1
|
Sanap A, Bhonde R, Shekatkar M, Kharat A, Kheur S, Undale V, Dharkar N, Tillu G, Joshi K. Novel Combination of Traditional Ayurvedic Herb Piper longum L. and Modern Stem Cell Therapy for the Reversal of Glucocorticoid-Induced Osteoporosis. Mol Nutr Food Res 2025; 69:e202400698. [PMID: 39888175 DOI: 10.1002/mnfr.202400698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/23/2024] [Accepted: 01/14/2025] [Indexed: 02/01/2025]
Abstract
Glucocorticoids induced osteoporosis (GIOP) is a global concern without effective therapies. The present study investigated the potential of the umbilical cord-derived mesenchymal stem cells (UCMSCs) and traditional medicine Piper longum L. in the reversal of GIOP. Twelve-week-old female Swiss Albino mice were subjected to the dexamethasone treatment for 4 weeks to induce GIOP. Further, the mice were randomized into four different groups for treatment, viz., phosphate buffered saline (PBS), UCMSCs, P. longum L. aqueous extract through feed, and a combination of UCMSCs and P. longum L. extract. Post therapy, GIOP mice regained the weight and hair loss in the UCMSCs and P. longum L. extract group. ALP activity and mRNA expression of RunX2, ALP, and OPN were significantly increased. Micro-CT analysis revealed remarkable improvement in key parameters such as bone volume, bone surface density, tissue surface, trabecular thickness, and number. Our results unequivocally demonstrate that a combination of the UCMSCs and P. longum L. is highly effective in the reversal of GIOP as compared to P. longum L. or UCMSCs alone. The therapeutic effect can be attributed to the osteogenic and paracrine potential of UCMSCs and the anti-inflammatory effect of P. longum L.
Collapse
Affiliation(s)
- Avinash Sanap
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India
| | - Ramesh Bhonde
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India
| | - Madhura Shekatkar
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India
| | - Avinash Kharat
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India
| | - Supriya Kheur
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India
| | - Vaishali Undale
- Department of Pharmacology, Dr. D. Y. Patil Institute of Pharmaceutical Sciences & Research, Pimpri, Pune, Maharashtra, India
| | - Nilima Dharkar
- Dr. D. Y. Patil College of Ayurved & Research Centre Pimpri, Pune, Maharashtra, India
| | - Girish Tillu
- Interdisciplinary School of Health Sciences, Savitribai Phule University of Pune, Pune, Maharashtra, India
| | - Kalpana Joshi
- Department of Biotechnology, Sinhgad College of Engineering affiliated to Savitribai Phule Pune University, Pune, Maharashtra, India
| |
Collapse
|
2
|
Hu TL, Chen J, Shao SQ, Li LL, Lai C, Gao WN, Xu RF, Meng Y. Biomechanical and histomorphological analysis of the mandible in rats with chronic kidney disease. Sci Rep 2023; 13:21886. [PMID: 38081976 PMCID: PMC10713524 DOI: 10.1038/s41598-023-49152-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
The present study aimed to investigate the biomechanical and histomorphological features of mandibles in an adenine-induced chronic kidney disease-mineral and bone disorder (CKD-MBD) rat model of CKD. A total of 14 Sprague-Dawley rats were randomized into the following two groups: control group and CKD group. At the end of the sixth week, all rats were euthanized, and serum was collected for biochemical marker tests. Macroscopic bone growth and biomechanical parameters were measured in the right hemimandible, while the left hemimandible was used for bone histomorphometric analysis. Compared to the control group, the CKD group showed a significant increase in serum creatinine, blood urea nitrogen, and serum parathyroid hormone at the end of the sixth week. The biomechanical structural properties significantly decreased in the CKD group compared to the control group. Bone histomorphometric analysis indicated that the trabecular bone volume of rats in the CKD group was significantly lower than that of the control group. In the CKD groups, the bone formation parameters of the trabecular bone were significantly increased, while the bone mineralization apposition rates of both the trabecular bone and periosteal cortical bone were significantly increased. The rat CKD model showed deteriorated structural mechanics, low trabecular bone volume, high trabecular bone formation, increased trabecular bone mineralization apposition rate, and increased cortical bone mineralization apposition rate, which met the characteristics of osteitis fibrosa, indicating that this model is a useful tool for the study of mandible diseases in CKD patients.
Collapse
Affiliation(s)
- Ta-la Hu
- Department of Nephrology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China
| | - Jun Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Shen-Quan Shao
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Le-le Li
- Department of Nephrology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China
| | - Can Lai
- Graduate School, Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia, China
| | - Wu-Niri Gao
- Department of Nephrology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China
| | - Rui-Feng Xu
- Department of Nephrology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China
| | - Yan Meng
- Department of Nephrology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China.
| |
Collapse
|
3
|
Ning B, Mustafy T, Londono I, Laporte C, Villemure I. Impact loading intensifies cortical bone (re)modeling and alters longitudinal bone growth of pubertal rats. Biomech Model Mechanobiol 2023:10.1007/s10237-023-01706-5. [PMID: 37000273 DOI: 10.1007/s10237-023-01706-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/22/2023] [Indexed: 04/01/2023]
Abstract
Physical exercise is important for musculoskeletal development during puberty, which builds bone mass foundation for later in life. However, strenuous levels of training might bring adverse effects to bone health, reducing longitudinal bone growth. Animal models with various levels of physical exercise were largely used to provide knowledge to clinical settings. Experiments from our previous studies applied different levels of mechanical loading on rat tibia during puberty accompanied by weekly in vivo micro-CT scans. In the present article, we apply 3D image registration-based methods to retrospectively analyze part of the previously acquired micro-CT data. Longitudinal bone growth, growth plate thickness, and cortical bone (re)modeling were evaluated from rats' age of 28-77 days. Our results show that impact loading inhibited proximal bone growth throughout puberty. We hypothesize that impact loading might bring different growth alterations to the distal and proximal growth plates. High impact loading might lead to pathological consequence of osteochondrosis and catch-up growth due to growth inhibition. Impact loading also increased cortical bone (re)modeling before and after the peak proximal bone growth period of young rats, of which the latter case might be caused by the shift from modeling to remodeling as the dominant activity toward the end of rat puberty. We confirm that the tibial endosteum is more mechano-sensitive than the periosteum in response to mechanical loading. To our knowledge, this is the first study to follow up bone growth and bone (re)modeling of young rats throughout the entire puberty with a weekly time interval.
Collapse
Affiliation(s)
- Bohao Ning
- Department of Mechanical Engineering, Polytechnique Montréal, P.O. Box 6079, Station Centre-Ville, Montréal, QC, H3C 3A7, Canada
- CHU Sainte-Justine Research Centre, 3175 Côte-Sainte-Catherine Road, Montréal, QC, H3T 1C5, Canada
| | - Tanvir Mustafy
- Department of Mechanical Engineering, Polytechnique Montréal, P.O. Box 6079, Station Centre-Ville, Montréal, QC, H3C 3A7, Canada
- CHU Sainte-Justine Research Centre, 3175 Côte-Sainte-Catherine Road, Montréal, QC, H3T 1C5, Canada
- Department of Civil Engineering, Military Institute of Science and Technology, Dhaka, 1216, Bangladesh
| | - Irène Londono
- CHU Sainte-Justine Research Centre, 3175 Côte-Sainte-Catherine Road, Montréal, QC, H3T 1C5, Canada
| | - Catherine Laporte
- CHU Sainte-Justine Research Centre, 3175 Côte-Sainte-Catherine Road, Montréal, QC, H3T 1C5, Canada
- Department of Electrical Engineering, École de Technologie Supérieure, 1100 Notre-Dame Street West, Montréal, QC, H3C 1K3, Canada
| | - Isabelle Villemure
- Department of Mechanical Engineering, Polytechnique Montréal, P.O. Box 6079, Station Centre-Ville, Montréal, QC, H3C 3A7, Canada.
