1
|
Sun T, Chen C, Liu K, Li L, Zhang R, Wen W, Ding S, Liu M, Zhou C, Luo B. A Wood-Derived Periosteum for Spatiotemporal Drug Release: Boosting Bone Repair through Anisotropic Structure and Multiple Functions. Adv Healthc Mater 2024; 13:e2400707. [PMID: 38563114 DOI: 10.1002/adhm.202400707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Existing artificial periostea face many challenges, including difficult-to-replicate anisotropy in mechanics and structure, poor tissue adhesion, and neglected synergistic angiogenesis and osteogenesis. Here, inspired by natural wood (NW), a wood-derived elastic artificial periosteum is developed to mimic the structure and functions of natural periosteum, which combines an elastic wood (EW) skeleton, a polydopamine (PDA) binder layer, and layer-by-layer (LBL) biofunctional layers. Specifically, EW derived from NW is utilized as the anisotropic skeleton of artificial periosteum to guide cell directional behaviors, moreover, it also shows a similar elastic modulus and flexibility to natural periosteum. To further enhance its synergistic angiogenesis and osteogenesis, surface LBL biofunctional layers are designed to serve as spatiotemporal release platforms to achieve sequential and long-term release of pamidronate disodium (PDS) and deferoxamine (DFO), which are pre-encapsulated in chitosan (CS) and hyaluronic acid (HA) solutions, respectively. Furthermore, the combined effect of PDA coating and LBL biofunctional layers enables the periosteum to tightly adhere to damaged bone tissue. More importantly, this novel artificial periosteum can boost angiogenesis and bone formation in vitro and in vivo. This study opens up a new path for biomimetic design of artificial periosteum, and provides a feasible clinical strategy for bone repair.
Collapse
Affiliation(s)
- Tianyi Sun
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
| | - Chunhua Chen
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
| | - Kun Liu
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
| | - Lin Li
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
| | - Ruixi Zhang
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
| | - Wei Wen
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou, 510632, P. R. China
| | - Shan Ding
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou, 510632, P. R. China
| | - Mingxian Liu
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou, 510632, P. R. China
| | - Changren Zhou
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou, 510632, P. R. China
| | - Binghong Luo
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou, 510632, P. R. China
| |
Collapse
|
2
|
Raouf EA, Elsherbini AM, Yousef EAS, Abdulrahman M, Zaher AR. Evaluation of the Regenerative Capacity of Demineralized Bone Matrix vs Fat Graft in Alveolar Cleft Model in Albino Rats. J Contemp Dent Pract 2024; 25:554-562. [PMID: 39364822 DOI: 10.5005/jp-journals-10024-3706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
AIM This study was performed to evaluate the regenerative capacity of demineralized bone matrix vs fat graft, both guided by pericardium membrane in alveolar cleft model in albino rats. MATERIALS AND METHODS A total of 72 rats were required in this study. A surgical bone defect with a 7 mm length × 4 mm width × 3 mm depth was created as a model of an alveolar cleft, then the rats were divided randomly into four equal groups each group contained 18 rats: control group (defect only), the membrane group (the defect was covered by the pericardium membrane), the demineralized bone matrix (DBM) group (the defect was filled with DBM guided by pericardium membrane) and fat group (the defect was filled with a fat graft guided by the pericardium membrane). Around 6 rats from each group were euthanized after 2, 4, and 8 weeks. Skulls were scanned with cone beam computed tomography (CBCT) and harvested for histological evaluation with routine H&E immunohistochemical stains (Anti-osteocalcin and Anti-Wnt5a). The data was recorded and statistically analyzed by a two-way ANOVA. RESULTS The study showed a notable formation of new bone, and expression of OCN and Wnt5a were notably increased by time in the fat group. However, the density of bone grafts and OCN and Wnt5a expression decreased with time in the DBM group. Control and membrane groups showed negative OCN and Wnt5a immune-reactivity in the cleft site. CONCLUSION Fat graft results were superior to DBM results with regard to mucosal closure and accelerated bone regeneration, and may represent an effective treatment for alveolar cleft reconstruction. CLINICAL SIGNIFICANCE Finding an inexpensive, accessible, biocompatible and easily manipulated treatment for craniofacial reconstruction and fat graft fulfilled the desired aims. Further investigations with prolonged evaluation periods are needed. How to cite this article: Abdel Raouf E, Elsherbini AM, Abdel Salam Yousef Y, et al. Evaluation of the Regenerative Capacity of Demineralized Bone Matrix vs Fat Graft in Alveolar Cleft Model in Albino Rats. J Contemp Dent Pract 2024;25(6):554-562.
