1
|
Kanabuchi R, Hamai R, Mori Y, Hamada S, Shiwaku Y, Sai Y, Tsuchiya K, Aizawa T, Suzuki O. Enhanced osteogenic capacity of octacalcium phosphate involving adsorption of stromal-derived factor-1 in a standardized defect of a rat femur. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2025; 36:23. [PMID: 40019693 PMCID: PMC11870905 DOI: 10.1007/s10856-025-06872-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/17/2025] [Indexed: 03/01/2025]
Abstract
This study investigated whether octacalcium phosphate (OCP) enhances bone regeneration through its synergistic effect with stromal-derived factor-1 (SDF-1). Recombinant SDF-1 (0.5-5.0 μg) was combined with OCP granules through lyophilization. OCP/SDF-1 granules were implanted into a rat femoral standardized defect for 2 and 4 weeks and subjected to histomorphometry, C-X-C motif chemokine receptor 4 (CXCR4) and osteocalcin immunohistomorphometry, and tartrate-resistant acid phosphatase (TRAP) staining. Calcium-deficient hydroxyapatite (CDHA) was used as a control for in vitro analyses. Mesenchymal stem cell (MSC) migration was estimated using a Transwell system with OCP/SDF-1. SDF-1 release from OCP/SDF-1 into the supernatant was determined without cells. SDF-1 adsorption in 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid buffer onto OCP, the chemical structure of OCP immersed in the medium using Fourier transform infrared spectroscopy, and the degree of supersaturation of the medium were determined. Bone regeneration and OCP degradation were enhanced the most by 1.0 μg of OCP/SDF-1 at 2 weeks after implantation by CT analysis and increasing CXCR4-positive, osteocalcin-positive, and TRAP-positive cells accumulation around the OCP. MSC migration increased until 48 h in the following order: SDF-1 only, CDHA/SDF-1, and OCP/SDF-1, with the greatest effect with 1.0 μg of SDF-1 than from OCP. CDHA promoted a greater release than OCP at 48 h. The physicochemical analyses indicated that SDF-1 interacted with OCP through Freundlich-type adsorption and that the adsorption controlled SDF-1 release from OCP during the hydrolysis into CDHA. Therefore, leveraging its molecular affinity for the OCP surface, OCP/SDF-1 facilitates MSC migration and enhances bone formation by ensuring the controlled, sustained release of SDF-1 from OCP.
Collapse
Affiliation(s)
- Ryuichi Kanabuchi
- Division of Craniofacial Function Engineering (Division of Biomaterials Science and Engineering), Tohoku University Graduate School of Dentistry, Sendai, Japan
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryo Hamai
- Division of Craniofacial Function Engineering (Division of Biomaterials Science and Engineering), Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yu Mori
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Soshi Hamada
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukari Shiwaku
- Division of Craniofacial Function Engineering (Division of Biomaterials Science and Engineering), Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yuko Sai
- Division of Craniofacial Function Engineering (Division of Biomaterials Science and Engineering), Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Kaori Tsuchiya
- Division of Craniofacial Function Engineering (Division of Biomaterials Science and Engineering), Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Toshimi Aizawa
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Osamu Suzuki
- Division of Craniofacial Function Engineering (Division of Biomaterials Science and Engineering), Tohoku University Graduate School of Dentistry, Sendai, Japan.
| |
Collapse
|
2
|
Kague E, Kwon RY, Busse B, Witten PE, Karasik D. Standardization of bone morphometry and mineral density assessments in zebrafish and other small laboratory fishes using X-ray radiography and micro-computed tomography. J Bone Miner Res 2024; 39:1695-1710. [PMID: 39475005 PMCID: PMC11642618 DOI: 10.1093/jbmr/zjae171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/19/2024] [Accepted: 10/28/2024] [Indexed: 12/14/2024]
Abstract
Zebrafish and other small laboratory fishes are emerging as important animal models for investigating human skeletal development and diseases. In recent years, there has been a notable increase in research publications employing X-ray radiography and micro-computed tomography to analyze the skeletal structures of these animals. However, evaluating bone morphology and mineral density in small laboratory fish poses unique challenges compared to well-established small rodent models. The varied approaches to image acquisition, analysis, and reporting across studies have led to substantial obstacles in interpreting and comparing research findings. This article addresses the urgent need for standardized reporting of parameters and methodologies related to image acquisition and analysis, as well as the adoption of harmonized nomenclature. Furthermore, it offers guidance on anatomical terminology, units of measurement, and the establishment of minimal parameters for reporting, along with comprehensive documentation of methods and algorithms used for acquisition and analysis. We anticipate that adherence to these guidelines will enhance the consistency, reproducibility, and interpretability of reported measurements of bone density and morphometry in small fish models. These advancements are vital for accurately interpreting phenotypes and gene functions, particularly in the context of multi-center studies.
Collapse
Affiliation(s)
- Erika Kague
- Institute of Genetics and Cancer, Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Ronald Young Kwon
- Department of Orthopedics and Sports Medicine, University of Washington School of Medicine, Seattle, WA 98105, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, United States
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
- Interdisciplinary Competence Center for Interface Research (ICCIR), University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Paul Eckhard Witten
- Evolutionary Developmental Biology, Department of Biology, Ghent University, Ghent 9000, Belgium
| | - David Karasik
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| |
Collapse
|
3
|
Abreu IO, Teixeira C, Vilarinho R, Rocha ACS, Moreira JA, Oliva-Teles L, Guimarães L, Carvalho AP. Baseline Raman Spectral Fingerprints of Zebrafish Embryos and Larvae. BIOSENSORS 2024; 14:538. [PMID: 39589997 PMCID: PMC11591673 DOI: 10.3390/bios14110538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/23/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024]
Abstract
As a highly sensitive vibrational technique, Raman spectroscopy (RS) can provide valuable chemical and molecular data useful to characterise animal cell types, tissues and organs. As a label-free, rapid detection method, RS has been considered a valuable asset in forensics, biology and medicine. The technique has been applied to zebrafish for various purposes, including physiological, biochemical or bioaccumulation analyses. The available data point out its potential for the early diagnosis of detrimental effects elicited by toxicant exposure. Nevertheless, no baseline spectra are available for zebrafish embryos and larvae that could allow for suitable planning of toxicological assessments, comparison with toxicant-elicited spectra or mechanistic understanding of biochemical and physiological responses to the exposures. With this in mind, this work carried out a baseline characterisation of Raman spectra of zebrafish embryos and larvae throughout early development. Raman spectra were recorded from the iris, forebrain, melanocytes, heart, muscle and swim bladder between 24 and 168 h post-fertilisation. A chemometrics approach, based on partial least-squares discriminant analysis (PLS-DA), was used to obtain a Raman characterisation of each tissue or organ. In total, 117 Raman bands were identified, of which 24 were well represented and, thus, retained in the data analysed. Only three bands were found to be common to all organs and tissues. The PLS-DA provided a tentative Raman spectral fingerprint typical of each tissue or organ, reflecting the ongoing developmental dynamics. The bands showed frequencies previously assigned to collagen, cholesterol, various essential amino acids, carbohydrates and nucleic acids.
Collapse
Affiliation(s)
- Isabel Oliveira Abreu
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (I.O.A.); (C.T.); (L.O.-T.)
- Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
- ICBAS—School of Medicine and Biomedical Sciences, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Cláudia Teixeira
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (I.O.A.); (C.T.); (L.O.-T.)
- Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Rui Vilarinho
- IFIMUP—Institute of Physics for Advanced Materials, Nanotechnology and Photonics, Faculty of Sciences of the University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; (R.V.); (J.A.M.)
| | - A. Cristina S. Rocha
- MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal;
| | - Joaquim Agostinho Moreira
- IFIMUP—Institute of Physics for Advanced Materials, Nanotechnology and Photonics, Faculty of Sciences of the University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; (R.V.); (J.A.M.)
| | - Luís Oliva-Teles
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (I.O.A.); (C.T.); (L.O.-T.)
- Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Laura Guimarães
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (I.O.A.); (C.T.); (L.O.-T.)
| | - António Paulo Carvalho
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (I.O.A.); (C.T.); (L.O.-T.)
- Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| |
Collapse
|
4
|
Fang J, Wang X, Lai H, Li W, Yao X, Pan Z, Mao R, Yan Y, Xie C, Lin J, Sun W, Li R, Wang J, Dai J, Xu K, Yu X, Xu T, Duan W, Qian J, Ouyang H, Dai X. Decoding the mechanical characteristics of the human anterior cruciate ligament entheses through graduated mineralization interfaces. Nat Commun 2024; 15:9253. [PMID: 39462005 PMCID: PMC11513108 DOI: 10.1038/s41467-024-53542-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
The anterior cruciate ligament is anchored to the femur and tibia via specialized interfaces known as entheses. These play a critical role in ligament homeostasis and joint stability by transferring forces, varying in magnitude and direction between structurally and functionally dissimilar tissues. However, the precise structural and mechanical characteristics underlying the femoral and tibial entheses and their intricate interplay remain elusive. In this study, two thin-graduated mineralization regions in the femoral enthesis (~21 μm) and tibial enthesis (~14 μm) are identified, both exhibiting distinct biomolecular compositions and mineral assembly patterns. Notably, the femoral enthesis interface exhibits progressively maturing hydroxyapatites, whereas the mineral at the tibial enthesis interface region transitions from amorphous calcium phosphate to hydroxyapatites with increasing crystallinity. Proteomics results reveal that Matrix Gla protein uniquely enriched at the tibial enthesis interface, may stabilize amorphous calcium phosphate, while C-type lectin domain containing 11 A, enriched at the femoral enthesis interface, could facilitate the interface mineralization. Moreover, the finite element analysis indicates that the femoral enthesis model exhibited higher resistance to shearing, whereas the tibial enthesis model contributes to tensile resistance, suggesting that the discrepancy in biomolecular expression and the corresponding mineral assembly heterogeneities collectively contribute to the superior mechanical properties of both the femoral enthesis and tibial enthesis models. These findings provide novel perspectives on the structure-function relationships of anterior cruciate ligament entheses, paving the way for improved management of anterior cruciate ligament injury and regeneration.
Collapse
Affiliation(s)
- Jinghua Fang
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaozhao Wang
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Huinan Lai
- Department of Engineering Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Wenyue Li
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Xudong Yao
- Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Zongyou Pan
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Renwei Mao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yiyang Yan
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Chang Xie
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- China Orthopedic Regenerative Medicine Group, Hangzhou (CorMed), Hangzhou, China
| | - Junxin Lin
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Sun
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Rui Li
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- China Orthopedic Regenerative Medicine Group, Hangzhou (CorMed), Hangzhou, China
| | - Jiajie Wang
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| | - Jiacheng Dai
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| | - Kaiwang Xu
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinning Yu
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| | - Tengjing Xu
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| | - Wangping Duan
- Department of Orthopedics, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jin Qian
- Department of Engineering Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, China.
| | - Hongwei Ouyang
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, China.
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.
- China Orthopedic Regenerative Medicine Group, Hangzhou (CorMed), Hangzhou, China.
| | - Xuesong Dai
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China.
- Key Laboratory of Motor System Disease Research and Precision Therapy, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China.
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
5
|
Zhang Y, Ma S, Nie J, Liu Z, Chen F, Li A, Pei D. Journey of Mineral Precursors in Bone Mineralization: Evolution and Inspiration for Biomimetic Design. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2207951. [PMID: 37621037 DOI: 10.1002/smll.202207951] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/27/2023] [Indexed: 08/26/2023]
Abstract
Bone mineralization is a ubiquitous process among vertebrates that involves a dynamic physical/chemical interplay between the organic and inorganic components of bone tissues. It is now well documented that carbonated apatite, an inorganic component of bone, is proceeded through transient amorphous mineral precursors that transforms into the crystalline mineral phase. Here, the evolution on mineral precursors from their sources to the terminus in the bone mineralization process is reviewed. How organisms tightly control each step of mineralization to drive the formation, stabilization, and phase transformation of amorphous mineral precursors in the right place, at the right time, and rate are highlighted. The paradigm shifts in biomineralization and biomaterial design strategies are intertwined, which promotes breakthroughs in biomineralization-inspired material. The design principles and implementation methods of mineral precursor-based biomaterials in bone graft materials such as implant coatings, bone cements, hydrogels, and nanoparticles are detailed in the present manuscript. The biologically controlled mineralization mechanisms will hold promise for overcoming the barriers to the application of biomineralization-inspired biomaterials.
