1
|
Zhou Y, Su Z, Liu G, Hu S, Chang J. The Potential Mechanism of Soy Isoflavones in Treating Osteoporosis: Focusing on Bone Metabolism and Oxidative Stress. Phytother Res 2025; 39:1645-1658. [PMID: 39921597 DOI: 10.1002/ptr.8451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/21/2025] [Accepted: 01/25/2025] [Indexed: 02/10/2025]
Abstract
Osteoporosis is divided into primary and secondary types. Primary osteoporosis may result from estrogen deficiency in postmenopausal women, imbalanced bone remodeling in the elderly, or imbalanced adolescent-type bone development. Secondary osteoporosis can be caused by factors like long-term glucocorticoid treatment, chronic kidney disease (CKD), estrogen deprivation, oxidative stress, diabetes, and obesity. This review focuses on the therapeutic potential of soy isoflavones for osteoporosis. At the cellular level, soy isoflavones, as natural plant extracts and phytoestrogens, are crucial for osteoblastogenesis and differentiation, osteoclastogenesis, osteoclast mineralization, and bone marrow mesenchymal stromal cell differentiation. They also maintain calcium homeostasis by regulating extracellular calcium and vitamin D levels. In terms of oxidative stress, soy isoflavones mitigate it in the endoplasmic reticulum and mitochondria, thus regulating cellular senescence, autophagy, and bone remodeling processes. Moreover, soy isoflavones can relieve symptoms related to CKD and inhibit glucocorticoid secretion, which directly or indirectly benefits the treatment of osteoporosis. Overall, soy isoflavones have the potential to treat osteoporosis by enhancing bone health, regulating metabolism, and alleviating oxidative stress. Future research should explore the potential of soy isoflavones as phytoestrogens for treating osteoporosis. This exploration should focus on clarifying the safety, identifying potential side effects, determining the optimal dosage regimen, and developing strategies to mitigate any adverse reactions. In addition, further large-scale, multicenter human clinical trials are necessary to accurately evaluate the actual therapeutic effect of soy isoflavones on osteoporosis.
Collapse
Affiliation(s)
- Yuanyuan Zhou
- The Orthopaedic Center, the First People's Hospital of Wenling, Taizhou University Affiliated Wenling Hospital, Wenling, Zhejiang, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Zhan Su
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Siwang Hu
- The Orthopaedic Center, the First People's Hospital of Wenling, Taizhou University Affiliated Wenling Hospital, Wenling, Zhejiang, China
| | - Jiang Chang
- The Orthopaedic Center, the First People's Hospital of Wenling, Taizhou University Affiliated Wenling Hospital, Wenling, Zhejiang, China
| |
Collapse
|
2
|
Chen J, Su Y, Wu J, Zhang C, Liu N, Zhang Y, Lin K, Zhang S. A coaxial electrospun mat coupled with piezoelectric stimulation and atorvastatin for rapid vascularized bone regeneration. J Mater Chem B 2024; 12:9656-9674. [PMID: 39175374 DOI: 10.1039/d4tb00173g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The repair of critical bone defects caused by various clinical conditions needs to be addressed urgently, and the regeneration of large bone defects depends on early vascularization. Therefore, enhanced vascularization of artificial bone grafts may be a promising strategy for the regeneration of critical-sized bone defects. Taking into account the importance of rapid angiogenesis during bone repair and the potential of piezoelectric stimulation in promoting bone regeneration, novel coaxial electrospun mats coupled with piezoelectric materials and angiogenic drugs were fabricated in this study using coaxial electrospinning technology, with a shell layer loaded with atorvastatin (AVT) and a core layer loaded with zinc oxide (ZnO). AVT was used as an angiogenesis inducer, and piezoelectric stimulation generated by the zinc oxide was used as an osteogenesis enhancer. The multifunctional mats were characterized in terms of morphology, core-shell structure, piezoelectric properties, drug release, and mechanical properties, and their osteogenic and angiogenic capabilities were validated in vivo and ex vivo. The results revealed that the coaxial electrospun mats exhibit a porous surface morphology and nanofibers with a core-shell structure, and the piezoelectricity of the mats improved with increasing ZnO content. Excellent biocompatibility, hydrophilicity and cell adhesion were observed in the multifunctional mats. Early and rapid release of AVT in the fibrous shell layer of the mat promoted angiogenesis in human umbilical vascular endothelial cells (HUVECs), whereas ZnO in the fibrous core layer harvested bioenergy and converted it into electrical energy to enhance osteogenic differentiation of rat bone mesenchymal stem cells (BMSCs), and both modalities synergistically promoted osteogenesis and angiogenesis. Furthermore, optimal bone regeneration was achieved in a model of critical bone defects in the rat mandible. This osteogenesis-promoting effect was induced by electrical stimulation via activation of the calcium signaling pathway. This multifunctional mat coupling piezoelectric stimulation and atorvastatin promotes angiogenesis and bone regeneration, and shows great potential in the treatment of large bone defects.
