiser
- Department of Orthopedics and Trauma-Surgery, General Hospital Vienna, Medical University Vienna, Vienna, Austria
| | - Kambiz Sarahrudi
- Department of Orthopedics and Trauma-Surgery, General Hospital Vienna, Medical University Vienna, Vienna, Austria
- Department for Trauma Surgery, Wiener Neustadt Regional Hospital, Wiener Neustadt, Austria
| |
Collapse
|
5
|
Zhang L, Adu IK, Zhang H, Wang J. The WNT/β-catenin system in chronic kidney disease-mineral bone disorder syndrome. Int Urol Nephrol 2023; 55:2527-2538. [PMID: 36964322 DOI: 10.1007/s11255-023-03569-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/18/2023] [Indexed: 03/26/2023]
Abstract
BACKGROUND The WNT/β-catenin system is an evolutionarily conserved signaling pathway that plays a crucial role in morphogenesis and cell tissue formation during embryogenesis. Although usually suppressed in adulthood, it can be reactivated during organ damage and regeneration. Transient activation of the WNT/β-catenin pathway stimulates tissue regeneration after acute kidney injury, while persistent (uncontrolled) activation can promote the development of chronic kidney disease (CKD). CKD-MBD is a clinical syndrome that develops with systemic mineral and bone metabolism disorders caused by CKD, characterized by abnormal bone mineral metabolism and/or extraosseous calcification, as well as cardiovascular disease associated with CKD, including vascular stiffness and calcification. OBJECTIVE This paper aims to comprehensively review the WNT/β-catenin signaling pathway in relation to CKD-MBD, focusing on its components, regulatory molecules, and regulatory mechanisms. Additionally, this review highlights the challenges and opportunities for using small molecular compounds to target the WNT/β-catenin signaling pathway in CKD-MBD therapy. METHODS We conducted a comprehensive literature review using various scientific databases, including PubMed, Scopus, and Web of Science, to identify relevant articles. We searched for articles that discussed the WNT/β-catenin signaling pathway, CKD-MBD, and their relationship. We also reviewed articles that discussed the components of the WNT/β-catenin signaling pathway, its regulatory molecules, and regulatory mechanisms. RESULTS The WNT/β-catenin signaling pathway plays a crucial role in CKD-MBD by promoting vascular calcification and bone mineral metabolism disorders. The pathway's components include WNT ligands, Frizzled receptors, and LRP5/6 co-receptors, which initiate downstream signaling cascades leading to the activation of β-catenin. Several regulatory molecules, including GSK-3β, APC, and Axin, modulate β-catenin activation. The WNT/β-catenin signaling pathway also interacts with other signaling pathways, such as the BMP pathway, to regulate CKD-MBD. CONCLUSIONS The WNT/β-catenin signaling pathway is a potential therapeutic target for CKD-MBD. Small molecular compounds that target the components or regulatory molecules of the pathway may provide a promising approach to treat CKD-MBD. However, more research is needed to identify safe and effective compounds and to determine the optimal dosages and treatment regimens.
Collapse
Affiliation(s)
- Lingbo Zhang
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, People's Republic of China
| | - Isaac Kumi Adu
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, People's Republic of China
- Department of Internal Medicine, The Second Hospital of Jingzhou and the Affiliated Hospital of Hubei College of Chinese Medicine, Jingzhou, People's Republic of China
- Department of Internal Medicine, Kings and Queens University College and Teaching Hospital, Akosombo, Ghana
| | - Haifeng Zhang
- Department of Internal Medicine, The Second Hospital of Jingzhou and the Affiliated Hospital of Hubei College of Chinese Medicine, Jingzhou, People's Republic of China
| | - Jiancheng Wang
- Department of Internal Medicine, The Second Hospital of Jingzhou and the Affiliated Hospital of Hubei College of Chinese Medicine, Jingzhou, People's Republic of China.
| |
Collapse
|
6
|
Florio M, Kostenuik PJ, Stolina M, Asuncion FJ, Grisanti M, Ke HZ, Ominsky MS. Dual Inhibition of the Wnt Inhibitors DKK1 and Sclerostin Promotes Fracture Healing and Increases the Density and Strength of Uninjured Bone: An Experimental Study in Nonhuman Primates. J Bone Joint Surg Am 2023; 105:1145-1155. [PMID: 37159527 DOI: 10.2106/jbjs.22.01092] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
BACKGROUND Fracture repair involves the reactivation of developmental signaling cascades, including Wnt signaling that stimulates bone formation and bone regeneration. Rodent data indicate that dual inhibition of the Wnt signaling antagonists sclerostin and Dickkopf-1 (DKK1) increases callus bone volume and strength while increasing bone mass systemically. METHODS We evaluated the effects of 16 weeks of subcutaneously administered carrier solution (vehicle, VEH), anti-sclerostin antibody (Scl-Ab), anti-DKK1 antibody (DKK1-Ab), or Scl-Ab plus DKK1-Ab combination therapy (COMBO) on ulnar osteotomy healing in nonhuman primates (cynomolgus monkeys; 20 to 22 per group). RESULTS Scl-Ab and COMBO therapy increased systemic markers of bone formation versus VEH, with COMBO leading to synergistic increases versus Scl-Ab or DKK1-Ab monotherapies. The COMBO and Scl-Ab groups showed reduced serum markers of bone resorption versus VEH. The COMBO and DKK1-Ab groups exhibited greater callus bone mineral density (BMD), torsional stiffness, and torsional rigidity versus VEH. Lumbar vertebrae from the Scl-Ab and COMBO groups showed greater BMD and bone formation rate versus VEH, and the femoral mid-diaphysis of the Scl-Ab and COMBO groups showed greater periosteal and endocortical bone formation rates versus VEH. CONCLUSIONS DKK1-Ab increased BMD and strength at the ulnar osteotomy site, Scl-Ab increased bone formation and BMD at uninjured skeletal sites, and Scl-Ab plus DKK1-Ab combination therapy induced all of these effects, in some cases to a greater degree versus 1 or both monotherapies. These results in nonhuman primates suggest that DKK1 preferentially regulates bone healing while sclerostin preferentially regulates systemic bone mass. CLINICAL RELEVANCE Combination therapy with antibodies against sclerostin and DKK1 may offer a promising therapeutic strategy for both fracture treatment and fracture prevention.
Collapse
Affiliation(s)
- Monica Florio
- Discovery Research, Amgen, Thousand Oaks, California
| | - Paul J Kostenuik
- Discovery Research, Amgen, Thousand Oaks, California
- Phylon Pharma Services, Thousand Oaks, California
- University of Michigan School of Dentistry, Ann Arbor, Michigan
| | | | | | | | - Hua Zhu Ke
- Discovery Research, Amgen, Thousand Oaks, California
- Angitia Biopharmaceuticals, Guangzhou, Guangdong, People's Republic of China
| | - Michael S Ominsky
- Discovery Research, Amgen, Thousand Oaks, California
- Ascendis Pharma, Palo Alto, California
| |
Collapse
|
7
|
Immune microenvironment: novel perspectives on bone regeneration disorder in osteoradionecrosis of the jaws. Cell Tissue Res 2023; 392:413-430. [PMID: 36737519 DOI: 10.1007/s00441-023-03743-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023]
Abstract
Osteoradionecrosis of the jaws (ORNJ) is a severe complication that occurs after radiotherapy of head and neck malignancies. Clinically, conservative treatments and surgeries for ORNJ exhibited certain therapeutic effects, whereas the regenerative disorder of the post-radiation jaw remains a pending problem to be solved. In recent years, the recognition of the role of the immune microenvironment has led to a shift from an osteoblasts (OBs) or bone marrow mesenchymal stromal cells (BMSCs)-centered view of bone regeneration to the concept of a complicated microecosystem that supports bone regeneration. Current advances in osteoimmunology have uncovered novel targets within the immune microenvironment to help improve various regeneration therapies, notably therapies potentiating the interaction between BMSCs and immune cells. However, these researches lack a thorough understanding of the immune microenvironment and the interaction network of immune cells in the course of bone regeneration, especially for the post-operative defect of ORNJ. This review summarized the composition of the immune microenvironment during bone regeneration, how the immune microenvironment interacts with the skeletal system, and discussed existing and potential strategies aimed at targeting cellular and molecular immune microenvironment components.
Collapse
|
8
|
Nelson AL, Fontana G, Miclau E, Rongstad M, Murphy W, Huard J, Ehrhart N, Bahney C. Therapeutic approaches to activate the canonical Wnt pathway for bone regeneration. J Tissue Eng Regen Med 2022; 16:961-976. [PMID: 36112528 PMCID: PMC9826348 DOI: 10.1002/term.3349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/05/2022] [Accepted: 09/01/2022] [Indexed: 01/12/2023]
Abstract
Activation of the canonical Wingless-related integration site (Wnt) pathway has been shown to increase bone formation and therefore has therapeutic potential for use in orthopedic conditions. However, attempts at developing an effective strategy to achieve Wnt activation has been met with several challenges. The inherent hydrophobicity of Wnt ligands makes isolating and purifying the protein difficult. To circumvent these challenges, many have sought to target extracellular inhibitors of the Wnt pathway, such as Wnt signaling pathway inhibitors Sclerostin and Dickkopf-1, or to use small molecules, ions and proteins to increase target Wnt genes. Here, we review systemic and localized bioactive approaches to enhance bone formation or improve bone repair through antibody-based therapeutics, synthetic Wnt surrogates and scaffold doping to target canonical Wnt. We conclude with a brief review of emerging technologies, such as mRNA therapy and Clustered Regularly Interspaced Short Palindromic Repeats technology, which serve as promising approaches for future clinical translation.
Collapse
Affiliation(s)
- Anna Laura Nelson
- Center for Regenerative and Personalized MedicineSteadman Philippon Research Institute (SPRI)VailColoradoUSA,School of Biomedical EngineeringColorado State UniversityFort CollinsColoradoUSA
| | - GianLuca Fontana
- Department of Orthopedics and RehabilitationUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Elizabeth Miclau
- Center for Regenerative and Personalized MedicineSteadman Philippon Research Institute (SPRI)VailColoradoUSA
| | - Mallory Rongstad
- Department of Orthopedics and RehabilitationUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - William Murphy
- Department of Orthopedics and RehabilitationUniversity of Wisconsin‐MadisonMadisonWisconsinUSA,Department of Biomedical EngineeringUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Johnny Huard
- Center for Regenerative and Personalized MedicineSteadman Philippon Research Institute (SPRI)VailColoradoUSA,Department of Clinical SciencesColorado State UniversityFort CollinsColoradoUSA
| | - Nicole Ehrhart
- School of Biomedical EngineeringColorado State UniversityFort CollinsColoradoUSA,Department of Clinical SciencesColorado State UniversityFort CollinsColoradoUSA
| | - Chelsea Bahney
- Center for Regenerative and Personalized MedicineSteadman Philippon Research Institute (SPRI)VailColoradoUSA,School of Biomedical EngineeringColorado State UniversityFort CollinsColoradoUSA,Department of Clinical SciencesColorado State UniversityFort CollinsColoradoUSA,Orthopaedic Trauma InstituteUniversity of California, San Francisco (UCSF)San FranciscoCaliforniaUSA
| |
Collapse
|
9
|
Shaw AT, Yan J, Kuhstoss SA, Charles JF, Gravallese EM. Dickkopf-1 directs periosteal bone formation in two murine models of inflammatory arthritis. Scand J Rheumatol 2022; 51:495-499. [PMID: 35272576 PMCID: PMC9464261 DOI: 10.1080/03009742.2022.2040136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2022] [Indexed: 10/18/2022]
Abstract
OBJECTIVE The Wnt signalling antagonist Dickkopf-1 (DKK1) inhibits osteoblast differentiation and function and has been described to play a central role in promoting bone loss, while blockade of DKK1 increases bone formation. We investigated the effects of DKK1 on periosteal new bone formation in two murine models of inflammatory arthritis, the antigen-induced arthritis (AIA) and K/BxN serum transfer arthritis (STA) models. METHOD The flare variant of AIA was induced in wild-type mice and a blocking antibody to DKK1, control rat immunoglobulin G (IgG), or phosphate-buffered saline (PBS) was administered starting on day 14, a time at which inflammation and erosions are known to be established. Knees were assessed for histological inflammation and periosteal new bone formation was quantitated. In addition, STA was generated in transgenic (Tg) mice with osteoblast-specific overexpression of Dkk1 and littermate controls. New bone formation around the wrists of these mice was quantified by micro-computed tomography. RESULTS Blockade of DKK1 in arthritic mice resulted in significantly more periosteal new bone formation compared to mice treated with control rat IgG or PBS. Conversely, in the setting of increased Dkk1 expression, arthritic Dkk1 Tg mice developed significantly less periosteal new bone than arthritic controls. CONCLUSION DKK1 is a regulator of periosteal bone formation in inflammatory arthritis. Thus, regulation of DKK1 may be considered as a therapeutic approach in inflammatory diseases in which patients suffer from excessive periosteal bone formation, such as spondyloarthritis.