Collapse
Affiliation(s)
- Yuchen Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shaoyang Ma
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiaming Nie
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhongbo Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Faming Chen
- School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Dandan Pei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
6
|
Wang N, Wang X, Yan T, Xie H, Wang L, Ren F, Chen D, Zhang D, Zeng Q, Zhu S, Chen X. Label-free structural and functional volumetric imaging by dual-modality optical-Raman projection tomography. SCIENCE ADVANCES 2023; 9:eadf3504. [PMID: 36961894 PMCID: PMC10038343 DOI: 10.1126/sciadv.adf3504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Mesoscale volumetric imaging is of great importance for the study of bio-organisms. Among others, optical projection tomography provides unprecedented structural details of specimens, but it requires fluorescence label for chemical targeting. Raman spectroscopic imaging is able to identify chemical components in a label-free manner but lacks microstructure. Here, we present a dual-modality optical-Raman projection tomography (ORPT) technology, which enables label-free three-dimensional imaging of microstructures and components of millimeter-sized samples with a micron-level spatial resolution on the same device. We validate the feasibility of our ORPT system using images of polystyrene beads in a volume, followed by detecting biomolecules of zebrafish and Arabidopsis, demonstrating that fused three-dimensional images of the microstructure and molecular components of bio-samples could be achieved. Last, we observe the fat body of Drosophila melanogaster at different developmental stages. Our proposed technology enables bimodal label-free volumetric imaging of the structure and function of biomolecules in a large sample.
Collapse
Affiliation(s)
- Nan Wang
- Biomedical Photonics and Molecular Imaging Laboratory, School of Life Science and Technology, Xidian University, and Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, Xi’an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi’an, Shaanxi 710126, China
| | - Xinyu Wang
- Biomedical Photonics and Molecular Imaging Laboratory, School of Life Science and Technology, Xidian University, and Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, Xi’an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi’an, Shaanxi 710126, China
| | - Tianyu Yan
- Biomedical Photonics and Molecular Imaging Laboratory, School of Life Science and Technology, Xidian University, and Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, Xi’an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi’an, Shaanxi 710126, China
| | - Hui Xie
- Biomedical Photonics and Molecular Imaging Laboratory, School of Life Science and Technology, Xidian University, and Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, Xi’an, Shaanxi 710126, China
| | - Lin Wang
- School of Computer Science and Engineering, Xi’an University of Technology, Xi’an, Shaanxi 710048, China
| | - Feng Ren
- Biomedical Photonics and Molecular Imaging Laboratory, School of Life Science and Technology, Xidian University, and Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, Xi’an, Shaanxi 710126, China
| | - Dan Chen
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi’an, Shaanxi 710126, China
| | - Dongjie Zhang
- Biomedical Photonics and Molecular Imaging Laboratory, School of Life Science and Technology, Xidian University, and Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, Xi’an, Shaanxi 710126, China
| | - Qi Zeng
- Biomedical Photonics and Molecular Imaging Laboratory, School of Life Science and Technology, Xidian University, and Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, Xi’an, Shaanxi 710126, China
| | - Shouping Zhu
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi’an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710126, China
| | - Xueli Chen
- Biomedical Photonics and Molecular Imaging Laboratory, School of Life Science and Technology, Xidian University, and Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, Xi’an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi’an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710126, China
- Innovation Center for Advanced Medical Imaging and Intelligent Medicine, Guangzhou Institute of Technology, Xidian University, Guangzhou, Guangdong 51055, China
| |
Collapse
|
7
|
Das RN, Tevet Y, Safriel S, Han Y, Moshe N, Lambiase G, Bassi I, Nicenboim J, Brückner M, Hirsch D, Eilam-Altstadter R, Herzog W, Avraham R, Poss KD, Yaniv K. Generation of specialized blood vessels via lymphatic transdifferentiation. Nature 2022; 606:570-575. [PMID: 35614218 PMCID: PMC9875863 DOI: 10.1038/s41586-022-04766-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/14/2022] [Indexed: 01/27/2023]
Abstract
The lineage and developmental trajectory of a cell are key determinants of cellular identity. In the vascular system, endothelial cells (ECs) of blood and lymphatic vessels differentiate and specialize to cater to the unique physiological demands of each organ1,2. Although lymphatic vessels were shown to derive from multiple cellular origins, lymphatic ECs (LECs) are not known to generate other cell types3,4. Here we use recurrent imaging and lineage-tracing of ECs in zebrafish anal fins, from early development to adulthood, to uncover a mechanism of specialized blood vessel formation through the transdifferentiation of LECs. Moreover, we demonstrate that deriving anal-fin vessels from lymphatic versus blood ECs results in functional differences in the adult organism, uncovering a link between cell ontogeny and functionality. We further use single-cell RNA-sequencing analysis to characterize the different cellular populations and transition states involved in the transdifferentiation process. Finally, we show that, similar to normal development, the vasculature is rederived from lymphatics during anal-fin regeneration, demonstrating that LECs in adult fish retain both potency and plasticity for generating blood ECs. Overall, our research highlights an innate mechanism of blood vessel formation through LEC transdifferentiation, and provides in vivo evidence for a link between cell ontogeny and functionality in ECs.
Collapse
Affiliation(s)
- Rudra N. Das
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel, Corresponding Authors Karina Yaniv Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 76100, Israel, , Rudra N. Das Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 76100, Israel,
| | - Yaara Tevet
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Stav Safriel
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Yanchao Han
- Duke Regeneration Center, Department of Cell Biology, Duke University School of Medicine, Durham, United States, Institute for Cardiovascular Science, Medical College, Soochow University, Suzhou, China
| | - Noga Moshe
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Giuseppina Lambiase
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Ivan Bassi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Julian Nicenboim
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Matthias Brückner
- University of Muenster and Max Plank Institute for Molecular Biomedicine, Muenster, Germany
| | - Dana Hirsch
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | | | - Wiebke Herzog
- University of Muenster and Max Plank Institute for Molecular Biomedicine, Muenster, Germany
| | - Roi Avraham
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Kenneth D. Poss
- Duke Regeneration Center, Department of Cell Biology, Duke University School of Medicine, Durham, United States
| | - Karina Yaniv
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel, Corresponding Authors Karina Yaniv Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 76100, Israel, , Rudra N. Das Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 76100, Israel,
| |
Collapse
|
8
|
Abidin IZZ, Manogaran T, Wahab RMA, Yazid F, Ariffin SHZ. A Comparative Analysis of Ascorbic Acid-induced Cytotoxicity and Differentiation between SHED and DPSC. Curr Stem Cell Res Ther 2022; 17:576-588. [DOI: 10.2174/1574888x17666220124141310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/13/2021] [Accepted: 11/26/2021] [Indexed: 11/22/2022]
Abstract
Aim:
The aim of this study was to compare dental pulp tissue in human exfoliated deciduous teeth (SHEDs) and dental pulp stem cells (DPSCs) in response to ascorbic acid as the sole osteoblast inducer.
Background:
A cocktail of ascorbic acid, β-glycerophosphate, and dexamethasone has been widely used to induce osteoblast differentiation. However, under certain conditions, β-glycerophosphate and dexamethasone can cause a decrease in cell viability in stem cells.
Objectives:
This study aims to determine the cytotoxic effect and potential of ascorbic acid as the sole inducer of osteoblast differentiation.
Methods:
Cytotoxicity analyses in the presence of 10-500 µg/mL ascorbic acid were performed in both cell types using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The concentrations below the IC50 (i.e., 10-150 µg/mL) were used to determine osteoblast differentiation potential of ascorbic acid using the alkaline phosphatase (ALP) assay, von Kossa staining, and reverse transcription-polymerase chain reaction.
Results:
SHEDs and DPSCs proliferated for 21 days, expressed a Mesenchymal Stem Cell (MSC) marker (CD73+), and did not express Hematopoietic Stem Cell (HSC) markers (CD34- and SLAMF1-). SHEDs had a higher range of IC50 values (215-240 µg/mL ascorbic acid), while the IC50 values for DPSCs were 177-211 µg/mL after 24-72 hours. SHEDs treated with 10-100 µg/mL ascorbic acid alone exhibited higher ALP-specific activity and a higher percentage of mineralisation than DPSCs. Both cell types expressed osteoblast markers on day 21, i.e., RUNX2+ and BSP+, in the presence of ascorbic acid.
Conclusions:
SHEDs survive at higher concentrations of ascorbic acid as compared to DPSC. The cytotoxic effect was only exhibited at ≥250 µg/mL ascorbic acid. In addition, SHED exhibited better ALP and mineralization activities, but lower osteoblast marker expression than DPSC in response to ascorbic acid as the sole inducer.
Collapse
Affiliation(s)
| | - Thanaletchumi Manogaran
- Department of Biological Science and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Rohaya Megat Abdul Wahab
- Centre of Family Dental Health, Faculty of Dentistry, Universiti Kebangsaaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Farinawati Yazid
- Centre of Family Dental Health, Faculty of Dentistry, Universiti Kebangsaaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Shahrul Hisham Zainal Ariffin
- Department of Biological Science and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| |
Collapse
|
9
|
Kahil K, Weiner S, Addadi L, Gal A. Ion Pathways in Biomineralization: Perspectives on Uptake, Transport, and Deposition of Calcium, Carbonate, and Phosphate. J Am Chem Soc 2021; 143:21100-21112. [PMID: 34881565 PMCID: PMC8704196 DOI: 10.1021/jacs.1c09174] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Indexed: 12/19/2022]
Abstract
Minerals are formed by organisms in all of the kingdoms of life. Mineral formation pathways all involve uptake of ions from the environment, transport of ions by cells, sometimes temporary storage, and ultimately deposition in or outside of the cells. Even though the details of how all this is achieved vary enormously, all pathways need to respect both the chemical limitations of ion manipulation, as well as the many "housekeeping" roles of ions in cell functioning. Here we provide a chemical perspective on the biological pathways of biomineralization. Our approach is to compare and contrast the ion pathways involving calcium, phosphate, and carbonate in three very different organisms: the enormously abundant unicellular marine coccolithophores, the well investigated sea urchin larval model for single crystal formation, and the complex pathways used by vertebrates to form their bones. The comparison highlights both common and unique processes. Significantly, phosphate is involved in regulating calcium carbonate deposition and carbonate is involved in regulating calcium phosphate deposition. One often overlooked commonality is that, from uptake to deposition, the solutions involved are usually supersaturated. This therefore requires not only avoiding mineral deposition where it is not needed but also exploiting this saturated state to produce unstable mineral precursors that can be conveniently stored, redissolved, and manipulated into diverse shapes and upon deposition transformed into more ordered and hence often functional final deposits.
Collapse
Affiliation(s)
- Keren Kahil
- Department
of Chemical and Structural Biology and Department of Plant and Environmental
Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Steve Weiner
- Department
of Chemical and Structural Biology and Department of Plant and Environmental
Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Lia Addadi
- Department
of Chemical and Structural Biology and Department of Plant and Environmental
Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Assaf Gal
- Department
of Chemical and Structural Biology and Department of Plant and Environmental
Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| |
Collapse
|
10
|
Lei C, Wang YH, Zhuang PX, Li YT, Wan QQ, Ma YX, Tay FR, Niu LN. Applications of Cryogenic Electron Microscopy in Biomineralization Research. J Dent Res 2021; 101:505-514. [PMID: 34918556 DOI: 10.1177/00220345211053814] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Biological mineralization is a natural process manifested by living organisms in which inorganic minerals crystallize under the scrupulous control of biomolecules, producing hierarchical organic-inorganic composite structures with physical properties and design that galvanize even the most ardent structural engineer and architect. Understanding the mechanisms that control the formation of biominerals is challenging in the biomimetic engineering of hard tissues. In this regard, the contribution of cryogenic electron microscopy (cryo-EM) has been nothing short of phenomenal. By preserving materials in their native hydrated status and reducing damage caused by ion beam radiation, cryo-EM outperforms conventional transmission electron microscopy in its ability to directly observe the morphologic evolution of mineral precursor phases at different stages of biomineralization with nanoscale spatial resolution and subsecond temporal resolution in 2 or 3 dimensions. In the present review, the development and applications of cryo-EM are discussed to support the use of this powerful technique in dental research. Because of the rapid development of cryogenic sample preparation techniques, direct electron detection, and image-processing algorithms, the last decade has witnessed an exponential increase in the use of cryo-EM in structural biology and materials research. By amalgamating with other analytic techniques, cryo-EM may be used for qualitative and quantitative analyses of the kinetics and thermodynamic mechanisms in which organic macromolecules participate in the transformation of mineral precursors from their original liquid state to amorphous and ultimately crystalline phases. The present review concentrates on the biomineralization of calcium phosphate mineral phases, while that of calcium carbonate, silica, and magnetite is only briefly mentioned. Bioinspired organic matrix-mediated inorganic crystallization strategies are discussed from the perspective of tissue regeneration engineering.