Collapse
Affiliation(s)
- Esraa Abdel Raouf
- Department of Oral Biology Faculty of Dentistry, Mansoura University, Mansoura, Egypt, Phone: +20 1097493193, e-mail: , Orcid: https://orcid.org/0000-0002-8678-7363
| | - Amira M Elsherbini
- Department of Oral Biology Faculty of Dentistry, Mansoura University, Mansoura, Egypt, Orcid: https://orcid.org/0000-0001-7960-3557
| | - Eman Abdel Salam Yousef
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Mansoura University, Mansoura; Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Horus University, New Damietta, Egypt
| | - Mohamed Abdulrahman
- Department of Oral Biology Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Ahmed Ragheb Zaher
- Department of Oral Biology Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| |
Collapse
|
3
|
Li S, Zhang L, Liu C, Kim J, Su K, Chen T, Zhao L, Lu X, Zhang H, Cui Y, Cui X, Yuan F, Pan H. Spontaneous immunomodulation and regulation of angiogenesis and osteogenesis by Sr/Cu-borosilicate glass (BSG) bone cement to repair critical bone defects. Bioact Mater 2023; 23:101-117. [DOI: 10.1016/j.bioactmat.2022.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
|
4
|
Wang T, Wang L, Zhang L, Long Y, Zhang Y, Hou Z. Single-cell RNA sequencing in orthopedic research. Bone Res 2023; 11:10. [PMID: 36828839 PMCID: PMC9958119 DOI: 10.1038/s41413-023-00245-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 02/26/2023] Open
Abstract
Although previous RNA sequencing methods have been widely used in orthopedic research and have provided ideas for therapeutic strategies, the specific mechanisms of some orthopedic disorders, including osteoarthritis, lumbar disc herniation, rheumatoid arthritis, fractures, tendon injuries, spinal cord injury, heterotopic ossification, and osteosarcoma, require further elucidation. The emergence of the single-cell RNA sequencing (scRNA-seq) technique has introduced a new era of research on these topics, as this method provides information regarding cellular heterogeneity, new cell subtypes, functions of novel subclusters, potential molecular mechanisms, cell-fate transitions, and cell‒cell interactions that are involved in the development of orthopedic diseases. Here, we summarize the cell subpopulations, genes, and underlying mechanisms involved in the development of orthopedic diseases identified by scRNA-seq, improving our understanding of the pathology of these diseases and providing new insights into therapeutic approaches.
Collapse
Affiliation(s)
- Tao Wang
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
- Orthopedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Ling Wang
- Orthopedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
- Department of Orthopedic Oncology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Liping Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Yubin Long
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
- Orthopedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Yingze Zhang
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
- Orthopedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
- NHC Key Laboratory of Intelligent Orthopedic Equipment (Third Hospital of Hebei Medical University), Hebei, PR China
| | - Zhiyong Hou
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China.
- Orthopedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China.
