1
|
Zang K, Brossard M, Wilson T, Ali SA, Espin-Garcia O. A scoping review of statistical methods to investigate colocalization between genetic associations and microRNA expression in osteoarthritis. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100540. [PMID: 39640910 PMCID: PMC11617925 DOI: 10.1016/j.ocarto.2024.100540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Background Genetic colocalization analysis is a statistical method that evaluates whether two traits (e.g., osteoarthritis [OA] risk and microRNA [miRNA] expression levels) share the same or distinct genetic association signals in a locus typically identified in genome-wide association studies (GWAS). This method is useful for providing insights into the biological relevance of genetic association signals, particularly in intergenic regions, which can help to elucidate disease mechanisms in OA and other complex traits. Objectives To review the existing literature on genetic colocalization methods, assess their suitability for studying OA, and investigate their capacity to integrate miRNA data, while bearing in view their statistical assumptions. Design We followed scoping review methodology and used Covidence software for data management. Search terms for colocalization, GWAS, and genetic or statistical models were used in the databases MEDLINE and EMBASE, searched till March 4, 2024. Results Our search returned 546 peer-reviewed papers, of which 96 were included following title/abstract and full-text screening. Based on both cumulative and annual publication counts, the most cited method for colocalization analysis was coloc. Four papers examined OA-related phenotypes, and none examined miRNA. An approach to colocalization analysis using miRNA was postulated based on further hand-searching. Conclusions Colocalization analysis is a largely unexplored method in OA. Many of the approaches to colocalization analysis identified in this review, including the integration of GWAS and miRNA data, may help to elucidate genetic and epigenetic factors implicated in OA and other complex traits.
Collapse
Affiliation(s)
- Kathleen Zang
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - Myriam Brossard
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Thomas Wilson
- Henry Ford Health + Michigan State University Health Sciences, Detroit, MI, USA
| | - Shabana Amanda Ali
- Henry Ford Health + Michigan State University Health Sciences, Detroit, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Osvaldo Espin-Garcia
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
- Department of Biostatistics, Krembil Research Institute and Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
2
|
Yang H, Xiong C, Yu Z, Yang Z, Zhang Y, Zhang J, Huang Y, Xu N, Zhou X, Jiang M, Xu Z. A functional polymorphism at the miR-25-3p binding site in the 3′-untranslated region of the S1PR1 gene decreases the risk of osteoporosis in Chinese postmenopausal women. ARAB J CHEM 2023; 16:104888. [DOI: 10.1016/j.arabjc.2023.104888] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025] Open
|
3
|
Jiang A, Xu P, Yang Z, Zhao Z, Tan Q, Li W, Song C, Dai H, Leng H. Increased Sparc release from subchondral osteoblasts promotes articular chondrocyte degeneration under estrogen withdrawal. Osteoarthritis Cartilage 2023; 31:26-38. [PMID: 36241137 DOI: 10.1016/j.joca.2022.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/08/2022] [Accepted: 08/04/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The incidence of osteoarthritis (OA) in menopausal women is significantly higher than in same-aged men. Investigating the role of subchondral osteoblasts in estrogen deficiency-induced OA may help elucidate the pathological mechanism, providing new insights for the diagnosis and treatment of menopausal OA. METHODS A classical ovariectomy-induced OA (OVX-OA) rat model was utilized to isolate primary articular chondrocytes and subchondral osteoblasts, which were identified and then cocultured in Transwell. The expression of chondrocyte anabolic and catabolic indicators was evaluated. The differentially expressed proteins in the conditioned medium (CM) of osteoblasts were identified by Liquid Chromatograph-Mass Spectrometer (LC-MS/MS). Normal chondrocytes were treated with osteoblast CM, and then RNA sequencing was performed on the treated chondrocytes. KEGG was used to identify significant enrichment of signaling pathways, and Simple Western was used to verify the expression of related proteins in the signaling pathways. RESULTS Coculture of OVX-OA subchondral osteoblasts with chondrocytes significantly downregulated the expression of the anabolic indicators and upregulated the expression of the catabolic indicators in chondrocytes. 1,601 proteins were identified in both normal and OVX osteoblast culture supernatants. Protein-protein interaction network analysis revealed that Sparc was one of the hub proteins. The AMPK/Foxo3a signaling pathway of chondrocytes was downregulated by OVX-OA osteoblasts CM. AICAR, the AMPK agonist, partially reversed the catabolic effect of OVX-OA osteoblasts on chondrocytes. CONCLUSIONS Sparc secreted by OVX-OA subchondral osteoblasts can downregulate the AMPK/Foxo3a signaling pathway of chondrocytes, thereby promoting chondrocyte degeneration.
Collapse
Affiliation(s)
- A Jiang
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China; Department of General Surgery, Beijing Pinggu Hospital, Beijing 101299, China
| | - P Xu
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Z Yang
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China
| | - Z Zhao
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China
| | - Q Tan
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China
| | - W Li
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China; Engineering Research Center of Bone and Joint Precision Medicine, Beijing 100191, China
| | - C Song
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China; Beijing Key Lab of Spine Diseases, Beijing 100191, China
| | - H Dai
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing 100191, China
| | - H Leng
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
4
|
Shen X, Zhu W, Zhang P, Fu Y, Cheng J, Liu L, Xu R, Jiang H. Macrophage miR-149-5p induction is a key driver and therapeutic target for BRONJ. JCI Insight 2022; 7:159865. [PMID: 35993364 PMCID: PMC9462481 DOI: 10.1172/jci.insight.159865] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/07/2022] [Indexed: 11/26/2022] Open
Abstract
Bisphosphonate-related (BP-related) osteonecrosis of the jaw (BRONJ) is one of the severe side effects of administration of BPs, such as zoledronic acid (ZA), which can disrupt the patient’s quality of life. Although the direct target of skeletal vasculature and bone resorption activity by BPs has been phenomenally observed, the underlying mechanism in BRONJ remains largely elusive. Thus, it is urgently necessary to discover effective therapeutic targets based on the multifaceted underlying mechanisms in the development of BRONJ. Here, we determined the inhibitory role of ZA-treated macrophages on osteoclast differentiation and type H vessel formation during tooth extraction socket (TES) healing. Mechanistically, ZA activated the NF-κB signaling pathway and then induced p65 nuclear translocation in macrophages to promote miR-149-5p transcription, resulting in impaired osteoclast differentiation via directly binding to the Traf6 3′-UTR region. Moreover, we identified that miR-149-5p–loaded extracellular vesicles derived from ZA-treated bone marrow–derived macrophages could regulate biological functions of endothelial cells via the Rap1a/Rap1b/VEGFR2 pathway. Furthermore, local administration of chemically modified antagomiR-149-5p was proven to be therapeutically effective in BRONJ mice. In conclusion, our findings illuminate the dual effects of miR-149-5p on skeletal angiogenesis and bone remolding, suggesting it as a promising preventive and therapeutic target for BRONJ.