Collapse
Affiliation(s)
- C Lei
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, School of Stomatology, the Fourth Military Medical University, Xi'an, China
| | - Y H Wang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, School of Stomatology, the Fourth Military Medical University, Xi'an, China.,Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - P X Zhuang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, School of Stomatology, the Fourth Military Medical University, Xi'an, China
| | - Y T Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, School of Stomatology, the Fourth Military Medical University, Xi'an, China
| | - Q Q Wan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, School of Stomatology, the Fourth Military Medical University, Xi'an, China
| | - Y X Ma
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, School of Stomatology, the Fourth Military Medical University, Xi'an, China
| | - F R Tay
- The Graduate School, Augusta University, Augusta, GA, USA
| | - L N Niu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, School of Stomatology, the Fourth Military Medical University, Xi'an, China
| |
Collapse
|
11
|
Varsano N, Kahil K, Haimov H, Rechav K, Addadi L, Weiner S. Characterization of the growth plate-bone interphase region using cryo-FIB SEM 3D volume imaging. J Struct Biol 2021; 213:107781. [PMID: 34411695 DOI: 10.1016/j.jsb.2021.107781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 11/27/2022]
Abstract
The interphase region at the base of the growth plate includes blood vessels, cells and mineralized tissues. In this region, cartilage is mineralized and replaced with bone. Blood vessel extremities permeate this space providing nutrients, oxygen and signaling factors. All these different components form a complex intertwined 3D structure. Here we use cryo-FIB SEM to elaborate this 3D structure without removing the water. As it is challenging to image mineralized and unmineralized tissues in a hydrated state, we provide technical details of the parameters used. We obtained two FIB SEM image stacks that show that the blood vessels are in intimate contact not only with cells, but in some locations also with mineralized tissues. There are abundant red blood cells at the extremities of the vessels. We also documented large multinucleated cells in contact with mineralized cartilage and possibly also with bone. We observed membrane bound mineralized particles in these cells, as well as in blood serum, but not in the hypertrophic chondrocytes. We confirm that there is an open pathway from the blood vessel extremities to the mineralizing cartilage. Based on the sparsity of the mineralized particles, we conclude that mainly ions in solution are used for mineralizing cartilage and bone, but these are augmented by the supply of mineralized particles.
Collapse
Affiliation(s)
- Neta Varsano
- Department of Chemical and Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Keren Kahil
- Department of Chemical and Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Heden Haimov
- Department of Chemical and Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Katya Rechav
- Department of Chemical Research Support, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Lia Addadi
- Department of Chemical and Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Steve Weiner
- Department of Chemical and Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel.
| |
Collapse
|
12
|
Peled-Zehavi H, Gal A. Exploring Intracellular Ion Pools in Coccolithophores Using Live-Cell Imaging. Adv Biol (Weinh) 2021; 5:e2000296. [PMID: 33852773 DOI: 10.1002/adbi.202000296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 02/08/2021] [Indexed: 11/06/2022]
Abstract
Some microorganisms, such as coccolithophores, produce an intricate exoskeleton made of inorganic solids. Coccoliths, the calcium carbonate scales of coccolithophores, are examples of the precise bioproduction of such complex 3D structures. However, the understanding of the cellular mechanisms that control mineral formation inside the cell, specifically the ability of these microalgae to transport high fluxes of inorganic building blocks, is still limited. Recently, using cryo-electron and X-ray microscopy, several intracellular compartments are shown to store high concentrations of calcium and phosphorous and are suggested to have a dominant role in the intracellular mineralization pathway. Here, live-cell confocal microscopy and fluorescent markers are used to examine the dynamics of ion stores in coccolithophores. Using calcein and 4',6-diamidino-2-phenylindole (DAPI) as fluorescent proxies for calcium and polyphosphates, the experiments reveal an unexpected plethora of organelles with distinct fluorescent signatures over a wide range of strains and conditions. Surprisingly, the fluorescent labeling does not show changes along the calcification process and is similar between calcifying and noncalcifying cells, suggesting that these ion pools may not be a dynamic avenue for calcium transport. In such a case, the enigma behind the ability of coccolithophores to sustain intracellular calcification still awaits comprehensive elucidation.
Collapse
Affiliation(s)
- Hadas Peled-Zehavi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Assaf Gal
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
13
|
Dietrich K, Fiedler IA, Kurzyukova A, López-Delgado AC, McGowan LM, Geurtzen K, Hammond CL, Busse B, Knopf F. Skeletal Biology and Disease Modeling in Zebrafish. J Bone Miner Res 2021; 36:436-458. [PMID: 33484578 DOI: 10.1002/jbmr.4256] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022]
Abstract
Zebrafish are teleosts (bony fish) that share with mammals a common ancestor belonging to the phylum Osteichthyes, from which their endoskeletal systems have been inherited. Indeed, teleosts and mammals have numerous genetically conserved features in terms of skeletal elements, ossification mechanisms, and bone matrix components in common. Yet differences related to bone morphology and function need to be considered when investigating zebrafish in skeletal research. In this review, we focus on zebrafish skeletal architecture with emphasis on the morphology of the vertebral column and associated anatomical structures. We provide an overview of the different ossification types and osseous cells in zebrafish and describe bone matrix composition at the microscopic tissue level with a focus on assessing mineralization. Processes of bone formation also strongly depend on loading in zebrafish, as we elaborate here. Furthermore, we illustrate the high regenerative capacity of zebrafish bones and present some of the technological advantages of using zebrafish as a model. We highlight zebrafish axial and fin skeleton patterning mechanisms, metabolic bone disease such as after immunosuppressive glucocorticoid treatment, as well as osteogenesis imperfecta (OI) and osteopetrosis research in zebrafish. We conclude with a view of why larval zebrafish xenografts are a powerful tool to study bone metastasis. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Kristin Dietrich
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Healthy Aging TU Dresden, Dresden, Germany
| | - Imke Ak Fiedler
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anastasia Kurzyukova
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Healthy Aging TU Dresden, Dresden, Germany
| | - Alejandra C López-Delgado
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Healthy Aging TU Dresden, Dresden, Germany
| | - Lucy M McGowan
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Karina Geurtzen
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Healthy Aging TU Dresden, Dresden, Germany
| | - Chrissy L Hammond
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Interdisciplinary Competence Center for Interface Research (ICCIR), Hamburg, Germany
| | - Franziska Knopf
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Healthy Aging TU Dresden, Dresden, Germany
| |
Collapse
|
14
|
Heiligenstein X, de Beer M, Heiligenstein J, Eyraud F, Manet L, Schmitt F, Lamers E, Lindenau J, Kea-Te Lindert M, Salamero J, Raposo G, Sommerdijk N, Belle M, Akiva A. HPM live μ for a full CLEM workflow. Methods Cell Biol 2021; 162:115-149. [PMID: 33707009 DOI: 10.1016/bs.mcb.2020.10.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
With the development of advanced imaging methods that took place in the last decade, the spatial correlation of microscopic and spectroscopic information-known as multimodal imaging or correlative microscopy (CM)-has become a broadly applied technique to explore biological and biomedical materials at different length scales. Among the many different combinations of techniques, Correlative Light and Electron Microscopy (CLEM) has become the flagship of this revolution. Where light (mainly fluorescence) microscopy can be used directly for the live imaging of cells and tissues, for almost all applications, electron microscopy (EM) requires fixation of the biological materials. Although sample preparation for EM is traditionally done by chemical fixation and embedding in a resin, rapid cryogenic fixation (vitrification) has become a popular way to avoid the formation of artifacts related to the chemical fixation/embedding procedures. During vitrification, the water in the sample transforms into an amorphous ice, keeping the ultrastructure of the biological sample as close as possible to the native state. One immediate benefit of this cryo-arrest is the preservation of protein fluorescence, allowing multi-step multi-modal imaging techniques for CLEM. To minimize the delay separating live imaging from cryo-arrest, we developed a high-pressure freezing (HPF) system directly coupled to a light microscope. We address the optimization of sample preservation and the time needed to capture a biological event, going from live imaging to cryo-arrest using HPF. To further explore the potential of cryo-fixation related to the forthcoming transition from imaging 2D (cell monolayers) to imaging 3D samples (tissue) and the associated importance of homogeneous deep vitrification, the HPF core technology has been revisited to allow easy modification of the environmental parameters during vitrification. Lastly, we will discuss the potential of our HPM within CLEM protocols especially for correlating live imaging using the Zeiss LSM900 with electron microscopy.
Collapse
Affiliation(s)
| | - Marit de Beer
- Electron Microscopy Center, Radboudumc Technology Center Microscopy, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Cell Biology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Biochemistry, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | | | | | | | | | - Mariska Kea-Te Lindert
- Electron Microscopy Center, Radboudumc Technology Center Microscopy, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Cell Biology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jean Salamero
- SERPICO Inria Team/UMR 144 CNRS & National Biology and Health Infrastructure "France Bioimaging", Institut Curie, Paris, France
| | - Graça Raposo
- Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), Paris, France; Institut Curie, PSL Research University, CNRS, UMR144, Structure and Membrane Compartments, Paris, France
| | - Nico Sommerdijk
- Electron Microscopy Center, Radboudumc Technology Center Microscopy, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Biochemistry, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Anat Akiva
- Electron Microscopy Center, Radboudumc Technology Center Microscopy, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Cell Biology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
15
|
Querido W, Kandel S, Pleshko N. Applications of Vibrational Spectroscopy for Analysis of Connective Tissues. Molecules 2021; 26:922. [PMID: 33572384 PMCID: PMC7916244 DOI: 10.3390/molecules26040922] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/30/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
Advances in vibrational spectroscopy have propelled new insights into the molecular composition and structure of biological tissues. In this review, we discuss common modalities and techniques of vibrational spectroscopy, and present key examples to illustrate how they have been applied to enrich the assessment of connective tissues. In particular, we focus on applications of Fourier transform infrared (FTIR), near infrared (NIR) and Raman spectroscopy to assess cartilage and bone properties. We present strengths and limitations of each approach and discuss how the combination of spectrometers with microscopes (hyperspectral imaging) and fiber optic probes have greatly advanced their biomedical applications. We show how these modalities may be used to evaluate virtually any type of sample (ex vivo, in situ or in vivo) and how "spectral fingerprints" can be interpreted to quantify outcomes related to tissue composition and quality. We highlight the unparalleled advantage of vibrational spectroscopy as a label-free and often nondestructive approach to assess properties of the extracellular matrix (ECM) associated with normal, developing, aging, pathological and treated tissues. We believe this review will assist readers not only in better understanding applications of FTIR, NIR and Raman spectroscopy, but also in implementing these approaches for their own research projects.