Collapse
Affiliation(s)
- Jiangping Chen
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China.
| | - Yang Su
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China.
| | - Jinyang Wu
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China.
| | - Chuxi Zhang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China.
| | - Nian Liu
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China.
| | - Yong Zhang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China.
| | - Kaili Lin
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China.
| | - Shilei Zhang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China.
| |
Collapse
|
3
|
Hao Y, Yang N, Sun M, Yang S, Chen X. The role of calcium channels in osteoporosis and their therapeutic potential. Front Endocrinol (Lausanne) 2024; 15:1450328. [PMID: 39170742 PMCID: PMC11335502 DOI: 10.3389/fendo.2024.1450328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024] Open
Abstract
Osteoporosis, a systemic skeletal disorder marked by diminished bone mass and compromised bone microarchitecture, is becoming increasingly prevalent due to an aging population. The underlying pathophysiology of osteoporosis is attributed to an imbalance between osteoclast-mediated bone resorption and osteoblast-mediated bone formation. Osteoclasts play a crucial role in the development of osteoporosis through various molecular pathways, including the RANK/RANKL/OPG signaling axis, cytokines, and integrins. Notably, the calcium signaling pathway is pivotal in regulating osteoclast activation and function, influencing bone resorption activity. Disruption in calcium signaling can lead to increased osteoclast-mediated bone resorption, contributing to the progression of osteoporosis. Emerging research indicates that calcium-permeable channels on the cellular membrane play a critical role in bone metabolism by modulating these intracellular calcium pathways. Here, we provide an overview of current literature on the regulation of plasma membrane calcium channels in relation to bone metabolism with particular emphasis on their dysregulation during the progression of osteoporosis. Targeting these calcium channels may represent a potential therapeutic strategy for treating osteoporosis.
Collapse
Affiliation(s)
- Ying Hao
- College of Sports, Northwest Normal University, Lanzhou, China
| | - Ningning Yang
- College of Sports, Northwest Normal University, Lanzhou, China
| | - Mengying Sun
- College of Sports, Northwest Normal University, Lanzhou, China
| | - Shangze Yang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Xingjuan Chen
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| |
Collapse
|
4
|
Reyes Fernandez PC, Wright CS, Farach-Carson MC, Thompson WR. Examining Mechanisms for Voltage-Sensitive Calcium Channel-Mediated Secretion Events in Bone Cells. Calcif Tissue Int 2023; 113:126-142. [PMID: 37261463 PMCID: PMC11008533 DOI: 10.1007/s00223-023-01097-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023]
Abstract
In addition to their well-described functions in cell excitability, voltage-sensitive calcium channels (VSCCs) serve a critical role in calcium (Ca2+)-mediated secretion of pleiotropic paracrine and endocrine factors, including those produced in bone. Influx of Ca2+ through VSCCs activates intracellular signaling pathways to modulate a variety of cellular processes that include cell proliferation, differentiation, and bone adaptation in response to mechanical stimuli. Less well understood is the role of VSCCs in the control of bone and calcium homeostasis mediated through secreted factors. In this review, we discuss the various functions of VSCCs in skeletal cells as regulators of Ca2+ dynamics and detail how these channels might control the release of bioactive factors from bone cells. Because VSCCs are druggable, a better understanding of the multiple functions of these channels in the skeleton offers the opportunity for developing new therapies to enhance and maintain bone and to improve systemic health.
Collapse
Affiliation(s)
- Perla C Reyes Fernandez
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN, 46202, USA
- Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA
| | - Christian S Wright
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN, 46202, USA
- Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA
| | - Mary C Farach-Carson
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
- Departments of BioSciences and Bioengineering, Rice University, Houston, TX, 77005, USA
| | - William R Thompson
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN, 46202, USA.
- Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA.
- Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA.
| |
Collapse
|
5
|
Cheng Z, Liu Y, Ma M, Sun S, Ma Z, Wang Y, Yu L, Qian X, Sun L, Zhang X, Liu Y, Wang Y. Lansoprazole-induced osteoporosis via the IP3R- and SOCE-mediated calcium signaling pathways. Mol Med 2022; 28:21. [PMID: 35183103 PMCID: PMC8858482 DOI: 10.1186/s10020-022-00448-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/28/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Many clinical studies have shown a correlation between proton pump inhibitors (PPIs) and osteoporosis or fractures. The purpose of this study was to establish a murine model of chronic oral PPI administration to verify whether PPIs caused bone metabolic impairment and investigate the relevant molecular mechanism underlying the effects of PPIs on MC3T3-E1 murine osteoblasts. METHODS A lansoprazole-induced bone loss model was used to investigate the damaging effects of PPIs. In vivo, immunohistochemistry, Hematoxylin-Eosin (HE) staining, micro-CT analysis, and blood biochemical analyses were used to evaluate the effect of lansoprazole on bone injury in mice. In vitro, the effects of lansoprazole and related signaling pathways in MC3T3-E1 cells were investigated by CCK-8 assays, EdU assays, flow cytometry, laser confocal microscopy, patch clamping, reverse transcription-quantitative polymerase chain reaction and Western blotting. RESULTS After 6 months of lansoprazole gavage in ICR mice, the micro-CT results showed that compared with that in the vehicle group, the bone mineral density (BMD) in the high-dose group was significantly decreased (P < 0.05), and the bone microarchitecture gradually degraded. Biochemical analysis of bone serum showed that blood calcium and phosphorus were both decreased (P < 0.01). We found that long-term administration of lansoprazole impaired skeletal function in mice. In vitro, we found that lansoprazole (LPZ) could cause calcium overload in MC3T3-E1 cells leading to apoptosis, and 2-APB, an inhibitor of IP3R calcium release channel and SOCE pathway, effectively blocked increase in calcium caused by LPZ, thus protecting cell viability. CONCLUSIONS Longterm administration of LPZ induced osteoporotic symptoms in mice, and LPZ triggered calcium increases in osteoblasts in a concentration-dependent manner. Intracellular calcium ([Ca2+]i) persisted at a high concentration, thereby causing endoplasmic reticulum stress (ERS) and inducing osteoblast apoptosis.