Collapse
Affiliation(s)
- Xin Shen
- Jiangsu Key Laboratory of Oral Diseases and
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Weiwen Zhu
- Jiangsu Key Laboratory of Oral Diseases and
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
- Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Ping Zhang
- Jiangsu Key Laboratory of Oral Diseases and
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yu Fu
- Jiangsu Key Laboratory of Oral Diseases and
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Jie Cheng
- Jiangsu Key Laboratory of Oral Diseases and
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Laikui Liu
- Jiangsu Key Laboratory of Oral Diseases and
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
- Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Rongyao Xu
- Jiangsu Key Laboratory of Oral Diseases and
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Hongbing Jiang
- Jiangsu Key Laboratory of Oral Diseases and
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| |
Collapse
|
5
|
Liu JN, Lu S, Fu CM. MiR-146a expression profiles in osteoarthritis in different tissue sources: a meta-analysis of observational studies. J Orthop Surg Res 2022; 17:148. [PMID: 35248106 PMCID: PMC8898505 DOI: 10.1186/s13018-022-02989-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/03/2022] [Indexed: 02/08/2023] Open
Abstract
Background MiR-146a has been widely studied in the pathogenesis of osteoarthritis (OA); however, the results are still controversial. Objective This meta-analysis analyzes the expression profile of miR-146a in various tissues of OA patients. Methods Public databases were searched for appropriate studies published up to September 1, 2021. A case–control study comparing the OA population and a non-OA healthy population was included. Results 26 articles were included in analysis. The results showed that the expression level of miR-146a in peripheral blood mononuclear cells (PBMCs) was significantly higher in OA patients than in controls (SMD: 1.23; 95% CI 0.08–2.37; p = 0.035) but not in plasma (SMD: 1.09; 95% CI − 0.06, 2.24; p = 0.064). The expression level of miR-146a in cartilage was also significantly higher in OA patients than in controls (SMD: 6.39; 95% CI 0.36, 12.4; p = 0.038) but not in chondrocytes (SMD: − 0.71; 95% CI − 4.15, 2.73; p = 0.687). The miR-146a level was significantly lower in synoviocytes in the OA population than in control patients (SMD: − 0.97; 95% CI − 1.68, − 0.26; p = 0.008). In synovial tissue, synovial fluid, and regulatory T cells, there was no significant difference. Conclusion The expression level of miR-146a in cartilage tissue and PBMCs was significantly higher in OA patients than in non-OA healthy controls. Due to the limitations of this study, more research is needed to confirm these results in the future. Trial registration: retrospectively registered. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-022-02989-7.
Collapse
|
6
|
Garcia J, Smith SS, Karki S, Drissi H, Hrdlicka HH, Youngstrom DW, Delany AM. miR-433-3p suppresses bone formation and mRNAs critical for osteoblast function in mice. J Bone Miner Res 2021; 36:1808-1822. [PMID: 34004029 DOI: 10.1002/jbmr.4339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022]
Abstract
MicroRNAs (miRNAs) are key posttranscriptional regulators of osteoblastic commitment and differentiation. miR-433-3p was previously shown to target Runt-related transcription factor 2 (Runx2) and to be repressed by bone morphogenetic protein (BMP) signaling. Here, we show that miR-433-3p is progressively decreased during osteoblastic differentiation of primary mouse bone marrow stromal cells in vitro, and we confirm its negative regulation of this process. Although repressors of osteoblastic differentiation often promote adipogenesis, inhibition of miR-433-3p did not affect adipocyte differentiation in vitro. Multiple pathways regulate osteogenesis. Using luciferase-3' untranslated region (UTR) reporter assays, five novel miR-433-3p targets involved in parathyroid hormone (PTH), mitogen-activated protein kinase (MAPK), Wnt, and glucocorticoid signaling pathways were validated. We show that Creb1 is a miR-433-3p target, and this transcription factor mediates key signaling downstream of PTH receptor activation. We also show that miR-433-3p targets hydroxysteroid 11-β dehydrogenase 1 (Hsd11b1), the enzyme that locally converts inactive glucocorticoids to their active form. miR-433-3p dampens glucocorticoid signaling, and targeting of Hsd11b1 could contribute to this phenomenon. Moreover, miR-433-3p targets R-spondin 3 (Rspo3), a leucine-rich repeat-containing G-protein coupled receptor (LGR) ligand that enhances Wnt signaling. Notably, Wnt canonical signaling is also blunted by miR-433-3p activity. In vivo, expression of a miR-433-3p inhibitor or tough decoy in the osteoblastic lineage increased trabecular bone volume. Mice expressing the miR-433-3p tough decoy displayed increased bone formation without alterations in osteoblast or osteoclast numbers or surface, indicating that miR-433-3p decreases osteoblast activity. Overall, we showed that miR-433-3p is a negative regulator of bone formation in vivo, targeting key bone-anabolic pathways including those involved in PTH signaling, Wnt, and endogenous glucocorticoids. Local delivery of miR-433-3p inhibitor could present a strategy for the management of bone loss disorders and bone defect repair. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- John Garcia
- Center for Molecular Oncology, UConn Health, Farmington, Connecticut, USA
| | - Spenser S Smith
- Center for Molecular Oncology, UConn Health, Farmington, Connecticut, USA
| | - Sangita Karki
- Center for Molecular Oncology, UConn Health, Farmington, Connecticut, USA
| | - Hicham Drissi
- Department of Orthopaedics, Emory University and Atlanta VA Medical Center, Decatur, Georgia, USA
| | - Henry H Hrdlicka
- Center for Molecular Oncology, UConn Health, Farmington, Connecticut, USA
| | - Daniel W Youngstrom
- Department of Orthopedic Surgery, UConn Health, Farmington, Connecticut, USA
| | - Anne M Delany
- Center for Molecular Oncology, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
7
|
Abstract
MicroRNAs (miRNAs) are a class of short RNA molecules that mediate the regulation of gene activity through interactions with target mRNAs and subsequent silencing of gene expression. It has become increasingly clear the miRNAs regulate many diverse aspects of bone biology, including bone formation and bone resorption processes. The role of miRNAs specifically in osteoclasts has been of recent investigation, due to clinical interest in discovering new paradigms to control excessive bone resorption, as is observed in multiple conditions including aging, estrogen deprivation, cancer metastases or glucocorticoid use. Therefore understanding the role that miRNAs play during osteoclastic differentiation is of critical importance. In this review, we highlight and discuss general aspects of miRNA function in osteoclasts, including exciting data demonstrating that miRNAs encapsulated in extracellular vesicles (EVs) either originating from osteoclasts, or signaling to osteoclast from divergent sites, have important roles in bone homeostasis.
Collapse
Affiliation(s)
- Megan M Weivoda
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Sun-Kyeong Lee
- Department of Medicine, UCONN Center on Aging, University Connecticut Health Center, Farmington, CT 06030, USA
| | - David G Monroe
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Rochester, MN 55905, USA.
| |
Collapse
|
8
|
Fittipaldi S, Visconti VV, Tarantino U, Novelli G, Botta A. Genetic variability in noncoding RNAs: involvement of miRNAs and long noncoding RNAs in osteoporosis pathogenesis. Epigenomics 2020; 12:2035-2049. [PMID: 33264054 DOI: 10.2217/epi-2020-0233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The pathogenesis of osteoporosis is multifactorial and is the consequence of genetic, hormonal and lifestyle factors. Epigenetics, including noncoding RNA (ncRNA) deregulation, represents a link between susceptibility to develop the disease and environmental influences. The majority of studies investigated the expression of ncRNAs in osteoporosis patients; however, very little information is available on their genetic variability. In this review, we focus on two classes of ncRNAs: miRNAs and long noncoding RNAs (lncRNAs). We summarize recent findings on how polymorphisms in miRNAs and lncRNAs can perturb the lncRNA/miRNA/mRNA axis and may be involved in osteoporosis clinical outcome. We also provide a general overview on databases and bioinformatic tools useful for associating miRNAs and lncRNAs variability with complex genetic diseases.