- CHU Sainte-Justine Research Centre, 3175 Côte-Sainte-Catherine Road, Montréal, QC, H3T 1C5, Canada.
| |
Collapse
|
4
|
Ning B, Londono I, Laporte C, Villemure I. Validation of an in vivo micro-CT-based method to quantify longitudinal bone growth of pubertal rats. Bone 2022; 154:116207. [PMID: 34547522 DOI: 10.1016/j.bone.2021.116207] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 11/02/2022]
Abstract
Bone growth is an essential part of skeletal development during childhood and puberty. Accurately characterizing longitudinal bone growth helps to better understand the determining factors of peak bone mass, which has impacts on bone quality later in life. Animal models were largely used to study longitudinal bone growth. However, the commonly used histology-based method is destructive and unable to follow up the growth curve of live animals in longitudinal experiments. In this study, we validated an in vivo micro-CT-based method against the histology-based method to quantify longitudinal bone growth rates of young rats non-destructively. CD (Sprague Dawley) IGS rats aged 35, 49 and 63 days received the same treatments: two series of repeated in vivo micro-CT scans on their proximal hind limb at a five-day interval, and two calcein injections separated by three days. The longitudinal bone growth rate was quantified by registering time-lapse micro-CT images in 3D, calculating the growth distance on registered images, and dividing the distance by the five-day gap. The growth rate was also evaluated by measuring the 2D distance between consecutive calcein fluorescent bands on microscopic images, divided by the three-day gap. The two methods were both validated independently with reproducible repeated measurements, where the micro-CT-based method showed higher precision. They were also validated against each other with low relative errors and a strong Pearson sample correlation coefficient (0.998), showing a significant (p < 0.0001) linear correlation between paired results. We conclude that the micro-CT-based method can serve as an alternative to the histology-based method for the quantification of longitudinal growth. Thanks to its non-invasive nature and true 3D capability, the micro-CT-based method helps to accommodate in vivo longitudinal animal studies with highly reproducible measurements.
Collapse
Affiliation(s)
- Bohao Ning
- Department of Mechanical Engineering, Polytechnique Montréal, P.O. Box 6079, Station Centre-Ville, Montréal, QC H3C 3A7, Canada; CHU Sainte-Justine Research Centre, 3175 Côte-Sainte-Catherine Road, Montréal, QC H3T 1C5, Canada
| | - Irène Londono
- CHU Sainte-Justine Research Centre, 3175 Côte-Sainte-Catherine Road, Montréal, QC H3T 1C5, Canada
| | - Catherine Laporte
- CHU Sainte-Justine Research Centre, 3175 Côte-Sainte-Catherine Road, Montréal, QC H3T 1C5, Canada; Department of Electrical Engineering, École de technologie supérieure, 1100 Notre-Dame Street West, Montréal, QC H3C 1K3, Canada
| | - Isabelle Villemure
- Department of Mechanical Engineering, Polytechnique Montréal, P.O. Box 6079, Station Centre-Ville, Montréal, QC H3C 3A7, Canada; CHU Sainte-Justine Research Centre, 3175 Côte-Sainte-Catherine Road, Montréal, QC H3T 1C5, Canada.
| |
Collapse
|
5
|
Robinson ST, Shyu PT, Guo XE. Mechanical loading and parathyroid hormone effects and synergism in bone vary by site and modeling/remodeling regime. Bone 2021; 153:116171. [PMID: 34492358 PMCID: PMC8499476 DOI: 10.1016/j.bone.2021.116171] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/01/2021] [Accepted: 08/31/2021] [Indexed: 01/22/2023]
Abstract
Intermittent injections of parathyroid hormone (PTH) and mechanical loading are both known to effect a net increase in bone mass. Fundamentally, bone metabolism can be divided into modeling (uncoupled formation or resorption) and remodeling (subsequent formation biologically coupled to resorption in space and time). Methods to delineate the bone response between these regimes are scant but have garnered recent attention and acceptance, and will be critical tools to properly assess short- and long-term efficacy of osteoporosis treatments. To this end, we employ a time-lapse micro-computed tomography strategy to quantify and localize modeling and remodeling volumes over 4 weeks of concurrent PTH treatment and mechanical loading. Modeled and remodeled volumes are probed for differences with respect to treatment, loading, and interactions thereof in trabecular and cortical bone compartments, which were further separated by plate/rod microarchitecture and periosteal/endosteal surfaces, respectively. Loading effects are further considered independently with regard to localized strain environments. Our findings indicate that in trabecular bone, PTH and loading stimulate anabolic modeling additively, and remodeling synergistically. PTH tends to lead to bone accumulation indiscriminate of trabecular microarchitecture, whereas loading tends to more strongly affect plates than rods. The cortical surfaces responded uniquely to PTH and loading, with synergistic effects on the periosteal surface for anabolic modeling, and on the endosteal surface for catabolic modeling. The increase in catabolic modeling due to loading, which is enhanced by PTH, is concentrated to areas of the endosteal surface under low strain and to our knowledge has not previously been reported. Taken together, the effects of PTH, loading, and their interactions, are shown to be dependent on the specific bone compartment and metabolic regime; this may explain some discrepancies in previously-reported findings.
Collapse
Affiliation(s)
- Samuel T Robinson
- Bone Bioengineering Laboratory, 351 Engineering Terrace, Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, New York, NY 10027, USA.
| | - Peter T Shyu
- Bone Bioengineering Laboratory, 351 Engineering Terrace, Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, New York, NY 10027, USA.
| | - X Edward Guo
- Bone Bioengineering Laboratory, 351 Engineering Terrace, Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, New York, NY 10027, USA.
| |
Collapse
|
6
|
Wang W, Tseng WJ, Zhao H, Azar T, Pei S, Jiang X, Dyment N, Liu XS. Activation, development, and attenuation of modeling- and remodeling-based bone formation in adult rats. Biomaterials 2021; 276:121015. [PMID: 34273687 DOI: 10.1016/j.biomaterials.2021.121015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
Activation of modeling-based bone formation (MBF - bone formation without prior activation of bone resorption), has been identified as an important mechanism by which anabolic agents, such as intermittent parathyroid hormone (PTH), rapidly elicit new bone formation. Using a novel cryohistology imaging platform, coupled with sequential multicolor fluorochrome injections, we demonstrated that MBF and remodeling-based bone formation (RBF) in the adult rat tibia model have similar contributions to trabecular bone homeostasis. PTH treatment resulted in a 2.4-4.9 fold greater bone formation rate over bone surface (BFR/BS) by RBF and a 4.3-8.5 fold greater BFR/BS by MBF in male, intact female, and ovariectomized female rats. Moreover, regardless of bone formation type, once a formation site is activated by PTH, mineral deposition continues throughout the entire treatment duration. Furthermore, by tracking the sequence of multicolor fluorochrome labels, we discovered that MBF, a highly efficient but often overlooked regenerative mechanism, is activated more rapidly but attenuated faster than RBF in response to PTH. This suggests that MBF and RBF contribute differently to PTH's anabolic effect in rats: MBF has a greater contribution to the acute elevation in bone mass at the early stage of treatment while RBF contributes to the sustained treatment effect.