Collapse
Affiliation(s)
- Ziping Cheng
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University and Jiangsu Province Hospital, 300 Guangzhou Road, Nanjing, 210009, China
| | - Yangjie Liu
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University and Jiangsu Province Hospital, 300 Guangzhou Road, Nanjing, 210009, China
| | - Mengyuan Ma
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University and Jiangsu Province Hospital, 300 Guangzhou Road, Nanjing, 210009, China
| | - Shiyu Sun
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University and Jiangsu Province Hospital, 300 Guangzhou Road, Nanjing, 210009, China
| | - Zengqing Ma
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University and Jiangsu Province Hospital, 300 Guangzhou Road, Nanjing, 210009, China
| | - Yu Wang
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University and Jiangsu Province Hospital, 300 Guangzhou Road, Nanjing, 210009, China
| | - Liyuan Yu
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University and Jiangsu Province Hospital, 300 Guangzhou Road, Nanjing, 210009, China
| | - Xuping Qian
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University and Jiangsu Province Hospital, 300 Guangzhou Road, Nanjing, 210009, China
| | - Luning Sun
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University and Jiangsu Province Hospital, 300 Guangzhou Road, Nanjing, 210009, China
| | - Xuehui Zhang
- Department of Pharmacy, Jiangsu Shengze Hospital, Nanjing Medical University, Suzhou, China
| | - Yun Liu
- Department of Geriatrics Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, 300 Guangzhou Road, Nanjing, 210029, China.
| | - Yongqing Wang
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University and Jiangsu Province Hospital, 300 Guangzhou Road, Nanjing, 210009, China.
- Department of Pharmacy, Jiangsu Shengze Hospital, Nanjing Medical University, Suzhou, China.
- Department of Pharmacy, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
6
|
The mechanosensory and mechanotransductive processes mediated by ion channels and the impact on bone metabolism: A systematic review. Arch Biochem Biophys 2021; 711:109020. [PMID: 34461086 DOI: 10.1016/j.abb.2021.109020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023]
Abstract
Mechanical environments were associated with alterations in bone metabolism. Ion channels present on bone cells are indispensable for bone metabolism and can be directly or indirectly activated by mechanical stimulation. This review aimed to discuss the literature reporting the mechanical regulatory effects of ion channels on bone cells and bone tissue. An electronic search was conducted in PubMed, Embase and Web of Science. Studies about mechanically induced alteration of bone cells and bone tissue by ion channels were included. Ion channels including TRP family channels, Ca2+ release-activated Ca2+ channels (CRACs), Piezo1/2 channels, purinergic receptors, NMDA receptors, voltage-sensitive calcium channels (VSCCs), TREK2 potassium channels, calcium- and voltage-dependent big conductance potassium (BKCa) channels, small conductance, calcium-activated potassium (SKCa) channels and epithelial sodium channels (ENaCs) present on bone cells and bone tissue participate in the mechanical regulation of bone development in addition to contributing to direct or indirect mechanotransduction such as altered membrane potential and ionic flux. Physiological (beneficial) mechanical stimulation could induce the anabolism of bone cells and bone tissue through ion channels, but abnormal (harmful) mechanical stimulation could also induce the catabolism of bone cells and bone tissue through ion channels. Functional expression of ion channels is vital for the mechanotransduction of bone cells. Mechanical activation (opening) of ion channels triggers ion influx and induces the activation of intracellular modulators that can influence bone metabolism. Therefore, mechanosensitive ion channels provide new insights into therapeutic targets for the treatment of bone-related diseases such as osteopenia and aseptic implant loosening.