Collapse
Affiliation(s)
- Simona Fittipaldi
- Department of Biomedicine & Prevention, Medical Genetics Section, University of Rome 'Tor Vergata', Via Montpellier 1, 00133 Rome, Italy
| | - Virginia Veronica Visconti
- Department of Biomedicine & Prevention, Medical Genetics Section, University of Rome 'Tor Vergata', Via Montpellier 1, 00133 Rome, Italy.,Department of Orthopedics & Traumatology, PTV Foundation, 00133 Rome, Italy
| | - Umberto Tarantino
- Department of Orthopedics & Traumatology, PTV Foundation, 00133 Rome, Italy.,Department of Clinical Sciences & Translational Medicine, University of Rome 'Tor Vergata', Via Montpellier 1, 00133 Rome, Italy
| | - Giuseppe Novelli
- Department of Biomedicine & Prevention, Medical Genetics Section, University of Rome 'Tor Vergata', Via Montpellier 1, 00133 Rome, Italy.,IRCCS Neuromed, Pozzilli, IS, Italy
| | - Annalisa Botta
- Department of Biomedicine & Prevention, Medical Genetics Section, University of Rome 'Tor Vergata', Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
9
|
Yang S, Guo S, Tong S, Sun X. Exosomal miR-130a-3p regulates osteogenic differentiation of Human Adipose-Derived stem cells through mediating SIRT7/Wnt/β-catenin axis. Cell Prolif 2020; 53:e12890. [PMID: 32808361 PMCID: PMC7574877 DOI: 10.1111/cpr.12890] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/15/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES It is of profound significance for clinical bone regeneration to clarify the specific molecular mechanism from which we found that osteogenic differentiation of adipose-derived stem cells (ADSCs) will be probably promoted by exosomes. MATERIALS AND METHODS By means of lentiviral transfection, miR-130a-3p overexpression and knockdown ADSCs were constructed. Alizarin Red S was used to detect the calcium deposits, and qPCR was used to detect osteogenesis-related genes, to verify the effect of miR-130a-3p on the osteogenic differentiation of ADSCs. CCK-8 was used to detect the effect of miR-130a-3p on the proliferation of ADSCs. The target binding between miR-130a-3p and SIRT7 was verified by dual-luciferase reporter gene assay. Furthermore, the role of Wnt signalling pathway in the regulation of ADSCs osteogenesis and differentiation by miR-130a-3p was further verified by detecting osteogenic-related genes and proteins and alkaline phosphatase activity. RESULTS (a) Overexpression of miR-130a-3p can enhance the osteogenic differentiation of ADSCs while reducing protein and mRNA levels of SIRT7, a target of miR-130a-3p. (b) Our study further found that overexpression of miR-130a-3p leads to down-regulation of SIRT7 expression with up-regulation of Wnt signalling pathway-associated protein. (c) Overexpression of miR-130a-3p inhibited proliferation of ADSCs, while knockdown promoted it. CONCLUSIONS The obtained findings indicate that exosomal miR-130a-3p can promote osteogenic differentiation of ADSCs partly by mediating SIRT7/Wnt/β-catenin axis, which will hence promote the application of exosomal microRNA in the field of bone regeneration.
Collapse
Affiliation(s)
- Shude Yang
- Department of Plastic SurgeryThe First Hospital of China Medical UniversityShenyangChina
| | - Shu Guo
- Department of Plastic SurgeryThe First Hospital of China Medical UniversityShenyangChina
| | - Shuang Tong
- Department of Plastic SurgeryThe First Hospital of China Medical UniversityShenyangChina
| | - Xu Sun
- Department of Plastic SurgeryThe First Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
10
|
Rousseau JC, Millet M, Croset M, Sornay-Rendu E, Borel O, Chapurlat R. Association of circulating microRNAs with prevalent and incident knee osteoarthritis in women: the OFELY study. Arthritis Res Ther 2020; 22:2. [PMID: 31898522 PMCID: PMC6941326 DOI: 10.1186/s13075-019-2086-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022] Open
Abstract
Objectives In the context of the scarcity of biomarkers for knee osteoarthritis (OA), we examined the associations of prevalent and incident OA with the expression levels of serum miRNAs in subjects with and without OA. Methods With a next-generation sequencing approach, we compared the miRome expression of 10 women with knee OA and 10 age-matched healthy subjects. By real-time qPCR, we analyzed the expression levels of 19 miRNAs at baseline selecting 43 women with prevalent knee OA (Kellgren Lawrence score of 2/3), 23 women with incident knee OA over a 4-year follow-up and 67 healthy subjects without prevalent or incident OA matched for age and body mass index. Results Serum miR-146a-5p was significantly increased in the group of prevalent knee OA compared with controls (relative quantification (RQ); median [Interquartile range] 1.12 [0.73; 1.46] vs 0.85 [0.62; 1.03], p = 0.015). The likelihood of prevalent knee OA was significantly increased (odds ratio [95% confidence interval (CI)] 1.83 [1.21–2.77], p = 0.004) for each quartile increase in serum miR-146a-5p. The women with miR-146a-5p levels above the median (0.851) had a higher risk of prevalent knee OA compared to those below the median [95% CI] 4.62 [1.85–11.5], p = 0.001. Moreover, we found a significant association between the baseline level of serum miR-186-5p and the risk of incident knee OA (Q4 vs Q1–3; odds ratio [95% CI] 6.13 [1.14–32.9], p = 0.034). Conclusion We showed for the first time that miR-146a-5p and miR-186-5p are significantly associated with prevalent and incident knee OA, respectively.
Collapse
Affiliation(s)
| | - Marjorie Millet
- INSERM 1033, Pavillon F, Hôpital E. Herriot, 69437, Lyon Cedex 03, France
| | - Martine Croset
- INSERM 1033, Pavillon F, Hôpital E. Herriot, 69437, Lyon Cedex 03, France
| | - Elisabeth Sornay-Rendu
- INSERM 1033, Pavillon F, Hôpital E. Herriot, 69437, Lyon Cedex 03, France.,Hôpital E. Herriot, Hospices Civils de Lyon, Lyon, France
| | - Olivier Borel
- INSERM 1033, Pavillon F, Hôpital E. Herriot, 69437, Lyon Cedex 03, France.,Hôpital E. Herriot, Hospices Civils de Lyon, Lyon, France
| | - Roland Chapurlat
- INSERM 1033, Pavillon F, Hôpital E. Herriot, 69437, Lyon Cedex 03, France.,Hôpital E. Herriot, Hospices Civils de Lyon, Lyon, France.,Université de Lyon, Lyon, France
| |
Collapse
|
11
|
Yan S, Miao L, Lu Y, Wang L. MicroRNA-506 upregulation contributes to sirtuin 1 inhibition of osteoclastogenesis in bone marrow stromal cells induced by TNF-α treatment. Cell Biochem Funct 2019; 37:598-607. [PMID: 31515847 DOI: 10.1002/cbf.3436] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/06/2019] [Accepted: 08/26/2019] [Indexed: 11/07/2022]
Abstract
As a deacetylase relying on NAD, sirtuin 1 (SIRT1) has been proven to inhibit osteoclastogenesis directly by repressing reactive oxygen species (ROS) production and TRPV1 channel stimulation modulated by TNF-α. MicroRNAs do not have coding functions, but they influence the expression of particular genes after transcription. Nevertheless, the current understanding of the impact of SIRT1 on osteoclastogenesis is insufficient. Our research explored whether and how miRNAs contributed to osteoclast differentiation modulated by SIRT1 in vitro. In osteoclastogenesis induced by RANKL in bone marrow-derived macrophages (BMMs), repression of SIRT1 expression and enhancement of miR-506 expression were discovered. Transfection with an miR-506 inhibitor repressed miR-506 concentration in BMMs treated with RANKL. Additional research revealed that BMMs with repressed miR-506 treated with RANKL displayed phenotypes with suppressed osteoclastogenesis, as demonstrated by TRAP staining, reduced function, decreased expression of osteoclast markers and correlated genes, and reduced multinuclear cell quantity. Bioinformatics prediction outcomes and the dual-luciferase reporter test suggested that miR-506 targeted the SIRT1 3'-UTR for silencing. Decreased miR-506 in BMMs induced by RANKL caused SIRT1 upregulation. Additionally, treatment with EX-527 (SIRT1 repressor) or SIRT1 silencing attenuated repression caused by miR-506 depletion in BMMs treated with RANKL. Furthermore, TNF-α was repressed via miR-506 inhibition but was enhanced following EX-527 incubation as well as SIRT1 depletion. TRPV1 channel stimulation and ROS generation, which was related to osteoclastogenesis, were reduced via miR-506 depletion. miR-506 modulated osteoclastogenesis by targeting SIRT1 expression in part through modulation of the TRPV1 channel, ROS production, and TNF-α.