- NHC Key Laboratory of Intelligent Orthopedic Equipment (Third Hospital of Hebei Medical University), Hebei, PR China.
| |
Collapse
|
5
|
Liu Y, Ilinski A, Gerstenfeld LC, Bragdon B. Prx1 cell subpopulations identified in various tissues with diverse quiescence and activation ability following fracture and BMP2 stimulation. Front Physiol 2023; 14:1106474. [PMID: 36793419 PMCID: PMC9922707 DOI: 10.3389/fphys.2023.1106474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
The expression of Prx1 has been used as a marker to define the skeletal stem cells (SSCs) populations found within the bone marrow and periosteum that contribute to bone regeneration. However, Prx1 expressing SSCs (Prx1-SSCs) are not restricted to the bone compartments, but are also located within the muscle and able to contribute to ectopic bone formation. Little is known however, about the mechanism(s) regulating Prx1-SSCs that reside in muscle and how they participate in bone regeneration. This study compared both the intrinsic and extrinsic factors of the periosteum and muscle derived Prx1-SSCs and analyzed their regulatory mechanisms of activation, proliferation, and skeletal differentiation. There was considerable transcriptomic heterogeneity in the Prx1-SSCs found in muscle or the periosteum however in vitro cells from both tissues showed tri-lineage (adipose, cartilage and bone) differentiation. At homeostasis, periosteal-derived Prx1 cells were proliferative and low levels of BMP2 were able to promote their differentiation, while the muscle-derived Prx1 cells were quiescent and refractory to comparable levels of BMP2 that promoted periosteal cell differentiation. The transplantation of Prx1-SCC from muscle and periosteum into either the same site from which they were isolated, or their reciprocal sites showed that periosteal cell transplanted onto the surface of bone tissues differentiated into bone and cartilage cells but was incapable of similar differentiation when transplanted into muscle. Prx1-SSCs from the muscle showed no ability to differentiate at either site of transplantation. Both fracture and ten times the BMP2 dose was needed to promote muscle-derived cells to rapidly enter the cell cycle as well as undergo skeletal cell differentiation. This study elucidates the diversity of the Prx1-SSC population showing that cells within different tissue sites are intrinsically different. While muscle tissue must have factors that promote Prx1-SSC to remain quiescent, either bone injury or high levels of BMP2 can activate these cells to both proliferate and undergo skeletal cell differentiation. Finally, these studies raise the possibility that muscle SSCs are potential target for skeletal repair and bone diseases.
Collapse
Affiliation(s)
| | | | | | - Beth Bragdon
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
6
|
Huang G, Li W, Kan H, Lu X, Liao W, Zhao X. Genetic influences of the effect of circulating inflammatory cytokines on osteoarthritis in humans. Osteoarthritis Cartilage 2022:S1063-4584(22)00961-X. [PMID: 36529415 DOI: 10.1016/j.joca.2022.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVE The causal relationship between inflammatory cytokines and Osteoarthritis (OA) has not been well investigated. This study investigated the causal role of inflammatory cytokines in the risk of OA and total joint arthroplasty using the Mendelian randomization (MR) method. METHOD Single nucleotide polymorphisms (SNPs) robustly associated with inflammatory cytokines were used as instrumental variables. The inverse-variance weighted (IVW) method with false discovery rate (FDR) adjusted P-value (q-value) for multiple comparisons were used as the main MR method to estimate causal effects based on the summary-level data for OA (knee and hip OA, respectively) and total joint arthroplasty (TJA). Sensitivity analyses validated the robustness of the results and ensured the absence of heterogeneity and horizontal pleiotropy. RESULTS After FDR adjustment, macrophage colony-stimulating factor (MCSF) and vascular endothelial growth factor (VEGF) were identified as causally associated with knee OA (MCSF, odds ratio [OR]: 1.16, 95% confidence interval [CI]: 1.09-1.23, q = 5.05 × 10-5; VEGF, OR: 1.09, 95% CI: 1.04-1.15, q = 0.011). We also observed that genetically predicted MCSF and VEGF were positively associated with the risk of TJA, and MCP3 was negatively associated with for the risk of TJA, although the effects seem fairly modest. Sensitivity analysis further excluded the influence of heterogeneity and horizontal pleiotropy. CONCLUSIONS Inflammatory cytokines, namely MCSF and VEGF, were causally associated with knee OA, which could enhance our understanding of inflammation in OA pathology.