Collapse
Affiliation(s)
| | | | - Nancy Pleshko
- Department of Bioengineering, Temple University, Philadelphia, PA 19122, USA; (W.Q.); (S.K.)
| |
Collapse
|
16
|
Chen Y, Koshy R, Guirado E, George A. STIM1 a calcium sensor promotes the assembly of an ECM that contains Extracellular vesicles and factors that modulate mineralization. Acta Biomater 2021; 120:224-239. [PMID: 33130308 DOI: 10.1016/j.actbio.2020.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 10/04/2020] [Accepted: 10/07/2020] [Indexed: 01/07/2023]
Abstract
Osteoblasts and odontoblasts, are non-excitable cells and facilitate mass calcium transport during matrix mineralization. A sophisticated Ca2+ sensing mechanism is used to maintain Ca2+ homeostasis. STIM1 (Stromal interaction molecule 1) is a calcium sensor protein localized in the ER membrane and maintains calcium homeostasis by initiating the store-operated Ca2+ entry (SOCE) process, following store depletion. The role of STIM1 in dentin mineralization is yet to be elucidated. Therefore, transgenic DPSCs were generated in which overexpression or knockdown of STIM1 was achieved to study its function in matrix mineralization. Gene expression analysis and Alizarin Red staining assay demonstrated upregulation of genes involved in odontogenic differentiation and matrix mineralization with increased calcium deposition with STIM1 overexpression. Topology of the ECM examined by Field Emission Scanning Electron Microscopy (FESEM) showed the presence of large amounts of extracellular microvesicles with mineral deposits. Interestingly, silencing STIM1 resulted in fewer vesicles and less mineral deposits in the ECM. Analysis of the dentin-pulp complex of STIM1- deficient mice by micro-CT show reduced dentin thickness, malformed and highly porous alveolar bone, suggesting a cell intrinsic role for STIM1 in dentin mineralization. Confocal microscopy showed that DMP1-mediated depletion of store Ca2+ resulted in aggregation or "puncta-formation" of STIM1 at the plasma membrane indicative of a gating arrangement with Orai1 for Ca2+ influx. Together, our data provide evidence for an important role for STIM1 in dentin and alveolar bone mineralization by influencing intracellular Ca2+ oscillations that could provide signals for a wide array of cellular functions. STATEMENT OF SIGNIFICANCE: Calcium signaling and transport are fundamental to bone and dentin mineralization. Osteoblasts and odontoblasts transport large amounts of Ca2+ to the extracellular matrix. These cells maintain calcium homeostasis by spatially distributed calcium pumps and channels at the plasma membrane. STIM1 an ER Ca2+ sensor protein is an important component of the store-operated calcium entry (SOCE) process. In this study, we examined the role of STIM1 during the differentiation of dental pulp stem cells into functional odontoblasts and formation of mineralized dentin matrix. Stimulation of these cells with DMP1, a key regulatory protein in matrix mineralization, stimulates STIM1-mediated release of ER Ca2+ and SOCE activation. Silencing of STIM1 impairs signaling events, release of exosomes containing matrix proteins and matrix mineralization.
Collapse
Affiliation(s)
- Yinghua Chen
- Brodie Tooth Development Genetics & Regenerative Medicine Research Laboratory, Department of Oral Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Rahul Koshy
- Brodie Tooth Development Genetics & Regenerative Medicine Research Laboratory, Department of Oral Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Elizabeth Guirado
- Brodie Tooth Development Genetics & Regenerative Medicine Research Laboratory, Department of Oral Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Anne George
- Brodie Tooth Development Genetics & Regenerative Medicine Research Laboratory, Department of Oral Biology, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
17
|
Querido W, Shanas N, Bookbinder S, Oliveira-Nunes MC, Krynska B, Pleshko N. Fourier transform infrared spectroscopy of developing bone mineral: from amorphous precursor to mature crystal. Analyst 2020; 145:764-776. [PMID: 31755889 DOI: 10.1039/c9an01588d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bone mineral development has been described to proceed through an amorphous precursor prior to apatite crystallization. However, further analytical approaches are necessary to identify specific markers of amorphous mineral components in bone. Here, we establish an original Fourier transform infrared (FTIR) spectroscopy approach to allow the specific identification of the amorphous and/or crystalline nature of bone mineral. Using a series of standards, our results demonstrate that obtaining the second derivative of the FTIR spectra could reveal a peak specifically corresponding to amorphous calcium phosphate (ACP) at ∼992 cm-1. The intensity of this peak was strongly correlated to ACP content in standard mixtures. The analysis of a variety of bones showed that a clear ACP peak could be identified as a specific marker of the existence of an amorphous mineral component in developing bones. In contrast, the ACP peak was not detected in the mature bones. Moreover, subjecting developing bones to ex vivo crystallization conditions led to a clear reduction of the ACP peak, further substantiating the conversion of amorphous mineral precursor into mature apatite crystals. Analysis of mineralization in osteogenic cell cultures corroborated our observations, showing the presence of ACP as a major transient component in early mineralization, but not in the mature matrix. Additionally, FTIR imaging revealed that ACP was present in areas of matrix development, distributed around the edges of mineralizing nodules. Using an original analytical approach, this work provides strong evidence to support that bone mineral development is initiated by an amorphous precursor prior to apatite crystallization.
Collapse
Affiliation(s)
- William Querido
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania 19122, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Structural Biology of Calcium Phosphate Nanoclusters Sequestered by Phosphoproteins. CRYSTALS 2020. [DOI: 10.3390/cryst10090755] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Biofluids that contain stable calcium phosphate nanoclusters sequestered by phosphopeptides make it possible for soft and hard tissues to co-exist in the same organism with relative ease. The stability diagram of a solution of nanocluster complexes shows how the minimum concentration of phosphopeptide needed for stability increases with pH. In the stable region, amorphous calcium phosphate cannot precipitate. Nevertheless, if the solution is brought into contact with hydroxyapatite, the crystalline phase will grow at the expense of the nanocluster complexes. The physico-chemical principles governing the formation, composition, size, structure, and stability of the complexes are described. Examples are given of complexes formed by casein, osteopontin, and recombinant phosphopeptides. Application of these principles and properties to blood serum, milk, urine, and resting saliva is described to show that under physiological conditions they are in the stable region of their stability diagram and so cannot cause soft tissue calcification. Stimulated saliva, however, is in the metastable region, consistent with its role in tooth remineralization. Destabilization of biofluids, with consequential ill-effects, can occur when there is a failure of homeostasis, such as an increase in pH without a balancing increase in the concentration of sequestering phosphopeptides.
Collapse
|
19
|
Jahnen-Dechent W, Büscher A, Köppert S, Heiss A, Kuro-O M, Smith ER. Mud in the blood: the role of protein-mineral complexes and extracellular vesicles in biomineralisation and calcification. J Struct Biol 2020; 212:107577. [PMID: 32711043 DOI: 10.1016/j.jsb.2020.107577] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/19/2022]
Abstract
Protein-mineral interaction is known to regulate biomineral stability and morphology. We hypothesise that fluid phases produce highly dynamic protein-mineral complexes involved in physiology and pathology of biomineralisation. Here, we specifically focus on calciprotein particles, complexes of vertebrate mineral-binding proteins and calcium phosphate present in the systemic circulation and abundant in extracellular fluids - hence the designation of the ensuing protein-mineral complexes as "mud in the blood". These complexes exist amongst other extracellular particles that we collectively refer to as "the particle zoo".
Collapse
Affiliation(s)
- Willi Jahnen-Dechent
- Helmholtz-Institute for Biomedical Engineering, Biointerface Lab, RWTH Aachen University Hospital, Aachen, Germany.
| | - Andrea Büscher
- Helmholtz-Institute for Biomedical Engineering, Biointerface Lab, RWTH Aachen University Hospital, Aachen, Germany
| | - Sina Köppert
- Helmholtz-Institute for Biomedical Engineering, Biointerface Lab, RWTH Aachen University Hospital, Aachen, Germany
| | - Alexander Heiss
- The Research Institute for Precious Metals and Metals Chemistry (fem), Schwaebisch Gmuend, Germany
| | - Makoto Kuro-O
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Edward R Smith
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Australia; Department of Medicine, University of Melbourne, Parkville, Australia
| |
Collapse
|
20
|
Roschger A, Wagermaier W, Gamsjaeger S, Hassler N, Schmidt I, Blouin S, Berzlanovich A, Gruber GM, Weinkamer R, Roschger P, Paschalis EP, Klaushofer K, Fratzl P. Newly formed and remodeled human bone exhibits differences in the mineralization process. Acta Biomater 2020; 104:221-230. [PMID: 31926334 DOI: 10.1016/j.actbio.2020.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/08/2019] [Accepted: 01/05/2020] [Indexed: 12/13/2022]
Abstract
During human skeletal growth, bone is formed via different processes. Two of them are: new bone formation by depositing bone at the periosteal (outer) surface and bone remodeling corresponding to a local renewal of tissue. Since in remodeling formation is preceded by resorption, we hypothesize that modeling and remodeling could require radically different transport paths for ionic precursors of mineralization. While remodeling may recycle locally resorbed mineral, modeling implies the transport over large distances to the site of bone apposition. Therefore, we searched for potential differences of size, arrangement and chemical composition of mineral particles just below surfaces of modeling and remodeling sites in femur midshaft cross-sections from healthy children. These bone sites were mapped using scanning synchrotron X-ray scattering, Raman microspectroscopy, energy dispersive X-ray analysis and quantitative backscattered electron microscopy. The results show clear differences in mineral particle size and composition between the sites, which cannot be explained by a change in the rate of mineral apposition or accumulation. At periosteal modeling sites, mineral crystals are distinctly larger, display higher crystallinity and exhibit a lower calcium to phosphorus ratio and elevated Na and Mg content. The latter may originate from Mg used for phase stabilization of mineral precursors and therefore indicate different time periods for mineral transport. We conclude that the mineralization process is distinctively different between modeling and remodeling sites due to varying requirements for the transport distance and, therefore, the stability of non-crystalline ionic precursors, resulting in distinct compositions of the deposited mineral phase. STATEMENT OF SIGNIFICANCE: In growing children new bone is formed either due to apposition of bone tissue e.g. at the outer ridge of long bones to allow growth in thickness (bone modeling), or in cavities inside the mineralized matrix when replacing tissue (bone remodeling). We demonstrate that mineral crystal shape and composition are not the same between these two sites, which is indicative of differences in mineralization precursors. We suggest that this may be due to a longer mineral transport distance to sites of new bone formation as compared to remodeling where mineral can be locally recycled.
Collapse
Affiliation(s)
- Andreas Roschger
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, D-14424 Potsdam, Germany; Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, A-1140 Vienna, Austria; Department for Chemistry and Physics of Materials, Paris Lodron University of Salzburg, Jakob-Haringer Straße 2a, 5020 Salzburg, Austria.
| | - Wolfgang Wagermaier
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, D-14424 Potsdam, Germany
| | - Sonja Gamsjaeger
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, A-1140 Vienna, Austria
| | - Norbert Hassler
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, A-1140 Vienna, Austria
| | - Ingo Schmidt
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, D-14424 Potsdam, Germany
| | - Stéphane Blouin
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, A-1140 Vienna, Austria
| | - Andrea Berzlanovich
- Department of Forensic Medicine, Medical University of Vienna, Sensengasse 2, A-1090 Vienna, Austria
| | - Gerlinde M Gruber
- Department of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna
| | - Richard Weinkamer
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, D-14424 Potsdam, Germany
| | - Paul Roschger
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, A-1140 Vienna, Austria
| | - Eleftherios P Paschalis
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, A-1140 Vienna, Austria
| | - Klaus Klaushofer
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, A-1140 Vienna, Austria
| | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, D-14424 Potsdam, Germany
| |
Collapse
|
21
|
Herrmann M, Babler A, Moshkova I, Gremse F, Kiessling F, Kusebauch U, Nelea V, Kramann R, Moritz RL, McKee MD, Jahnen-Dechent W. Lumenal calcification and microvasculopathy in fetuin-A-deficient mice lead to multiple organ morbidity. PLoS One 2020; 15:e0228503. [PMID: 32074120 PMCID: PMC7029858 DOI: 10.1371/journal.pone.0228503] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/16/2020] [Indexed: 12/22/2022] Open
Abstract
The plasma protein fetuin-A mediates the formation of protein-mineral colloids known as calciprotein particles (CPP)-rapid clearance of these CPP by the reticuloendothelial system prevents errant mineral precipitation and therefore pathological mineralization (calcification). The mutant mouse strain D2,Ahsg-/- combines fetuin-A deficiency with the calcification-prone DBA/2 genetic background, having a particularly severe compound phenotype of microvascular and soft tissue calcification. Here we studied mechanisms leading to soft tissue calcification, organ damage and death in these mice. We analyzed mice longitudinally by echocardiography, X-ray-computed tomography, analytical electron microscopy, histology, mass spectrometry proteomics, and genome-wide microarray-based expression analyses of D2 wildtype and Ahsg-/- mice. Fetuin-A-deficient mice had calcified lesions in myocardium, lung, brown adipose tissue, reproductive organs, spleen, pancreas, kidney and the skin, associated with reduced growth, cardiac output and premature death. Importantly, early-stage calcified lesions presented in the lumen of the microvasculature suggesting precipitation of mineral containing complexes from the fluid phase of blood. Genome-wide expression analysis of calcified lesions and surrounding (not calcified) tissue, together with morphological observations, indicated that the calcification was not associated with osteochondrogenic cell differentiation, but rather with thrombosis and fibrosis. Collectively, these results demonstrate that soft tissue calcification can start by intravascular mineral deposition causing microvasculopathy, which impacts on growth, organ function and survival. Our study underscores the importance of fetuin-A and related systemic regulators of calcified matrix metabolism to prevent cardiovascular disease, especially in dysregulated mineral homeostasis.