Collapse
Affiliation(s)
- Anita T. Shaw
- Department of Medicine, Division of Rheumatology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jing Yan
- Department of Orthopedic Surgery, Brigham and Women’s Hospital and Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA
| | - Stuart A. Kuhstoss
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Julia F. Charles
- Department of Orthopedic Surgery, Brigham and Women’s Hospital and Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA
- Department of Medicine, Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ellen M. Gravallese
- Department of Medicine, Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
10
|
Zhang Z, Yang X, Cao X, Qin A, Zhao J. Current applications of adipose-derived mesenchymal stem cells in bone repair and regeneration: A review of cell experiments, animal models, and clinical trials. Front Bioeng Biotechnol 2022; 10:942128. [PMID: 36159705 PMCID: PMC9490047 DOI: 10.3389/fbioe.2022.942128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
In the field of orthopaedics, bone defects caused by severe trauma, infection, tumor resection, and skeletal abnormalities are very common. However, due to the lengthy and painful process of related surgery, people intend to shorten the recovery period and reduce the risk of rejection; as a result, more attention is being paid to bone regeneration with mesenchymal stromal cells, one of which is the adipose-derived mesenchymal stem cells (ASCs) from adipose tissue. After continuous subculture and cryopreservation, ASCs still have the potential for multidirectional differentiation. They can be implanted in the human body to promote bone repair after induction in vitro, solve the problems of scarce sources and large damage, and are expected to be used in the treatment of bone defects and non-union fractures. However, the diversity of its differentiation lineage and the lack of bone formation potential limit its current applications in bone disease. Here, we concluded the current applications of ASCs in bone repair, especially with the combination and use of physical and biological methods. ASCs alone have been proved to contribute to the repair of bone damage in vivo and in vitro. Attaching to bone scaffolds or adding bioactive molecules can enhance the formation of the bone matrix. Moreover, we further evaluated the efficiency of ASC-committed differentiation in the bone in conditions of cell experiments, animal models, and clinical trials. The results show that ASCs in combination with synthetic bone grafts and biomaterials may affect the regeneration, augmentation, and vascularization of bone defects on bone healing. The specific conclusion of different materials applied with ASCs may vary. It has been confirmed to benefit osteogenesis by regulating osteogenic signaling pathways and gene transduction. Exosomes secreted by ASCs also play an important role in osteogenesis. This review will illustrate the understanding of scientists and clinicians of the enormous promise of ASCs’ current applications and future development in bone repair and regeneration, and provide an incentive for superior employment of such strategies.
Collapse
Affiliation(s)
- Zhengyue Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People’s Hospital, Shanghai, China
| | - Xiao Yang
- Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiankun Cao
- Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - An Qin
- Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: An Qin, ; Jie Zhao,
| | - Jie Zhao
- Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: An Qin, ; Jie Zhao,
| |
Collapse
|
11
|
Li Z, Xing X, Gomez-Salazar MA, Xu M, Negri S, Xu J, James AW. Pharmacological inhibition of DKK1 promotes spine fusion in an ovariectomized rat model. Bone 2022; 162:116456. [PMID: 35688363 DOI: 10.1016/j.bone.2022.116456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022]
Abstract
Osteoporosis is common in patients undergoing spine surgery, and carries a considerable risk of adverse outcomes. New methods to positively influence bone regeneration and spine fusion under osteoporotic conditions would be impactful. Neutralizing anti-Dickkopf-1 (DKK1) antibodies has been used as a bone anabolic agent, and recently reported by our group to aid in stem cell-mediated appendicular bone regeneration. Here, a small molecule designed as a DKK1 inhibitor, WAY-262611, was used to induce posterolateral spine fusion in an ovariectomized rat model. In vitro, pharmacological inhibition of DKK1 enhanced osteogenesis and Wnt signaling activity among rat bone marrow-derived stem/stromal cells (BMSCs). In vivo, systemic treatment with WAY-262611 promoted both chondrogenesis and osteogenesis within the spinal fusion site, and ultimately led to significant improvements in lumbar fusion as assessed by XR, μCT, histology and manual palpation assessments. No significant effect on osteoclast numbers or fusion site angiogenesis was detected, suggesting a primary direct effect on mesenchymal cells of the implantation site. Finally, evidence from human stem/stromal cells further demonstrated that pharmacologic inhibition of DKK1 promoted osteogenic differentiation in vitro. Taken together, our results suggest that targeting DKK1 promotes local bone formation and suggests potential clinical value for osteoporotic bone repair.
Collapse
Affiliation(s)
- Zhao Li
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205,USA
| | - Xin Xing
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205,USA
| | | | - Mingxin Xu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205,USA
| | - Stefano Negri
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205,USA; Department of Orthopaedics and Traumatology, University of Verona, Verona 37129, Italy
| | - Jiajia Xu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205,USA
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205,USA.
| |
Collapse
|
12
|
Ko FC, Moran MM, Ross RD, Sumner DR. Activation of canonical Wnt signaling accelerates intramembranous bone regeneration in male mice. J Orthop Res 2022; 40:1834-1843. [PMID: 34811780 PMCID: PMC9124233 DOI: 10.1002/jor.25217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/25/2021] [Accepted: 11/09/2021] [Indexed: 02/04/2023]
Abstract
Canonical Wnt signaling plays an important role in skeletal development, homeostasis, and both endochondral and intramembranous repair. While studies have demonstrated that the inhibition of Wnt signaling impairs intramembranous bone regeneration, how its activation affects intramembranous bone regeneration has been underexplored. Therefore, we sought to determine the effects of activation of canonical Wnt signaling on intramembranous bone regeneration by using the well-established marrow ablation model. We hypothesized that mice with a mutation in the Wnt ligand coreceptor gene Lrp5 would have accelerated intramembranous bone regeneration. Male and female wild-type and Lrp5-mutant mice underwent unilateral femoral bone marrow ablation surgery in the right femur at 4 weeks of age. Both the left intact and right operated femurs were assessed at Days 3, 5, 7, 10, and 14. The intact femur of Lrp5 mutant mice of both sexes had higher bone mass than wild-type littermates, although to a greater degree in males than females. Overall, the regenerated bone volume in Lrp5 mutant male mice was 1.8-fold higher than that of littermate controls, whereas no changes were observed between female Lrp5 mutant and littermate control mice. In addition, the rate of intramembranous bone regeneration (from Day 3 to Day 7) was higher in Lrp5 mutant male mice compared to their same-sex littermate controls with no difference in the females. Thus, activation of canonical Wnt signaling increases bone mass in intact bones of both sexes, but accelerates intramembranous bone regeneration following an injury challenge only in male mice.
Collapse
Affiliation(s)
- Frank C. Ko
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, 60612,Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612
| | - Meghan M. Moran
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, 60612,Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612
| | - Ryan D. Ross
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, 60612,Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612
| | - D. Rick Sumner
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, 60612,Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612
| |
Collapse
|
13
|
Hormone sensitive lipase ablation promotes bone regeneration. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166449. [PMID: 35618183 DOI: 10.1016/j.bbadis.2022.166449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/08/2022] [Accepted: 05/13/2022] [Indexed: 02/07/2023]
Abstract
There is an inverse relationship between the differentiation of mesenchymal stem cells (MSCs) along either an adipocyte or osteoblast lineage, with lineage differentiation known to be mediated by transcription factors PPARγ and Runx2, respectively. Endogenous ligands for PPARγ are generated during the hydrolysis of triacylglycerols to fatty acids through the actions of lipases such as hormone sensitive lipase (HSL). To examine whether reduced production of endogenous PPARγ ligands would influence bone regeneration, we examined the effects of HSL knockout on fracture repair in mice using a tibial mono-cortical defect as a model. We found an improved rate of fracture repair in HSL-ko mice documented by serial μCT and bone histomorphometry compared to wild-type (WT) mice. Similarly, accelerated rates of bone regeneration were observed with a calvarial model where implantation of bone grafts from HSL-ko mice accelerated bone regeneration at the injury site. Further analysis revealed improved MSC differentiation down osteoblast and chondrocyte lineage with inhibition of HSL. MSC recruitment to the injury site was greater in HSL-ko mice than WT. Finally, we used single cell RNAseq to understand the osteoimmunological differences between WT and HSL-ko mice and found changes in the pre-osteoclast population. Our study shows HSL-ko mice as an interesting model to study improvements to bone injury repair. Furthermore, our study highlights the potential importance of pre-osteoclasts and osteoclasts in bone repair.
Collapse
|
14
|
Liang D, Song G, Zhang Z. miR‑216a‑3p inhibits osteogenic differentiation of human adipose‑derived stem cells via Wnt3a in the Wnt/β‑catenin signaling pathway. Exp Ther Med 2022; 23:309. [PMID: 35340869 DOI: 10.3892/etm.2022.11238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/12/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Daning Liang
- Department of Medical Beauty, Shenzhen Hospital (Guangming), University of Chinese Academy of Sciences, Shenzhen, Guangdong 518107, P.R. China
| | - Guodong Song
- Department of Craniomaxillofacial Surgery, Plastic Surgery Hospital of Chinese Academy of Medical Sciences, Beijing 100144, P.R. China
| | - Zhenning Zhang
- Department of Medical Beauty, Shenzhen Hospital (Guangming), University of Chinese Academy of Sciences, Shenzhen, Guangdong 518107, P.R. China
| |
Collapse
|
15
|
Bonnet C, Brahmbhatt A, Deng SX, Zheng JJ. Wnt signaling activation: targets and therapeutic opportunities for stem cell therapy and regenerative medicine. RSC Chem Biol 2021; 2:1144-1157. [PMID: 34458828 PMCID: PMC8341040 DOI: 10.1039/d1cb00063b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/01/2021] [Indexed: 12/18/2022] Open
Abstract
Wnt proteins are secreted morphogens that play critical roles in embryonic development, stem cell proliferation, self-renewal, tissue regeneration and remodeling in adults. While aberrant Wnt signaling contributes to diseases such as cancer, activation of Wnt/β-catenin signaling is a target of interest in stem cell therapy and regenerative medicine. Recent high throughput screenings from chemical and biological libraries, combined with improved gene expression reporter assays of Wnt/β-catenin activation together with rational drug design, led to the development of a myriad of Wnt activators, with different mechanisms of actions. Among them, Wnt mimics, antibodies targeting Wnt inhibitors, glycogen-synthase-3β inhibitors, and indirubins and other natural product derivatives are emerging modalities to treat bone, neurodegenerative, eye, and metabolic disorders, as well as prevent ageing. Nevertheless, the creation of Wnt-based therapies has been hampered by challenges in developing potent and selective Wnt activators without off-target effects, such as oncogenesis. On the other hand, to avoid these risks, their use to promote ex vivo expansion during tissue engineering is a promising application.
Collapse
Affiliation(s)
- Clémence Bonnet
- Stein Eye Institute, University of California Los Angeles CA USA +1-3107947906 +1-3102062173
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Paris University, Centre de Recherche des Cordeliers, and Cornea Departement, Cochin Hospital, AP-HP F-75014 Paris France
| | - Anvi Brahmbhatt
- Stein Eye Institute, University of California Los Angeles CA USA +1-3107947906 +1-3102062173
| | - Sophie X Deng
- Stein Eye Institute, University of California Los Angeles CA USA +1-3107947906 +1-3102062173
- Molecular Biology Institute, University of California Los Angeles CA USA
| | - Jie J Zheng
- Stein Eye Institute, University of California Los Angeles CA USA +1-3107947906 +1-3102062173
- Molecular Biology Institute, University of California Los Angeles CA USA
| |
Collapse
|
16
|
Niu S, Xiang F, Jia H. Downregulation of lncRNA XIST promotes proliferation and differentiation, limits apoptosis of osteoblasts through regulating miR-203-3p/ZFPM2 axis. Connect Tissue Res 2021; 62:381-392. [PMID: 32326773 DOI: 10.1080/03008207.2020.1752200] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background: Bone fracture is a common medical condition. Evidence suggested that long noncoding RNAs (lncRNAs) could regulate the bio-function in osteoblast. In this study, we explored the role and mechanism of lncRNA X-inactive specific transcript (XIST) on the proliferation, apoptosis, and differentiation of osteoblasts using MC3T3-E1 cells. Methods: Expression of XIST, microRNA-203-3p (miR-203-3p), and zinc finger protein multitype 2 (ZFPM2) was measured by quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability and apoptosis of MC3T3-E1 cells were measured using the Cell Counting Kit-8 (CCK-8) and the flow cytometry. Western blot was used to measure the expression of cell cycle-related proteins, apoptosis-related proteins, and ZFPM2. Levels of differentiation-related factors were measured by qRT-PCR, western blot, and alkaline phosphatase (ALP) kit. Target interaction between miR-203-3p and XIST or ZFPM2 was predicted through bioinformatics analysis and verified by dual-luciferase reporter, RNA immunoprecipitation (RIP) assay, or RNA pull-down assay. Results: The expression of XIST and ZFPM2 was increased while miR-203-3p was decreased in plasmas and MC3T3-E1 cells. Knockdown of XIST promoted the proliferation, differentiation, but limited apoptosis in MC3T3-E1 cells. . Mechanically, overexpression of XIST could reverse the bio-function of miR-203-3p transfection. Additionally, miR-203-3p inverted a series of bio-functional effects of ZFPM2. Furthermore, anti-miR-203-3p rescued si-XIST-induced downregulation of ZFPM2. Conclusion: Downregulation of lncRNA XIST promoted osteoblast proliferation and differentiation, but limited apoptosis by miR-203-3p/ZFPM2 axis.