Collapse
Affiliation(s)
- Wenzheng Wang
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei-Ju Tseng
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Hongbo Zhao
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Tala Azar
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Shaopeng Pei
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Xi Jiang
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Nathaniel Dyment
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - X Sherry Liu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
7
|
Li Y, Tseng WJ, de Bakker CMJ, Zhao H, Chung R, Liu XS. Peak trabecular bone microstructure predicts rate of estrogen-deficiency-induced bone loss in rats. Bone 2021; 145:115862. [PMID: 33493654 PMCID: PMC7920939 DOI: 10.1016/j.bone.2021.115862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/31/2020] [Accepted: 01/19/2021] [Indexed: 01/11/2023]
Abstract
Postmenopausal osteoporosis affects a large number of women worldwide. Reduced estrogen levels during menopause lead to accelerated bone remodeling, resulting in low bone mass and increased fracture risk. Both peak bone mass and the rate of bone loss are important predictors of postmenopausal osteoporosis risk. However, whether peak bone mass and/or bone microstructure directly influence the rate of bone loss following menopause remains unclear. Our study aimed to establish the relationship between peak bone mass/microstructure and the rate of bone loss in response to estrogen deficiency following ovariectomy (OVX) surgery in rats of homogeneous background by tracking the skeletal changes using in vivo micro-computed tomography (μCT) and three-dimensional (3D) image registrations. Linear regression analyses demonstrated that the peak bone microstructure, but not peak bone mass, was highly predictive of the rate of OVX-induced bone loss. In particular, the baseline trabecular thickness was found to have the highest correlation with the degree of OVX-induced bone loss and trabecular stiffness reduction. Given the same bone mass, the rats with thicker baseline trabeculae had a lower rate of trabecular microstructure and stiffness deterioration after OVX. Moreover, further evaluation to track the changes within each individual trabecula via our novel individual trabecular dynamics (ITD) analysis suggested that a trabecular network with thicker trabeculae is less likely to disconnect or perforate in response to estrogen deficiency, resulting a lower degree of bone loss. Taken together, these findings indicate that the rate of estrogen-deficiency-induced bone loss could be predicted by peak bone microstructure, most notably the trabecular thickness. Given the same bone mass, a trabecular bone phenotype with thin trabeculae may be a risk factor toward accelerated postmenopausal bone loss.
Collapse
Affiliation(s)
- Yihan Li
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | - Wei-Ju Tseng
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | - Chantal M J de Bakker
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Radiology, Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada.
| | - Hongbo Zhao
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | - Rebecca Chung
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | - X Sherry Liu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
8
|
Chiou AE, Liu C, Moreno-Jiménez I, Tang T, Wagermaier W, Dean MN, Fischbach C, Fratzl P. Breast cancer-secreted factors perturb murine bone growth in regions prone to metastasis. SCIENCE ADVANCES 2021; 7:eabf2283. [PMID: 33731354 PMCID: PMC7968847 DOI: 10.1126/sciadv.abf2283] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/27/2021] [Indexed: 05/03/2023]
Abstract
Breast cancer frequently metastasizes to bone, causing osteolytic lesions. However, how factors secreted by primary tumors affect the bone microenvironment before the osteolytic phase of metastatic tumor growth remains unclear. Understanding these changes is critical as they may regulate metastatic dissemination and progression. To mimic premetastatic bone adaptation, immunocompromised mice were injected with MDA-MB-231-conditioned medium [tumor-conditioned media (TCM)]. Subsequently, the bones of these mice were subjected to multiscale, correlative analysis including RNA sequencing, histology, micro-computed tomography, x-ray scattering analysis, and Raman imaging. In contrast to overt metastasis causing osteolysis, TCM treatment induced new bone formation that was characterized by increased mineral apposition rate relative to control bones, altered bone quality with less matrix and more carbonate substitution, and the deposition of disoriented mineral near the growth plate. Our study suggests that breast cancer-secreted factors may promote perturbed bone growth before metastasis, which could affect initial seeding of tumor cells.
Collapse
Affiliation(s)
- Aaron E Chiou
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Chuang Liu
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Inés Moreno-Jiménez
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Tengteng Tang
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Wolfgang Wagermaier
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Mason N Dean
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA
| | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.
| |
Collapse
|
9
|
Zhang C, Song C. Combination Therapy of PTH and Antiresorptive Drugs on Osteoporosis: A Review of Treatment Alternatives. Front Pharmacol 2021; 11:607017. [PMID: 33584284 PMCID: PMC7874063 DOI: 10.3389/fphar.2020.607017] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/21/2020] [Indexed: 12/04/2022] Open
Abstract
Antiresorptive drugs have been widely used for osteoporosis. Intermittent parathyroid hormone (PTH), an anabolic agent, increases osteoblast production rate and inhibits apoptosis of osteoblasts, thus increasing skeletal mass besides improving bone microarchitecture and strength. Combination therapy for osteoporosis produced great interests and controversies. Therefore, we performed a systematic literature search from PubMed, EMBASE, Scopus, Web of Science, CINDHL, and the Cochrane Database of Systematic Reviews using the search terms PTH or teriparatide combined with bisphosphonate, alendronate, ibandronate, risedronate, raloxifene, denosumab, and zoledronic acid with the limit osteoporosis. At last, 36 related articles were included for further analysis. Findings from previous studies revealed that combination therapy in different conditions of naive or previous bisphosphonate treatment might have different outcomes. The use of combination therapy, however, may be an alternative option among osteoporotic patients with a history of bisphosphonate use. Combined teriparatide with denosumab appear to show the most substantial and clinically relevant skeletal benefits to osteoporotic patients. Additional research is necessary to define optimal methods of developing sequential and/or cyclical combinations of PTH and antiresorptive agents.
Collapse
Affiliation(s)
- Chenggui Zhang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
| | - Chunli Song
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
| |
Collapse
|
10
|
Longitudinal time-lapse in vivo micro-CT reveals differential patterns of peri-implant bone changes after subclinical bacterial infection in a rat model. Sci Rep 2020; 10:20901. [PMID: 33262377 PMCID: PMC7708479 DOI: 10.1038/s41598-020-77770-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
Subclinical infection associated with orthopedic devices can be challenging to diagnose. The goal of this study was to evaluate longitudinal, microcomputed tomography (microCT) imaging in a rat model of subclinical orthopedic device-related infection caused by Staphylococcus epidermidis and four different Cutibacterium (previously Propionibacterium) acnes strains, and compare outcomes with non-inoculated and historical S. aureus-inoculated controls. Sterile screws or screws colonized with bacteria were placed in the tibia of 38 adult Wistar rats [n = 6 sterile screws; n = 6 S. epidermidis-colonized screws; n = 26 C. acnes-colonized screws (covering all three main subspecies)]. Regular microCT scans were taken over 28 days and processed for quantitative time-lapse imaging with dynamic histomorphometry. At euthanasia, tissues were processed for semiquantitative histopathology or quantitative bacteriology. All rats receiving sterile screws were culture-negative at euthanasia and displayed progressive bony encapsulation of the screw. All rats inoculated with S. epidermidis-colonized screws were culture-positive and displayed minor changes in peri-implant bone, characteristic of subclinical infection. Five of the 17 rats in the C. acnes inoculated group were culture positive at euthanasia and displayed bone changes at the interface of the screw and bone, but not deeper in the peri-implant bone. Dynamic histomorphometry revealed significant differences in osseointegration, bone remodeling and periosteal reactions between groups that were not measurable by visual observation of still microCT images. Our study illustrates the added value of merging 3D microCT data from subsequent timepoints and producing inherently richer 4D data for the detection and characterization of subclinical orthopedic infections, whilst also reducing animal use.