Collapse
Affiliation(s)
- G Huang
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopedics and Tramatology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - W Li
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopedics and Tramatology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - H Kan
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - X Lu
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopedics and Tramatology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - W Liao
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopedics and Tramatology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - X Zhao
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopedics and Tramatology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
7
|
Wei S, Zhang RG, Wang ZY. Deferoxamine/magnesium modified β-tricalcium phosphate promotes the bone regeneration in osteoporotic rats. J Biomater Appl 2022; 37:838-849. [PMID: 35984333 DOI: 10.1177/08853282221121882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recently, Deferoxamine (DFO) and magnesium (Mg) have been identified as critical factors for angiogenesis and bone formation. However, in current research studies, there is a lack of focus on whether DFO plus Mg can affect the regeneration of β-tricalcium phosphate (β-TCP) in osteoporosis and through what biological mechanisms. Therefore, the present work was aimed to preparation and evaluate the effect of Deferoxamine/magnesium modified β-tricalcium phosphate promotes (DFO/Mg-TCP) in ovariectomized rats model and preliminary exploration of possible mechanisms. The MC3T3-E1 cells were co-cultured with the exudate of DFO/Mg-TCP and induced to osteogenesis, and the cell viability, osteogenic activity were observed by Cell Counting Kit-8(CCK-8), Alkaline Phosphatase (ALP) staining, Alizarin Red Staining (RES) and Western Blot. In vitro experiments, CCK-8, ALP and ARS staining results show that the mineralization and osteogenic activity of MC3T3-E1increased significantly after intervention by DFO/Mg-TCP, as well as a higher levels of protein expressions including VEGF, OC, Runx-2 and HIF-1α. In vivo experiment, Micro-CT and Histological analysis evaluation show that DFO/Mg-TCP treatment presented the stronger effect on bone regeneration, bone mineralization and biomaterial degradation, when compared with OVX+Mg-TCP group and OVX+TCP group, as well as a higher VEGF, OC, Runx-2 and HIF-1α gene expression. The present study indicates that treatment with DFO/Mg-TCP was associated with increased regeneration by enhancing the function of osteoblasts in an OVX rat.
Collapse
Affiliation(s)
- Shan Wei
- School of Mechanical Engineering, Anhui Polytechnic University, Wuhu, P.R. China
- Additive Manufacturing Institute of Anhui Polytechnic University, Anhui Polytechnic University, Wuhu, P.R. China
| | - Ren-Gang Zhang
- School of Mechanical Engineering, Anhui Polytechnic University, Wuhu, P.R. China
| | - Zheng-Yu Wang
- Department of Orthopedics, 74649The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, P.R. China
| |
Collapse
|
8
|
Osteogenesis in human periodontal ligament stem cell sheets is enhanced by the protease-activated receptor 1 (PAR1) in vivo. Sci Rep 2022; 12:15637. [PMID: 36117187 PMCID: PMC9482923 DOI: 10.1038/s41598-022-19520-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022] Open
Abstract
Human periodontal ligament stem cells (PDLSCs) have been studied as a promising strategy in regenerative approaches. The protease-activated receptor 1 (PAR1) plays a key role in osteogenesis and has been shown to induce osteogenesis and increase bone formation in PDLSCs. However, little is known about its effects when activated in PDLSCs as a cell sheet construct and how it would impact bone formation as a graft in vivo. Here, PDLSCs were obtained from 3 patients. Groups were divided into control, osteogenic medium and osteogenic medium + PAR1 activation by TFLLR-NH2 peptide. Cell phenotype was determined by flow cytometry and immunofluorescence. Calcium deposition was quantified by Alizarin Red Staining. Cell sheet microstructure was analyzed through light, scanning electron microscopy and histology and transplanted to Balb/c nude mice. Immunohistochemistry for bone sialoprotein (BSP), integrin β1 and collagen type 1 and histological stains (H&E, Van Giesson, Masson’s Trichrome and Von Kossa) were performed on the ex-vivo mineralized tissue after 60 days of implantation in vivo. Ectopic bone formation was evaluated through micro-CT. PAR1 activation increased calcium deposition in vitro as well as BSP, collagen type 1 and integrin β1 protein expression and higher ectopic bone formation (micro-CT) in vivo.