Collapse
Affiliation(s)
- Shizhen Niu
- General Teaching and Research Office, Jining Medical University, Jining, Shandong, China
| | - Feng Xiang
- Department of Orthopaedics and Traumatology, Zaozhuang Hospital of Traditional Chinese Medicine, Zaozhuang, Shandong, China
| | - Huaihai Jia
- Department of Orthopaedics and Traumatology, Zaozhuang Hospital of Traditional Chinese Medicine, Zaozhuang, Shandong, China
| |
Collapse
|
17
|
Wang X, Su N. Neurokinin-1-tachykinin receptor agonist promotes diabetic fracture healing in rats with type 1 diabetes via modulation of Wnt/β-catenin signalling axis. Saudi J Biol Sci 2021; 28:2139-2145. [PMID: 33911930 PMCID: PMC8071892 DOI: 10.1016/j.sjbs.2021.02.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 11/24/2022] Open
Abstract
Diabetes mellitus is an ill-famed metabolic disorder with varied repercussions including delayed fracture healing. Wnt/β-catenin axis is known to play a tight pivotal role in the bone healing process. Substance P (SubP) is a neuropeptide with established positive modulatory functions in fracture healing and associated neuronal milieu. In this study, we performed local delivery of recombinant adenovirus of Dickkopf-1 (DKK1) into the fracture site to understand the antagonizing the role of DKK1 against substance P. Rats were segregated into 4 groups: (i) Fractured non-diabetic rats; (ii) Fractured T1D rats; T1D was provoked by using STZ 50 mg/kg for 5 consecutive days; (iii) Fractured T1D + SubP (50 mg/ml/Kg; i.p.; 30 min prior to fracture procedure); (iv) Fractured T1D + SubP + Ad-DKK1. Bone radiographs were taken using a Faxitron X-ray machine and the residual gap size was measured using an electric caliper. Western blotting was also performed to determine the protein expression levels of osteogenic markers (RUNX2, OSTX and OSTC) bone resorption markers (OPG, RANKL and RANK) and also Wnt-signalling markers (β-catenin, LRP5 and GSK-3β). We observed that SubP promoted osteogenesis (as indicated by RUNX2, OSTX and OSTC upregulation) and mitigated the bone resorption (as indicated by optimized OPG/RANKL/RANK axis) via activated Wnt signalling (manifested by upmodulated β-catenin and LRP5, with downmodulated GSK-3β levels. Activation of endogenous SubP or administration of exogenous mimics might counter-protect the fractured bone against the deforming effects of T1D.
Collapse
Affiliation(s)
- Xiaohui Wang
- Department of Endocrinology, Gansu Provincial of Traditional Chinese Medicine, Lanzhou, Gansu 73000, China
| | - Ning Su
- Department of Geriatrics, Hengshui People's Hospital, Hengshui, Hubei 053000, China
| |
Collapse
|
18
|
The Potential Function of Super Enhancers in Human Bone Marrow Mesenchymal Stem Cells during Osteogenic Differentiation. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6614762. [PMID: 33575331 PMCID: PMC7857871 DOI: 10.1155/2021/6614762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 12/04/2022]
Abstract
Super enhancers (SEs) are large clusters of transcriptional activity enhancers, which drive and control the expression of cell identity genes, as well as differentiation of specific cell types. SEs have great application potential in pathogenic mechanism studies in developmental biology, cancer, and other diseases. However, the potential function and regulatory mechanism of SEs in the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) are unknown. Therefore, this study investigated the potential function of SEs in the osteogenic differentiation of hBMSCs and their target genes. Osteogenesis was induced in three hBMSCs groups for 14 days. Further, ChIP-seq was performed on cells before and after osteogenic differentiation. Two target genes were then selected from cells before and after osteogenic differentiation for RT-qPCR. Finally, the selected SE target genes were analyzed by bioinformatics. In total, 1,680 SEs were identified in hBMSCs. After 14 days of osteogenic induction, only 342 SEs were detected in cells, among which 1,380 unique SEs were detected in hBMSCs, 42 unique SEs were found in cells induced by osteoblast differentiation after 14 days, and 300 SEs were common in both groups. Further, 1,680 genes were found to be regulated by SEs in hBMSCs, including 1,094 genes with protein-coding function and 586 noncoding genes. Additionally, 342 genes were regulated by SEs in cells after 14 days of osteogenic differentiation induction, of which 223 and 119 had protein-coding and noncoding functions, respectively. KEGG analysis of SE target genes before and after osteogenic differentiation showed the TGF-β, PI3K-Akt, and ECM receptor signaling pathways as highly enriched and closely related to osteogenic differentiation. Further, RT-qPCR results of four selected target genes confirmed the sequencing results. Taken together, osteogenic differentiation of hBMSCs involves changes in multiple SEs, which may regulate the osteogenic differentiation of hBMSCs by regulating the expression of target genes.
Collapse
|
19
|
Hildebrandt N, Colditz J, Dutra C, Goes P, Salbach-Hirsch J, Thiele S, Hofbauer LC, Rauner M. Role of osteogenic Dickkopf-1 in bone remodeling and bone healing in mice with type I diabetes mellitus. Sci Rep 2021; 11:1920. [PMID: 33479403 PMCID: PMC7820472 DOI: 10.1038/s41598-021-81543-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is associated with low bone mass and a higher risk for fractures. Dickkopf-1 (Dkk1), which inhibits Wnt signaling, osteoblast function, and bone formation, has been found to be increased in the serum of patients with T1DM. Here, we investigated the functional role of Dkk1 in T1DM-induced bone loss in mice. T1DM was induced in 10-week-old male mice with Dkk1-deficiency in late osteoblasts/osteocytes (Dkk1f/f;Dmp1-Cre, cKO) and littermate control mice by 5 subsequent injections of streptozotocin (40 mg/kg). Age-matched, non-diabetic control groups received citrate buffer instead. At week 12, calvarial defects were created in subgroups of each cohort. After a total of 16 weeks, weight, fat, the femoral bone phenotype and the area of the bone defect were analyzed using µCT and dynamic histomorphometry. During the experiment, diabetic WT and cKO mice did not gain body weight compared to control mice. Further they lost their perigonadal and subcutaneous fat pads. Diabetic mice had highly elevated serum glucose levels and impaired glucose tolerance, regardless of their Dkk1 levels. T1DM led to a 36% decrease in trabecular bone volume in Cre− negative control animals, whereas Dkk1 cKO mice only lost 16%. Of note, Dkk1 cKO mice were completely protected from T1DM-induced cortical bone loss. T1DM suppressed the bone formation rate, the number of osteoblasts at trabecular bone, serum levels of P1NP and bone defect healing in both, Dkk1-deficient and sufficient, mice. This may be explained by increased serum sclerostin levels in both genotypes and the strict dependence on bone formation for bone defect healing. In contrast, the number of osteoclasts and TRACP 5b serum levels only increased in diabetic control mice, but not in Dkk1 cKO mice. In summary, Dkk1 derived from osteogenic cells does not influence the development of T1DM but plays a crucial role in T1DM-induced bone loss in male mice by regulating osteoclast numbers.
Collapse
Affiliation(s)
- Nick Hildebrandt
- Department of Medicine III and Center for Healthy Aging, Medical Faculty, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Juliane Colditz
- Department of Medicine III and Center for Healthy Aging, Medical Faculty, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.,Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, Johannisallee 30, 04103, Leipzig, Germany
| | - Caio Dutra
- Department of Medicine III and Center for Healthy Aging, Medical Faculty, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.,Post-Graduation Program in Morphological Science, Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Paula Goes
- Department of Medicine III and Center for Healthy Aging, Medical Faculty, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.,Department of Pathology and Legal Medicine, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Juliane Salbach-Hirsch
- Department of Medicine III and Center for Healthy Aging, Medical Faculty, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Sylvia Thiele
- Department of Medicine III and Center for Healthy Aging, Medical Faculty, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III and Center for Healthy Aging, Medical Faculty, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III and Center for Healthy Aging, Medical Faculty, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
| |
Collapse
|
20
|
Negri S, Wang Y, Sono T, Qin Q, Hsu GCY, Cherief M, Xu J, Lee S, Tower RJ, Yu V, Piplani A, Meyers CA, Broderick K, Lee M, James AW. Systemic DKK1 neutralization enhances human adipose-derived stem cell mediated bone repair. Stem Cells Transl Med 2020; 10:610-622. [PMID: 33377628 PMCID: PMC7980212 DOI: 10.1002/sctm.20-0293] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/26/2020] [Accepted: 11/15/2020] [Indexed: 12/15/2022] Open
Abstract
Progenitor cells from adipose tissue are able to induce bone repair; however, inconsistent or unreliable efficacy has been reported across preclinical and clinical studies. Soluble inhibitory factors, such as the secreted Wnt signaling antagonists Dickkopf-1 (DKK1), are expressed to variable degrees in human adipose-derived stem cells (ASCs), and may represent a targetable "molecular brake" on ASC mediated bone repair. Here, anti-DKK1 neutralizing antibodies were observed to increase the osteogenic differentiation of human ASCs in vitro, accompanied by increased canonical Wnt signaling. Human ASCs were next engrafted into a femoral segmental bone defect in NOD-Scid mice, with animals subsequently treated with systemic anti-DKK1 or isotype control during the repair process. Human ASCs alone induced significant but modest bone repair. However, systemic anti-DKK1 induced an increase in human ASC engraftment and survival, an increase in vascular ingrowth, and ultimately improved bone repair outcomes. In summary, anti-DKK1 can be used as a method to augment cell-mediated bone regeneration, and could be particularly valuable in the contexts of impaired bone healing such as osteoporotic bone repair.
Collapse
Affiliation(s)
- Stefano Negri
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA.,Orthopaedic and Trauma Surgery Unit, Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, Verona, Italy
| | - Yiyun Wang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Takashi Sono
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Qizhi Qin
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Masnsen Cherief
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jiajia Xu
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Seungyong Lee
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Robert J Tower
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Victoria Yu
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Abhi Piplani
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Carolyn A Meyers
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kristen Broderick
- Department of Plastic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Min Lee
- School of Dentistry, University of California Los Angeles, Los Angeles, California, USA
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
21
|
Forster CM, White CA, Turner ME, Norman PA, Ward EC, Hopman WM, Adams MA, Holden RM. Circulating Levels of Dickkopf-Related Protein 1 Decrease as Measured GFR Declines and Are Associated with PTH Levels. Am J Nephrol 2020; 51:871-880. [PMID: 33238271 DOI: 10.1159/000511658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/16/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND The Wnt/β-catenin pathway has been implicated in the development of adynamic bone disease in early-stage chronic kidney disease (CKD). Dickkopf-related protein 1 (DKK1) and sclerostin are antagonists of the Wnt/β-catenin pathway yet have not been widely used as clinical indicators of bone disease. This study characterized levels of DKK1, sclerostin, and other biomarkers of mineral metabolism in participants across a spectrum of inulin-measured glomerular filtration rate (GFR). METHODS GFR was measured by urinary inulin clearance (mGFR) in 90 participants. Blood samples were obtained for measurement of circulating DKK1, sclerostin, fibroblast growth factor 23 (FGF-23), parathyroid hormone (PTH), calcium, phosphate, α-klotho, and vitamin D metabolites including 25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3. Spearman correlations and linear regressions were used where appropriate to examine the associations between measured values. RESULTS The median [IQR] age was 64 years [53.0-71.0], and the median [IQR] mGFR was 32.6 [21.7-60.6] mL/min. DKK1 decreased (r = 0.6, p < 0.001) and sclerostin increased (r = -0.4, p < 0.001) as kidney function declined, and both were associated with phosphate, PTH, FGF-23, and 1,25-dihydroxyvitamin D3 in the unadjusted analysis. After adjustment for age and mGFR, DKK1 remained significantly associated with PTH. CONCLUSION The results of this study demonstrate opposing trends in Wnt/β-catenin pathway inhibitors, DKK1 and sclerostin, as mGFR declines. Unlike sclerostin, DKK1 levels decreased significantly as mGFR declined and was independently associated with PTH. Future studies should determine whether measurement of Wnt signaling inhibitors may be useful in predicting bone histomorphometric findings and important clinical outcomes in patients with CKD.