Collapse
Affiliation(s)
- Shu Yan
- General Medical Wards, the Third Hospital Affiliated from Soochow University, Changzhou, China
| | - Lujie Miao
- Department of Gastroenterology, the Third Hospital Affiliated from Soochow University, Changzhou, China
| | - Yahua Lu
- General Medical Wards, the Third Hospital Affiliated from Soochow University, Changzhou, China
| | - Liangzhi Wang
- General Medical Wards, the Third Hospital Affiliated from Soochow University, Changzhou, China
| |
Collapse
|
12
|
Promoting Osteogenic Differentiation of Human Adipose-Derived Stem Cells by Altering the Expression of Exosomal miRNA. Stem Cells Int 2019; 2019:1351860. [PMID: 31354836 PMCID: PMC6636464 DOI: 10.1155/2019/1351860] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/07/2019] [Accepted: 05/23/2019] [Indexed: 12/20/2022] Open
Abstract
Human adipose-derived stem cells (ADSCs) can release exosomes; however, their specific functions remain elusive. In this study, we verified that exosomes derived from osteogenically differentiated ADSCs can promote osteogenic differentiation of ADSCs. Furthermore, in order to investigate the importance of exosomal microRNAs (miRNAs) in osteogenic differentiation of ADSCs, we used microarray assays to analyze the expression profiles of exosomal miRNAs derived from undifferentiated as well as osteogenically differentiated ADSCs; 201 miRNAs were upregulated and 33 miRNAs were downregulated between the two types of exosomes. Additionally, bioinformatic analyses, which included gene ontology analyses, pathway analysis, and miRNA-mRNA-network investigations, were performed. The results of these analyses revealed that the differentially expressed exosomal miRNAs participate in multiple biological processes, such as gene expression, synthesis of biomolecules, cell development, differentiation, and signal transduction, among others. Moreover, we found that these differentially expressed exosomal miRNAs connect osteogenic differentiation to processes such as axon guidance, MAPK signaling, and Wnt signaling. To the best of our knowledge, this is the first study to identify and characterize exosomal miRNAs derived from osteogenically differentiated ADSCs. This study confirms that alterations in the expression of exosomal miRNAs can promote osteogenic differentiation of ADSCs, which also provides the foundation for further research on the regulatory functions of exosomal miRNAs in the context of ADSC osteogenesis.
Collapse
|
13
|
Niu D, Gong Z, Sun X, Yuan J, Zheng T, Wang X, Fan X, Mao Y, Liu X, Tang B, Fu Y. miR-338-3p regulates osteoclastogenesis via targeting IKKβ gene. In Vitro Cell Dev Biol Anim 2019; 55:243-251. [PMID: 30887211 DOI: 10.1007/s11626-019-00325-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/17/2019] [Indexed: 01/15/2023]
Abstract
This study determined the effects of miR-338-3p on osteoclast (OC) differentiation and activation. The change levels of miR-338-3p in differentiated OCs were investigated by microRNA microarray assay and quantitative real-time PCR analysis. The effects of miR-338-3p on the differentiation and activation of OCs were determined by tartrate-resistant acid phosphatase staining resorption activity assay and Western blot. Target genes of miR-338-3p were identified by target gene prediction and dual-luciferase reporter gene detection assay as well as Western blot. Results showed that miR-338-3p was markedly downregulated in differentiated OCs. miR-338-3p could inhibit the formation and absorption activity of OCs. Western blot showed that miR-338-3p could influence the change levels of OC differentiation-related proteins. Dual-luciferase reporter gene detection assay and Western blot both showed that miR-338-3p directly targeted IKKβ gene. In conclusion, miR-338-3p may affect the formation and activity of OCs by targeting the IKKβ gene.
Collapse
Affiliation(s)
- Dequn Niu
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, People's Republic of China
| | - Zheng Gong
- Department of Bioscience, Bengbu Medical College, Bengbu, 233000, People's Republic of China
| | - Xuemin Sun
- Department of Clinical Medicine, Bengbu Medical College, Bengbu, 233000, People's Republic of China
| | - Jianchang Yuan
- Department of Bioscience, Bengbu Medical College, Bengbu, 233000, People's Republic of China
| | - Tiantian Zheng
- Department of Bioscience, Bengbu Medical College, Bengbu, 233000, People's Republic of China
| | - Xun Wang
- Department of Bioscience, Bengbu Medical College, Bengbu, 233000, People's Republic of China
| | - Xu Fan
- Department of Bioscience, Bengbu Medical College, Bengbu, 233000, People's Republic of China
| | - Yingji Mao
- Department of Bioscience, Bengbu Medical College, Bengbu, 233000, People's Republic of China
| | - Xianfu Liu
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, People's Republic of China
| | - Baoding Tang
- Department of Bioscience, Bengbu Medical College, Bengbu, 233000, People's Republic of China
| | - Yingxiao Fu
- Department of Bioscience, Bengbu Medical College, Bengbu, 233000, People's Republic of China.
| |
Collapse
|
14
|
Wu HY, Bi R, Sun T, Xie F. Deletion of Dicer blocks osteogenic differentiation via the inhibition of Wnt signalling. Mol Med Rep 2019; 19:2897-2905. [PMID: 30816532 DOI: 10.3892/mmr.2019.9941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 01/29/2019] [Indexed: 11/06/2022] Open
Abstract
Micro (mi)RNAs are small, non‑coding RNAs and have been reported to have important roles in the epigenetic control of bone development. miRNAs markedly regulate osteoblast differentiation through stages of maturation as well as the activities of osteogenic signaling pathways. Dicer is an important endoribonuclease that regulates miRNA maturation. Previous studies have demonstrated that Dicer deletion decreases fetal survival and bone formation, while excision in differentiated osteoblasts increases bone mass. However, the underlying molecular mechanisms remain unclear. In the present study, whether the deletion of Dicer affects Wnt signaling, which exhibits important roles during osteogenesis, was investigated. Bone marrow stromal cells (BMSCs) were used as an osteogenic model. Dynamic changes of seven Wnt genes and downstream T‑cell factor 1 (Tcf‑1)/lymphoid enhancing binding factor were observed during the osteogenic differentiation of BMSCs, which revealed different roles at early and late differentiation stages. Following the stable knockdown of Dicer in BMSCs using lentiviral short hairpin RNA, osteogenic differentiation was blocked, and the levels of important osteogenic differentiation markers (runt related transcription factor 2 and alkaline phosphatase) were markedly inhibited. Furthermore, stage specific regulation of Wnt genes in Dicer‑deficient BMSCs was investigated in the present study. At the early differentiation stage (days 5‑7), knockdown of Dicer led to the inhibition of Wnt1, Wnt7 and Wnt10b, as well as the upregulation of Wnt4, Wnt10a and Tcf‑1. At the late stage of differentiation (days 14‑21), knockdown of Dicer significantly suppressed the expression levels of all of the included Wnt genes as well as Tcf‑1, with the exception of Wnt10a. The upregulation of Wnt10a following the deletion of Dicer was maintained throughout all stages of differentiation. In addition, differential regulation of Wnt genes and Tcf‑1 were revealed to be associated with dynamic changes in their expression levels during osteogenic differentiation. Furthermore, the four putative Wnt10a‑targeting miRNAs were investigated in the present study, and the results demonstrated that they were upregulated during osteogenic differentiation, which suggested that inhibition of Wnt10a may be an important factor associated with osteogenic differentiation. In conclusion, the present study investigated the mechanism underlying the regulation of Wnt signalling by Dicer during osteogenesis, and identified potential miRNAs targeting the components of Wnt signalling influenced by Dicer. Collectively, the present study identified the association between Dicer and Wnt signalling during bone development.