Collapse
|
7
|
Wright CS, Robling AG, Farach-Carson MC, Thompson WR. Skeletal Functions of Voltage Sensitive Calcium Channels. Curr Osteoporos Rep 2021; 19:206-221. [PMID: 33721180 PMCID: PMC8216424 DOI: 10.1007/s11914-020-00647-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 12/15/2022]
Abstract
Voltage-sensitive calcium channels (VSCCs) are ubiquitous multimeric protein complexes that are necessary for the regulation of numerous physiological processes. VSCCs regulate calcium influx and various intracellular processes including muscle contraction, neurotransmission, hormone secretion, and gene transcription, with function specificity defined by the channel's subunits and tissue location. The functions of VSCCs in bone are often overlooked since bone is not considered an electrically excitable tissue. However, skeletal homeostasis and adaptation relies heavily on VSCCs. Inhibition or deletion of VSCCs decreases osteogenesis, impairs skeletal structure, and impedes anabolic responses to mechanical loading. RECENT FINDINGS: While the functions of VSCCs in osteoclasts are less clear, VSCCs have distinct but complementary functions in osteoblasts and osteocytes. PURPOSE OF REVIEW: This review details the structure, function, and nomenclature of VSCCs, followed by a comprehensive description of the known functions of VSCCs in bone cells and their regulation of bone development, bone formation, and mechanotransduction.
Collapse
Affiliation(s)
- Christian S Wright
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN, 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA
| | - Alexander G Robling
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA
- Department of Anatomy & Cell Biology, Indiana University, Indianapolis, IN, 46202, USA
| | - Mary C Farach-Carson
- Department of Diagnostic & Biomedical Sciences, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, 77054, USA
| | - William R Thompson
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN, 46202, USA.
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA.
- Department of Anatomy & Cell Biology, Indiana University, Indianapolis, IN, 46202, USA.
| |
Collapse
|
8
|
Li B, He X, Dong Z, Xuan K, Sun W, Gao L, Liu S, Liu W, Hu C, Zhao Y, Shi S, Jin Y. Ionomycin ameliorates hypophosphatasia via rescuing alkaline phosphatase deficiency-mediated L-type Ca 2+ channel internalization in mesenchymal stem cells. Bone Res 2020; 8:19. [PMID: 32351759 PMCID: PMC7183511 DOI: 10.1038/s41413-020-0090-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 10/02/2019] [Accepted: 01/05/2020] [Indexed: 12/26/2022] Open
Abstract
The loss-of-function mutations in the ALPL result in hypophosphatasia (HPP), an inborn metabolic disorder that causes skeletal mineralization defects. In adults, the main clinical features are early loss of primary or secondary teeth, osteoporosis, bone pain, chondrocalcinosis, and fractures. However, guidelines for the treatment of adults with HPP are not available. Here, we show that ALPL deficiency caused a reduction in intracellular Ca2+ influx, resulting in an osteoporotic phenotype due to downregulated osteogenic differentiation and upregulated adipogenic differentiation in both human and mouse bone marrow mesenchymal stem cells (BMSCs). Increasing the intracellular level of calcium in BMSCs by ionomycin treatment rescued the osteoporotic phenotype in alpl+/- mice and BMSC-specific (Prrx1-alpl-/-) conditional alpl knockout mice. Mechanistically, ALPL was found to be required for the maintenance of intracellular Ca2+ influx, which it achieves by regulating L-type Ca2+ channel trafficking via binding to the α2δ subunits to regulate the internalization of the L-type Ca2+ channel. Decreased Ca2+ flux inactivates the Akt/GSK3β/β-catenin signaling pathway, which regulates lineage differentiation of BMSCs. This study identifies a previously unknown role of the ectoenzyme ALPL in the maintenance of calcium channel trafficking to regulate stem cell lineage differentiation and bone homeostasis. Accelerating Ca2+ flux through L-type Ca2+ channels by ionomycin treatment may be a promising therapeutic approach for adult patients with HPP.