Collapse
Affiliation(s)
- Marietta Herrmann
- Helmholtz Institute for Biomedical Engineering, Biointerface Lab, RWTH Aachen University Hospital, Aachen, Germany
| | - Anne Babler
- Helmholtz Institute for Biomedical Engineering, Biointerface Lab, RWTH Aachen University Hospital, Aachen, Germany
| | - Irina Moshkova
- Helmholtz Institute for Biomedical Engineering, Biointerface Lab, RWTH Aachen University Hospital, Aachen, Germany
| | - Felix Gremse
- Helmholtz Institute for Biomedical Engineering, Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany
| | - Fabian Kiessling
- Helmholtz Institute for Biomedical Engineering, Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany
| | - Ulrike Kusebauch
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Valentin Nelea
- Faculty of Dentistry, Faculty of Medicine (Dept. of Anatomy and Cell Biology), McGill University, Montreal, Quebec, Canada
| | - Rafael Kramann
- Division of Nephrology, RWTH Aachen University Hospital, Aachen, Germany
| | - Robert L. Moritz
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Marc D. McKee
- Faculty of Dentistry, Faculty of Medicine (Dept. of Anatomy and Cell Biology), McGill University, Montreal, Quebec, Canada
| | - Willi Jahnen-Dechent
- Helmholtz Institute for Biomedical Engineering, Biointerface Lab, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
22
|
Hughes EAB, Robinson TE, Bassett DB, Cox SC, Grover LM. Critical and diverse roles of phosphates in human bone formation. J Mater Chem B 2019; 7:7460-7470. [PMID: 31729501 DOI: 10.1039/c9tb02011j] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Humans utilise biomineralisation in the formation of bone and teeth. Human biomineralisation processes are defined by the transformation of an amorphous phosphate-based precursor to highly organised nanocrystals. Interestingly, ionic phosphate species not only provide a fundamental building block of biological mineral, but rather exhibit several diverse roles in mediating mineral formation in the physiological milieu. In this review, we focus on elucidating the complex roles of phosphate ions and molecules within human biomineralisation pathways, primarily referring to the nucleation and crystallisation of bone mineral.
Collapse
Affiliation(s)
- Erik A B Hughes
- School of Chemical Engineering, University of Birmingham, B15 2TT, UK. and NIHR Surgical Rec and Microbiology Research Centre, Queen Elizabeth Hospital, Birmingham, UK
| | - Thomas E Robinson
- School of Chemical Engineering, University of Birmingham, B15 2TT, UK.
| | - David B Bassett
- School of Chemical Engineering, University of Birmingham, B15 2TT, UK. and Department of Physics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Sophie C Cox
- School of Chemical Engineering, University of Birmingham, B15 2TT, UK.
| | - Liam M Grover
- School of Chemical Engineering, University of Birmingham, B15 2TT, UK.
| |
Collapse
|
23
|
Gelli R, Ridi F, Baglioni P. The importance of being amorphous: calcium and magnesium phosphates in the human body. Adv Colloid Interface Sci 2019; 269:219-235. [PMID: 31096075 DOI: 10.1016/j.cis.2019.04.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 11/25/2022]
Abstract
This article focuses on the relevance of amorphous calcium (and magnesium) phosphates in living organisms. Although crystalline calcium phosphate (CaP)-based materials are known to constitute the major inorganic constituents of human hard tissues, amorphous CaP-based structures, often in combination with magnesium, are frequently employed by Nature to build up components of our body and guarantee their proper functioning. After a brief description of amorphous calcium phosphate (ACP) formation mechanism and structure, this paper is focused on the stabilization strategies that can be used to enhance the lifetime of the poorly stable amorphous phase. The various locations of our body in which ACP (pure or in combination with Mg2+) can be found (i.e. bone, enamel, small intestine, calciprotein particles and casein micelles) are highlighted, showing how the amorphous nature of ACP is often of paramount importance for the achievement of a specific physiological function. The last section is devoted to ACP-based biomaterials, focusing on how these materials differ from their crystalline counterparts in terms of biological response.
Collapse
|
24
|
Intercellular pathways from the vasculature to the forming bone in the zebrafish larval caudal fin: Possible role in bone formation. J Struct Biol 2019; 206:139-148. [PMID: 30858049 DOI: 10.1016/j.jsb.2019.02.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/23/2019] [Accepted: 02/25/2019] [Indexed: 11/20/2022]
Abstract
The pathway of ion supply from the source to the site of bone deposition in vertebrates is thought to involve transport through the vasculature, followed by ion concentration in osteoblasts. The cells deposit a precursor mineral phase in vesicles, which are then exocytosed into the extracellular matrix. We observed that the entire skeleton of zebrafish larvae, is labelled within minutes after injection of calcein or FITC-dextran into the blood. This raised the possibility that there is an additional pathway of solute transport that can account for the rapid labelling. We used cryo-FIB-SEM serial block face imaging to reconstruct at high resolution the 3D ultrastructure of the caudal tail of the zebrafish larva. This reconstruction clearly shows that there is a continuous intercellular pathway from the artery to the forming bone, and from the forming bone to the vein. Fluorescence light microscopy shows that calcein and FITC-dextran form a reticulate network pattern in this tissue, which we attribute to the dye being present in the intercellular space. We conclude that this intercellular continuous space may be a supply route for ions, mineral and other solute or particulate material to the fast forming bone.
Collapse
|
25
|
de Melo Pereira D, Habibovic P. Biomineralization-Inspired Material Design for Bone Regeneration. Adv Healthc Mater 2018; 7:e1800700. [PMID: 30240157 DOI: 10.1002/adhm.201800700] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/23/2018] [Indexed: 12/22/2022]
Abstract
Synthetic substitutes of bone grafts, such as calcium phosphate-based ceramics, have shown some good clinical successes in the regeneration of large bone defects and are currently extensively used. In the past decade, the field of biomineralization has delivered important new fundamental knowledge and techniques to better understand this fascinating phenomenon. This knowledge is also applied in the field of biomaterials, with the aim of bringing the composition and structure, and hence the performance, of synthetic bone graft substitutes even closer to those of the extracellular matrix of bone. The purpose of this progress report is to critically review advances in mimicking the extracellular matrix of bone as a strategy for development of new materials for bone regeneration. Lab-made biomimicking or bioinspired materials are discussed against the background of the natural extracellular matrix, starting from basic organic and inorganic components, and progressing into the building block of bone, the mineralized collagen fibril, and finally larger, 2D and 3D constructs. Moreover, bioactivity studies on state-of-the-art biomimicking materials are discussed. By addressing these different topics, an overview is given of how far the field has advanced toward a true bone-mimicking material, and some suggestions are offered for bridging current knowledge and technical gaps.
Collapse
Affiliation(s)
- Daniel de Melo Pereira
- MERLN Institute for Technology-Inspired Regenerative Medicine; Maastricht University; P.O. Box 616 6200 MD Maastricht The Netherlands
| | - Pamela Habibovic
- MERLN Institute for Technology-Inspired Regenerative Medicine; Maastricht University; P.O. Box 616 6200 MD Maastricht The Netherlands
| |
Collapse
|
26
|
Ivanina AV, Borah BM, Vogts A, Malik I, Wu J, Chin AR, Almarza AJ, Kumta P, Piontkivska H, Beniash E, Sokolova IM. Potential trade-offs between biomineralization and immunity revealed by shell properties and gene expression profiles of two closely related Crassostrea species. ACTA ACUST UNITED AC 2018; 221:jeb.183236. [PMID: 29997158 DOI: 10.1242/jeb.183236] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/29/2018] [Indexed: 12/19/2022]
Abstract
Species of the Ostreidae family are key ecosystem engineers and many of them - including Crassostrea gigas and Crassostreavirginica - are commercially important aquaculture species. Despite similarities in their morphology and ecology, these two species differ in their ability to defend against pathogens, potentially reflecting species-specific differential specialization of hemocytes on immune defense versus biomineralization. To test this hypothesis, we investigated the expression levels of immune- and biomineralization-related genes as well as mineralogical and mechanical properties of the shells and the calcium sequestration ability of the hemocytes of C. gigas and C. virginica The expression of biomineralization-related genes was higher in C. virginica than in C. gigas in multiple tissues including the mantle edge and hemocytes, while the expression of immune genes was higher in the hemocytes of C. gigas Hemocytes of C. virginica contained more calcium (stored intracellularly as calcium carbonate mineral) compared with those of C. gigas Analysis of the adult shells showed that the crystallinity of calcite was higher and the laths of the foliated layer of the shell were thicker in C. virginica than in C. gigas Mechanically, the shells of C. virginica were stiffer, harder and stronger than those of C. gigas Taken together, our results show that the species-specific differences in physiology (such as disease resistance and exoskeleton properties) are reflected at the cellular and molecular levels in the differential specialization of hemocytes on potentially competing functions (immunity and biomineralization) as well as different expression profiles of other tissues involved in biomineralization (such as the mantle edge).
Collapse
Affiliation(s)
- Anna V Ivanina
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Ballav M Borah
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Angela Vogts
- Leibniz Institute for Baltic Sea Research Warnemünde, Warnemünde 18119, Germany
| | - Ifra Malik
- Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jingyao Wu
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Adam R Chin
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Alejandro J Almarza
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Prashant Kumta
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Helen Piontkivska
- Department of Biological Sciences, Kent State University, Kent, OH 44243, USA
| | - Elia Beniash
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA .,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Inna M Sokolova
- Department of Marine Biology, Institute of Biosciences, University of Rostock, Rostock 18059, Germany
| |
Collapse
|
27
|
Amorphous Calcium Phosphate Formation and Aggregation Process Revealed by Light Scattering Techniques. CRYSTALS 2018. [DOI: 10.3390/cryst8060254] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
28
|
Pazzaglia UE, Reguzzoni M, Pagani F, Sibilia V, Congiu T, Salvi AG, Benetti A. Study of Endochondral Ossification in Human Fetalcartilage Anlagen of Metacarpals: Comparative Morphology of Mineral Deposition in Cartilage and in the Periosteal Bone Matrix. Anat Rec (Hoboken) 2018; 301:571-580. [PMID: 29266881 DOI: 10.1002/ar.23756] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 09/22/2017] [Accepted: 10/10/2017] [Indexed: 11/10/2022]
Abstract
The progression of mineral phase deposition in hypertrophic cartilage and periosteal bone matrix was studied in human metacarpals primary ossification centers before vascular invasion began. This study aimed to provide a morphologic/morphometric comparative analysis of the calcification process in cartilage and periosteal osteoid used as models of endochondral ossification. Thin, sequential sections from the same paraffin inclusions of metacarpal anlagen (gestational age between the 20th and 22nd weeks) were examined with light microscopy and scanning electron microscopy, either stained or heat-deproteinated. This process enabled the analysis of corresponding fields using the different methods. From the initial CaPO4 nucleation in cartilage matrix, calcification progressed increasing the size of focal, globular, randomly distributed deposits (size range 0.5-5 µm), followed by aggregation into polycyclic clusters and finally forming a dense, compact mass of calcified cartilage. At the same time, the early osteoid calcification was characterized by a fine granular pattern (size range 0.1-0.5 µm), which was soon compacted in the layer of the first periosteal lamella. Scanning electron microscopy of heat-deproteinated sections revealed a rod-like hydroxyapatite crystallite pattern, with only size differences between the early globular deposits of the two calcifying matrices. The morphology of the early calcium deposits was similar in both cartilage and osteoid, with variations in size and density only. However, integration of the reported data with the actual hypotheses of the mechanisms of Ca concentration suggested that ion transport was linked to the progression of the chondrocyte maturation cycle (with recall of H2 O from the matrix) in cartilage, while ions transport was an active process through the cell membrane in osteoid. Other considered factors were the collagen type specificity and the matrix fibrillar texture. Anat Rec, 301:571-580, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ugo E Pazzaglia
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Marcella Reguzzoni
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| | - Francesca Pagani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Valeria Sibilia
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Terenzio Congiu
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| | - Andrea G Salvi
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Anna Benetti
- Department of Clinical and Experimental Sciences, University of Brescia, Italy
| |
Collapse
|
29
|
Buljan Meić I, Kontrec J, Domazet Jurašin D, Selmani A, Njegić Džakula B, Maltar-Strmečki N, Lyons DM, Plodinec M, Čeh M, Gajović A, Sikirić MD, Kralj D. How similar are amorphous calcium carbonate and calcium phosphate? A comparative study of amorphous phase formation conditions. CrystEngComm 2018. [DOI: 10.1039/c7ce01693j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Precipitation domains of ACP and ACP increase with the complexity of the system, the ACP one being always larger.