Collapse
|
11
|
Roberts BC, Arredondo Carrera HM, Zanjani-Pour S, Boudiffa M, Wang N, Gartland A, Dall'Ara E. PTH(1-34) treatment and/or mechanical loading have different osteogenic effects on the trabecular and cortical bone in the ovariectomized C57BL/6 mouse. Sci Rep 2020; 10:8889. [PMID: 32483372 PMCID: PMC7264307 DOI: 10.1038/s41598-020-65921-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/12/2020] [Indexed: 12/18/2022] Open
Abstract
In preclinical mouse models, a synergistic anabolic response to PTH(1–34) and tibia loading was shown. Whether combined treatment improves bone properties with oestrogen deficiency, a cardinal feature of osteoporosis, remains unknown. This study quantified the individual and combined longitudinal effects of PTH(1–34) and loading on the bone morphometric and densitometric properties in ovariectomised mice. C57BL/6 mice were ovariectomised at 14-weeks-old and treated either with injections of PTH(1–34); compressive loading of the right tibia; both interventions concurrently; or both interventions on alternating weeks. Right tibiae were microCT-scanned from 14 until 24-weeks-old. Trabecular metaphyseal and cortical midshaft morphometric properties, and bone mineral content (BMC) in 40 different regions of the tibia were measured. Mice treated only with loading showed the highest trabecular bone volume fraction at week 22. Cortical thickness was higher with co-treatment than in the mice treated with PTH alone. In the mid-diaphysis, increases in BMC were significantly higher with loading than PTH. In ovariectomised mice, the osteogenic benefits of co-treatment on the trabecular bone were lower than loading alone. However, combined interventions had increased, albeit regionally-dependent, benefits to cortical bone. Increased benefits were largest in the mid-diaphysis and postero-laterally, regions subjected to higher strains under compressive loads.
Collapse
Affiliation(s)
- Bryant C Roberts
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom. .,Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom.
| | - Hector M Arredondo Carrera
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom.,MRC Arthritis Research UK, Centre for Integrated Research into Musculoskeletal Ageing (CIMA), University of Sheffield, Sheffield, United Kingdom
| | - Sahand Zanjani-Pour
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom.,Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Maya Boudiffa
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom.,MRC Arthritis Research UK, Centre for Integrated Research into Musculoskeletal Ageing (CIMA), University of Sheffield, Sheffield, United Kingdom
| | - Ning Wang
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom.,MRC Arthritis Research UK, Centre for Integrated Research into Musculoskeletal Ageing (CIMA), University of Sheffield, Sheffield, United Kingdom
| | - Alison Gartland
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom.,MRC Arthritis Research UK, Centre for Integrated Research into Musculoskeletal Ageing (CIMA), University of Sheffield, Sheffield, United Kingdom
| | - Enrico Dall'Ara
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom.,Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom.,MRC Arthritis Research UK, Centre for Integrated Research into Musculoskeletal Ageing (CIMA), University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
12
|
Brunet SC, Kuczynski MT, Bhatla JL, Lemay S, Pauchard Y, Salat P, Barnabe C, Manske SL. The utility of multi-stack alignment and 3D longitudinal image registration to assess bone remodeling in rheumatoid arthritis patients from second generation HR-pQCT scans. BMC Med Imaging 2020; 20:36. [PMID: 32264872 PMCID: PMC7140503 DOI: 10.1186/s12880-020-00437-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/27/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Medical imaging plays an important role in determining the progression of joint damage in rheumatoid arthritis (RA). High resolution peripheral quantitative computed tomography (HR-pQCT) is a sensitive tool capable of evaluating bone microarchitecture and erosions, and 3D rigid image registration can be used to visualize and quantify bone remodeling over time. However, patient motion during image acquisition can cause a "stack shift" artifact resulting in loss of information and reducing the number of erosions that can be analyzed using HR-pQCT. The purpose of this study was to use image registration to improve the number of useable HR-pQCT scans and to apply image-based bone remodeling assessment to the metacarpophalangeal (MCP) joints of RA patients. METHODS Ten participants with RA completed HR-pQCT scans of the 2nd and 3rd MCP joints at enrolment to the study and at a 6-month follow-up interval. At 6-months, an additional repeat scan was acquired to evaluate reliability. HR-pQCT images were acquired in three individual 1 cm acquisitions (stacks) with a 25% overlap. We completed analysis first using standard evaluation methods, and second with multi-stack registration. We assessed whether additional erosions could be evaluated after multi-stack registration. Bone remodeling analysis was completed using registration and transformation of baseline and follow-up images. We calculated the bone formation and resorption volume fractions with 6-month follow-up, and same-day repositioning as a negative control. RESULTS 13/57 (23%) of erosions could not be analyzed from raw images due to a stack shift artifact. All erosions could be volumetrically assessed after multi-stack registration. We observed that there was a median bone formation fraction of 2.1% and resorption fraction of 3.8% in RA patients over the course of 6 months. In contrast to the same-day rescan negative control, we observed median bone formation and resorption fractions of 0%. CONCLUSIONS Multi-stack image registration is a useful tool to improve the number of useable scans when analyzing erosions using HR-pQCT. Further, image registration can be used to longitudinally assess bone remodeling. These methods could be implemented in future studies to provide important pathophysiological information on the progression of bone damage.
Collapse
Affiliation(s)
- Scott C Brunet
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary AB3280 Hospital Dr NW, Calgary, Alberta, T2N 4Z6, Canada.,Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada.,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Michael T Kuczynski
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary AB3280 Hospital Dr NW, Calgary, Alberta, T2N 4Z6, Canada.,Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada.,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jennifer L Bhatla
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary AB3280 Hospital Dr NW, Calgary, Alberta, T2N 4Z6, Canada.,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Sophie Lemay
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary AB3280 Hospital Dr NW, Calgary, Alberta, T2N 4Z6, Canada.,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Yves Pauchard
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary AB3280 Hospital Dr NW, Calgary, Alberta, T2N 4Z6, Canada.,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Peter Salat
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary AB3280 Hospital Dr NW, Calgary, Alberta, T2N 4Z6, Canada.,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Cheryl Barnabe
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Division of Rheumatology, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Sarah L Manske
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary AB3280 Hospital Dr NW, Calgary, Alberta, T2N 4Z6, Canada. .,Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada. .,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
13
|
Wong AKO, Manske SL. A Comparison of Peripheral Imaging Technologies for Bone and Muscle Quantification: A Review of Segmentation Techniques. J Clin Densitom 2020; 23:92-107. [PMID: 29785933 DOI: 10.1016/j.jocd.2018.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/11/2018] [Indexed: 12/17/2022]
Abstract
Musculoskeletal science has developed many overlapping branches, necessitating specialists from 1 area of focus to often require the expertise in others. In terms of imaging, this means obtaining a comprehensive illustration of bone, muscle, and fat tissues. There is currently a lack of a reliable resource for end users to learn about these tissues' imaging and quantification techniques together. An improved understanding of these tissues has been an important progression toward better prediction of disease outcomes and better elucidation of their interaction with frailty, aging, and metabolic disorders. Over the last decade, there have been major advances into the image acquisition and segmentation of bone, muscle, and fat features using computed tomography (CT), magnetic resonance imaging (MRI), and peripheral modules of these systems. Dedicated peripheral quantitative musculoskeletal imaging systems have paved the way for mobile research units, lower cost clinical research facilities, and improved resolution per unit cost paid. The purpose of this review was to detail the segmentation techniques available for each of these peripheral CT and MRI modalities and to describe advances in segmentation methods as applied to study longitudinal changes and treatment-related dynamics. Although the peripheral CT units described herein have established feasible standardized protocols that users have adopted globally, there remain challenges in standardizing MRI protocols for bone and muscle imaging.