Collapse
Affiliation(s)
- Hong-Yan Wu
- Pharmacy Department, Tangshan People's Hospital, Tangshan, Hebei 063001, P.R. China
| | - Rui Bi
- Pharmacy Department, Tangshan People's Hospital, Tangshan, Hebei 063001, P.R. China
| | - Ting Sun
- Department of Clinical Pharmacology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Fei Xie
- Pharmacy Department, Tangshan People's Hospital, Tangshan, Hebei 063001, P.R. China
| |
Collapse
|
15
|
Aquino-Martinez R, Farr JN, Weivoda MM, Negley BA, Onken JL, Thicke BS, Fulcer MM, Fraser DG, van Wijnen AJ, Khosla S, Monroe DG. miR-219a-5p Regulates Rorβ During Osteoblast Differentiation and in Age-related Bone Loss. J Bone Miner Res 2019; 34:135-144. [PMID: 30321475 PMCID: PMC6450079 DOI: 10.1002/jbmr.3586] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/29/2018] [Accepted: 09/10/2018] [Indexed: 12/24/2022]
Abstract
Developing novel approaches to treat skeletal disorders requires an understanding of how critical molecular factors regulate osteoblast differentiation and bone remodeling. We have reported that (1) retinoic acid receptor-related orphan receptor beta (Rorβ) is upregulated in bone samples isolated from aged mice and humans in vivo; (2) Rorβ expression is inhibited during osteoblastic differentiation in vitro; and (3) genetic deletion of Rorβ in mice results in preservation of bone mass during aging. These data establish that Rorβ inhibits osteogenesis and that strict control of Rorβ expression is essential for bone homeostasis. Because microRNAs (miRNAs) are known to play important roles in the regulation of gene expression in bone, we explored whether a predicted subset of nine miRNAs regulates Rorβ expression during both osteoblast differentiation and aging. Mouse osteoblastic cells were differentiated in vitro and assayed for Rorβ and miRNA expression. As Rorβ levels declined with differentiation, the expression of many of these miRNAs, including miR-219a-5p, was increased. We further demonstrated that miR-219a-5p was decreased in bone samples from old (24-month) mice, as compared with young (6-month) mice, concomitant with increased Rorβ expression. Importantly, we also found that miR-219a-5p expression was decreased in aged human bone biopsies compared with young controls, demonstrating that this phenomenon also occurs in aging bone in humans. Inhibition of miR-219a-5p in mouse calvarial osteoblasts led to increased Rorβ expression and decreased alkaline phosphatase expression and activity, whereas a miR-219a-5p mimic decreased Rorβ expression and increased osteogenic activity. Finally, we demonstrated that miR-219a-5p physically interacts with Rorβ mRNA in osteoblasts, defining Rorβ as a true molecular target of miR-219a-5p. Overall, our findings demonstrate that miR-219a-5p is involved in the regulation of Rorβ in both mouse and human bone. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Ruben Aquino-Martinez
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Joshua N Farr
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Megan M Weivoda
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Brittany A Negley
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Jennifer L Onken
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Brianne S Thicke
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - McKenzie M Fulcer
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Daniel G Fraser
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Sundeep Khosla
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - David G Monroe
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| |
Collapse
|
16
|
Amjadi-Moheb F, Hosseini SR, Kosari-Monfared M, Ghadami E, Nooreddini H, Akhavan-Niaki H. A specific haplotype in potential miRNAs binding sites of secreted frizzled-related protein 1 (SFRP1) is associated with BMD variation in osteoporosis. Gene 2018; 677:132-141. [PMID: 30055306 DOI: 10.1016/j.gene.2018.07.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/06/2018] [Accepted: 07/24/2018] [Indexed: 11/22/2022]
Abstract
PURPOSE Osteoporosis is an important multifactorial disease which is largely influenced by Wnt signaling pathway. Considering regulatory single nucleotide polymorphisms in Wnt signaling pathway may pave the road of understanding the genetic basis of predisposition to osteoporosis. The aim of this study was to determine the possible association between variants of SFRP1 and WNT5b, and osteoporosis incidence risk. METHODS The study population comprised 186 osteoporotic patients and 118 normal subjects from Amirkola Health and Ageing Project. rs1127379 (c.1406A>G) and rs3242 (c.3132C>T) variants in 3'UTR of SFRP1 gene, and rs3803164 (c.236C>T) in 3'UTR and rs735890 (c.622-536A>G) in intron 4 of WNT5b gene were genotyped using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Regression analyses were used to calculate the association of genotype frequencies with bone mineral density (BMD) and bone mineral content (BMC) values of participants. Bioinformatics algorithms were used to detect the effect of each SNP on the secondary structure of mRNA, and predict putative 3'UTR microRNA target sites and splicing sites changes by related SNPs. RESULTS WNT5b rs735890 was associated with lumbar spine BMD, BMC, and femoral neck BMC (P = 0.035, P = 0.007, and P = 0.038, respectively). WNT5b rs3803164, and SFRP1 rs3242 were significantly associated with lumbar spine BMD (P = 0.028 and P = 0.030, respectively). SFRP1 rs1127379 was associated with lumbar spine BMD in the male gender. Haplotype analysis showed a significant association of SFRP1 c.[1406A; 3132C] haplotype with lumbar spine BMD, and BMC (P = 0.019 and P = 0.030, respectively), and SFRP1 c.[1406G; 3132C] haplotype with lumbar spine BMC (P = 0.045). In silico analyses revealed that the G allele of SFRP1 rs1127379, and WNT5b rs3803164 appear as more possible target sites for many miRNAs. CONCLUSIONS This study is the first evidence of the association of WNT5b rs735890, and c.[1406A; 3132C] and c.[1406G; 3132C] haplotypes of SFRP1 with BMD variation in osteoporosis, probably by altering microRNA target sites, in elderly persons.
Collapse
Affiliation(s)
- Fatemeh Amjadi-Moheb
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran; Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Seyed Reza Hosseini
- Social Determinant of Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mohadeseh Kosari-Monfared
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran; Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Elham Ghadami
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran; Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Hajighorban Nooreddini
- Department of Radiology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Haleh Akhavan-Niaki
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran; Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
17
|
Cheng VKF, Au PCM, Tan KC, Cheung CL. MicroRNA and Human Bone Health. JBMR Plus 2018; 3:2-13. [PMID: 30680358 PMCID: PMC6339549 DOI: 10.1002/jbm4.10115] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 12/19/2022] Open
Abstract
The small non‐coding microRNAs (miRNAs) are post‐transcription regulators that modulate diverse cellular process in bone cells. Because optimal miRNA targeting is essential for their function, single‐nucleotide polymorphisms (SNPs) within or proximal to the loci of miRNA (miR‐SNPs) or mRNA (PolymiRTS) could potentially disrupt the miRNA‐mRNA interaction, leading to changes in bone metabolism and osteoporosis. Recent human studies of skeletal traits using miRNA profiling, genomewide association studies, and functional studies started to decipher the complex miRNA regulatory network. These studies have indicated that miRNAs may be a promising bone marker. This review focuses on human miRNA studies on bone traits and discusses how genetic variants affect bone metabolic pathways. Major ex vivo investigations using human samples supported with animal and in vitro models have shed light on the mechanistic role of miRNAs. Furthermore, studying the miRNAs’ signatures in secondary osteoporosis and osteoporotic medications such as teriparatide (TPTD) and denosumab (DMab) have provided valuable insight into clinical management of the disease. © 2018 The Authors. JBMR Plus Published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research
Collapse
Affiliation(s)
- Vincent Ka-Fai Cheng
- Department of Pharmacology and Pharmacy The University of Hong Kong Pokfulam Hong Kong
| | - Philip Chun-Ming Au
- Department of Pharmacology and Pharmacy The University of Hong Kong Pokfulam Hong Kong
| | - Kathryn Cb Tan
- Department of Medicine The University of Hong Kong Pokfulam Hong Kong
| | - Ching-Lung Cheung
- Department of Pharmacology and Pharmacy The University of Hong Kong Pokfulam Hong Kong.,Centre for Genomic Sciences Li Ka Shing Faculty of Medicine The University of Hong Kong Pokfulam Hong Kong
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Epigenetic mechanisms modify gene activity in a stable manner without altering DNA sequence. They participate in the adaptation to the environment, as well as in the pathogenesis of common complex disorders. We provide an overview of the role of epigenetic mechanisms in bone biology and pathology. RECENT FINDINGS Extensive evidence supports the involvement of epigenetic mechanisms (DNA methylation, post-translational modifications of histone tails, and non-coding RNAs) in the differentiation of bone cells and mechanotransduction. A variety of epigenetic abnormalities have been described in patients with osteoporosis, osteoarthritis, and skeletal cancers, but their actual pathogenetic roles are still unclear. A few drugs targeting epigenetic marks have been approved for neoplastic disorders, and many more are being actively investigated. Advances in the field of epigenetics underscore the complex interactions between genetic and environmental factors as determinants of osteoporosis and other common disorders. Likewise, they help to explain the mechanisms by which prenatal and post-natal external factors, from nutrition to psychological stress, impact our body and influence the risk of later disease.