Collapse
Affiliation(s)
- Corey M Forster
- Department of Biomedical and Molecular Science, Queen's University, Kingston, Ontario, Canada
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Christine A White
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Mandy E Turner
- Department of Biomedical and Molecular Science, Queen's University, Kingston, Ontario, Canada
| | - Patrick A Norman
- Kingston General Health Research Institute, Kingston General Hospital, Kingston, Ontario, Canada
| | - Emilie C Ward
- Department of Biomedical and Molecular Science, Queen's University, Kingston, Ontario, Canada
| | - Wilma M Hopman
- Kingston General Health Research Institute, Kingston General Hospital, Kingston, Ontario, Canada
- Department of Public Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - Michael A Adams
- Department of Biomedical and Molecular Science, Queen's University, Kingston, Ontario, Canada
| | - Rachel M Holden
- Department of Biomedical and Molecular Science, Queen's University, Kingston, Ontario, Canada,
- Department of Medicine, Queen's University, Kingston, Ontario, Canada,
| |
Collapse
|
22
|
Radix Rehmanniae Praeparata promotes bone fracture healing through activation of TGF-β signaling in mesenchymal progenitors. Biomed Pharmacother 2020; 130:110581. [DOI: 10.1016/j.biopha.2020.110581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/21/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023] Open
|
23
|
Xia C, Ge Q, Fang L, Yu H, Zou Z, Zhang P, Lv S, Tong P, Xiao L, Chen D, Wang PE, Jin H. TGF-β/Smad2 signalling regulates enchondral bone formation of Gli1 + periosteal cells during fracture healing. Cell Prolif 2020; 53:e12904. [PMID: 32997394 PMCID: PMC7653269 DOI: 10.1111/cpr.12904] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/20/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Most bone fracture heals through enchondral bone formation that relies on the involvement of periosteal progenitor cells. However, the identity of periosteal progenitor cells and the regulatory mechanism of their proliferation and differentiation remain unclear. The aim of this study was to investigate whether Gli1-CreERT2 can identify a population of murine periosteal progenitor cells and the role of TGF-β signalling in periosteal progenitor cells on fracture healing. MATERIALS AND METHODS Double heterozygous Gli1-CreERT2 ;Rosa26-tdTomatoflox/wt mice were sacrificed at different time points for tracing the fate of Gli1+ cells in both intact and fracture bone. Gli1-CreERT2 -mediated Tgfbr2 knockout (Gli1-CreERT2 ;Tgfbr2flox/flox ) mice were subjected to fracture surgery. At 4, 7, 10, 14 and 21 days post-surgery, tibia samples were harvested for tissue analyses including μCT, histology, real-time PCR and immunofluorescence staining. RESULTS Through cell lineage-tracing experiments, we have revealed that Gli1-CreER T2 can be used to identify a subpopulation of periosteal progenitor cells in vivo that persistently reside in periosteum and contribute to osteochondral elements during fracture repair. During the healing process, TGF-β signalling is continually activated in the reparative Gli1+ periosteal cells. Conditional knockout of Tgfbr2 in these cells leads to a delayed and impaired enchondral bone formation, at least partially due to the reduced proliferation and chondrogenic and osteogenic differentiation of Gli1+ periosteal cells. CONCLUSIONS TGF-β signalling plays an essential role on fracture repair via regulating enchondral bone formation process of Gli1+ periosteal cells.
Collapse
Affiliation(s)
- Chenjie Xia
- Institute of Orthopadics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Orthopedic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Qinwen Ge
- Institute of Orthopadics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liang Fang
- Institute of Orthopadics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huan Yu
- Institute of Orthopadics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhen Zou
- Institute of Orthopadics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Peng Zhang
- Institute of Orthopadics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuaijie Lv
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Peijian Tong
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Luwei Xiao
- Institute of Orthopadics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Di Chen
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ping-Er Wang
- Institute of Orthopadics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongting Jin
- Institute of Orthopadics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
24
|
WNT-β-catenin signalling - a versatile player in kidney injury and repair. Nat Rev Nephrol 2020; 17:172-184. [PMID: 32989282 DOI: 10.1038/s41581-020-00343-w] [Citation(s) in RCA: 259] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2020] [Indexed: 12/11/2022]
Abstract
The WNT-β-catenin system is an evolutionary conserved signalling pathway that is of particular importance for morphogenesis and cell organization during embryogenesis. The system is usually suppressed in adulthood; however, it can be re-activated in organ injury and regeneration. WNT-deficient mice display severe kidney defects at birth. Transient WNT-β-catenin activation stimulates tissue regeneration after acute kidney injury, whereas sustained (uncontrolled) WNT-β-catenin signalling promotes kidney fibrosis in chronic kidney disease (CKD), podocyte injury and proteinuria, persistent tissue damage during acute kidney injury and cystic kidney diseases. Additionally, WNT-β-catenin signalling is involved in CKD-associated vascular calcification and mineral bone disease. The WNT-β-catenin pathway is tightly regulated, for example, by proteins of the Dickkopf (DKK) family. In particular, DKK3 is released by 'stressed' tubular epithelial cells; DKK3 drives kidney fibrosis and is associated with short-term risk of CKD progression and acute kidney injury. Thus, targeting the WNT-β-catenin pathway might represent a promising therapeutic strategy in kidney injury and associated complications.
Collapse
|
25
|
Gronbach M, Mitrach F, Lidzba V, Müller B, Möller S, Rother S, Salbach-Hirsch J, Hofbauer LC, Schnabelrauch M, Hintze V, Hacker MC, Schulz-Siegmund M. Scavenging of Dickkopf-1 by macromer-based biomaterials covalently decorated with sulfated hyaluronan displays pro-osteogenic effects. Acta Biomater 2020; 114:76-89. [PMID: 32673749 DOI: 10.1016/j.actbio.2020.07.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/18/2020] [Accepted: 07/08/2020] [Indexed: 12/27/2022]
Abstract
Dickkopf-1 (DKK1), a Wnt inhibitor secreted by bone marrow stromal cells (MSC), is known to play an important role in long-term non-union bone fracture defects and glucocorticoid induced osteoporosis. Mitigating its effects in early bone defects could improve osteogenesis and bone defect healing. Here, we applied a biomaterial strategy to deplete a defect environment from DKK1 by scavenging the protein via a macromer-based biomaterial covalently decorated with sulfated hyaluronan (sHA3). The material consisted of cross-copolymerized three-armed macromers with a small anchor molecule. Using the glycidyl anchor, polyetheramine (ED900) could be grafted to the material to which sHA3 was efficiently coupled in a separate step. For thorough investigation of material modification, flat material surfaces were generated by fabricating them on glass discs. The binding capability of sHA3 for DKK1 was demonstrated in this study by surface plasmon resonance measurements. Furthermore, the surfaces demonstrated the ability to scavenge and inactivate pathologic amounts of DKK1 from complex media. In a combinatory approach with Wnt3a, we were able to demonstrate that DKK1 is the preferred binding partner of our sHA3-functionalized surfaces. We validated our findings in a complex in vitro setting of differentiating SaOS-2 cells and primary hMSC. Here, endogenous DKK-1 was scavenged resulting in increased osteogenic differentiation indicating that this is a consistent biological effect irrespective of the model system used. Our study provides insights in the mechanisms and efficiency of sHA3 surface functionalization for DKK1 scavenging, which may be used in a clinical context in the future.
Collapse
Affiliation(s)
- M Gronbach
- University of Leipzig, Medical Faculty, Pharmaceutical Technology, Eilenburger Str. 15A, 04317 Leipzig, Germany
| | - F Mitrach
- University of Leipzig, Medical Faculty, Pharmaceutical Technology, Eilenburger Str. 15A, 04317 Leipzig, Germany
| | - V Lidzba
- University of Leipzig, Medical Faculty, Pharmaceutical Technology, Eilenburger Str. 15A, 04317 Leipzig, Germany
| | - B Müller
- University of Leipzig, Medical Faculty, Pharmaceutical Technology, Eilenburger Str. 15A, 04317 Leipzig, Germany
| | - S Möller
- INNOVENT e.V., Biomaterials Department, Pruessingstraße 27B, Jena, Germany
| | - S Rother
- Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Str. 27, 01062 Dresden, Germany
| | - J Salbach-Hirsch
- Department of Medicine III, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - L C Hofbauer
- Department of Medicine III, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany; Center for Healthy Aging, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - M Schnabelrauch
- INNOVENT e.V., Biomaterials Department, Pruessingstraße 27B, Jena, Germany
| | - V Hintze
- Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Str. 27, 01062 Dresden, Germany
| | - M C Hacker
- University of Leipzig, Medical Faculty, Pharmaceutical Technology, Eilenburger Str. 15A, 04317 Leipzig, Germany
| | - M Schulz-Siegmund
- University of Leipzig, Medical Faculty, Pharmaceutical Technology, Eilenburger Str. 15A, 04317 Leipzig, Germany.
| |
Collapse
|
26
|
Ying J, Ge Q, Hu S, Luo C, Lu F, Yu Y, Xu T, Lv S, Zhang L, Shen J, Chen D, Tong P, Xiao L, Li J, Jin H, Wang P. Amygdalin Promotes Fracture Healing through TGF- β/Smad Signaling in Mesenchymal Stem Cells. Stem Cells Int 2020; 2020:8811963. [PMID: 32963548 PMCID: PMC7492948 DOI: 10.1155/2020/8811963] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/13/2020] [Accepted: 08/21/2020] [Indexed: 12/29/2022] Open
Abstract
Chondrogenesis and subsequent osteogenesis of mesenchymal stem cells (MSCs) and angiogenesis at injured sites are crucial for bone fracture healing. Amygdalin, a cyanogenic glycoside compound derived from bitter apricot kernel, has been reported to inhibit IL-1β-induced chondrocyte degeneration and to stimulate blood circulation, suggesting a promising role of amygdalin in fracture healing. In this study, tibial fractures in C57BL/6 mice were treated with amygdalin. Fracture calluses were then harvested and subjected to radiographic, histological, and biomechanical testing, as well as angiography and gene expression analyses to evaluate fracture healing. The results showed that amygdalin treatment promoted bone fracture healing. Further experiments using MSC-specific transforming growth factor- (TGF-) β receptor 2 conditional knockout (KO) mice (Tgfbr2Gli1-Cre ) and C3H10 T1/2 murine mesenchymal progenitor cells showed that this effect was mediated through TGF-β/Smad signaling. We conclude that amygdalin could be used as an alternative treatment for bone fractures.
Collapse
Affiliation(s)
- Jun Ying
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006 Zhejiang Province, China
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province, China
| | - Qinwen Ge
- First Clinical College of Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province, China
| | - Songfeng Hu
- Department of Orthopaedics, Shaoxing Hospital of Traditional Chinese Medicine, Affiliated with Zhejiang Chinese Medical University, Shaoxing, 312000 Zhejiang Province, China
| | - Cheng Luo
- Department of Orthopaedic Surgery, Fuyang Orthopaedics and Traumatology Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Fengyi Lu
- First Clinical College of Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province, China
| | - Yikang Yu
- First Clinical College of Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province, China
| | - Taotao Xu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006 Zhejiang Province, China
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province, China
| | - Shuaijie Lv
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006 Zhejiang Province, China
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province, China
| | - Lei Zhang
- Department of Orthopedics, Xiaoshan District Hospital of Traditional Chinese Medicine of Hangzhou, Hangzhou, 311201 Zhejiang Province, China
| | - Jie Shen
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Di Chen
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Peijian Tong
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006 Zhejiang Province, China
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province, China
| | - Luwei Xiao
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province, China
| | - Ju Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006 Zhejiang Province, China
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province, China
| | - Hongting Jin
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006 Zhejiang Province, China
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province, China
| | - Pinger Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006 Zhejiang Province, China
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province, China
| |
Collapse
|
27
|
Schupbach D, Comeau-Gauthier M, Harvey E, Merle G. Wnt modulation in bone healing. Bone 2020; 138:115491. [PMID: 32569871 DOI: 10.1016/j.bone.2020.115491] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/31/2022]
Abstract
Genetic studies have been instrumental in the field of orthopaedics for finding tools to improve the standard management of fractures and delayed unions. The Wnt signaling pathway that is crucial for development and maintenance of many organs also has a very promising pathway for enhancement of bone regeneration. The Wnt pathway has been shown to have a direct effect on stem cells during bone regeneration, making Wnt a potential target to stimulate bone repair after trauma. A more complete view of how Wnt influences animal bone regeneration has slowly come to light. This review article provides an overview of studies done investigating the modulation of the canonical Wnt pathway in animal bone regeneration models. This not only includes a summary of the recent work done elucidating the roles of Wnt and β-catenin in fracture healing, but also the results of thirty transgenic studies, and thirty-eight pharmacological studies. Finally, we discuss the discontinuation of sclerostin clinical trials, ongoing clinical trials with lithium, the results of Dkk antibody clinical trials, the shift into combination therapies and the future opportunities to enhance bone repair and regeneration through the modulation of the Wnt signaling pathway.