Collapse
Affiliation(s)
- Andy Kin On Wong
- Joint Department of Medical Imaging, Toronto General Research Institute, University Health Network, Toronto, ON, Canada; McMaster University, Department of Medicine, Faculty of Health Sciences, Hamilton, ON, Canada.
| | - Sarah Lynn Manske
- Department of Radiology, McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
14
|
Goel PN, Moharrer Y, Hebb JH, Egol AJ, Kaur G, Hankenson KD, Ahn J, Ashley JW. Suppression of Notch Signaling in Osteoclasts Improves Bone Regeneration and Healing. J Orthop Res 2019; 37:2089-2103. [PMID: 31166033 PMCID: PMC6739141 DOI: 10.1002/jor.24384] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/28/2019] [Indexed: 02/04/2023]
Abstract
Owing to the central role of osteoclasts in bone physiology and remodeling, manipulation of their maturation process provides a potential therapeutic strategy for treating bone diseases. To investigate this, we genetically inhibited the Notch signaling pathway in the myeloid lineage, which includes osteoclast precursors, using a dominant negative form of MAML (dnMAML) that inhibits the transcriptional complex required for downstream Notch signaling. Osteoclasts derived from dnMAML mice showed no significant differences in early osteoclastic gene expression compared to the wild type. Further, these demonstrated significantly lowered resorption activity using bone surfaces while retaining their osteoblast stimulating ability using ex vivo techniques. Using in vivo approaches, we detected significantly higher bone formation rates and osteoblast gene expression in dnMAML cohorts. Further, these mice exhibited increased bone/tissue mineral density compared to wild type and larger bony calluses in later stages of fracture healing. These observations suggest that therapeutic suppression of osteoclast Notch signaling could reduce, but not eliminate, osteoclastic resorption without suppression of restorative bone remodeling and, therefore, presents a balanced paradigm for increasing bone formation, regeneration, and healing. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2089-2103, 2019.
Collapse
Affiliation(s)
- Peeyush N Goel
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA,Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA
| | - Yasaman Moharrer
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA,Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA
| | - John H Hebb
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA,Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA,Georgetown University School of Medicine, Washington D.C
| | - Alexander J Egol
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA,Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA
| | | | | | - Jaimo Ahn
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA,Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA,Co-corresponding Author: Jaimo Ahn, MD, PhD, FACS, FAOA, Advisory Dean, MSTP Steering Committee, Perelman School of Medicine, Co-Director, Orthopaedic Trauma, University of Pennsylvania Health System, Perelman School of Medicine, University of Pennsylvania, Investigator, Translational Musculoskeletal Research Center, Philadelphia Veterans Affairs Medical Center, 3737 Market Street, Floor 6, Philadelphia, PA-19104, Phone # +1 (215)-662-3340, Fax # +1 (215)-349-5890,
| | - Jason W Ashley
- Eastern Washington University, Cheney, WA,Corresponding Author: Jason Waid Ashley, PhD, Assistant Professor, Biology Department, 526 5th Street, SCI236, Eastern Washington University, Cheney, WA 99004, Phone # +1(509)-359-4665,
| |
Collapse
|
15
|
Lu Y, He J, Zhu H, Wang Y. Effect of parathyroid hormone on the structural, densitometric and failure behaviors of mouse tibia in the spatiotemporal space. PLoS One 2019; 14:e0219575. [PMID: 31291372 PMCID: PMC6619825 DOI: 10.1371/journal.pone.0219575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/26/2019] [Indexed: 11/19/2022] Open
Abstract
Parathyroid hormone (PTH) is an anabolic bone drug approved by the US Food and Drug Administration (FDA) to treat osteoporosis. However, previous studies using cross-sectional designs have reported variable and sometimes contradictory results. The aim of the present study was to quantify the localized effect of PTH on the structural and densitometric behaviors of mouse tibia and their links with the global mechanical behavior of bone using a novel spatiotemporal image analysis approach and a finite element analysis technique. Twelve female C57BL/6J mice were divided into two groups: the control and PTH treated groups. The entire right tibiae were imaged using an in vivo micro-computed tomography (μCT) system eight consecutive times. Next, the in vivo longitudinal tibial μCT images were rigidly registered and divided into 10 compartments across the entire tibial space. The bone volume (BV), bone mineral content (BMC), bone tissue mineral density (TMD), and tibial endosteal and periosteal areas (TEA and TPA) were quantified in each compartment. Additionally, finite element models of all the tibiae were generated to analyze the failure behavior of the tibia. It was found that both the BMC and BV started to increase in the proximal tibial region, and then the increases extended to the entire tibial region after two weeks of treatment (p < 0.05). PTH intervention significantly reduced the TEA in most tibial compartments after two weeks of treatment, and the TPA increased in most tibial regions after four weeks of treatment (p < 0.05). Tibial failure loads significantly increased after three weeks of PTH treatment (p < 0.01). The present study provided the first evidence of the localized effect of PTH on bone structural and densitometric properties, as well as their links with the global mechanical behaviors of bone, which are important pieces of information for unveiling the mechanism of PTH intervention.
Collapse
Affiliation(s)
- Yongtao Lu
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
- State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, China
| | - Jintao He
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - Hanxing Zhu
- School of Engineering, Cardiff University, Cardiff, United Kingdom
| | - Yongxuan Wang
- Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
- * E-mail:
| |
Collapse
|
16
|
de Bakker CM, Li Y, Zhao H, Leavitt L, Tseng WJ, Lin T, Tong W, Qin L, Liu XS. Structural Adaptations in the Rat Tibia Bone Induced by Pregnancy and Lactation Confer Protective Effects Against Future Estrogen Deficiency. J Bone Miner Res 2018; 33:2165-2176. [PMID: 30040148 PMCID: PMC6464108 DOI: 10.1002/jbmr.3559] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 06/08/2018] [Accepted: 07/14/2018] [Indexed: 12/31/2022]
Abstract
The female skeleton undergoes substantial structural changes during the course of reproduction. Although bone mineral density recovers postweaning, reproduction may induce permanent alterations in maternal bone microarchitecture. However, epidemiological studies suggest that a history of pregnancy and/or lactation does not increase the risk of postmenopausal osteoporosis or fracture and may even have a protective effect. Our study aimed to explain this paradox by using a rat model, combined with in vivo micro-computed tomography (μCT) imaging and bone histomorphometry, to track the changes in bone structure and cellular activities in response to estrogen deficiency following ovariectomy (OVX) in rats with and without a reproductive history. Our results demonstrated that a history of reproduction results in an altered skeletal response to estrogen-deficiency-induced bone loss later in life. Prior to OVX, rats with a reproductive history had lower trabecular bone mass, altered trabecular microarchitecture, and more robust cortical structure at the proximal tibia when compared to virgins. After OVX, these rats underwent a lower rate of trabecular bone loss than virgins, with minimal structural deterioration. As a result, by 12 weeks post-OVX, rats with a reproductive history had similar trabecular bone mass, elevated trabecular thickness, and increased robustness of cortical bone when compared to virgins, resulting in greater bone stiffness. Further evaluation suggested that reproductive-history-induced differences in post-OVX trabecular bone loss were likely due to differences in baseline trabecular microarchitecture, particularly trabecular thickness. Rats with a reproductive history had a larger population of thick trabeculae, which may be protective against post-OVX trabecular connectivity deterioration and bone loss. Taken together, these findings indicate that reproduction-associated changes in bone microarchitecture appear to reduce the rate of bone loss induced by estrogen deficiency later in life, and thereby exert a long-term protective effect on bone strength. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Chantal Mj de Bakker
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yihan Li
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hongbo Zhao
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing, China
| | - Laurel Leavitt
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei-Ju Tseng
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tiao Lin
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Tong
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ling Qin
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - X Sherry Liu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
17
|
Lu Y, Zuo D, Li J, He Y. Stochastic analysis of a heterogeneous micro-finite element model of a mouse tibia. Med Eng Phys 2018; 63:50-56. [PMID: 30442463 DOI: 10.1016/j.medengphy.2018.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 10/03/2018] [Accepted: 10/09/2018] [Indexed: 10/27/2022]
Abstract
Finite element (FE) analysis can be used to predict bone mechanical environments that can be used for many important applications, such as the understanding of bone mechano-regulation mechanisms. However, when defining the FE models, uncertainty in bone material properties may lead to marked variations in the predicted mechanical environment. The aim of this study is to investigate the influence of uncertainty in bone material property on the mechanical environment of bone. A heterogeneous FE model of a mouse tibia was created from micro computed tomography images. Axial compression loading was applied, and all possible bone density-modulus relationships were considered through stochastic analysis. The 1st and 3rd principal strains (ε1 and ε3) and the strain energy density (SED) were quantified in the tibial volume of interest (VOI). The bounds of ε1, ε3, and SED were determined by the bounds of the density-modulus relationship; the bone mechanical environment (ε1, ε3, and SED) and the bone density-modulus relationship exhibit the same trend of change; the relative percentage differences caused by bone material uncertainty are up to 28%, 28%, and 21% for ε1, ε3, and SED, respectively. These data provide guidelines on the adoption of bone density-modulus relationship in heterogeneous FE models.