Collapse
Affiliation(s)
- Alvaro Del Real
- Department of Internal Medicine, Hospital U.M. Valdecilla IDIVAL, University of Cantabria, 39008, Santander, Spain
| | | | - Laura López-Delgado
- Department of Internal Medicine, Hospital U.M. Valdecilla IDIVAL, University of Cantabria, 39008, Santander, Spain
| | - José A Riancho
- Department of Internal Medicine, Hospital U.M. Valdecilla IDIVAL, University of Cantabria, 39008, Santander, Spain.
| |
Collapse
|
19
|
Musolino C, Oteri G, Allegra A, Mania M, D'Ascola A, Avenoso A, Innao V, Allegra AG, Campo S. Altered microRNA expression profile in the peripheral lymphoid compartment of multiple myeloma patients with bisphosphonate-induced osteonecrosis of the jaw. Ann Hematol 2018; 97:1259-1269. [PMID: 29546453 DOI: 10.1007/s00277-018-3296-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 03/06/2018] [Indexed: 01/08/2023]
Abstract
Bisphosphonates are formidable inhibitors of osteoclast-mediated bone resorption employed for therapy of multiple myeloma (MM) subjects with osteolytic lesions. Osteonecrosis of the jaw (ONJ) is an uncommon drug-induced adverse event of these agents. MicroRNAs (miRNAs) are a group of small, noncoding RNAs nucleotides, which are essential post-transcriptional controllers of gene expression. They have a central role in the normal bone development. The goal of our study was to investigate 18 miRNAs, whose targets were previously validated and described in MM subjects without ONJ, in peripheral lymphocytes of MM subjects with bisphosphonate-induced ONJ. Utilizing reverse transcription quantitative polymerase chain reaction, we evaluated miRNAs in five healthy subjects and in five MM patients with ONJ. Our experimental data revealed that a diverse miRNA signature for ONJ subjects emerged with respect to control subjects. Using the filter for in silico analysis, among the 18 miRNAs, we recognized 14 dysregulated miRNAs. All these miRNAs were significantly over-expressed in patients vs controls (MIR-16-1, MIR-21, MIR-23A, MIR-28, MIR-101-1, MIR-124-1, MIR-129, MIR-139, MIR-145, MIR-149, MIR-202, MIR-221, MIR-424, MIR-520). Among them, six were strongly upregulated (fourfold upregulated and more). These miRNAs target numerous pathways and genes implicated in calcium ion binding, bone resorption, mineralization of bone matrix, and differentiation and maintenance of bone tissue. A modified microRNA expression profile after zoledronate therapy could participate to the onset of ONJ. Targeting these miRNAs could provide a new opportunity for the prevention or treatment of ONJ.
Collapse
Affiliation(s)
- Caterina Musolino
- Division of Hematology, Department of Patologia Umana dell'Adulto e dell'Età Evolutiva, University of Messina, Via Consolare Valeria, 98125, Messina, Italy
| | - Giacomo Oteri
- Department of Biomedical, Dental Science and Morphological and Functional Images, Dental School, Messina, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Patologia Umana dell'Adulto e dell'Età Evolutiva, University of Messina, Via Consolare Valeria, 98125, Messina, Italy.
| | - Manuela Mania
- Department of Biomedical, Dental Science and Morphological and Functional Images, Dental School, Messina, Italy
| | - Angela D'Ascola
- Department of Biomedical, Dental Science and Morphological and Functional Images, Dental School, Messina, Italy
| | - Angela Avenoso
- Department of Biomedical, Dental Science and Morphological and Functional Images, Dental School, Messina, Italy
| | - Vanessa Innao
- Division of Hematology, Department of Patologia Umana dell'Adulto e dell'Età Evolutiva, University of Messina, Via Consolare Valeria, 98125, Messina, Italy
| | - Andrea Gaetano Allegra
- Division of Hematology, Department of Patologia Umana dell'Adulto e dell'Età Evolutiva, University of Messina, Via Consolare Valeria, 98125, Messina, Italy
| | - Salvatore Campo
- Department of Biomedical, Dental Science and Morphological and Functional Images, Dental School, Messina, Italy
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW The small non-coding microRNAs (miRNAs) have emerged as important post-transcriptional regulators of various physiological and pathological processes. The purpose of this article is to review the important recent advances on the role of miRNAs in bone remodeling and metabolic bone disorders. RECENT FINDINGS In a physiological context, miRNAs regulate bone formation and bone resorption, thereby contributing to the maintenance of bone homeostasis. Under pathological conditions, an aberrant miRNA signaling contributes to the onset and progression of skeletal disorders, such as osteoporosis. Furthermore, miRNAs can be secreted to circulation and have clinical potential as non-invasive biomarkers. In a therapeutic setting, miRNA delivery or antagonism has been reported to affect several diseases under pre-clinical conditions thereby emerging as novel pharmacological tools. miRNAs are key regulators of bone remodeling in health and disease. The future perspectives in the field include the role of secreted miRNAs in cell-cell communication in the bone environment. Furthermore, the clinical potential of using miRNAs as diagnostic tools and therapeutic targets to treat metabolic bone diseases provides an attractive future direction.
Collapse
Affiliation(s)
- Hanna Taipaleenmäki
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Research Campus N27, Martinistrasse 52, 20246, Hamburg, Germany.
| |
Collapse
|
21
|
Ahn TK, Kim JO, Kumar H, Choi H, Jo MJ, Sohn S, Ropper AE, Kim NK, Han IB. Polymorphisms of miR-146a, miR-149, miR-196a2, and miR-499 are associated with osteoporotic vertebral compression fractures in Korean postmenopausal women. J Orthop Res 2018; 36:244-253. [PMID: 28741852 DOI: 10.1002/jor.23640] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/21/2017] [Indexed: 02/04/2023]
Abstract
Genetic factors have been shown to be a small but significant predictor for osteoporosis and osteoporotic fracture risk. We performed a case-control association study to determine the association between miR-146a, miR-149, miR-196a2, and miR-499 polymorphisms and osteoporotic vertebral compression fracture (OVCF) susceptibility. In total, 286 unrelated postmenopausal Korean women (57 with OVCFs, 55 with non-OVCFs, and 174 healthy controls) were recruited. All subjects underwent dual energy X-ray absorptiometry to determine BMD at the lumbar spine and femoral neck. We focused on four single nucleotide polymorphisms (SNPs) of pre-miRNA sequences including miR-146aC>G (rs2910164), miR-149T>C (rs2292832), miR-196a2T>C (rs11614913), and miR-499A>G (rs3746444). Genotype frequencies of these four SNPs were determined using polymerase chain reaction-restriction fragment length polymorphism analysis. The TT genotype of miR-149aT>C was less frequent in subjects with OVCFs, suggesting a protective effect against OVCF risk (Odds ratio [OR], 0.435; 95% confidence interval [CI], 0.22-0.85, p = 0.014), whereas the miR-146aCG/ miR-196a2TC combined genotype was more frequent in OVCF patients (OR, 5.163; 95%CI, 1.057-25.21, p = 0.043), suggesting an increase in OVCF risk. Additionally, combinations of miR-146a, -149, -196a2, and -449 showed a significant association with increased prevalence of OVCFs in postmenopausal women. In particular, the miR-146aG/-149T/-196a2C/-449G allele combination was significantly associated with an increased risk of OVCF (OR, 35.01; 95% CI, 1.919-638.6, p = 0.001). Our findings suggest that the TT genotype of miR-149aT>C may contribute to decreased susceptibility to OVCF in Korean postmenopausal women. Conversely, the miR-146aCG/ miR-196a2TC combined genotype and the miR-146aG/-149T/-196a2C/-449G allele combination may contribute to increased susceptibility to OVCF. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:244-253, 2018.