Collapse
Affiliation(s)
- Drew Schupbach
- Department of Surgery, Division of Orthopedic Surgery, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room A10-110, Montreal, Québec H3G 1A4, Canada; Experimental Surgery, Faculty of Medicine, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room A7-117, Montreal, Québec H3G 1A4, Canada.
| | - Marianne Comeau-Gauthier
- Department of Surgery, Division of Orthopedic Surgery, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room A10-110, Montreal, Québec H3G 1A4, Canada; Experimental Surgery, Faculty of Medicine, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room A7-117, Montreal, Québec H3G 1A4, Canada.
| | - Edward Harvey
- Department of Surgery, Division of Orthopedic Surgery, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room A10-110, Montreal, Québec H3G 1A4, Canada.
| | - Geraldine Merle
- Department of Surgery, Division of Orthopedic Surgery, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room A10-110, Montreal, Québec H3G 1A4, Canada; Department of Chemical Engineering, Polytechnique Montreal, 2500, chemin de Polytechnique, Montréal, Québec H3T 1J4, Canada.
| |
Collapse
|
28
|
Wang Y, Negri S, Li Z, Xu J, Hsu CY, Peault B, Broderick K, James AW. Anti-DKK1 Enhances the Early Osteogenic Differentiation of Human Adipose-Derived Stem/Stromal Cells. Stem Cells Dev 2020; 29:1007-1015. [PMID: 32460636 DOI: 10.1089/scd.2020.0070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Adipose-derived stem/stromal cells (ASCs) have been previously used for bone repair. However, significant cell heterogeneity exists within the ASC population, which has the potential to result in unreliable bone tissue formation and/or low efficacy. Although the use of cell sorting to lower cell heterogeneity is one method to improve bone formation, this is a technically sophisticated and costly process. In this study, we tried to find a simpler and more deployable solution-blocking antiosteogenic molecule Dickkopf-1 (DKK1) to improve osteogenic differentiation. Human adipose-derived stem cells were derived from = 5 samples of human lipoaspirate. In vitro, anti-DKK1 treatment, but not anti-sclerostin (SOST), promoted ASC osteogenic differentiation, assessed by alizarin red staining and real-time polymerase chain reaction (qPCR). Increased canonical Wnt signaling was confirmed after anti-DKK1 treatment. Expression levels of DKK1 peaked during early osteogenic differentiation (day 3). Concordantly, anti-DKK1 supplemented early (day 3 or before), but not later (day 7) during osteogenic differentiation positively regulated osteoblast formation. Finally, anti-DKK1 led to increased transcript abundance of the Wnt inhibitor SOST, potentially representing a compensatory cellular mechanism. In sum, DKK1 represents a targetable "molecular brake" on the osteogenic differentiation of human ASC. Moreover, release of this brake by neutralizing anti-DKK1 antibody treatment at least partially rescues the poor bone-forming efficacy of ASC.
Collapse
Affiliation(s)
- Yiyun Wang
- Department of Pathology and Johns Hopkins University, Baltimore, Maryland, USA
| | - Stefano Negri
- Department of Pathology and Johns Hopkins University, Baltimore, Maryland, USA
| | - Zhao Li
- Department of Pathology and Johns Hopkins University, Baltimore, Maryland, USA
| | - Jiajia Xu
- Department of Pathology and Johns Hopkins University, Baltimore, Maryland, USA
| | - Ching-Yun Hsu
- Department of Pathology and Johns Hopkins University, Baltimore, Maryland, USA
| | - Bruno Peault
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Pittsburgh, Pennsylvania, USA.,Center for Cardiovascular Science and MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Kristen Broderick
- Department of Plastic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Aaron W James
- Department of Pathology and Johns Hopkins University, Baltimore, Maryland, USA.,UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
29
|
Hu S, Ge Q, Xia C, Ying J, Ruan H, Shi Z, Xu R, Xu T, Lv S, Fang L, Zou Z, Xu H, Xiao L, Tong P, Wang PE, Jin H. Bushenhuoxue formula accelerates fracture healing via upregulation of TGF-β/Smad2 signaling in mesenchymal progenitor cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 76:153256. [PMID: 32534359 DOI: 10.1016/j.phymed.2020.153256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/10/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Although Bushenhuoxue formula (BSHXF) is successfully used as a non-traumatic therapy in treating bone fracture in China, the molecular mechanism underlying its effects remains poorly understood. PURPOSE The present study aims to explore the therapeutic effects of BSHXF on fracture healing in mice and the underlying mechanism. METHODS We performed unilateral open transverse tibial fracture procedure in C57BL/6 mice which were treated with or without BSHXF. Fracture callus tissues were collected and analyzed by X-ray, micro-CT, biomechanical testing, histopathology and quantitative gene expression analysis. Tibial fracture procedure was also performed in Cre-negative and Gli1-CreER; Tgfbr2flox/flox conditional knockout (KO) mice (Tgfbr2Gli1ER) to determine if BSHXF enhances fracture healing in a TGF-β-dependent manner. In addition, scratch-wound assay and cell counting kit-8 (CCK-8) assay were used to evaluate the effect of BSHXF on cell migration and cell proliferation in C3H10T1/2 mesenchymal stem cells, respectively. RESULTS BSHXF promoted endochondral ossification and enhanced bone strength in wild-type (WT) or Cre- control mice. In contrast, BSHXF failed to promote bone fracture healing in Tgfbr2Gli1ER conditional KO mice. In the mice receiving BSHXF treatment, TGF-β/Smad2 signaling was significantly activated. Moreover, BSHXF enhanced cell migration and cell proliferation in C3H10T1/2 cells, which was strongly attenuated by the small molecule inhibitor SB525334 against TGF-β type I receptor. CONCLUSION These data demonstrated that BSHXF promotes fracture healing by activating TGF-β/Smad2 signaling. BSHXF may be used as a type of alternative medicine for the treatment of bone fracture healing.
Collapse
Affiliation(s)
- Songfeng Hu
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China; The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China; Department of Orthopaedics and Traumatology, Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing 312000, Zhejiang, China
| | - Qinwen Ge
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China; The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Chenjie Xia
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China; The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Jun Ying
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China; The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Hongfeng Ruan
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Zhenyu Shi
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China; The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Rui Xu
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China; The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Taotao Xu
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China; Department of Orthopaedic Surgery, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang, China
| | - Shuaijie Lv
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China; The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China; Department of Orthopaedic Surgery, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang, China
| | - Liang Fang
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China; The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Zhen Zou
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China; The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Huihui Xu
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China; The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Luwei Xiao
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Peijian Tong
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China; Department of Orthopaedic Surgery, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang, China
| | - Ping-Er Wang
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China.
| | - Hongting Jin
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China.
| |
Collapse
|
30
|
Zhu Z, Cui Y, Huang F, Zeng H, Xia W, Zeng F, He C, Chen J, Chen Z, Chen H, Li Y. Long non-coding RNA H19 promotes osteogenic differentiation of renal interstitial fibroblasts through Wnt-β-catenin pathway. Mol Cell Biochem 2020; 470:145-155. [PMID: 32440841 DOI: 10.1007/s11010-020-03753-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 05/16/2020] [Indexed: 12/15/2022]
Abstract
Randall's plaque (RP) serves as a nidus on which idiopathic calcium oxalate stones form. Renal interstitial mineralization may be the cause underlying RP, and recent studies demonstrated the similarities between the interstitial mineralization and ectopic calcification. The present study aimed to investigate whether human renal interstitial fibroblasts (hRIFs) could form calcification under osteogenic conditions, and whether long non-coding RNA H19 participated in regulating osteogenic differentiation of hRIFs through Wnt-β-catenin pathway. HRIFs were isolated and induced for osteogenic differentiation under osteogenic conditions. Runx2, OCN, alkaline phosphatase (ALP) activity, and the mineralized nodule formation were used to assess the osteogenic phenotype. Molecule expressions were determined by qRT-PCR, immunofluorescence staining, and western blot. The mineralized nodules were assessed by Alizarin red staining. Compared to the normal renal papillary tissue, Runx2, OCN, and H19 were significantly upregulated in RP. After hRIFs were induced with osteogenic medium, osteogenic markers (Runx2, OCN and ALP), β-catenin and H19 were significantly upregulated, and the mineralized nodules are formed. Additionally, overexpression of H19 promoted the osteogenic phenotype of hRIFs and increased the expression of β-catenin, whereas knock-down of H19 or XAV939 (inhibitor of Wnt-β-catenin signaling pathway) significantly repressed the osteogenic phenotype of hRIFs and decreased the β-catenin. Moreover, XAV939 was shown to abolish the osteogenic differentiation of hRIFs promoted by H19. The study demonstrated that ectopic calcification partly participated in the formation of RP, and H19 promoted osteogenic differentiation of hRIFs by activating Wnt-β-catenin pathway, which shed new light on the molecular mechanism of the RP formation.
Collapse
Affiliation(s)
- Zewu Zhu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yu Cui
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Fang Huang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Huimin Zeng
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Weiping Xia
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Feng Zeng
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Cheng He
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jinbo Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhiyong Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Hequn Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yang Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
31
|
Local Wnt3a treatment restores bone regeneration in large osseous defects after surgical debridement of osteomyelitis. J Mol Med (Berl) 2020; 98:897-906. [PMID: 32424558 PMCID: PMC8526481 DOI: 10.1007/s00109-020-01924-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 04/13/2020] [Accepted: 05/11/2020] [Indexed: 12/19/2022]
Abstract
Impaired bone homeostasis caused by osteomyelitis provokes serious variations in the bone remodeling process, thereby involving multiple inflammatory cytokines to activate bone healing. We have previously established a mouse model for post-traumatic osteomyelitis and studied bone regeneration after sufficient debridement. Moreover, we could further characterize the postinfectious inflammatory state of bony defects after debridement with elevated osteoclasts and decreased bone formation despite the absence of bacteria. In this study, we investigated the positive effects of Wnt-pathway modulation on bone regeneration in our previous established mouse model. This was achieved by local application of Wnt3a, a recombinant activator of the canonical Wnt-pathway. Application of Wnt3a could enhance new bone formation, which was verified by histological and μ-CT analysis. Moreover, histology and western blots revealed enhanced osteoblastogenesis and downregulated osteoclasts in a RANKL-dependent manner. Further analysis of Wnt-pathway showed downregulation after bone infections were reconstituted by application of Wnt3a. Interestingly, Wnt-inhibitory proteins Dickkopf 1 (DKK1), sclerostin, and secreted frizzled protein 1 (sFRP1) were upregulated simultaneously to Wnt-pathway activation, indicating a negative feedback for active form of Beta-catenin. In this study, we could demonstrate enhanced bone formation in defects caused by post-traumatic osteomyelitis after Wnt3a application. KEY MESSAGES: Osteomyelitis decreases bone regeneration Wnt3a restores bone healing after infection Canonical Wnt-pathway activation with negative feedback.
Collapse
|
32
|
Rothe R, Schulze S, Neuber C, Hauser S, Rammelt S, Pietzsch J. Adjuvant drug-assisted bone healing: Part III - Further strategies for local and systemic modulation. Clin Hemorheol Microcirc 2020; 73:439-488. [PMID: 31177207 DOI: 10.3233/ch-199104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this third in a series of reviews on adjuvant drug-assisted bone healing, further approaches aiming at influencing the healing process are discussed. Local and systemic modulation of bone metabolism is pursued with use of a number of drugs with completely different indications, which are characterized by a pleiotropic spectrum of action. These include drugs used to treat lipid disorders (HMG-CoA reductase inhibitors), hypertension (ACE inhibitors), osteoporosis (bisphosphonates), cancer (proteasome inhibitors) and others. Potential applications to enhance bone healing are discussed.