Collapse
Affiliation(s)
- Yongtao Lu
- State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China; Department of Engineering Mechanics, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China
| | - Di Zuo
- Department of Engineering Mechanics, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China
| | - Junyan Li
- Department of Design Engineering and Mathematics, School of Science and Technology, Middlesex University, The Burroughs, Hendon, London NW4 4BT, UK
| | - Yiqian He
- State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China; Department of Engineering Mechanics, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China.
| |
Collapse
|
18
|
Zoledronic Acid Induces Site-Specific Structural Changes and Decreases Vascular Area in the Alveolar Bone. J Oral Maxillofac Surg 2018; 76:1893-1901. [DOI: 10.1016/j.joms.2018.03.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/04/2018] [Accepted: 03/07/2018] [Indexed: 02/07/2023]
|
19
|
Lu Y, Liu Y, Wu C, Li J. Investigating the Longitudinal Effect of Ovariectomy on Bone Properties Using a Novel Spatiotemporal Approach. Ann Biomed Eng 2018; 46:749-761. [PMID: 29470748 DOI: 10.1007/s10439-018-1994-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/05/2018] [Indexed: 10/18/2022]
Abstract
Osteoporosis is the most common bone disease. However, the mechanism of osteoporosis-induced alterations in bone is still unclear. The aim of this study was to investigate the effects of osteoporosis on the structural, densitometric and mechanical properties of the whole tibia using in vivo μCT imaging, spatiotemporal analysis and finite element modeling. Twelve C57Bl/6 female mice were adopted. At 14 weeks of age, half of the mice were ovariectomized (OVX), and the other half were SHAM-operated. The whole right tibia was scanned using an in vivo μCT imaging system at 14, 16, 17, 18, 19, 20, 21 and 22 weeks. The image datasets were registered in order to precisely quantify the bone properties. The results showed that OVX led to a significant increase in the endosteal area across the whole tibia 4 weeks after OVX intervention but did not have a significant influence on the periosteal area. Additionally, the bone volume and mineral content significantly decreased only in the proximal regions, but these decreases did not have a significant influence on the stiffness and failure load of the tibia. This study demonstrated the application of a novel spatiotemporal approach in the comprehensive analysis of bone adaptations in the spatiotemporal space.
Collapse
Affiliation(s)
- Yongtao Lu
- State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, China
- Department of Engineering Mechanics, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China
| | - Yue Liu
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Chengwei Wu
- State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, China.
- Department of Engineering Mechanics, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China.
| | - Junyan Li
- Department of Design Engineering and Mathematics, School of Science and Technology, Middlesex University, London, UK.
| |
Collapse
|
20
|
Carriero A, Pereira A, Wilson A, Castagno S, Javaheri B, Pitsillides A, Marenzana M, Shefelbine S. Spatial relationship between bone formation and mechanical stimulus within cortical bone: Combining 3D fluorochrome mapping and poroelastic finite element modelling. Bone Rep 2018; 8:72-80. [PMID: 29904646 PMCID: PMC5997173 DOI: 10.1016/j.bonr.2018.02.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Bone is a dynamic tissue and adapts its architecture in response to biological and mechanical factors. Here we investigate how cortical bone formation is spatially controlled by the local mechanical environment in the murine tibia axial loading model (C57BL/6). We obtained 3D locations of new bone formation by performing ‘slice and view’ 3D fluorochrome mapping of the entire bone and compared these sites with the regions of high fluid velocity or strain energy density estimated using a finite element model, validated with ex-vivo bone surface strain map acquired ex-vivo using digital image correlation. For the comparison, 2D maps of the average bone formation and peak mechanical stimulus on the tibial endosteal and periosteal surface across the entire cortical surface were created. Results showed that bone formed on the periosteal and endosteal surface in regions of high fluid flow. Peak strain energy density predicted only the formation of bone periosteally. Understanding how the mechanical stimuli spatially relates with regions of cortical bone formation in response to loading will eventually guide loading regime therapies to maintain or restore bone mass in specific sites in skeletal pathologies. 3D spatial representation of new bone formation after loading is shown by fluorochrome mapping of the entire mouse tibia Regions of new bone formation spatially associate with regions of high strain and fluid mechanical stimulus in a FE model The FE model was validated with the strains on the bone surface determined ex-vivo using digital image correlation Regions of new bone formation co-localize in sites of peak fluid flow, both endosteally and periosteally Peak strain energy density was able to predict only periosteal bone formation
Collapse
Affiliation(s)
- A. Carriero
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
- Corresponding author at: Department of Biomedical Engineering, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA.
| | - A.F. Pereira
- Department of Bioengineering, Imperial College London, UK
- Graduate School of Biomedical Engineering, University of New South Wales, Australia
| | - A.J. Wilson
- Department of Life Science, Imperial College London, UK
| | - S. Castagno
- Department of Medicine, Imperial College London, UK
| | - B. Javaheri
- Department of Comparative Biomedical Sciences, Royal Veterinary College, UK
| | - A.A. Pitsillides
- Department of Comparative Biomedical Sciences, Royal Veterinary College, UK
| | - M. Marenzana
- Department of Bioengineering, Imperial College London, UK
| | - S.J. Shefelbine
- Department of Mechanical and Industrial Engineering and Department of Bioengineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
21
|
Shapiro G, Bez M, Tawackoli W, Gazit Z, Gazit D, Pelled G. Semiautomated Longitudinal Microcomputed Tomography-based Quantitative Structural Analysis of a Nude Rat Osteoporosis-related Vertebral Fracture Model. J Vis Exp 2017. [PMID: 28994771 DOI: 10.3791/55928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Osteoporosis-related vertebral compression fractures (OVCFs) are a common and clinically unmet need with increasing prevalence as the world population ages. Animal OVCF models are essential to the preclinical development of translational tissue engineering strategies. While a number of models currently exist, this protocol describes an optimized method for inducing multiple highly reproducible vertebral defects in a single nude rat. A novel longitudinal semiautomated microcomputed tomography (µCT)-based quantitative structural analysis of the vertebral defects is also detailed. Briefly, rats were imaged at multiple time points post-op. The day 1 scan was reoriented to a standard position, and a standard volume of interest was defined. Subsequent µCT scans of each rat were automatically registered to the day 1 scan so the same volume of interest was then analyzed to assess for new bone formation. This versatile approach can be adapted to a variety of other models where longitudinal imaging-based analysis could benefit from precise 3D semiautomated alignment. Taken together, this protocol describes a readily quantifiable and easily reproducible system for osteoporosis and bone research. The suggested protocol takes 4 months to induce osteoporosis in nude ovariectomized rats and between 2.7 and 4 h to generate, image, and analyze two vertebral defects, depending on tissue size and equipment.