Collapse
Affiliation(s)
- Tae-Keun Ahn
- Department of Orthopedic Surgery, CHA University, CHA Bundang Medical Center, 59 Yaptapro, Seongnam-si, 13496, South Korea
| | - Jung-Oh Kim
- Department of Biomedical Science, College of Life Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, 13488, Korea
| | - Hemant Kumar
- Department of Neurosurgery, CHA University, CHA Bundang Medical Center, 59 Yaptapro, Seongnam-si, 13496, South Korea
| | - Hyemi Choi
- Department of Neurosurgery, CHA University, CHA Bundang Medical Center, 59 Yaptapro, Seongnam-si, 13496, South Korea
| | - Min-Jae Jo
- Department of Neurosurgery, CHA University, CHA Bundang Medical Center, 59 Yaptapro, Seongnam-si, 13496, South Korea
| | - Seil Sohn
- Department of Neurosurgery, CHA University, CHA Bundang Medical Center, 59 Yaptapro, Seongnam-si, 13496, South Korea
| | | | - Nam-Keun Kim
- Department of Biomedical Science, College of Life Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, 13488, Korea
| | - In-Bo Han
- Department of Neurosurgery, CHA University, CHA Bundang Medical Center, 59 Yaptapro, Seongnam-si, 13496, South Korea
| |
Collapse
|
22
|
Genetic Polymorphism of miR-196a-2 is Associated with Bone Mineral Density (BMD). Int J Mol Sci 2017; 18:ijms18122529. [PMID: 29186852 PMCID: PMC5751132 DOI: 10.3390/ijms18122529] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 12/27/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that post-transcriptionally regulate the translation of messenger RNAs. Given the crucial role of miRNAs in gene expression, genetic variants within miRNA-related sequences may affect miRNA function and contribute to disease risk. Osteoporosis is characterized by reduced bone mass, and bone mineral density (BMD) is a major diagnostic proxy to assess osteoporosis risk. Here, we aimed to identify miRNAs that are involved in BMD using data from recent genome-wide association studies (GWAS) on femoral neck, lumbar spine and forearm BMD. Of 242 miRNA-variants available in the GWAS data, we found rs11614913:C > T in the precursor miR-196a-2 to be significantly associated with femoral neck-BMD (p-value = 9.9 × 10−7, β = −0.038) and lumbar spine-BMD (p-value = 3.2 × 10−11, β = −0.061). Furthermore, our sensitivity analyses using the Rotterdam study data showed a sex-specific association of rs11614913 with BMD only in women. Subsequently, we highlighted a number of miR-196a-2 target genes, expressed in bone and associated with BMD, that may mediate the miRNA function in BMD. Collectively, our results suggest that miR-196a-2 may contribute to variations in BMD level. Further biological investigations will give more insights into the mechanisms by which miR-196a-2 control expression of BMD-related genes.
Collapse
|
23
|
Ma Y, Yang H, Huang J. Icariin ameliorates dexamethasone‑induced bone deterioration in an experimental mouse model via activation of microRNA‑186 inhibition of cathepsin K. Mol Med Rep 2017; 17:1633-1641. [PMID: 29257214 PMCID: PMC5780104 DOI: 10.3892/mmr.2017.8065] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 02/15/2017] [Indexed: 01/08/2023] Open
Abstract
The present study aimed to investigate bone deterioration in glucocorticoid‑induced osteoporosis (GIOP) mice, and the anti‑osteoporosis effect and underlying molecular mechanism of icariin. Dexamethasone (DSM) treatment was demonstrated to facilitate the induction of hypercalciuria in GIOP mice. Icariin treatment reversed the dexamethasone (DXM)‑induced disequilibrium of calcium homeostasis and bone resorption, and increased serum alkaline phosphatase, tartrate resistant acid phosphatase, osteocalcin and deoxypyridinoline. Haematoxylin and eosin staining revealed an increase in disconnections and separation in the trabecular bone network of the tibial proximal metaphysis, in the GIOP group. Icariin treatment reversed the DXM‑induced trabecular deleterious effects, and stimulated bone remodeling in GIOP mice. Furthermore, the results demonstrated that the mRNA and protein expression of cathepsin K were significantly increased in GIOP mice, compared with the control group. Icariin treatment may suppress the expression of cathepsin K in the tibia of GIOP mice. The levels of microRNA (miR)‑186 were markedly reduced in the tibia of GIOP mice compared with control group; however, this was inhibited by icariin treatment. Bioinformatics analysis demonstrated that miR‑186 regulates cathepsin K via binding to the upstream 3'‑untranslated region. Furthermore, transfection with miR‑186 mimics resulted in inhibition of cathepsin K expression, whereas miR‑186 inhibitors facilitated cathepsin K expression in osteoclasts. In conclusion, the present study demonstrated the protective effects of icariin against bone deteriorations in the experimental GIOP mice, and the underlying mechanism was mediated, at least partially, via activation of miR‑186‑mediated suppression of cathepsin K. These results provide evidence to support the use of icariin as a therapeutic approach in the management of glucocorticoid‑induced bone loss, and the disequilibrium of calcium homeostasis.
Collapse
Affiliation(s)
- Yongsheng Ma
- Department of Orthopaedics, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450002, P.R. China
| | - Hao Yang
- Department of Orthopaedics, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450002, P.R. China
| | - Junqing Huang
- Department of Orthopaedics, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450002, P.R. China
| |
Collapse
|
24
|
Liu X, Tan N, Zhou Y, Wei H, Ren S, Yu F, Chen H, Jia C, Yang G, Song Y. Delivery of antagomiR204-conjugated gold nanoparticles from PLGA sheets and its implication in promoting osseointegration of titanium implant in type 2 diabetes mellitus. Int J Nanomedicine 2017; 12:7089-7101. [PMID: 29026303 PMCID: PMC5627761 DOI: 10.2147/ijn.s124584] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Impaired osseointegration of the implant remains the big hurdle for dental implant therapy in diabetic patients. In this study, the authors first identified that miR204 was strikingly highly expressed in the bone mesenchymal stem cells (BMSCs) of diabetic rats. Forced expression of miR204 repressed the osteogenic potential of BMSCs, while inhibition of miR204 significantly increased the osteogenic capacity. Moreover, the miR204 inhibitor was conjugated with gold nanoparticles (AuNP-antagomiR204) and dispersed them in the poly(lactic-co-glycolic acid) (PLGA) solution. The AuNP-antagomiR204 containing PLGA solution was applied for coating the surface of titanium implant. Electron microscope revealed that an ultrathin sheet was formed on the surface of the implant, and the AuNPs were evenly dispersed in the coated PLGA sheet. Cellular experiments revealed that these encapsulated AuNP-antagomiR204 were able to be released from the PLGA sheet and uptaken by adherent BMSCs. In vivo animal study further confirmed that the AuNP-antagomiR204 released from PLGA sheet promoted osseointegration, as revealed by microcomputerized tomography (microCT) reconstruction and histological assay. Taken together, this study established that miR204 misexpression accounted for the deficient osseointegation in diabetes mellitus, while PLGA sheets aided the release of AuNP-antagomiR204, which would be a promising strategy for titanium implant surface functionalization toward better osseointegration.