Collapse
Affiliation(s)
- Rebecca Rothe
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Sabine Schulze
- University Center of Orthopaedics and Traumatology (OUC), University Hospital Carl Gustav Carus, Dresden, Germany.,Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Christin Neuber
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Sandra Hauser
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Stefan Rammelt
- University Center of Orthopaedics and Traumatology (OUC), University Hospital Carl Gustav Carus, Dresden, Germany.,Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Tatzberg 4, Dresden
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.,Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, Dresden, Germany
| |
Collapse
|
33
|
Jo S, Yoon S, Lee SY, Kim SY, Park H, Han J, Choi SH, Han JS, Yang JH, Kim TH. DKK1 Induced by 1,25D3 Is Required for the Mineralization of Osteoblasts. Cells 2020; 9:cells9010236. [PMID: 31963554 PMCID: PMC7017072 DOI: 10.3390/cells9010236] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 02/07/2023] Open
Abstract
1α,25-dihydroxyvitamin D3 (1,25D3), the most popular drug for osteoporosis treatment, drives osteoblast differentiation and bone mineralization. Wnt/β-catenin signaling is involved in commitment and differentiation of osteoblasts, but the role of the Dickkopf-related protein 1 (DKK1), a Wnt antagonist, in osteoblasts remains unknown. Here, we demonstrate the molecular mechanism of DKK1 induction by 1,25D3 and its physiological role during osteoblast differentiation. 1,25D3 markedly promoted the expression of both CCAAT/enhancer binding protein beta (C/EBPβ) and DKK1 at day 7 during osteoblast differentiation. Interestingly, mRNA and protein levels of C/EBPβ and DKK1 in osteoblasts were elevated by 1,25D3. We also found that C/EBPβ, in response to 1,25D3, directly binds to the human DKK1 promoter. Knockdown of C/EBPβ downregulated the expression of DKK1 in osteoblasts, which was partially reversed by 1,25D3. In contrast, overexpression of C/EBPβ upregulated DKK1 expression in osteoblasts, which was enhanced by 1,25D3. Furthermore, 1,25D3 treatment in osteoblasts stimulated secretion of DKK1 protein within the endoplasmic reticulum to extracellular. Intriguingly, blocking DKK1 attenuated calcified nodule formation in mineralized osteoblasts, but not ALP activity or collagen synthesis. Taken together, these observations suggest that 1,25D3 promotes the mineralization of osteoblasts through activation of DKK1 followed by an increase of C/EBPβ.
Collapse
Affiliation(s)
- Sungsin Jo
- Hanyang University Institute for Rheumatology Research, Seoul 04763, Korea; (S.J.); (S.Y.); (S.Y.K.); (H.P.)
| | - Subin Yoon
- Hanyang University Institute for Rheumatology Research, Seoul 04763, Korea; (S.J.); (S.Y.); (S.Y.K.); (H.P.)
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - So Young Lee
- Department of Biomedical Sciences, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (S.Y.L.); (J.-S.H.)
| | - So Yeon Kim
- Hanyang University Institute for Rheumatology Research, Seoul 04763, Korea; (S.J.); (S.Y.); (S.Y.K.); (H.P.)
| | - Hyosun Park
- Hanyang University Institute for Rheumatology Research, Seoul 04763, Korea; (S.J.); (S.Y.); (S.Y.K.); (H.P.)
| | | | - Sung Hoon Choi
- Department of Orthopaedic Surgery, Hanyang University Seoul Hospital, Seoul 04763, Korea;
| | - Joong-Soo Han
- Department of Biomedical Sciences, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (S.Y.L.); (J.-S.H.)
- Biomedical Research Institute and Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Jae-Hyuk Yang
- Department of Orthopaedic Surgery, Hanyang University Guri Hospital, Gyeonggi-do 11923, Korea;
| | - Tae-Hwan Kim
- Hanyang University Institute for Rheumatology Research, Seoul 04763, Korea; (S.J.); (S.Y.); (S.Y.K.); (H.P.)
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, Korea
- Correspondence: ; Tel.: +82-2-2290-9245; Fax: +82-2-2298-8231
| |
Collapse
|
34
|
Sun Z, Jin H, Zhou H, Yu L, Wan H, He Y. Guhong Injection promotes fracture healing by activating Wnt/beta-catenin signaling pathway in vivo and in vitro. Biomed Pharmacother 2019; 120:109436. [DOI: 10.1016/j.biopha.2019.109436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 12/27/2022] Open
|
35
|
Zhao L, Xiao E, He L, Duan D, He Y, Chen S, Zhang Y, Gan Y. Reducing macrophage numbers alleviates temporomandibular joint ankylosis. Cell Tissue Res 2019; 379:521-536. [PMID: 31522279 DOI: 10.1007/s00441-019-03087-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 08/05/2019] [Indexed: 01/08/2023]
Abstract
Temporomandibular joint (TMJ) ankylosis is a severe joint disease mainly caused by trauma that leads to a series of oral and maxillofacial function disorders and psychological problems. Our series of studies indicate that TMJ ankylosis development is similar to fracture healing and that severe trauma results in bony ankylosis instead of fibrous ankylosis. Macrophages are early infiltrating inflammatory cells in fracture and play a critical role in initiating fracture repair. We hypothesize that the large numbers of macrophages in the early phase of TMJ ankylosis trigger ankylosed bone mass formation and that the depletion of these macrophages in the early phase could inhibit the development of TMJ ankylosis. By analysing human TMJ ankylosis specimens, we found large numbers of infiltrated macrophages in the less-than-1-year ankylosis samples. A rabbit model of TMJ bony ankylosis was established and large numbers of infiltrated macrophages were found at 4 days post-operation. Local clodronate liposome (CLD-lip) injection, which depleted macrophages, alleviated the severity of ankylosis compared with local phosphate-buffered saline (PBS)-loaded liposome (PBS-lip) injection (macrophage number, PBS-lips vs. CLD-lips: 626.03 ± 164.53 vs. 341.4 ± 108.88 n/mm2; ankylosis calcification score, PBS-lips vs. CLD-lips: 2.11 ± 0.78 vs. 0.78 ± 0.66). Histological results showed that the cartilage area was reduced in the CLD-lip-treated side (PBS-lips vs. CLD-lips: 6.82 ± 4.42% vs. 2.71 ± 2.78%) and that the Wnt signalling regulating cartilage formation was disrupted (Wnt5a expression decreased 60% and Wnt4 expression decreased 73%). Thus, our study showed that large numbers of macrophages infiltrated during the early phase of ankylosis and that reducing macrophage numbers alleviated ankylosis development by reducing cartilage formation.
Collapse
Affiliation(s)
- Lu Zhao
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, #22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.,Laboratory of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, #22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - E Xiao
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, #22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.,Laboratory of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, #22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - Linhai He
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, #22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.,Peking University Hospital of Stomatology First Clinical Division, 37A Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Denghui Duan
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, #22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.,Laboratory of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, #22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - Yang He
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, #22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.,Laboratory of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, #22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - Shuo Chen
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, #22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.,Laboratory of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, #22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - Yi Zhang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, #22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China. .,Laboratory of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, #22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.
| | - Yehua Gan
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, #22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China. .,Central Laboratory, Peking University School and Hospital of Stomatology, #22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.
| |
Collapse
|
36
|
Ju C, Liu R, Zhang YW, Zhang Y, Zhou R, Sun J, Lv XB, Zhang Z. Mesenchymal stem cell-associated lncRNA in osteogenic differentiation. Biomed Pharmacother 2019; 115:108912. [PMID: 31048188 DOI: 10.1016/j.biopha.2019.108912] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/17/2019] [Accepted: 04/22/2019] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have the ability to differentiate into multiple cell types, including osteogenic, chondrogenic and adipogenic lineages. Osteogenic differentiation of MSCs plays a critical role in bone tissue engineering. Inducing MSC osteogenesis represents a potential treatment that promotes bone formation and bone regeneration. Recently, long non-coding RNA (lncRNA) was shown to participate in the occurrence and development of various diseases. Different lncRNA expression patterns can regulate the cell cycle, proliferation, metastasis, immunobiology and differentiation. With the recent extensive study of lncRNAs, an increasing number of lncRNAs are being studied in the MSC field. Furthermore, some lncRNAs have been confirmed to regulate MSC osteogenesis. Therefore, here, we review research concerning lncRNA in osteogenic differentiation of MSCs and highlight the importance of lncRNA in bone formation and bone regeneration.
Collapse
Affiliation(s)
- Cheng Ju
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, China; Department of Orthopedics, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China; Nanchang Key Laboratory of Orthopaedics, The Third Affiliated Hospital of Nanchang University, Nanchang, China; Medical Department of Graduate School, Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Renfeng Liu
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, China; Department of Orthopedics, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China; Nanchang Key Laboratory of Orthopaedics, The Third Affiliated Hospital of Nanchang University, Nanchang, China; Medical Department of Graduate School, Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Yuan-Wei Zhang
- Medical Department of Graduate School, Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Yu Zhang
- Department of Orthopedics, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China; Nanchang Key Laboratory of Orthopaedics, The Third Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Ruihao Zhou
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Jun Sun
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Xiao-Bin Lv
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Zhiping Zhang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, China; Department of Orthopedics, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China; Nanchang Key Laboratory of Orthopaedics, The Third Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
37
|
Liu D, He S, Chen S, Yang L, Yang J, Bao Q, Qin H, Zhao Y, Zong Z. Different effects of Wnt/β-catenin activation and parathyroid hormone on diaphyseal and metaphyseal in the early phase of femur bone healing of mice. Clin Exp Pharmacol Physiol 2019; 46:652-663. [PMID: 30908657 PMCID: PMC6593981 DOI: 10.1111/1440-1681.13088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/01/2019] [Accepted: 03/18/2019] [Indexed: 11/27/2022]
Abstract
Parathyroid hormone (PTH) and agents related to the manipulation of Wnt/β-catenin signalling are two promising anabolic anti-osteoporotic therapies that have been shown to promote the healing of bone fractures. Now, it is widely accepted that cortical bone and trabecular bone are two different compartments, and should be treated as separate compartments in pathological processes, such as fracture healing. It is currently unknown whether PTH and the activation of β-catenin signalling would demonstrate different effects on cortical bone and trabecular bone healing. In the current study, single 0.6-mm cortex holes were made in the femur metaphysis and diaphysis of mice, and then, PTH application and β-catenin activation were used to observe the promoting effect on bone healing. The effects of β-catenin and PTH signalling on fracture healing were observed by X-ray and CT at 3, 6, and 14 days after fracture, and the levels of β-catenin were detected by RT-PCR assay, and the number of specific antigen-positive cells of BRDU, OCN, RUNX2 was counted by immunohistochemical staining. While β-catenin activation and PTH were found to demonstrate similar effects on accelerating metaphyseal bone healing, activation of β-catenin showed a more striking effect than PTH on promoting diaphyseal bone healing. These findings might be helpful for selecting proper medication to accelerate fracture healing of different bone compartments.