Collapse
Affiliation(s)
- Galina Shapiro
- Skeletal Biotech Laboratory, Hebrew University-Hadassah Faculty of Dental Medicine
| | - Maxim Bez
- Skeletal Biotech Laboratory, Hebrew University-Hadassah Faculty of Dental Medicine
| | - Wafa Tawackoli
- Department of Surgery, Cedars-Sinai Medical Center; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center; Biomedical Imaging Research Institute, Cedars-Sinai Medical Center
| | - Zulma Gazit
- Skeletal Biotech Laboratory, Hebrew University-Hadassah Faculty of Dental Medicine; Department of Surgery, Cedars-Sinai Medical Center; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center; Department of Orthopedics, Cedars-Sinai Medical Center
| | - Dan Gazit
- Skeletal Biotech Laboratory, Hebrew University-Hadassah Faculty of Dental Medicine; Department of Surgery, Cedars-Sinai Medical Center; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center; Biomedical Imaging Research Institute, Cedars-Sinai Medical Center; Department of Orthopedics, Cedars-Sinai Medical Center
| | - Gadi Pelled
- Skeletal Biotech Laboratory, Hebrew University-Hadassah Faculty of Dental Medicine; Department of Surgery, Cedars-Sinai Medical Center; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center; Biomedical Imaging Research Institute, Cedars-Sinai Medical Center;
| |
Collapse
|
22
|
Altman-Singles AR, Jeong Y, Tseng WJ, de Bakker CMJ, Zhao H, Lott C, Robberts J, Qin L, Han L, Kim DG, Liu XS. Intermittent Parathyroid Hormone After Prolonged Alendronate Treatment Induces Substantial New Bone Formation and Increases Bone Tissue Heterogeneity in Ovariectomized Rats. J Bone Miner Res 2017; 32:1703-1715. [PMID: 28467646 PMCID: PMC5550334 DOI: 10.1002/jbmr.3165] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/15/2017] [Accepted: 04/30/2017] [Indexed: 02/06/2023]
Abstract
Postmenopausal osteoporosis is often treated with bisphosphonates (eg, alendronate, [ALN]), but oversuppression of bone turnover by long-term bisphosphonate treatment may decrease bone tissue heterogeneity. Thus, alternate treatment strategies after long-term bisphosphonates are of great clinical interest. The objective of the current study was to determine the effect of intermittent parathyroid hormone (PTH) following 12 weeks of ALN (a bisphosphonate) treatment in 6-month-old, ovariectomized (OVX) rats on bone microarchitecture, bone remodeling dynamics, and bone mechanical properties at multiple length scales. By using in vivo μCT and 3D in vivo dynamic bone histomorphometry techniques, we demonstrated the efficacy of PTH following ALN therapy for stimulating new bone formation, and increasing trabecular thickness and bone volume fraction. In healthy bone, resorption and formation are coupled and balanced to sustain bone mass. OVX results in resorption outpacing formation, and subsequent bone loss and reduction in bone tissue modulus and tissue heterogeneity. We showed that ALN treatment effectively reduced bone resorption activity and regained the balance with bone formation, preventing additional bone loss. However, ALN treatment also resulted in significant reductions in the heterogeneity of bone tissue mineral density and tissue modulus. On the other hand, PTH treatment was able to shift the bone remodeling balance in favor of formation, with or without a prior treatment with ALN. Moreover, by altering the tissue mineralization, PTH alleviated the reduction in heterogeneity of tissue material properties induced by prolonged ALN treatment. Furthermore, switching to PTH treatment from ALN improved bone's postyield mechanical properties at both the whole bone and apparent level compared to ALN alone. The current findings suggest that intermittent PTH treatment should be considered as a viable treatment option for patients with prior treatment with bisphosphonates. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Allison R. Altman-Singles
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Pennsylvania State University, Berks Campus, Reading, PA, USA
| | - Yonghoon Jeong
- College of Dentistry, Division of Orthodontics, The Ohio State University, Columbus, OH, USA
| | - Wei-Ju Tseng
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chantal M. J. de Bakker
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hongbo Zhao
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing, China
| | - Carina Lott
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Juhanna Robberts
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ling Qin
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lin Han
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Do-Gyoon Kim
- College of Dentistry, Division of Orthodontics, The Ohio State University, Columbus, OH, USA
| | - X. Sherry Liu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
23
|
Lu Y, Boudiffa M, Dall'Ara E, Liu Y, Bellantuono I, Viceconti M. Longitudinal effects of Parathyroid Hormone treatment on morphological, densitometric and mechanical properties of mouse tibia. J Mech Behav Biomed Mater 2017; 75:244-251. [PMID: 28756285 DOI: 10.1016/j.jmbbm.2017.07.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 07/15/2017] [Accepted: 07/24/2017] [Indexed: 01/19/2023]
Abstract
The use of Parathyroid Hormone (PTH) as bone anabolic is limited due to cost-benefit assessments. Preclinical studies evaluating the effects of PTH on bone have reported variable and often contradictory results. Here, we have applied a new approach using a combination of in-vivo longitudinal µCT, image processing techniques and finite element models to monitor early local changes in the whole tibia (divided in 40 compartments) and mechanical properties of female C57BL/6J mice treated with PTH 1-34, compared to controls. Compared with standard 3D bone morphometric analysis, our new approach allowed detection of much smaller and localised changes in bone mineral content (BMC) at very early time points (1 week vs 3 weeks with standard methods) and showed that changes do not occur uniformly over time and across the anatomical space. Indeed, in the PTH treated mice, significant changes in BMC were observed in the medial and posterior sectors of the proximal tibia, a week after treatment, and in the medial sector of the tibia midshaft region a week later (p < 0.05). By the third week, two thirds of the regions showed significantly higher values of BMC (p < 0.05). The effect of PTH on bone regional volume is similar to that on BMC, but there is almost no effect of PTH on bone tissue mineral density. The differences in estimated mechanical properties became significant after three weeks of treatment (p < 0.05). These results provide the first evidence of an early and localised PTH effect on murine bone, and show that our novel partitioning approach, compared to the standard evaluation protocol, allows a more precise quantification of bone changes following treatment, which would facilitate preclinical testing of novel mono- and/or combination therapies throughout the bone.
Collapse
Affiliation(s)
- Yongtao Lu
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China; Department of Mechanical Engineering, The University of Sheffield, Sheffield, UK; Insigneo Institute for in Silico Medicine, The University of Sheffield, Sheffield, UK
| | - Maya Boudiffa
- MRC Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Oncology and Metabolism, The University of Sheffield, Sheffield, UK
| | - Enrico Dall'Ara
- Insigneo Institute for in Silico Medicine, The University of Sheffield, Sheffield, UK; MRC Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Oncology and Metabolism, The University of Sheffield, Sheffield, UK.