Collapse
|
30
|
Zebrafish skeleton development: High resolution micro-CT and FIB-SEM block surface serial imaging for phenotype identification. PLoS One 2017; 12:e0177731. [PMID: 29220379 PMCID: PMC5722281 DOI: 10.1371/journal.pone.0177731] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 05/02/2017] [Indexed: 12/03/2022] Open
Abstract
Although bone is one of the most studied living materials, many questions about the manner in which bones form remain unresolved, including fine details of the skeletal structure during development. In this study, we monitored skeleton development of zebrafish larvae, using calcein fluorescence, high-resolution micro-CT 3D images and FIB-SEM in the block surface serial imaging mode. We compared calcein staining of the skeletons of the wild type and nacre mutants, which are transparent zebrafish, with micro-CT for the first 30 days post fertilization embryos, and identified significant differences. We quantified the bone volumes and mineral contents of bones, including otoliths, during development, and showed that such developmental differences, including otolith development, could be helpful in identifying phenotypes. In addition, high-resolution imaging revealed the presence of mineralized aggregates in the notochord, before the formation of the first bone in the axial skeleton. These structures might play a role in the storage of the mineral. Our results highlight the potential of these high-resolution 3D approaches to characterize the zebrafish skeleton, which in turn could prove invaluable information for better understanding the development and the characterization of skeletal phenotypes.
Collapse
|
31
|
Mass T, Drake JL, Heddleston JM, Falkowski PG. Nanoscale Visualization of Biomineral Formation in Coral Proto-Polyps. Curr Biol 2017; 27:3191-3196.e3. [PMID: 29033329 DOI: 10.1016/j.cub.2017.09.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/11/2017] [Accepted: 09/06/2017] [Indexed: 11/16/2022]
Abstract
Calcium carbonate platforms produced by reef-building stony corals over geologic time are pervasive features around the world [1]; however, the mechanism by which these organisms produce the mineral is poorly understood (see review by [2]). It is generally assumed that stony corals precipitate calcium carbonate extracellularly as aragonite in a calcifying medium between the calicoblastic ectoderm and pre-existing skeleton, separated from the overlying seawater [2]. The calicoblastic ectoderm produces extracellular matrix (ECM) proteins, secreted to the calcifying medium [3-6], which appear to provide the nucleation, alteration, elongation, and inhibition mechanisms of the biomineral [7] and remain occluded and preserved in the skeleton [8-10]. Here we show in cell cultures of the stony coral Stylophora pistillata that calcium is concentrated in intracellular pockets that are subsequently exported from the cell where a nucleation process leads to the formation of extracellular aragonite crystals. Analysis of the growing crystals by lattice light-sheet microscopy suggests that the crystals elongate from the cells' surfaces outward.
Collapse
Affiliation(s)
- Tali Mass
- University of Haifa, Department of Marine Biology, The Leon H. Charney School of Marine Sciences, Multi Purpose Boulevard, Mt. Carmel, Haifa 3498838, Israel.
| | - Jeana L Drake
- Rutgers University, Department of Marine and Coastal Sciences, Dudley Road, New Brunswick, NJ 08901, USA
| | - John M Heddleston
- Howard Hughes Medical Institute Janelia Research Campus, Advanced Imaging Center, Helix Drive, Ashburn, VA 20147, USA
| | - Paul G Falkowski
- Rutgers University, Department of Marine and Coastal Sciences, Dudley Road, New Brunswick, NJ 08901, USA; Rutgers University, Department of Earth and Planetary Sciences, Taylor Road, Piscataway, NJ 08854, USA
| |
Collapse
|
32
|
Amorphous surface layer versus transient amorphous precursor phase in bone - A case study investigated by solid-state NMR spectroscopy. Acta Biomater 2017; 59:351-360. [PMID: 28690009 DOI: 10.1016/j.actbio.2017.06.040] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 12/31/2022]
Abstract
The presence of an amorphous surface layer that coats a crystalline core has been proposed for many biominerals, including bone mineral. In parallel, transient amorphous precursor phases have been proposed in various biomineralization processes, including bone biomineralization. Here we propose a methodology to investigate the origin of these amorphous environments taking the bone tissue as a key example. This study relies on the investigation of a bone tissue sample and its comparison with synthetic calcium phosphate samples, including a stoichiometric apatite, an amorphous calcium phosphate sample, and two different biomimetic apatites. To reveal if the amorphous environments in bone originate from an amorphous surface layer or a transient amorphous precursor phase, a combined solid-state nuclear magnetic resonance (NMR) experiment has been used. The latter consists of a double cross polarization 1H→31P→1H pulse sequence followed by a 1H magnetization exchange pulse sequence. The presence of an amorphous surface layer has been investigated through the study of the biomimetic apatites; while the presence of a transient amorphous precursor phase in the form of amorphous calcium phosphate particles has been mimicked with the help of a physical mixture of stoichiometric apatite and amorphous calcium phosphate. The NMR results show that the amorphous and the crystalline environments detected in our bone tissue sample belong to the same particle. The presence of an amorphous surface layer that coats the apatitic core of bone apatite particles has been unambiguously confirmed, and it is certain that this amorphous surface layer has strong implication on bone tissue biogenesis and regeneration. STATEMENT OF SIGNIFICANCE Questions still persist on the structural organization of bone and biomimetic apatites. The existing model proposes a core/shell structure, with an amorphous surface layer coating a crystalline bulk. The accuracy of this model is still debated because amorphous calcium phosphate (ACP) environments could also arise from a transient amorphous precursor phase of apatite. Here, we provide an NMR spectroscopy methodology to reveal the origin of these ACP environments in bone mineral or in biomimetic apatite. The 1H magnetization exchange between protons arising from amorphous and crystalline domains shows unambiguously that an ACP layer coats the apatitic crystalline core of bone et biomimetic apatite platelets.
Collapse
|
33
|
Sarem M, Lüdeke S, Thomann R, Salavei P, Zou Z, Habraken W, Masic A, Shastri VP. Disordered Conformation with Low Pii Helix in Phosphoproteins Orchestrates Biomimetic Apatite Formation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1701629. [PMID: 28714191 DOI: 10.1002/adma.201701629] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/18/2017] [Indexed: 06/07/2023]
Abstract
The interplay between noncollagenous proteins and biomineralization is widely accepted, yet the contribution of their secondary structure in mineral formation remains to be clarified. This study demonstrates a role for phosvitin, an intrinsically disordered phosphoprotein, in chick embryo skeletal development, and using circular dichroism and matrix least-squares Henderson-Hasselbalch global fitting, unravels three distinct pH-dependent secondary structures in phosvitin. By sequestering phosvitin on a biomimetic 3D insoluble cationic framework at defined pHs, access is gained to phosvitin in various conformational states. Induction of biomimetic mineralization at near physiological conditions reveals that a disordered secondary structure with a low content of PII helix is remarkably efficient at promoting calcium adsorption, and results in the formation of biomimetic hydroxyapatite through an amorphous calcium phosphate precursor. By extending this finding to phosphorylated full-length human recombinant dentin matrix protein-1 (17-513 AA), this bioinspired approach provides compelling evidence for the role of a disordered secondary structure in phosphoproteins in bone-like apatite formation.
Collapse
Affiliation(s)
- Melika Sarem
- Institute for Macromolecular Chemistry, BIOSS Centre for Biological Signaling Studies, University of Freiburg, 79104, Freiburg, Germany
- Helmholtz Virtual Institute, Multifunctional Biomaterials for Medicine, Kantstr. 55, 14513, Teltow, Germany
| | - Steffen Lüdeke
- Institute of Pharmaceutical Sciences, University of Freiburg, 79104, Freiburg, Germany
| | - Ralf Thomann
- Institute for Macromolecular Chemistry, University of Freiburg, 79104, Freiburg, Germany
| | - Pavel Salavei
- BIOSS Toolbox, Centre for Biological Signaling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Zhaoyong Zou
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Science Park Golm, 14424, Potsdam, Germany
| | - Wouter Habraken
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Science Park Golm, 14424, Potsdam, Germany
| | - Admir Masic
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02149, USA
| | - V Prasad Shastri
- Institute for Macromolecular Chemistry, BIOSS Centre for Biological Signaling Studies, University of Freiburg, 79104, Freiburg, Germany
- Helmholtz Virtual Institute, Multifunctional Biomaterials for Medicine, Kantstr. 55, 14513, Teltow, Germany
| |
Collapse
|
34
|
Paschalis EP, Gamsjaeger S, Klaushofer K. Vibrational spectroscopic techniques to assess bone quality. Osteoporos Int 2017; 28:2275-2291. [PMID: 28378291 DOI: 10.1007/s00198-017-4019-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/27/2017] [Indexed: 12/18/2022]
Abstract
Although musculoskeletal diseases such as osteoporosis are diagnosed and treatment outcome is evaluated based mainly on routine clinical outcomes of bone mineral density (BMD) by DXA and biochemical markers, it is recognized that these two indicators, as valuable as they have proven to be in the everyday clinical practice, do not fully account for manifested bone strength. Thus, the term bone quality was introduced, to complement considerations based on bone turnover rates and BMD. Bone quality is an "umbrella" term that incorporates the structural and material/compositional characteristics of bone tissue. Vibrational spectroscopic techniques such as Fourier transform infrared microspectroscopy (FTIRM) and imaging (FTIRI), and Raman spectroscopy, are suitable analytical tools for the determination of bone quality as they provide simultaneous, quantitative, and qualitative information on all main bone tissue components (mineral, organic matrix, tissue water), in a spatially resolved manner. Moreover, the results of such analyses may be readily combined with the outcomes of other techniques such as histology/histomorphometry, small angle X-ray scattering, quantitative backscattered electron imaging, and nanoindentation.
Collapse
Affiliation(s)
- E P Paschalis
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, 1140, Vienna, Austria.
| | - S Gamsjaeger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, 1140, Vienna, Austria
| | - K Klaushofer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, 1140, Vienna, Austria
| |
Collapse
|
35
|
Patterson JP, Xu Y, Moradi MA, Sommerdijk NAJM, Friedrich H. CryoTEM as an Advanced Analytical Tool for Materials Chemists. Acc Chem Res 2017; 50:1495-1501. [PMID: 28665585 PMCID: PMC5518272 DOI: 10.1021/acs.accounts.7b00107] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Indexed: 01/02/2023]
Abstract
Morphology plays an essential role in chemistry through the segregation of atoms and/or molecules into different phases, delineated by interfaces. This is a general process in materials synthesis and exploited in many fields including colloid chemistry, heterogeneous catalysis, and functional molecular systems. To rationally design complex materials, we must understand and control morphology evolution. Toward this goal, we utilize cryogenic transmission electron microscopy (cryoTEM), which can track the structural evolution of materials in solution with nanometer spatial resolution and a temporal resolution of <1 s. In this Account, we review examples of our own research where direct observations by cryoTEM have been essential to understanding morphology evolution in macromolecular self-assembly, inorganic nucleation and growth, and the cooperative evolution of hybrid materials. These three different research areas are at the heart of our approach to materials chemistry where we take inspiration from the myriad examples of complex materials in Nature. Biological materials are formed using a limited number of chemical components and under ambient conditions, and their formation pathways were refined during biological evolution by enormous trial and error approaches to self-organization and biomineralization. By combining the information on what is possible in nature and by focusing on a limited number of chemical components, we aim to provide an essential insight into the role of structure evolution in materials synthesis. Bone, for example, is a hierarchical and hybrid material which is lightweight, yet strong and hard. It is formed by the hierarchical self-assembly of collagen into a macromolecular template with nano- and microscale structure. This template then directs the nucleation and growth of oriented, nanoscale calcium phosphate crystals to form the composite material. Fundamental insight into controlling these structuring processes will eventually allow us to design such complex materials with predetermined and potentially unique properties.