Collapse
Affiliation(s)
- Daocheng Liu
- State Key Laboratory of Trauma, Burn and Combined injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, China
| | - Sihao He
- State Key Laboratory of Trauma, Burn and Combined injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, China
| | - Sixu Chen
- State Key Laboratory of Trauma, Burn and Combined injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, China
| | - Lei Yang
- State Key Laboratory of Trauma, Burn and Combined injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, China
| | - Jiazhi Yang
- State Key Laboratory of Trauma, Burn and Combined injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, China
| | - Quanwei Bao
- State Key Laboratory of Trauma, Burn and Combined injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, China
| | - Hao Qin
- State Key Laboratory of Trauma, Burn and Combined injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, China
| | - Yufeng Zhao
- State Key Laboratory of Trauma, Burn and Combined injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, China
| | - Zhaowen Zong
- State Key Laboratory of Trauma, Burn and Combined injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, China
| |
Collapse
|
38
|
Bahney CS, Zondervan RL, Allison P, Theologis A, Ashley JW, Ahn J, Miclau T, Marcucio RS, Hankenson KD. Cellular biology of fracture healing. J Orthop Res 2019; 37:35-50. [PMID: 30370699 PMCID: PMC6542569 DOI: 10.1002/jor.24170] [Citation(s) in RCA: 339] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/27/2018] [Indexed: 02/04/2023]
Abstract
The biology of bone healing is a rapidly developing science. Advances in transgenic and gene-targeted mice have enabled tissue and cell-specific investigations of skeletal regeneration. As an example, only recently has it been recognized that chondrocytes convert to osteoblasts during healing bone, and only several years prior, seminal publications reported definitively that the primary tissues contributing bone forming cells during regeneration were the periosteum and endosteum. While genetically modified animals offer incredible insights into the temporal and spatial importance of various gene products, the complexity and rapidity of healing-coupled with the heterogeneity of animal models-renders studies of regenerative biology challenging. Herein, cells that play a key role in bone healing will be reviewed and extracellular mediators regulating their behavior discussed. We will focus on recent studies that explore novel roles of inflammation in bone healing, and the origins and fates of various cells in the fracture environment. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
Collapse
Affiliation(s)
- Chelsea S. Bahney
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California
| | - Robert L. Zondervan
- Department of Physiology, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan
| | - Patrick Allison
- Department of Physiology, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan
| | - Alekos Theologis
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California
| | - Jason W. Ashley
- Department of Biology, Eastern Washington University, Cheney, Washington
| | - Jaimo Ahn
- Department of Biology, Eastern Washington University, Cheney, Washington
| | - Theodore Miclau
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California
| | - Ralph S. Marcucio
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California
| | - Kurt D. Hankenson
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
39
|
Wang Y, Kim J, Chan A, Whyne C, Nam D. A two phase regulation of bone regeneration: IL-17F mediates osteoblastogenesis via C/EBP-β in vitro. Bone 2018; 116:47-57. [PMID: 30010083 DOI: 10.1016/j.bone.2018.07.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/28/2018] [Accepted: 07/10/2018] [Indexed: 01/15/2023]
Abstract
T lymphocytes and pro-inflammatory cytokines, specifically interleukin-17F (IL-17F) have been identified as important regulators in bone regeneration during fracture repair. To better understand the molecular mechanisms of IL-17F-mediated osteoblastogenesis, a mouse pre-osteoblast cell line (MC3T3-E1) was utilized to characterize the intracellular signal transduction of IL-17F. Comparisons to the established canonical Wnt signaling pathway were made using Wnt3a ligand. Our results demonstrated greater bone marker gene expression in IL-17F-treated cells, compared to cells treated with Wnt3a. Western blot analysis confirmed degradation of β-catenin and up-regulation of two key proteins in osteoblast differentiation, Runx2 and C/EBP-β, in response to IL-17F treatment. RNA silencing of IL-17F receptors, IL-17Ra and IL-17Rc via siRNA transfection resulted in decreased expression of Act2, Runx2, and C/EBP-β, demonstrating the direct ligand-receptor interaction between IL-17F and IL-17Ra/c as an activator of osteoblastogenesis. Our findings suggest that IL-17F promotes osteoblast differentiation independent of the canonical Wnt pathway and β-catenin signaling, presenting new insights on modulating the adaptive immune response in the inflammatory phase, temporally distinct from the reparative and remodeling phases of fracture healing.
Collapse
Affiliation(s)
- Yufa Wang
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Jieun Kim
- MD/PhD Program, University of Toronto, Toronto, ON, Canada
| | - Andrea Chan
- Division of Orthopaedic Surgery, University of Toronto, Toronto, ON, Canada
| | - Cari Whyne
- Sunnybrook Research Institute, Toronto, ON, Canada; Division of Orthopaedic Surgery, University of Toronto, Toronto, ON, Canada; Institute of Biomaterials and Biomedical Engineering, Toronto, ON, Canada
| | - Diane Nam
- Sunnybrook Research Institute, Toronto, ON, Canada; Division of Orthopaedic Surgery, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
40
|
Zheng X, Dai J, Zhang H, Ge Z. MicroRNA-221 promotes cell proliferation, migration, and differentiation by regulation of ZFPM2 in osteoblasts. ACTA ACUST UNITED AC 2018; 51:e7574. [PMID: 30365725 PMCID: PMC6207289 DOI: 10.1590/1414-431x20187574] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/13/2018] [Indexed: 12/20/2022]
Abstract
Bone fracture is a common medical condition, which may occur due to traumatic injury or disease-related conditions. Evidence suggests that microRNAs (miRNAs) can regulate osteoblast differentiation and function. In this study, we explored the effects and mechanism of miR-221 on the growth and migration of osteoblasts using MC3T3-E1 cells. The expression levels of miR-221 in the different groups were measured by qRT-PCR. Then, miR-221 mimic and inhibitor were transfected into MC3T3-E1 cells, and cell viability and migration were measured using the CCK-8 assay and the Transwell migration assay. Additionally, the expression levels of differentiation-related factors (Runx2 and Ocn) and ZFPM2 were measured by qRT-PCR. Western blot was used to measure the expression of cell cycle-related proteins, epithelial-mesenchymal transition (EMT)-related proteins, ZFPM2, and Wnt/Notch, and Smad signaling pathway proteins. miR-221 was significantly up-regulated in the patients with lumbar compression fracture (LCM) and trochanteric fracture (TF). miR-221 promoted ALP, Runx2, and OPN expressions in MC3T3-E1 cells. miR-221 overexpression significantly increased cell proliferation, migration, differentiation, and matrix mineralization, whereas suppression of miR-221 reversed these effects. Additionally, the results displayed that ZFPM2 was a direct target gene of miR-221, and overexpression of ZFPM2 reversed the promoting effects of miR-221 overexpression on osteoblasts. Mechanistic study revealed that overexpression of miR-221 inactivated the Wnt/Notch and Smad signaling pathways by regulating ZFPM2 expression. We drew the conclusions that miR-221 overexpression promoted osteoblast proliferation, migration, and differentiation by regulation of ZFPM2 expression and deactivating the Wnt/Notch and Smad signaling pathways.
Collapse
Affiliation(s)
- Xingguo Zheng
- Department of Orthopaedics, Ningbo No. 2 Hospital, Ningbo, China
| | - Jinhua Dai
- Department of Clinical Laboratory, Ningbo No. 2 Hospital, Ningbo, China
| | - Haijun Zhang
- Department of Orthopaedics, Ningbo No. 2 Hospital, Ningbo, China
| | - Zhibin Ge
- Department of Orthopaedics, Ningbo No. 2 Hospital, Ningbo, China
| |
Collapse
|
41
|
Appelman-Dijkstra NM, Papapoulos SE. Clinical advantages and disadvantages of anabolic bone therapies targeting the WNT pathway. Nat Rev Endocrinol 2018; 14:605-623. [PMID: 30181608 DOI: 10.1038/s41574-018-0087-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The WNT signalling pathway is a key regulator of bone metabolism, particularly bone formation, which has helped to define the role of osteocytes - the most abundant bone cells - as orchestrators of bone remodelling. Several molecules involved in the control of the WNT signalling pathway have been identified as potential targets for the development of bone-building therapeutics for patients with osteoporosis. Several of these molecules have been investigated in animal models, but only inhibitors of sclerostin (which is produced by osteocytes) have been investigated in phase III clinical studies. Here, we review the rationale for these developments and the specificity and potential off-target actions of WNT-based therapeutics. We also describe the available preclinical and clinical studies and discuss the benefits and risks of using sclerostin inhibitors for the management of patients with osteoporosis.
Collapse
|
42
|
Zhang L, Chang L, Xu J, Meyers CA, Yan N, Zou E, Ding C, Ting K, Soo C, Pang S, James AW. Frontal Bone Healing Is Sensitive to Wnt Signaling Inhibition via Lentiviral-Encoded Beta-Catenin Short Hairpin RNA. Tissue Eng Part A 2018; 24:1742-1752. [PMID: 29929440 PMCID: PMC6302677 DOI: 10.1089/ten.tea.2017.0465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 05/24/2018] [Indexed: 01/10/2023] Open
Abstract
The Wnt/β-catenin signaling pathway plays an integral role in skeletal biology, spanning from embryonic skeletal patterning through bone maintenance and bone repair. Most experimental methods to antagonize Wnt signaling in vivo are either systemic or transient, including genetic approaches, use of small-molecule inhibitors, or neutralizing antibodies. We sought to develop a novel, localized model of prolonged Wnt/β-catenin signaling blockade by the application and validation of a lentivirus encoding β-catenin short hairpin RNA (shRNA). Efficacy of lentiviral-encoded β-catenin shRNA was first confirmed in vitro using bone marrow mesenchymal stromal cells, and in vivo using an intramedullary long bone injection model in NOD SCID mice. Next, the effects of β-catenin knockdown were assessed in a calvarial bone defect model, in which the frontal bone demonstrates enhanced bone healing associated with heightened Wnt/β-catenin signaling. Lentivirus encoding either β-catenin shRNA or random sequence shRNA with enhanced green fluorescent protein (control) was injected overlying the calvaria of NOD SCID mice and bone defects were created in either the frontal or parietal bones. Among mice treated with lentivirus encoding β-catenin shRNA, frontal bone defect healing was significantly reduced by all radiographic and histologic metrics. In contrast, parietal bone healing was minimally impacted by β-catenin shRNA. In aggregate, our data document the application and validation of a lentivirus encoding β-catenin shRNA model that represents an easily replicable tool for examining the importance of locoregional Wnt/β-catenin signaling in bone biology and regeneration.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, China
| | - Leslie Chang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
- University of California San Diego School of Medicine, La Jolla, California
| | - Jiajia Xu
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | | | - Noah Yan
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Erin Zou
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Catherine Ding
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California
| | - Kang Ting
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, UCLA, Los Angeles, California
| | - Chia Soo
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California
- Division of Plastic and Reconstructive Surgery, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Shen Pang
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California
| | - Aaron W. James
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California
| |
Collapse
|
43
|
Strontium inhibits osteoclastogenesis by enhancing LRP6 and β-catenin-mediated OPG targeted by miR-181d-5p. J Cell Commun Signal 2018; 13:85-97. [PMID: 30009331 DOI: 10.1007/s12079-018-0478-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 06/29/2018] [Indexed: 12/27/2022] Open
Abstract
Strontium is a drug with the bone formation and anti-resorption effects on bone. The underlying mechanisms for the dual effect of strontium on bone metabolism, especially for the anti-resorption effects remain unknown. Thus, we aim to investigate the mechanisms of effects of strontium on osteoclastogenesis. Firstly, we found that strontium decreased the levels of important biomarkers of receptor activator of nuclear factor kappa-B ligand (RANKL) which induced osteoclast differentiation, indicating that strontium might directly inhibit osteoclast differentiation. Next, we revealed that strontium enhanced Low Density Lipoprotein Receptor-Related Protein 6 (LRP6)/β-catenin/osteoprotegerin (OPG) signaling pathway in MC3T3-E1 cells. The signaling pathway may negatively regulate osteoclastogenesis. Thus, strontium indirectly inhibited RANKL induced osteoclast differentiation. Finally, we revealed that OPG was targeted by miR-181d-5p as determined by luciferase reporter assay and downregulated by miR-181d-5p at both mRNA and protein levels as determined by western blot.
Collapse
|
44
|
Ding ZC, Lin YK, Gan YK, Tang TT. Molecular pathogenesis of fracture nonunion. J Orthop Translat 2018; 14:45-56. [PMID: 30035032 PMCID: PMC6019407 DOI: 10.1016/j.jot.2018.05.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/03/2018] [Accepted: 05/07/2018] [Indexed: 02/07/2023] Open
Abstract
Fracture nonunion, a serious bone fracture complication, remains a challenge in clinical practice. Although the molecular pathogenesis of nonunion remains unclear, a better understanding may provide better approaches for its prevention, diagnosis and treatment at the molecular level. This review tries to summarise the progress made in studies of the pathogenesis of fracture nonunion. We discuss the evidence supporting the concept that the development of nonunion is related to genetic factors. The importance of several cytokines that regulate fracture healing in the pathogenesis of nonunion, such as tumour necrosis factor-α, interleukin-6, bone morphogenetic proteins, insulin-like growth factors, matrix metalloproteinases and vascular endothelial growth factor, has been proven in vitro, in animals and in humans. Nitric oxide and the Wnt signalling pathway also play important roles in the development of nonunion. We present potential strategies for the prevention, diagnosis and treatment of nonunion, and the interaction between genetic alteration and abnormal cytokine expression warrants further investigation. The translational potential of this article A better understanding of nonunion molecular pathogenesis may provide better approaches for its prevention, diagnosis and treatment in clinical practice.