| | - Yue Liu
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - Ilaria Bellantuono
- Insigneo Institute for in Silico Medicine, The University of Sheffield, Sheffield, UK; MRC Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Oncology and Metabolism, The University of Sheffield, Sheffield, UK
| | - Marco Viceconti
- Department of Mechanical Engineering, The University of Sheffield, Sheffield, UK; Insigneo Institute for in Silico Medicine, The University of Sheffield, Sheffield, UK
| |
Collapse
|
24
|
Matheny JB, Torres AM, Ominsky MS, Hernandez CJ. Romosozumab Treatment Converts Trabecular Rods into Trabecular Plates in Male Cynomolgus Monkeys. Calcif Tissue Int 2017; 101:82-91. [PMID: 28246926 DOI: 10.1007/s00223-017-0258-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 02/16/2017] [Indexed: 12/16/2022]
Abstract
Treatment with sclerostin antibody (romosozumab) increases bone formation while reducing bone resorption, leading to increases in bone volume and bone mineral density. Sclerostin antibody treatment may also provide beneficial changes in trabecular microarchitecture and strength that are not reflected in bone volume and density. Here we use three-dimensional dynamic histomorphometry to determine longitudinal changes in vertebral trabecular microarchitecture in adolescent male cynomolgus monkeys (4-5 years old) treated with sclerostin antibody. Animals were treated bi-weekly with either sclerostin antibody (30 mg/kg, sc, n = 6) or vehicle (n = 6) for 10 weeks. Animals were administered fluorochrome bone formation labels on days 14 and 24 (tetracycline) and on days 56 and 66 (calcein), followed by necropsy on day 70. Cylindrical specimens of cancellous bone from the 5th lumbar vertebrae were used to generate high-resolution, three-dimensional images of bone and fluorescent labels of bone formation (0.7 × 0.7 × 5.0 µm/voxel). The three-dimensional images of the bone formation labels were used to determine the bone volume formed between days 14 and 66 and the resulting alterations in trabecular microarchitecture within each bone. Treatment with sclerostin antibody resulted in a conversion of rod-like trabeculae into plate-like trabeculae at a higher rate than in vehicle-treated animals (p = 0.01). Plate bone volume fraction was greater in the sclerostin antibody group relative to vehicle (mean 43 vs. 30%, p < 0.05). Bone formation increased the thickness of trabeculae in all three trabecular orientations (axial, oblique, and transverse, p < 0.05). The volume of bone formed between days 14 to 66 was greater in sclerostin antibody-treated groups (9.0 vs. 5.4%, p = 0.02), and new bone formation due to sclerostin antibody treatment was associated with increased apparent stiffness as determined from finite element models. Our results demonstrate that increased bone formation associated with sclerostin antibody treatment increases plate-like trabecular morphology and improves mechanical performance.
Collapse
Affiliation(s)
- Jonathan B Matheny
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, 355 Upson Hall, Ithaca, NY, 14853, USA
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Ashley M Torres
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, 355 Upson Hall, Ithaca, NY, 14853, USA
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Michael S Ominsky
- Department of Cardiometabolic Disorders, Amgen Inc., Thousand Oaks, CA, USA
| | - Christopher J Hernandez
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, 355 Upson Hall, Ithaca, NY, 14853, USA.
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
- Hospital for Special Surgery, New York, NY, USA.
| |
Collapse
|
25
|
de Bakker CM, Altman-Singles AR, Li Y, Tseng WJ, Li C, Liu XS. Adaptations in the Microarchitecture and Load Distribution of Maternal Cortical and Trabecular Bone in Response to Multiple Reproductive Cycles in Rats. J Bone Miner Res 2017; 32:1014-1026. [PMID: 28109138 PMCID: PMC5537002 DOI: 10.1002/jbmr.3084] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 01/09/2017] [Accepted: 01/19/2017] [Indexed: 12/15/2022]
Abstract
Pregnancy, lactation, and weaning result in dramatic changes in maternal calcium metabolism. In particular, the increased calcium demand during lactation causes a substantial degree of maternal bone loss. This reproductive bone loss has been suggested to be largely reversible, as multiple clinical studies have found that parity and lactation history have no adverse effect on postmenopausal fracture risk. However, the precise effects of pregnancy, lactation, and post-weaning recovery on maternal bone structure are not well understood. Our study aimed to address this question by longitudinally tracking changes in trabecular and cortical bone microarchitecture at the proximal tibia in rats throughout three cycles of pregnancy, lactation, and post-weaning using in vivo μCT. We found that the trabecular thickness underwent a reversible deterioration during pregnancy and lactation, which was fully recovered after weaning, whereas other parameters of trabecular microarchitecture (including trabecular number, spacing, connectivity density, and structure model index) underwent a more permanent deterioration, which recovered minimally. Thus, pregnancy and lactation resulted in both transient and long-lasting alterations in trabecular microstructure. In the meantime, multiple reproductive cycles appeared to improve the robustness of cortical bone (resulting in an elevated cortical area and polar moment of inertia), as well as increase the proportion of the total load carried by the cortical bone at the proximal tibia. Taken together, changes in the cortical and trabecular compartments suggest that whereas rat tibial trabecular bone appears to be highly involved in maintaining calcium homeostasis during female reproduction, cortical bone adapts to increase its load-bearing capacity, allowing the overall mechanical function of the tibia to be maintained. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Chantal Mj de Bakker
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Allison R Altman-Singles
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Pennsylvania State University, Berks Campus, Reading, PA, USA
| | - Yihan Li
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei-Ju Tseng
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Connie Li
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - X Sherry Liu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
26
|
Zhang Z, Ren H, Shen G, Qiu T, Liang D, Yang Z, Yao Z, Tang J, Jiang X, Wei Q. Animal models for glucocorticoid-induced postmenopausal osteoporosis: An updated review. Biomed Pharmacother 2016; 84:438-446. [PMID: 27685786 DOI: 10.1016/j.biopha.2016.09.045] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 08/21/2016] [Accepted: 09/12/2016] [Indexed: 12/27/2022] Open
Abstract
Glucocorticoid-induced postmenopausal osteoporosis is a severe osteoporosis, with high risk of major osteoporotic fractures. This severe osteoporosis urges more extensive and deeper basic study, in which suitable animal models are indispensable. However, no relevant review is available introducing this model systematically. Based on the recent studies on GI-PMOP, this brief review introduces the GI-PMOP animal model in terms of its establishment, evaluation of bone mass and discuss its molecular mechanism. Rat, rabbit and sheep with their respective merits were chosen. Both direct and indirect evaluation of bone mass help to understand the bone metabolism under different intervention. The crucial signaling pathways, miRNAs, osteogenic- or adipogenic- related factors and estrogen level may be the predominant contributors to the development of glucocorticoid-induced postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Zhida Zhang
- The First School of Clinic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Hui Ren
- The First School of Clinic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Gengyang Shen
- The First School of Clinic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Ting Qiu
- The First School of Clinic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - De Liang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zhidong Yang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zhensong Yao
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jingjing Tang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xiaobing Jiang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Laboratory Affiliated to National Key Discipline of Orthopaedic and Traumatology of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Qiushi Wei
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| |
Collapse
|
27
|
Minimizing Interpolation Bias and Precision Error in In Vivo µCT-Based Measurements of Bone Structure and Dynamics. Ann Biomed Eng 2016; 44:2518-2528. [PMID: 26786342 DOI: 10.1007/s10439-015-1527-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 12/08/2015] [Indexed: 01/28/2023]
Abstract
In vivo µCT imaging allows for high-resolution, longitudinal evaluation of bone properties. Based on this technology, several recent studies have developed in vivo dynamic bone histomorphometry techniques that utilize registered µCT images to identify regions of bone formation and resorption, allowing for longitudinal assessment of bone remodeling. However, this analysis requires a direct voxel-by-voxel subtraction between image pairs, necessitating rotation of the images into the same coordinate system, which introduces interpolation errors. We developed a novel image transformation scheme, matched-angle transformation (MAT), whereby the interpolation errors are minimized by equally rotating both the follow-up and baseline images instead of the standard of rotating one image while the other remains fixed. This new method greatly reduced interpolation biases caused by the standard transformation. Additionally, our study evaluated the reproducibility and precision of bone remodeling measurements made via in vivo dynamic bone histomorphometry. Although bone remodeling measurements showed moderate baseline noise, precision was adequate to measure physiologically relevant changes in bone remodeling, and measurements had relatively good reproducibility, with intra-class correlation coefficients of 0.75-0.95. This indicates that, when used in conjunction with MAT, in vivo dynamic histomorphometry provides a reliable assessment of bone remodeling.
Collapse
|
28
|
Spatial relationships between bone formation and mechanical stress within cancellous bone. J Biomech 2016; 49:222-8. [DOI: 10.1016/j.jbiomech.2015.12.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/02/2015] [Accepted: 12/03/2015] [Indexed: 12/15/2022]
|