Collapse
Affiliation(s)
| | - Yifei Xu
- Laboratory of Materials and
Interface Chemistry & Centre for Multiscale Electron Microscopy
Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The
Netherlands
- Institute for Complex Molecular
Systems, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Mohammad-Amin Moradi
- Laboratory of Materials and
Interface Chemistry & Centre for Multiscale Electron Microscopy
Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The
Netherlands
- Institute for Complex Molecular
Systems, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | | | | |
Collapse
|
36
|
Ivanina AV, Falfushynska HI, Beniash E, Piontkivska H, Sokolova IM. Biomineralization-related specialization of hemocytes and mantle tissues of the Pacific oyster Crassostrea gigas. ACTA ACUST UNITED AC 2017; 220:3209-3221. [PMID: 28667243 DOI: 10.1242/jeb.160861] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/27/2017] [Indexed: 01/09/2023]
Abstract
The molluscan exoskeleton (shell) plays multiple important roles including structural support, protection from predators and stressors, and physiological homeostasis. Shell formation is a tightly regulated biological process that allows molluscs to build their shells even in environments unfavorable for mineral precipitation. Outer mantle edge epithelial cells (OME) and hemocytes were implicated in this process; however, the exact functions of these cell types in biomineralization are not clear. Pacific oysters (Crassostrea gigas) were used to study differences in the expression profiles of selected biomineralization-related genes in hemocytes and mantle cells, and the functional characteristics of hemocytes such as adhesion, motility and phagocytosis. The specialized role of OME in shell formation was supported by high expression levels of the extracellular matrix (ECM) related and cell-cell interaction genes. Density gradient separation of hemocytes revealed distinct phenotypes based on the cell morphology, gene expression patterns, motility and adhesion characteristics. These hemocyte fractions can be categorized into two functional groups, i.e. biomineralization and immune response cells. Gene expression profiles of the putative biomineralizing hemocytes indicate that in addition to their proposed role in mineral transport, hemocytes also contribute to the formation of the ECM, thus challenging the current paradigm of the mantle as the sole source of the ECM for shell formation. Our findings corroborate the specialized roles of hemocytes and the OME in biomineralization and emphasize complexity of the biological controls over shell formation in bivalves.
Collapse
Affiliation(s)
- Anna V Ivanina
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Halina I Falfushynska
- Department of Human Health, I.Ya. Horbachevsky Ternopil State Medical University, Ternopil 46000, Ukraine
| | - Elia Beniash
- Department of Oral Biology, School of Dental Medicine, University of Pittsburg, Pittsburgh, PA 15261, USA
| | - Helen Piontkivska
- Department of Biological Sciences, Kent State University, Kent, OH 44240, USA
| | - Inna M Sokolova
- Department of Marine Biology, Institute of Biosciences, University of Rostock, Rostock 18059, Germany
| |
Collapse
|
37
|
Bertassoni LE. Dentin on the nanoscale: Hierarchical organization, mechanical behavior and bioinspired engineering. Dent Mater 2017; 33:637-649. [PMID: 28416222 PMCID: PMC5481168 DOI: 10.1016/j.dental.2017.03.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/09/2017] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Knowledge of the structural organization and mechanical properties of dentin has expanded considerably during the past two decades, especially on a nanometer scale. In this paper, we review the recent literature on the nanostructural and nanomechanical properties of dentin, with special emphasis in its hierarchical organization. METHODS We give particular attention to the recent literature concerning the structural and mechanical influence of collagen intrafibrillar and extrafibrillar mineral in healthy and remineralized tissues. The multilevel hierarchical structure of collagen, and the participation of non-collagenous proteins and proteoglycans in healthy and diseased dentin are also discussed. Furthermore, we provide a forward-looking perspective of emerging topics in biomaterials sciences, such as bioinspired materials design and fabrication, 3D bioprinting and microfabrication, and briefly discuss recent developments on the emerging field of organs-on-a-chip. RESULTS The existing literature suggests that both the inorganic and organic nanostructural components of the dentin matrix play a critical role in various mechanisms that influence tissue properties. SIGNIFICANCE An in-depth understanding of such nanostructural and nanomechanical mechanisms can have a direct impact in our ability to evaluate and predict the efficacy of dental materials. This knowledge will pave the way for the development of improved dental materials and treatment strategies. CONCLUSIONS Development of future dental materials should take into consideration the intricate hierarchical organization of dentin, and pay particular attention to their complex interaction with the dentin matrix on a nanometer scale.
Collapse
Affiliation(s)
- Luiz E Bertassoni
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA; Center for Regenerative Medicine, Oregon Health and Science University, School of Medicine, Portland, OR, USA; Department of Biomedical Engineering, Oregon Health and Science University, School of Medicine, Portland, OR, USA.
| |
Collapse
|
38
|
Weigele J, Franz-Odendaal TA. Functional bone histology of zebrafish reveals two types of endochondral ossification, different types of osteoblast clusters and a new bone type. J Anat 2017; 229:92-103. [PMID: 27278890 DOI: 10.1111/joa.12480] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2016] [Indexed: 02/01/2023] Open
Abstract
The zebrafish is as an important vertebrate animal model system for studying developmental processes, gene functions and signalling pathways. It is also used as a model system for the understanding of human developmental diseases including those related to the skeleton. However, surprisingly little is known about normal zebrafish skeletogenesis and osteogenesis. As in most vertebrates, it is commonly known that the bones of adult zebrafish are cellular unlike that of some other teleosts. After careful histological analyses of each zebrafish adult bone, we identified several acellular bones, with no entrapped osteocytes in addition to several cellular bones. We show that both cellular and acellular bones can even occur within the same skeletal element and transitions between these two cell types can be found. Furthermore, we describe two types of osteoblast clusters during skeletogenesis and two different types of endochondral ossification. The epiphyseal plate, for example, lacks a zone of calcification and a degradation zone with osteoblasts. A new bone type that we term tubular bone was also identified. This bone is completely filled with adipose tissue, unlike spongy bones. This study provides important insight on how osteogenesis takes place in zebrafish, and especially on the transition from cellular to acellular bones. Overall, this study leads to a deeper understanding of the functional histological composition of adult zebrafish bones.
Collapse
Affiliation(s)
- Jochen Weigele
- Department of Biology, Mount Saint Vincent University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
39
|
Yang HY, Niu LN, Sun JL, Huang XQ, Pei DD, Huang C, Tay FR. Biodegradable mesoporous delivery system for biomineralization precursors. Int J Nanomedicine 2017; 12:839-854. [PMID: 28182119 PMCID: PMC5279816 DOI: 10.2147/ijn.s128792] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Scaffold supplements such as nanoparticles, components of the extracellular matrix, or growth factors have been incorporated in conventional scaffold materials to produce smart scaffolds for tissue engineering of damaged hard tissues. Due to increasing concerns on the clinical side effects of using large doses of recombinant bone-morphogenetic protein-2 in bone surgery, it is desirable to develop an alternative nanoscale scaffold supplement that is not only osteoinductive, but is also multifunctional in that it can perform other significant bone regenerative roles apart from stimulation of osteogenic differentiation. Because both amorphous calcium phosphate (ACP) and silica are osteoinductive, a biodegradable, nonfunctionalized, expanded-pore mesoporous silica nanoparticle carrier was developed for loading, storage, and sustained release of a novel, biosilicification-inspired, polyamine-stabilized liquid precursor phase of ACP for collagen biomineralization and for release of orthosilicic acid, both of which are conducive to bone growth. Positively charged poly(allylamine)-stabilized ACP (PAH-ACP) could be effectively loaded and released from nonfunctionalized expanded-pore mesoporous silica nanoparticles (pMSN). The PAH-ACP released from loaded pMSN still retained its ability to infiltrate and mineralize collagen fibrils. Complete degradation of pMSN occurred following unloading of their PAH-ACP cargo. Because PAH-ACP loaded pMSN possesses relatively low cytotoxicity to human bone marrow-derived mesenchymal stem cells, these nanoparticles may be blended with any osteoconductive scaffold with macro- and microporosities as a versatile scaffold supplement to enhance bone regeneration.
Collapse
Affiliation(s)
- Hong-ye Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology, Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Li-na Niu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Jin-long Sun
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Xue-qing Huang
- Department of Prosthodontics, Guanghua School and Hospital of Stomatology, Guangdong Key Laboratory of Stomatology, Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Dan-dan Pei
- Department of Prosthodontics, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Cui Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology, Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Franklin R Tay
- Department of Endodontics, College of Dental Medicine, Augusta University, Augusta, GA, USA
| |
Collapse
|
40
|
Masic A, Schuetz R, Bertinetti L, Li C, Siegel S, Metzger H, Wagermaier W, Fratzl P. Multiscale Analysis of Mineralized Collagen Combining X-ray Scattering and Fluorescence with Raman Spectroscopy under Controlled Mechanical, Thermal, and Humidity Environments. ACS Biomater Sci Eng 2017; 3:2853-2859. [DOI: 10.1021/acsbiomaterials.6b00676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Admir Masic
- Department
of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 02139 Cambridge, United States
| | - Roman Schuetz
- Department
of Biomaterials, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam, Germany
| | - Luca Bertinetti
- Department
of Biomaterials, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam, Germany
| | - Chenghao Li
- Department
of Biomaterials, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam, Germany
| | - Stefan Siegel
- Department
of Biomaterials, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam, Germany
| | - Hartmut Metzger
- Department
of Biomaterials, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam, Germany
| | - Wolfgang Wagermaier
- Department
of Biomaterials, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam, Germany
| | - Peter Fratzl
- Department
of Biomaterials, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam, Germany
| |
Collapse
|
41
|
Rao A, Cölfen H. On the biophysical regulation of mineral growth: Standing out from the crowd. J Struct Biol 2016; 196:232-243. [DOI: 10.1016/j.jsb.2016.03.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/14/2016] [Accepted: 03/28/2016] [Indexed: 10/22/2022]
|
42
|
Akiva A, Kerschnitzki M, Pinkas I, Wagermaier W, Yaniv K, Fratzl P, Addadi L, Weiner S. Mineral Formation in the Larval Zebrafish Tail Bone Occurs via an Acidic Disordered Calcium Phosphate Phase. J Am Chem Soc 2016; 138:14481-14487. [DOI: 10.1021/jacs.6b09442] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Anat Akiva
- Department
of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Michael Kerschnitzki
- Department
of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Iddo Pinkas
- Department
of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Wolfgang Wagermaier
- Department
of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Karina Yaniv
- Department
of Biological Regulation, Weizmann Institute of Science, Rehovot76100, Israel
| | - Peter Fratzl
- Department
of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Lia Addadi
- Department
of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Steve Weiner
- Department
of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
43
|
Vidavsky N, Akiva A, Kaplan-Ashiri I, Rechav K, Addadi L, Weiner S, Schertel A. Cryo-FIB-SEM serial milling and block face imaging: Large volume structural analysis of biological tissues preserved close to their native state. J Struct Biol 2016; 196:487-495. [PMID: 27693309 DOI: 10.1016/j.jsb.2016.09.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/12/2016] [Accepted: 09/27/2016] [Indexed: 10/20/2022]
Abstract
Many important biological questions can be addressed by studying in 3D large volumes of intact, cryo fixed hydrated tissues (⩾10,000μm3) at high resolution (5-20nm). This can be achieved using serial FIB milling and block face surface imaging under cryo conditions. Here we demonstrate the unique potential of the cryo-FIB-SEM approach using two extensively studied model systems; sea urchin embryos and the tail fin of zebrafish larvae. We focus in particular on the environment of mineral deposition sites. The cellular organelles, including mitochondria, Golgi, ER, nuclei and nuclear pores are made visible by the image contrast created by differences in surface potential of different biochemical components. Auto segmentation and/or volume rendering of the image stacks and 3D reconstruction of the skeleton and the cellular environment, provides a detailed view of the relative distribution in space of the tissue/cellular components, and thus of their interactions. Simultaneous acquisition of secondary and back-scattered electron images adds additional information. For example, a serial view of the zebrafish tail reveals the presence of electron dense mineral particles inside mitochondrial networks extending more than 20μm in depth in the block. Large volume imaging using cryo FIB SEM, as demonstrated here, can contribute significantly to the understanding of the structures and functions of diverse biological tissues.