Collapse
Affiliation(s)
- Bei Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 Shaanxi China
- Xi’an Institute of Tissue Engineering and Regenerative Medicine, Xi’an, China
| | - Xiaoning He
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 Shaanxi China
- Xi’an Institute of Tissue Engineering and Regenerative Medicine, Xi’an, China
| | - Zhiwei Dong
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Kun Xuan
- Department of Pediatric Dentistry, School of Stomatology, Fourth Military Medical University, Xi’an, China
| | - Wei Sun
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Li Gao
- Department of Pediatric Dentistry, School of Stomatology, Fourth Military Medical University, Xi’an, China
| | - Shiyu Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 Shaanxi China
- Xi’an Institute of Tissue Engineering and Regenerative Medicine, Xi’an, China
| | - Wenjia Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 Shaanxi China
- Xi’an Institute of Tissue Engineering and Regenerative Medicine, Xi’an, China
| | - Chenghu Hu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 Shaanxi China
- Xi’an Institute of Tissue Engineering and Regenerative Medicine, Xi’an, China
| | - Yimin Zhao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Songtao Shi
- Department of Anatomy and Cell Biology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA USA
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, 74 Zhongshan 2Rd, Guangzhou, Guangdong China
| | - Yan Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 Shaanxi China
- Xi’an Institute of Tissue Engineering and Regenerative Medicine, Xi’an, China
| |
Collapse
|
9
|
Jung H, Akkus O. Diffuse microdamage in bone activates anabolic response by osteoblasts via involvement of voltage-gated calcium channels. J Bone Miner Metab 2020; 38:151-160. [PMID: 31493248 DOI: 10.1007/s00774-019-01042-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/03/2019] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Matrix damage sustained by bone tissue is repaired by the concerted action of bone cells. Previous studies have reported extracellular calcium ([Ca2+]E) efflux to originate from regions of bone undergoing diffuse microdamage termed as "diffuse microdamage-induced calcium efflux" (DMICE). DMICE has also been shown to activate and increase intracellular calcium ([Ca2+]I) signaling in osteoblasts via the involvement of voltage-gated calcium channels (VGCC). Past studies have assessed early stage (< 1 h) responses of osteoblasts to DMICE. The current study tested the hypothesis that DMICE has longer-term sustained effect such that it induces anabolic response of osteoblasts. MATERIALS AND METHODS Osteoblasts derived from mouse calvariae were seeded on devitalized bovine bone wafers. Localized diffuse damage was induced in the vicinity of cells by bending. The response of osteoblasts to DMICE was evaluated by testing gene expression, protein synthesis and mineralized nodule formation. RESULTS Cells on damaged bone wafers showed a significant increase in RUNX2 and Osterix expression compared to non-loaded control. Also, RUNX2 and Osterix expression were suppressed significantly when the cells were treated with bepridil, a non-selective VGCC inhibitor, prior to loading. Significantly higher amounts of osteocalcin and mineralized nodules were synthesized by osteoblasts on diffuse damaged bone wafers, while bepridil treatment resulted in a significant decrease in osteocalcin production and mineralized nodule formation. CONCLUSION In conclusion, this study demonstrated that DMICE activates anabolic responses of osteoblasts through activation of VGCC. Future studies of osteoblast response to DMICE in vivo will help to clarify how bone cells repair diffuse microdamage.
Collapse
Affiliation(s)
- Hyungjin Jung
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Ozan Akkus
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
- Department of Orthopedics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
| |
Collapse
|
10
|
Zhou Y, Lv M, Li T, Zhang T, Duncan R, Wang L, Lu XL. Spontaneous calcium signaling of cartilage cells: from spatiotemporal features to biophysical modeling. FASEB J 2019; 33:4675-4687. [PMID: 30601690 DOI: 10.1096/fj.201801460r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Intracellular calcium ([Ca2+]i) oscillation is a fundamental signaling response of cartilage cells under mechanical loading or osmotic stress. Chondrocytes are usually considered as nonexcitable cells with no spontaneous [Ca2+]i signaling. This study proved that chondrocytes can exhibit robust spontaneous [Ca2+]i signaling without explicit external stimuli. The intensity of [Ca2+]i peaks from individual chondrocytes maintain a consistent spatiotemporal pattern, acting as a unique "fingerprint" for each cell. Statistical analysis revealed lognormal distributions of the temporal parameters of [Ca2+]i peaks, as well as strong linear correlations between their means and sds. Based on these statistical findings, we hypothesized that the spontaneous [Ca2+]i peaks may result from an autocatalytic process and that [Ca2+]i oscillation is controlled by a threshold-regulating mechanism. To test these 2 mechanisms, we established a multistage biophysical model by assuming the spontaneous [Ca2+]i signaling of chondrocytes as a combination of deterministic and stochastic processes. The theoretical model successfully explained the lognormal distribution of the temporal parameters and the fingerprint feature of [Ca2+]i peaks. In addition, by using antagonists for 10 pathways, we revealed that the initiation of spontaneous [Ca2+]i peaks in chondrocytes requires the presence of extracellular Ca2+, and that the PLC-inositol 1,4,5-trisphosphate pathway, which controls the release of calcium from the endoplasmic reticulum, can affect the initiation of spontaneous [Ca2+]i peaks in chondrocytes. The purinoceptors and transient receptor potential vanilloid 4 channels on the plasma membrane also play key roles in the spontaneous [Ca2+]i signaling of chondrocytes. In contrast, blocking the T-type or L-type voltage-gated calcium channel promoted the spontaneous calcium signaling. This study represents a systematic effort to understand the features and initiation mechanisms of spontaneous [Ca2+]i signaling in chondrocytes, which are critical for chondrocyte mechanobiology.-Zhou, Y., Lv, M., Li, T., Zhang, T., Duncan, R., Wang, L., Lu, X. L. Spontaneous calcium signaling of cartilage cells: from spatiotemporal features to biophysical modeling.