Collapse
Affiliation(s)
- Xiangwei Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Implant Dentistry
| | - Naiwen Tan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Implant Dentistry
| | - Yuchao Zhou
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Implant Dentistry
| | - Hongbo Wei
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Implant Dentistry
| | - Shuai Ren
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Implant Dentistry
| | - Fan Yu
- Department of Prosthodontics, School of Stomatology
| | - Hui Chen
- Department of Plastic Surgery, Tangdu Hospital
| | - Chengming Jia
- Department of Traditional Chinese Medicine, Xijing Hospital
| | - Guodong Yang
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Yingliang Song
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Implant Dentistry
| |
Collapse
|
25
|
Abstract
MicroRNAs are small, noncoding single-stranded RNAs that have emerged as important posttranscriptional regulators of gene expression, with an essential role in vertebrate development and different biological processes. This review highlights the recent advances in the function of miRNAs and their roles in bone remodeling and bone diseases. MicroRNAs (miRNAs) are a class of small (∼22 nt), noncoding single-stranded RNAs that have emerged as important posttranscriptional regulators of gene expression. They are essential for vertebrate development and play critical roles in different biological processes related to cell differentiation, activity, metabolism, and apoptosis. A rising number of experimental reports now indicate that miRNAs contribute to every step of osteogenesis and bone homeostasis, from embryonic skeletal development to maintenance of adult bone tissue, by regulating the growth, differentiation, and activity of different cell systems inside and outside the skeleton. Importantly, emerging information from animal studies suggests that targeting miRNAs might become an attractive and new therapeutic approach for osteoporosis or other skeletal diseases, even though there are still major concerns related to potential off target effects and the need of efficient delivery methods in vivo. Moreover, besides their recognized effects at the cellular level, evidence is also gathering that miRNAs are excreted and can circulate in the blood or other body fluids with potential paracrine or endocrine functions. Thus, they could represent suitable candidates for becoming sensitive disease biomarkers in different pathologic conditions, including skeletal disorders. Despite these promising perspectives more work remains to be done until miRNAs can serve as robust therapeutic targets or established diagnostic tools for precision medicine in skeletal disorders.
Collapse
Affiliation(s)
- L Gennari
- Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Santa Maria alle Scotte, Viale Bracci, 53100, Siena, Italy.
| | - S Bianciardi
- Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Santa Maria alle Scotte, Viale Bracci, 53100, Siena, Italy
| | - D Merlotti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Santa Maria alle Scotte, Viale Bracci, 53100, Siena, Italy
- Division of Genetics and Cell Biology, Age Related Diseases, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
26
|
|
27
|
Xue B, Lipps D, Devineni S. Integrated Strategy Improves the Prediction Accuracy of miRNA in Large Dataset. PLoS One 2016; 11:e0168392. [PMID: 28002428 PMCID: PMC5176297 DOI: 10.1371/journal.pone.0168392] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 11/29/2016] [Indexed: 01/08/2023] Open
Abstract
MiRNAs are short non-coding RNAs of about 22 nucleotides, which play critical roles in gene expression regulation. The biogenesis of miRNAs is largely determined by the sequence and structural features of their parental RNA molecules. Based on these features, multiple computational tools have been developed to predict if RNA transcripts contain miRNAs or not. Although being very successful, these predictors started to face multiple challenges in recent years. Many predictors were optimized using datasets of hundreds of miRNA samples. The sizes of these datasets are much smaller than the number of known miRNAs. Consequently, the prediction accuracy of these predictors in large dataset becomes unknown and needs to be re-tested. In addition, many predictors were optimized for either high sensitivity or high specificity. These optimization strategies may bring in serious limitations in applications. Moreover, to meet continuously raised expectations on these computational tools, improving the prediction accuracy becomes extremely important. In this study, a meta-predictor mirMeta was developed by integrating a set of non-linear transformations with meta-strategy. More specifically, the outputs of five individual predictors were first preprocessed using non-linear transformations, and then fed into an artificial neural network to make the meta-prediction. The prediction accuracy of meta-predictor was validated using both multi-fold cross-validation and independent dataset. The final accuracy of meta-predictor in newly-designed large dataset is improved by 7% to 93%. The meta-predictor is also proved to be less dependent on datasets, as well as has refined balance between sensitivity and specificity. This study has two folds of importance: First, it shows that the combination of non-linear transformations and artificial neural networks improves the prediction accuracy of individual predictors. Second, a new miRNA predictor with significantly improved prediction accuracy is developed for the community for identifying novel miRNAs and the complete set of miRNAs. Source code is available at:https://github.com/xueLab/mirMeta
Collapse
Affiliation(s)
- Bin Xue
- Department of Cell Biology, Microbiology and Molecular Biology, School of Natural Sciences and Mathematics, College of Arts and Sciences, University of South Florida, Tampa, Florida, United States of America
- * E-mail:
| | - David Lipps
- Department of Cell Biology, Microbiology and Molecular Biology, School of Natural Sciences and Mathematics, College of Arts and Sciences, University of South Florida, Tampa, Florida, United States of America
| | - Sree Devineni
- Department of Cell Biology, Microbiology and Molecular Biology, School of Natural Sciences and Mathematics, College of Arts and Sciences, University of South Florida, Tampa, Florida, United States of America
| |
Collapse
|
28
|
Qi Z, Liu W, Lu J. The mechanisms underlying the beneficial effects of exercise on bone remodeling: Roles of bone-derived cytokines and microRNAs. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 122:131-139. [PMID: 27179638 DOI: 10.1016/j.pbiomolbio.2016.05.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/02/2016] [Accepted: 05/07/2016] [Indexed: 12/31/2022]
Abstract
Bone remodeling is highly dynamic and complex in response to mechanical loading, such as exercise. In this review, we concluded that a number of individual factors are disturbing the clinical effects of exercise on bone remodeling. We updated the progress made on the differentiation of osteoblasts and osteoclasts in response to mechanical loading, hoping to provide a theoretical basis to improve bone metabolism with exercise. Increasing evidences indicate that bone is not only a structural scaffold but also an endocrine organ, which secretes osteocalcin and FGF23. Both of them have been known as a circulating hormone to promote insulin sensitivity and reduce body fat mass. The effects of exercise on these bone-derived cytokines provide a better understanding of how exercise-induced "osteokine" affects the whole-body homeostasis. Additionally, we discussed recent studies highlighting the post-transcriptional regulation of microRNAs in bone remodeling. We focus on the involvement of the microRNAs in osteoblastogenesis and osteoclastogenesis, and suggest that microRNAs may be critical for exercise-induced bone remodeling.
Collapse
Affiliation(s)
- Zhengtang Qi
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (East China Normal University), Ministry of Education, Shanghai 200241, China; School of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Weina Liu
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (East China Normal University), Ministry of Education, Shanghai 200241, China; School of Physical Education and Health, East China Normal University, Shanghai 200241, China.
| | - Jianqiang Lu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
29
|
MicroRNAs in Osteoclastogenesis and Function: Potential Therapeutic Targets for Osteoporosis. Int J Mol Sci 2016; 17:349. [PMID: 27005616 PMCID: PMC4813210 DOI: 10.3390/ijms17030349] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 02/24/2016] [Accepted: 03/03/2016] [Indexed: 02/05/2023] Open
Abstract
Abnormal osteoclast formation and resorption play a fundamental role in osteoporosis pathogenesis. Over the past two decades, much progress has been made to target osteoclasts. The existing therapeutic drugs include bisphosphonates, hormone replacement therapy, selective estrogen receptor modulators, calcitonin and receptor activator of nuclear factor NF-κB ligand (RANKL) inhibitor (denosumab), etc. Among them, bisphosphonates are most widely used due to their low price and high efficiency in reducing the risk of fracture. However, bisphosphonates still have their limitations, such as the gastrointestinal side-effects, osteonecrosis of the jaw, and atypical subtrochanteric fracture. Based on the current situation, research for new drugs to regulate bone resorption remains relevant. MicroRNAs (miRNAs) are a new group of small, noncoding RNAs of 19–25 nucleotides, which negatively regulate gene expression after transcription. Recent studies discovered miRNAs play a considerable function in bone remodeling by regulating osteoblast and osteoclast differentiation and function. An increasing number of miRNAs have been identified to participate in osteoclast formation, differentiation, apoptosis, and resorption. miRNAs show great promise to serve as biomarkers and potential therapeutic targets for osteoporosis. In this review, we will summarize our current understanding of how miRNAs regulate osteoclastogenesis and function. We will further discuss the approach to develop drugs for osteoporosis based on these miRNA networks.
Collapse
|