Collapse
Affiliation(s)
- Netta Vidavsky
- Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Anat Akiva
- Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Ifat Kaplan-Ashiri
- Department of Chemical Research Support, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Katya Rechav
- Department of Chemical Research Support, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Lia Addadi
- Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel.
| | - Steve Weiner
- Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Andreas Schertel
- Carl Zeiss Microscopy GmbH, Global Applications Support, Oberkochen, Germany
| |
Collapse
|
44
|
Nitiputri K, Ramasse QM, Autefage H, McGilvery CM, Boonrungsiman S, Evans ND, Stevens MM, Porter AE. Nanoanalytical Electron Microscopy Reveals a Sequential Mineralization Process Involving Carbonate-Containing Amorphous Precursors. ACS NANO 2016; 10:6826-35. [PMID: 27383526 PMCID: PMC5404715 DOI: 10.1021/acsnano.6b02443] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A direct observation and an in-depth characterization of the steps by which bone mineral nucleates and grows in the extracellular matrix during the earliest stages of maturation, using relevant biomineralization models as they grow into mature bone mineral, is an important research goal. To better understand the process of bone mineralization in the extracellular matrix, we used nanoanalytical electron microscopy techniques to examine an in vitro model of bone formation. This study demonstrates the presence of three dominant CaP structures in the mineralizing osteoblast cultures: <80 nm dense granules with a low calcium to phosphate ratio (Ca/P) and crystalline domains; calcium phosphate needles emanating from a focus: "needle-like globules" (100-300 nm in diameter) and mature mineral, both with statistically higher Ca/P compared to that of the dense granules. Many of the submicron granules and globules were interspersed around fibrillar structures containing nitrogen, which are most likely the signature of the organic phase. With high spatial resolution electron energy loss spectroscopy (EELS) mapping, spatially resolved maps were acquired showing the distribution of carbonate within each mineral structure. The carbonate was located in the middle of the granules, which suggested the nucleation of the younger mineral starts with a carbonate-containing precursor and that this precursor may act as seed for growth into larger, submicron-sized, needle-like globules of hydroxyapatite with a different stoichiometry. Application of analytical electron microscopy has important implications in deciphering both how normal bone forms and in understanding pathological mineralization.
Collapse
Affiliation(s)
- Kharissa Nitiputri
- Department of Materials, Imperial College London, London SW7 2AZ UK
- Department of Bioengineering, Imperial College London, London SW7 2AZ UK
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ UK
| | | | - Hélène Autefage
- Department of Materials, Imperial College London, London SW7 2AZ UK
- Department of Bioengineering, Imperial College London, London SW7 2AZ UK
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ UK
| | | | - Suwimon Boonrungsiman
- Department of Materials, Imperial College London, London SW7 2AZ UK
- Department of Bioengineering, Imperial College London, London SW7 2AZ UK
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ UK
| | - Nicholas D. Evans
- Department of Bioengineering and Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ
| | - Molly M. Stevens
- Department of Materials, Imperial College London, London SW7 2AZ UK
- Department of Bioengineering, Imperial College London, London SW7 2AZ UK
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ UK
| | | |
Collapse
|
45
|
Loewen TN, Carriere B, Reist JD, Halden NM, Anderson WG. Linking physiology and biomineralization processes to ecological inferences on the life history of fishes. Comp Biochem Physiol A Mol Integr Physiol 2016; 202:123-140. [PMID: 27328377 DOI: 10.1016/j.cbpa.2016.06.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 06/10/2016] [Accepted: 06/14/2016] [Indexed: 02/07/2023]
Abstract
Biomineral chemistry is frequently used to infer life history events and habitat use in fishes; however, significant gaps remain in our understanding of the underlying mechanisms. Here we have taken a multidisciplinary approach to review the current understanding of element incorporation into biomineralized structures in fishes. Biominerals are primarily composed of calcium-based derivatives such as calcium carbonate found in otoliths and calcium phosphates found in scales, fins and bones. By focusing on non-essential life elements (strontium and barium) and essential life elements (calcium, zinc and magnesium), we attempt to connect several fields of study to synergise how physiology may influence biomineralization and subsequent inference of life history. Data provided in this review indicate that the presence of non-essential elements in biominerals of fish is driven primarily by hypo- and hyper-calcemic environmental conditions. The uptake kinetics between environmental calcium and its competing mimics define what is ultimately incorporated in the biomineral structure. Conversely, circannual hormonally driven variations likely influence essential life elements like zinc that are known to associate with enzyme function. Environmental temperature and pH as well as uptake kinetics for strontium and barium isotopes demonstrate the role of mass fractionation in isotope selection for uptake into fish bony structures. In consideration of calcium mobilisation, the action of osteoclast-like cells on calcium phosphates of scales, fins and bones likely plays a role in fractionation along with transport kinetics. Additional investigations into calcium mobilisation are warranted to understand differing views of strontium, and barium isotope fractionation between calcium phosphates and calcium carbonate structures in fishes.
Collapse
Affiliation(s)
- T N Loewen
- Interdisciplinary Studies (Geological Sciences), University of Manitoba, Winnipeg, MB, Canada; Freshwater Institute, Fisheries & Oceans, Winnipeg, MB, Canada.
| | - B Carriere
- Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - J D Reist
- Freshwater Institute, Fisheries & Oceans, Winnipeg, MB, Canada
| | - N M Halden
- Geological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - W G Anderson
- Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
46
|
Kerschnitzki M, Akiva A, Ben Shoham A, Asscher Y, Wagermaier W, Fratzl P, Addadi L, Weiner S. Bone mineralization pathways during the rapid growth of embryonic chicken long bones. J Struct Biol 2016; 195:82-92. [PMID: 27108185 DOI: 10.1016/j.jsb.2016.04.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/13/2016] [Accepted: 04/20/2016] [Indexed: 02/05/2023]
Abstract
The uptake and transport of ions from the environment to the site of bone formation is only partially understood and, for the most part, based on disparate observations in different animals. Here we study different aspects of the biomineralization pathways in one system, the rapidly forming long bones of the chicken embryo. We mainly used cryo-fixation and cryo-electron imaging to preserve the often unstable mineral phases in the tissues. We show the presence of surprisingly large amounts of mineral particles located inside membrane-delineated vesicles in the bone forming tissue between the blood vessels and the forming bone surface. Some of these particles are also located inside mitochondrial networks. The surfaces of the forming bones in the extracellular space contain abundant aggregates of amorphous calcium phosphate particles, but these are not enveloped by vesicle membranes. In the bone resorbing region, osteoclasts also contain many particles in both mitochondrial networks and within vesicles. Some of these particles are present also between cells. These observations, together with the previously reported observation that CaP mineral particles inside membranes are present in blood vessels, leads us to the conclusion that important components of the bone mineralization pathways in rapidly forming chicken bone are dense phase mineral particles bound within membranes. It remains to be determined whether these mineral particles are transported to the site of bone formation in the solid state, fluid state or dissolve and re-precipitate.
Collapse
Affiliation(s)
- Michael Kerschnitzki
- Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel.
| | - Anat Akiva
- Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Adi Ben Shoham
- Department of Molecular Genetics, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Yotam Asscher
- Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Wolfgang Wagermaier
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Research Campus Golm, 14424 Potsdam, Germany
| | - Peter Fratzl
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Research Campus Golm, 14424 Potsdam, Germany
| | - Lia Addadi
- Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Steve Weiner
- Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
47
|
Abstract
As the processes of embryogenesis become increasingly well understood, there is growing interest in the development that occurs at later, postembryonic stages. Postembryonic development holds tremendous potential for discoveries of both fundamental and translational importance. Zebrafish, which are small, rapidly and externally developing, and which boast a wealth of genetic resources, are an outstanding model of vertebrate postembryonic development. Nonetheless, there are specific challenges posed by working with zebrafish at these stages, and this chapter is meant to serve as a primer for those working with larval and juvenile zebrafish. Since accurate staging is critical for high-quality results and experimental reproducibility, we outline best practices for reporting postembryonic developmental progress. Emphasizing the importance of accurate staging, we present new data showing that rates of growth and size-stage relationships can differ even between wild-type strains. Finally, since rapid and uniform development is particularly critical when working at postembryonic stages, we briefly describe methods that we use to achieve high rates of growth and developmental uniformity through postembryonic stages in both wild-type and growth-compromised zebrafish.
Collapse
Affiliation(s)
- S K McMenamin
- University of Massachusetts, Lowell, MA, United States; University of Washington, Seattle, WA, United States
| | - M N Chandless
- University of Washington, Seattle, WA, United States
| | - D M Parichy
- University of Washington, Seattle, WA, United States
| |
Collapse
|
48
|
Kerschnitzki M, Akiva A, Shoham AB, Koifman N, Shimoni E, Rechav K, Arraf AA, Schultheiss TM, Talmon Y, Zelzer E, Weiner S, Addadi L. Transport of membrane-bound mineral particles in blood vessels during chicken embryonic bone development. Bone 2016; 83:65-72. [PMID: 26481471 DOI: 10.1016/j.bone.2015.10.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/13/2015] [Accepted: 10/14/2015] [Indexed: 12/25/2022]
Abstract
During bone formation in embryos, large amounts of calcium and phosphate are taken up and transported to the site where solid mineral is first deposited. The initial mineral forms in vesicles inside osteoblasts and is deposited as a highly disordered calcium phosphate phase. The mineral is then translocated to the extracellular space where it penetrates the collagen matrix and crystallizes. To date little is known about the transport mechanisms of calcium and phosphate in the vascular system, especially when high transport rates are needed and the concentrations of these ions in the blood serum may exceed the solubility product of the mineral phase. Here we used a rapidly growing biological model, the chick embryo, to study the bone mineralization pathway taking advantage of the fact that large amounts of bone mineral constituents are transported. Cryo scanning electron microscopy together with cryo energy dispersive X-ray spectroscopy and focused-ion beam imaging in the serial surface view mode surprisingly reveal the presence of abundant vesicles containing small mineral particles in the lumen of the blood vessels. Morphologically similar vesicles are also found in the cells associated with bone formation. This observation directly implicates the vascular system in solid mineral distribution, as opposed to the transport of ions in solution. Mineral particle transport inside vesicles implies that far larger amounts of the bone mineral constituents can be transported through the vasculature, without the danger of ectopic precipitation. This introduces a new stage into the bone mineral formation pathway, with the first mineral being formed far from the bone itself.
Collapse
Affiliation(s)
- Michael Kerschnitzki
- Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel.
| | - Anat Akiva
- Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Adi Ben Shoham
- Department of Molecular Genetics, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Naama Koifman
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute (RBNI), Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Eyal Shimoni
- Department of Chemical Research Support, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Katya Rechav
- Department of Chemical Research Support, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Alaa A Arraf
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Thomas M Schultheiss
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Yeshayahu Talmon
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute (RBNI), Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Stephen Weiner
- Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Lia Addadi
- Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
49
|
Vidavsky N, Masic A, Schertel A, Weiner S, Addadi L. Mineral-bearing vesicle transport in sea urchin embryos. J Struct Biol 2015; 192:358-365. [PMID: 26431896 DOI: 10.1016/j.jsb.2015.09.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 11/29/2022]
Abstract
Sea urchin embryos sequester calcium from the sea water. This calcium is deposited in a concentrated form in granule bearing vesicles both in the epithelium and in mesenchymal cells. Here we use in vivo calcein labeling and confocal Raman spectroscopy, as well as cryo-FIB-SEM 3D structural reconstructions, to investigate the processes occurring in the internal cavity of the embryo, the blastocoel. We demonstrate that calcein stained granules are also present in the filopodial network within the blastocoel. Simultaneous fluorescence imaging and Raman spectroscopy show that these granules do contain a calcium mineral. By tracking the movements of these granules, we show that the granules in the epithelium and primary mesenchymal cells barely move, but those in the filopodial network move long distances. We could however not detect any unidirectional movement of the filopodial granules. We also show the presence of mineral containing multivesicular vesicles that also move in the filopodial network. We conclude that the filopodial network is an integral part of the mineral transport process, and possibly also for sequestering calcium and other ions. Although much of the sequestered calcium is deposited in the mineralized skeleton, a significant amount is used for other purposes, and this may be temporarily stored in these membrane-delineated intracellular deposits.
Collapse
Affiliation(s)
- Netta Vidavsky
- Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Admir Masic
- Max-Planck Institute of Colloids and Interfaces, Department of Biomaterials, Potsdam, Germany
| | - Andreas Schertel
- Carl Zeiss Microscopy GmbH, Global Applications Support, Carl-Zeiss-Straße 22, D-73447 Oberkochen, Germany
| | - Steve Weiner
- Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Lia Addadi
- Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel.
| |
Collapse
|
50
|
Addadi L, Gal A, Faivre D, Scheffel A, Weiner S. Control of Biogenic Nanocrystal Formation in Biomineralization. Isr J Chem 2015. [DOI: 10.1002/ijch.201500038] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|