Collapse
Affiliation(s)
- Yilu Zhou
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware, USA
| | - Mengxi Lv
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, USA
| | - Tong Li
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware, USA.,Department of Engineering Mechanics, Dalian University of Technology, Dalian, China; and
| | - Tiange Zhang
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware, USA
| | - Randall Duncan
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Liyun Wang
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware, USA
| | - X Lucas Lu
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
11
|
Lee MN, Hwang HS, Oh SH, Roshanzadeh A, Kim JW, Song JH, Kim ES, Koh JT. Elevated extracellular calcium ions promote proliferation and migration of mesenchymal stem cells via increasing osteopontin expression. Exp Mol Med 2018; 50:1-16. [PMID: 30393382 PMCID: PMC6215840 DOI: 10.1038/s12276-018-0170-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/30/2018] [Accepted: 07/12/2018] [Indexed: 02/06/2023] Open
Abstract
Supplementation of mesenchymal stem cells (MSCs) at sites of bone resorption is required for bone homeostasis because of the non-proliferation and short lifespan properties of the osteoblasts. Calcium ions (Ca2+) are released from the bone surfaces during osteoclast-mediated bone resorption. However, how elevated extracellular Ca2+ concentrations would alter MSCs behavior in the proximal sites of bone resorption is largely unknown. In this study, we investigated the effect of extracellular Ca2+ on MSCs phenotype depending on Ca2+ concentrations. We found that the elevated extracellular Ca2+ promoted cell proliferation and matrix mineralization of MSCs. In addition, MSCs induced the expression and secretion of osteopontin (OPN), which enhanced MSCs migration under the elevated extracellular Ca2+ conditions. We developed in vitro osteoclast-mediated bone resorption conditions using mouse calvaria bone slices and demonstrated Ca2+ is released from bone resorption surfaces. We also showed that the MSCs phenotype, including cell proliferation and migration, changed when the cells were treated with a bone resorption-conditioned medium. These findings suggest that the dynamic changes in Ca2+ concentrations in the microenvironments of bone remodeling surfaces modulate MSCs phenotype and thereby contribute to bone regeneration.
Collapse
Affiliation(s)
- Mi Nam Lee
- Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Hee-Su Hwang
- Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Sin-Hye Oh
- Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Amir Roshanzadeh
- School of Biological Sciences and Biotechnology, Chonnam National University, Gwangju, Republic of Korea
| | - Jung-Woo Kim
- Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Ju Han Song
- Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Eung-Sam Kim
- Department of Biological Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Jeong-Tae Koh
- Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea.
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea.
| |
Collapse
|
12
|
Jung H, Mbimba T, Unal M, Akkus O. Repetitive short‐span application of extracellular calcium is osteopromotive to osteoprogenitor cells. J Tissue Eng Regen Med 2017; 12:e1349-e1359. [PMID: 28715143 DOI: 10.1002/term.2518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 06/23/2017] [Accepted: 07/11/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Hyungjin Jung
- Department of Mechanical and Aerospace Engineering Case Western Reserve University Cleveland OH USA
| | - Thomas Mbimba
- Department of Mechanical and Aerospace Engineering Case Western Reserve University Cleveland OH USA
| | - Mustafa Unal
- Department of Mechanical and Aerospace Engineering Case Western Reserve University Cleveland OH USA
| | - Ozan Akkus
- Department of Mechanical and Aerospace Engineering Case Western Reserve University Cleveland OH USA
- Department of Biomedical Engineering Case Western Reserve University Cleveland OH USA
- Department of Orthopedics Case Western Reserve University Cleveland OH USA
| |
Collapse
|
13
|
Zhao R, Xie P, Zhang K, Tang Z, Chen X, Zhu X, Fan Y, Yang X, Zhang X. Selective effect of hydroxyapatite nanoparticles on osteoporotic and healthy bone formation correlates with intracellular calcium homeostasis regulation. Acta Biomater 2017; 59:338-350. [PMID: 28698163 DOI: 10.1016/j.actbio.2017.07.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/20/2017] [Accepted: 07/05/2017] [Indexed: 01/21/2023]
Abstract
Adequate bone substitutes osseointegration has been difficult to achieve in osteoporosis. Hydroxyapatite of the osteoporotic bone, secreted by pathologic osteoblasts, had a smaller crystal size and lower crystallinity than that of the normal. To date, little is known regarding the interaction of synthetic hydroxyapatite nanoparticles (HANPs) with osteoblasts born in bone rarefaction. The present study investigated the biological effects of HANPs on osteoblastic cells derived from osteoporotic rat bone (OVX-OB), in comparison with the healthy ones (SHM-OB). A selective effect of different concentrations of HANPs on the two cell lines was observed that the osteoporotic osteoblasts had a higher tolerance. Reductions in cell proliferation, ALP activity, collagen secretion and osteoblastic gene expressions were found in the SHM-OB when administered with HANPs concentration higher than 25µg/ml. In contrast, those of the OVX-OB suffered no depression but benefited from 25 to 250µg/ml HANPs in a dose-dependent manner. We demonstrated that the different effects of HANPs on osteoblasts were associated with the intracellular calcium influx into the endoplasmic reticulum. The in vivo bone defect model further confirmed that, with a critical HANPs concentration administration, the osteoporotic rats had more and mechanically matured new bone formation than the non-treated ones, whilst the sham rats healed no better than the natural healing control. Collectively, the observed epigenetic regulation of osteoblastic cell function by HANPs has significant implication on defining design parameters for a potential therapeutic use of nanomaterials. STATEMENT OF SIGNIFICANCE In this study, we investigated the biological effects of hydroxyapatite nanoparticles (HANPs) on osteoporotic rat bone and the derived osteoblast. Our findings revealed a previously unrecognized phenomenon that the osteoporotic individuals could benefit from higher concentrations of HANPs, as compared with the healthy individuals. The in vivo bone defect model confirmed that, with a critical HANPs concentration administration, the osteoporotic rats had more mechanically matured new bone formation than the non-treated ones, whilst the sham rats healed no better than the natural healing control. The selective effect of HANPs might be associated with the intracellular calcium influx into the endoplasmic reticulum. Collectively, the observed epigenetic regulation by HANPs has significant implication on defining design parameters for a potential therapeutic use of nanomaterials in a pathological condition.