Collapse
Affiliation(s)
- Zi-Chuan Ding
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, 639 Zhizaoju Road, Shanghai, China
| | - Yi-Kai Lin
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, 639 Zhizaoju Road, Shanghai, China
| | - Yao-Kai Gan
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, 639 Zhizaoju Road, Shanghai, China
| | - Ting-Ting Tang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, 639 Zhizaoju Road, Shanghai, China
| |
Collapse
|
45
|
Yao CJ, Lv Y, Zhang CJ, Jin JX, Xu LH, Jiang J, Geng B, Li H, Xia YY, Wu M. MicroRNA-185 inhibits the growth and proliferation of osteoblasts in fracture healing by targeting PTH gene through down-regulating Wnt/β -catenin axis: In an animal experiment. Biochem Biophys Res Commun 2018; 501:55-63. [PMID: 29678580 DOI: 10.1016/j.bbrc.2018.04.138] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 01/05/2023]
Abstract
Fracture healing is a repair process of a mechanical discontinuity loss of force transmission, and pathological mobility of bone. Increasing evidence suggests that microRNA (miRNA) could regulate chondrocyte, osteoblast, and osteoclast differentiation and function, indicating miRNA as key regulators of bone formation, resorption, remodeling, and repair. Hence, during this study, we established a right femur fracture mouse model to explore the effect microRNA-185 (miR-185) has on osteoblasts in mice during fracture healing and its underlying mechanism. After successfully model establishment, osteoblasts were extracted and treated with a series of mimics or inhibitors of miR-185, or siRNA against PTH. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot analysis were performed to determine the levels of miR-185, PTH, β-catenin and Wnt5b. Cell viability, cycle distribution and apoptosis were detected by means of MTT and flow cytometry assays. Dual luciferase reporter gene assay verified that PTH is a target gene of miR-185. Osteoblasts transfected with miR-185 mimics or siRNA against PTH presented with decreased levels of PTH, β-catenin and Wnt5b which indicated that miR-185 blocks the Wnt/β -catenin axis by inhibiting PTH. Moreover, miR-185 inhibitors promoted the osteoblast viability and reduced apoptosis with more cells arrested at the G1 stage. MiR-185 mimics were observed to have inhibitory effects on osteoblasts as opposed to those induced by miR-185 inhibitors. Above key results indicated that suppression of miR-185 targeting PTH could promote osteoblast growth and proliferation in mice during fracture healing through activating Wnt/β -catenin axis.
Collapse
Affiliation(s)
- Chang-Jiang Yao
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, PR China; Department of Orthopaedics, The Second Hospital of Lanzhou University, Lanzhou, 730000, PR China
| | - Yang Lv
- Department of Ophthalmology, General Hospital of Lanzhou Military Command, Lanzhou, 730000, PR China; Department of Ophthalmology, Eye Institute of China PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Cheng-Jun Zhang
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, PR China; Department of Orthopaedics, The Second Hospital of Lanzhou University, Lanzhou, 730000, PR China
| | - Jia-Xin Jin
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, PR China; Department of Orthopaedics, The Second Hospital of Lanzhou University, Lanzhou, 730000, PR China
| | - Li-Hu Xu
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, PR China; Department of Orthopaedics, The Second Hospital of Lanzhou University, Lanzhou, 730000, PR China
| | - Jin Jiang
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, PR China; Department of Orthopaedics, The Second Hospital of Lanzhou University, Lanzhou, 730000, PR China
| | - Bin Geng
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, PR China; Department of Orthopaedics, The Second Hospital of Lanzhou University, Lanzhou, 730000, PR China
| | - Hong Li
- Department of Ophthalmology, General Hospital of Lanzhou Military Command, Lanzhou, 730000, PR China; Department of Ophthalmology, Eye Institute of China PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Ya-Yi Xia
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, PR China; Department of Orthopaedics, The Second Hospital of Lanzhou University, Lanzhou, 730000, PR China.
| | - Meng Wu
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, PR China; Department of Orthopaedics, The Second Hospital of Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
46
|
Yeh SCA, Wilk K, Lin CP, Intini G. In Vivo 3D Histomorphometry Quantifies Bone Apposition and Skeletal Progenitor Cell Differentiation. Sci Rep 2018; 8:5580. [PMID: 29615817 PMCID: PMC5882859 DOI: 10.1038/s41598-018-23785-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/20/2018] [Indexed: 01/07/2023] Open
Abstract
Histomorphometry and Micro-CT are commonly used to assess bone remodeling and bone microarchitecture. These approaches typically require separate cohorts of animals to analyze 3D morphological changes and involve time-consuming immunohistochemistry preparation. Intravital Microscopy (IVM) in combination with mouse genetics may represent an attractive option to obtain bone architectural measurements while performing longitudinal monitoring of dynamic cellular processes in vivo. In this study we utilized two-photon, multicolor fluorescence IVM together with a lineage tracing reporter mouse model to image skeletal stem cells (SSCs) in their calvarial suture niche and analyze their differentiation fate after stimulation with an agonist of the canonical Wnt pathway (recombinant Wnt3a). Our in vivo histomorphometry analyses of bone formation, suture volume, and cellular dynamics showed that recombinant Wnt3a induces new bone formation, differentiation and incorporation of SSCs progeny into newly forming bone. IVM technology can therefore provide additional dynamic 3D information to the traditional static 2D histomorphometry.
Collapse
Affiliation(s)
- Shu-Chi A Yeh
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, 02115, USA.,Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Katarzyna Wilk
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, 02115, USA
| | - Charles P Lin
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA. .,Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
| | - Giuseppe Intini
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, 02115, USA. .,Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
| |
Collapse
|
47
|
Leucht P, Lee S, Yim N. Wnt signaling and bone regeneration: Can't have one without the other. Biomaterials 2018; 196:46-50. [PMID: 29573821 DOI: 10.1016/j.biomaterials.2018.03.029] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 12/25/2022]
Abstract
Advances in the understanding of the complexities of the Wnt signaling pathway during development and tissue homeostasis have made the Wnt pathway one of the prime candidates for translational applications during tissue regeneration. Wnts are key components of the stem cell niche and are short range signaling molecules responsible for cellular decisions such as proliferation and differentiation. Systemic treatment using biologics targeting the Wnt signaling pathway have shown promising early results and will likely enter the clinical arena in the near future. This comprehensive review summarizes the intricacies how Wnts function in the context of the bone regeneration.
Collapse
Affiliation(s)
- Philipp Leucht
- NYU Langone Health, Departments of Orthopaedic Surgery and Cell Biology, New York, NY, USA.
| | - Sooyeon Lee
- NYU Langone Health, Departments of Orthopaedic Surgery and Cell Biology, New York, NY, USA
| | - Nury Yim
- NYU Langone Health, Departments of Orthopaedic Surgery and Cell Biology, New York, NY, USA
| |
Collapse
|
48
|
Gao X, Ge J, Li W, Zhou W, Xu L. LncRNA KCNQ1OT1 promotes osteogenic differentiation to relieve osteolysis via Wnt/β-catenin activation. Cell Biosci 2018. [PMID: 29541443 PMCID: PMC5842584 DOI: 10.1186/s13578-018-0216-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Background Resveratrol (RSV) has been reported to stimulate osteoblast differentiation in which Wnt/β-catenin signaling pathway played a crucial role. However, whether and how RSV activated Wnt/β-catenin pathway in osteogenic differentiation still remained elusive. Methods In vivo polymethylmethacrylate (PMMA) particle-induced osteolysis (PIO) mouse model and in vitro PMMA particle-stimulated mouse mesenchymal stem cells (mMSCs) experiments were established. Relative expression levels of lncRNA KCNQ1OT1, β-catenin, Runx2, Osterix and osteocalcin were determined using quantitative Real-Time PCR. Western blotting was used to measure β-catenin protein expression. In addition, the alkaline phosphatase activity and mineral deposition level using alizarin red S staining were performed to examine osteogenic differentiation status. The interaction between KCNQ1OT1 and β-catenin was confirmed by RNA pull down assay. Results RSV significantly attenuated PIO in vivo and PMMA-particle inhibition of osteogenic differentiation of mMSCs. Moreover, KCNQ1OT1 exerted the similar function in mMSCs by regulating β-catenin. Further study demonstrated that RSV exerted its effect on osteoblastic differentiation by regulating KCNQ1OT1. Consequently, RSV alleviated PMMA-particle inhibition of osteoblastic differentiation via Wnt/β-catenin pathway activation in vivo and in vitro. Conclusion RSV accelerated osteoblast differentiation by regulating lncRNA KCNQ1OT1 via Wnt/β-catenin pathway activation, indicating the functional role of RSV in modulating osteogenesis.
Collapse
Affiliation(s)
- Xuren Gao
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai West Rd., Xuzhou, 221002 Jiangsu People's Republic of China
| | - Jian Ge
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai West Rd., Xuzhou, 221002 Jiangsu People's Republic of China
| | - Weiyi Li
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai West Rd., Xuzhou, 221002 Jiangsu People's Republic of China
| | - Wangchen Zhou
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai West Rd., Xuzhou, 221002 Jiangsu People's Republic of China
| | - Lei Xu
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai West Rd., Xuzhou, 221002 Jiangsu People's Republic of China
| |
Collapse
|
49
|
Intramembranous ossification and endochondral ossification are impaired differently between glucocorticoid-induced osteoporosis and estrogen deficiency-induced osteoporosis. Sci Rep 2018; 8:3867. [PMID: 29497100 PMCID: PMC5832871 DOI: 10.1038/s41598-018-22095-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 02/15/2018] [Indexed: 01/15/2023] Open
Abstract
A fracture is the most dangerous complication of osteoporosis in patients because the associated disability and mortality rates are high. Osteoporosis impairs fracture healing and prognosis, but how intramembranous ossification (IO) or endochondral ossification (EO) during fracture healing are affected and whether these two kinds of ossification are different between glucocorticoid-induced osteoporosis (GIOP) and estrogen deficiency-induced osteoporosis (EDOP) are poorly understood. In this study, we established two bone repair models that exhibited repair via IO or EO and compared the pathological progress of each under GIOP and EDOP. In the cortical drill-hole model, which is repaired through IO, osteogenic differentiation was more seriously impaired in EDOP at the early stage than in GIOP. In the periosteum scratch model, in which EO is replicated, chondrocyte hypertrophy progression was delayed in both GIOP and EDOP. The in vitro results were consistent with the in vivo results. Our study is the first to establish bone repair models in which IO and EO occur separately, and the results strongly describe the differences in bone repair between GIOP and EDOP.
Collapse
|
50
|
Abstract
PURPOSE This study aimed to investigate the role of sclerostin and dkk1 in the bone metabolism of type 2 diabetic patients. METHODS This cross-sectional study included 95 inpatients with type 2 diabetes mellitus. We divided the patients into three groups (i.e., the normal bone mineral density (BMD) group, osteopenia group and osteoporosis group) based on their different BMD levels and measured the serum levels of sclerostin, dkk1, 25-hydroxyvitamin D3 (25OHD3), bone turnover markers and other biochemical data in each group. RESULTS Significantly increased levels of serum sclerostin and dkk1 were found in the osteoporosis group, even when the male and female cohorts were considered separately. Ordinal logistic regression analysis suggested that the levels of serum sclerostin were independently associated with the presence of osteopenia and osteoporosis after adjusting for age, gender and 25OHD3 (sclerostin: OR = 1.02, p = 0.001). The areal BMDs were negatively correlated with the levels of serum sclerostin and dkk1 and positively correlated with 25OHD3. In addition, age, glycosylated hemoglobin and serum sclerostin levels were predictors for N-terminal propeptide of type 1 procollagen and serum dkk1 levels were the only predictors for crosslinked carboxyterminal telopeptide in type 1 collagen. CONCLUSIONS The sclerostin and dkk1 levels increased in conjunction with the reduction of BMD, confirming that the Wnts, inhibited by sclerostin and dkk1, were potentially responsible for bone fragility in type 2 diabetes patients with osteoporosis. Note that the serum sclerostin levels were predictors for bone formation, while the DKK1 levels predicted bone resorption.
Collapse
Affiliation(s)
- Na Wang
- a Department of Endocrinology , The Third Hospital of Hebei Medical University , Shijiazhuang , China
- b Key Laboratory of Orthopedic Biomechanics of Hebei Province , The Third Hospital of Hebei Medical University , Shijiazhuang , China
| | - Peng Xue
- a Department of Endocrinology , The Third Hospital of Hebei Medical University , Shijiazhuang , China
- b Key Laboratory of Orthopedic Biomechanics of Hebei Province , The Third Hospital of Hebei Medical University , Shijiazhuang , China
| | - Xuelun Wu
- a Department of Endocrinology , The Third Hospital of Hebei Medical University , Shijiazhuang , China
- b Key Laboratory of Orthopedic Biomechanics of Hebei Province , The Third Hospital of Hebei Medical University , Shijiazhuang , China
| | - Jianxia Ma
- a Department of Endocrinology , The Third Hospital of Hebei Medical University , Shijiazhuang , China
- b Key Laboratory of Orthopedic Biomechanics of Hebei Province , The Third Hospital of Hebei Medical University , Shijiazhuang , China
| | - Yan Wang
- a Department of Endocrinology , The Third Hospital of Hebei Medical University , Shijiazhuang , China
- b Key Laboratory of Orthopedic Biomechanics of Hebei Province , The Third Hospital of Hebei Medical University , Shijiazhuang , China
| | - Yukun Li
- a Department of Endocrinology , The Third Hospital of Hebei Medical University , Shijiazhuang , China
- b Key Laboratory of Orthopedic Biomechanics of Hebei Province , The Third Hospital of Hebei Medical University , Shijiazhuang , China
| |
Collapse
|