Collapse
Affiliation(s)
- Rui Zhao
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Pengfei Xie
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Kun Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Zhurong Tang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Xuening Chen
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| |
Collapse
|
14
|
Zhang H, Liu H, Lin Q, Zhang G, Mason DC. Effects of intermittent pressure imitating rolling manipulation on calcium ion homeostasis in human skeletal muscle cells. Altern Ther Health Med 2016; 16:314. [PMID: 27561948 PMCID: PMC5000503 DOI: 10.1186/s12906-016-1314-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 08/23/2016] [Indexed: 11/25/2022]
Abstract
Background Homeostasis imbalance of intracellular Ca2+ is one of the key pathophysiological factors in skeletal muscle injuries. Such imbalance can cause significant change in the metabolism of Ca2+-related biomarkers in skeletal muscle, such as superoxide dismutase (SOD), malondialdehyde (MDA) and creatine kinase (CK). Measurements of these biomarkers can be used to evaluate the degree of damage to human skeletal muscle cells (HSKMCs) injury. Rolling manipulation is the most popular myofascial release technique in Traditional Chinese Medicine. The mechanism of how this technique works in ameliorating muscle injury is unknown. This study aimed to investigate the possible Ca2+ mediated effects of intermittent pressure imitating rolling manipulation (IPIRM) of Traditional Chinese Medicine in the injured HSKMCs. Methods The normal HSKMCs was used as control normal group (CNG), while the injured HSKMCs were further divided into five different groups: control injured group (CIG), Rolling manipulation group (RMG), Rolling manipulation-Verapamil group (RMVG), static pressure group (SPG) and static pressure-Verapamil group (SPVG). RMG and RMVG cells were cyclically exposed to 9.5-12.5 N/cm2 of IPIRM at a frequency of 1.0 Hz for 10 min. SPG and SPVG were loaded to a continuous pressure of 12.5 N/cm2 for 10 min. Verapamil, a calcium antagonist, was added into the culture mediums of both RMVG and SPVG groups to block the influx of calcium ion. Result Compared with the CNG (normal cells), SOD activity was remarkably decreased while both MDA content and CK activity were significantly increased in the CIG (injured cells). When the injured cells were treated with the intermittent rolling manipulation pressure (RMG), the SOD activity was significantly increased and MDA content and CK activity were remarkably decreased. These effects were suppressed by adding the calcium antagonist Verapamil into the culture medium in RMVG. On the other hand, exposure to static pressure in SPG and SPVG affected neither the SOD activity nor the MDA content and CK activity in the injured muscle cells regardless of the presence of verapamil or not in the culture medium. Conclusion These data suggest that the intermittent rolling pressure with the manipulation could ameliorate HSKMCs injury through a Ca2+ dependent pathway. Static pressure did not lead to the same results.
Collapse
|
15
|
Jung H, Akkus O. Activation of intracellular calcium signaling in osteoblasts colocalizes with the formation of post-yield diffuse microdamage in bone matrix. BONEKEY REPORTS 2016; 5:778. [PMID: 26962448 DOI: 10.1038/bonekey.2016.5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 01/06/2016] [Indexed: 01/09/2023]
Abstract
Previous studies demonstrated that extracellular calcium efflux ([Ca(2+)]E) originates from the regions of bone extracellular matrix that are undergoing microdamage. Such [Ca(2+)]E is reported to induce the activation of intracellular calcium signaling ([Ca(2+)]I) in MC3T3-E1 cells. The current study investigated the association between microdamage and local activation of intracellular calcium signaling quantifiably in MC3T3-E1 cells. Cells were seeded on devitalized notched bovine bone samples to induce damage controllably within the field of observation. A sequential staining procedure was implemented to stain for intracellular calcium activation followed by staining for microdamage on the same sample. The increase in [Ca(2+)]I fluorescence in cells of mechanically loaded samples was greater than that of unloaded negative control cells. The results showed that more than 80% of the cells with increased [Ca(2+)]I fluorescence were located within the damage zone. In conclusion, the findings demonstrate that there are spatial proximity between diffuse microdamage induction and the activation of intracellular calcium ([Ca(2+)]I) signaling in MC3T3-E1 cells. The downstream responses to the observed activation in future research may help understand how bone cells repair microdamage.
Collapse
Affiliation(s)
- Hyungjin Jung
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University , Cleveland, OH, USA
| | - Ozan Akkus
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA; Department of Orthopedics, Case Western Reserve University, Cleveland, OH, USA; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
16
|
Gelatine modified monetite as a bone substitute material: An in vitro assessment of bone biocompatibility. Acta Biomater 2016; 32:275-285. [PMID: 26732518 DOI: 10.1016/j.actbio.2015.12.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/25/2015] [Accepted: 12/24/2015] [Indexed: 12/16/2022]
Abstract
Calcium phosphate phases are increasingly used for bone tissue substitution, and the load bearing properties of these inherently brittle biomaterials are increased by inclusion of organic components. Monetite prepared using mineralization of gelatine pre-structured through phosphate leads to a significantly increased biaxial strength and indirect tensile strength compared to gelatine-free monetite. Besides the mechanical properties, degradation in physiological solutions and osteoblast and osteoclast cell response were investigated. Human bone marrow stromal cells (hBMSCs) showed considerably higher proliferation rates on the gelatine modified monetite than on polystyrene reference material in calcium-free as well as standard cell culture medium (α-MEM). Osteogenic differentiation on the material was comparable to polystyrene in both medium types. Osteoclast-like cells derived from monocytes were able to actively resorb the biomaterial. Osteoblastic differentiation and perhaps even more important the cellular resorption of the biomaterial indicate that it can be actively involved in the bone remodeling process. Thus the behavior of osteoblasts and osteoclasts as well as the adequate degradation and mechanical properties are strong indicators for bone biocompatibility, although in vivo studies are still required to prove this. STATEMENT OF SIGNIFICANCE New and unique? A low temperature precipitationprocessforcalcium anhydrous hydrogen phosphateallows for the first time to produce monolithic compact composites of monetite and gelatine. The composite is degradable and resorbable. To prove that, the question arises: what is bone biocompatibility? The reaction of both mayor cell types of bone represents this biocompatibility. Therefore, human bone marrow stromal cells were seeded revealing the materials pro-osteogenic properties. Monocyte cultivation, becoming recently focus of interest, revealed the capability of the biomaterial to be actively resorbed by derived osteoclast-like cells. Not new but necessary ismechanical characterization, which is often only investigated as uniaxial property. Here, a biaxial method is applied, to characterize the materials properties closer to its application loads.
Collapse
|
17
|
Zhou Y, David MA, Chen X, Wan LQ, Duncan RL, Wang L, Lu XL. Effects of Osmolarity on the Spontaneous Calcium Signaling of In Situ Juvenile and Adult Articular Chondrocytes. Ann Biomed Eng 2015. [PMID: 26219403 DOI: 10.1007/s10439-015-1406-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Calcium is a universal second messenger that mediates the metabolic activity of chondrocytes in articular cartilage. Spontaneous intracellular calcium ([Ca(2+)]i) oscillations, similar to those in neurons and myocytes, have recently been observed in chondrocytes. This study analyzed and compared the effects of different osmotic environments (hypertonic, hypotonic, and isotonic) on the spontaneous [Ca(2+)]i signaling of in situ chondrocytes residing in juvenile and adult cartilage explants. In spite of a lower cell density, a significantly higher percentage of chondrocytes in adult cartilage under all osmotic environments demonstrated spontaneous [Ca(2+)]i oscillations than chondrocytes in juvenile cartilage. For both juvenile and adult chondrocytes, hypotonic stress increased while hypertonic stress decreased the response rates. Furthermore, the spatiotemporal characteristics of the [Ca(2+)]i peaks vary in an age-dependent manner. In the hypotonic environment, the [Ca(2+)]i oscillation frequency of responsive adult cells is almost tripled whereas the juvenile cells respond with an increased duration and magnitude of each [Ca(2+)]i peak. Both juvenile and adult chondrocytes demonstrated significantly slower [Ca(2+)]i oscillations with longer rising and recovery time under the hypertonic condition. Taken together, these results shed new insights into the interplay between age and osmotic environment that may regulate the fundamental metabolism of chondrocytes.
Collapse
Affiliation(s)
- Yilu Zhou
- Department of Mechanical Engineering, University of Delaware, 130 Academy Street SPL126, Newark, DE, 19716, USA
| | - Michael A David
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Xingyu Chen
- Department of Mechanical Engineering, University of Delaware, 130 Academy Street SPL126, Newark, DE, 19716, USA
| | - Leo Q Wan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Randall L Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Liyun Wang
- Department of Mechanical Engineering, University of Delaware, 130 Academy Street SPL126, Newark, DE, 19716, USA
| | - X Lucas Lu
- Department of Mechanical Engineering, University of Delaware, 130 Academy Street SPL126, Newark, DE, 19716, USA.
| |
Collapse
|