Collapse
|
9
|
Bragdon BC, Bennie A, Molinelli A, Liu Y, Gerstenfeld LC. Post natal expression of Prx1 labels appendicular restricted progenitor cell populations of multiple tissues. J Cell Physiol 2022; 237:2550-2560. [PMID: 35338481 PMCID: PMC9133217 DOI: 10.1002/jcp.30728] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 12/26/2022]
Abstract
Currently, there is no consensus whether there is a single or multiple postnatal stem cell population(s) that contribute to skeletal homeostasis and postnatal bone formation. A known population of cells that express Prx1 contributes to postnatal bone formation. Prx1 expression also connotes calvaria and appendicular tissues during embryonic development. A transgenic tamoxifen inducible Prx1 reporter mouse was used for lineage tracking, to characterize the postnatal contribution of Prx1 expressing cells in skeletal homeostasis and bone formation. Under homeostatic conditions Prx1 labeling gave rise to a transient yet rapid turnover cell population at the periosteal and endosteal surfaces, along muscle fibers, and within the medial layers of vessels both within the muscle and marrow compartments of the appendicular skeleton. Fracture and ectopic bone formation of both fore and hind limbs showed recruitment and expansion of Prx1-derived cells in newly formed bone tissues. Prx1 labeled cells were limited or absent at axial skeletal sites during both homeostasis and after induction of bone formation. Last, Prx1-derived cells differentiated into multiple cell lineages including vascular smooth muscle, adipose, cartilage, and bone cells. These results show that Prx1 expression retained its embryonic tissue specification and connotes a stem/progenitor cell populations of mesenchymal tissue progenitors.
Collapse
Affiliation(s)
- Beth C Bragdon
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Andrew Bennie
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Amanda Molinelli
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Yu Liu
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Louis C Gerstenfeld
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Zhang H, Wang R, Wang G, Zhang B, Wang C, Li D, Ding C, Wei Q, Fan Z, Tang H, Ji F. Single-Cell RNA Sequencing Reveals B Cells Are Important Regulators in Fracture Healing. Front Endocrinol (Lausanne) 2021; 12:666140. [PMID: 34819916 PMCID: PMC8606664 DOI: 10.3389/fendo.2021.666140] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/25/2021] [Indexed: 12/20/2022] Open
Abstract
The bone marrow microenvironment is composed primarily of immune and stromal cells that play important roles in fracture healing. Although immune cells have been identified in mouse bone marrow, variations in their numbers and type during the fracture healing process remain poorly defined. In this study, single-cell RNA sequencing was used to identify immune cells in fracture tissues, including neutrophils, monocytes, T cells, B cells, and plasma cells. The number of B cells decreased significantly in the early stage of fracture healing. Furthermore, B cells in mice fracture models decreased significantly during the epiphyseal phase and then gradually returned to normal during the epiphyseal transformation phase of fracture healing. The B-cell pattern was opposite to that of bone formation and resorption activities. Notably, B-cell-derived exosomes inhibited bone homeostasis in fracture healing. In humans, a decrease in the number of B cells during the epiphyseal phase stimulated fracture healing. Then, as the numbers of osteoblasts increased during the callus reconstruction stage, the number of B cells gradually recovered, which reduced additional bone regeneration. Thus, B cells are key regulators of fracture healing and inhibit excessive bone regeneration by producing multiple osteoblast inhibitors.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Orthopedics, Changhai Hospital, Secondary Military Medical University, Shanghai, China
| | - Renkai Wang
- Department of Orthopedics, Changhai Hospital, Secondary Military Medical University, Shanghai, China
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma and Tissue Repair of Tropical Area of People's Liberation Army (PLA), Hospital of Orthopedics, General Hospital of Southern Theater Command of People's Liberation Army, Guangzhou, China
| | - Guangchao Wang
- Department of Orthopedics, Changhai Hospital, Secondary Military Medical University, Shanghai, China
| | - Bo Zhang
- Department of Bioinformatics, Novel Bioinformatics Ltd., Co., Shanghai, China
| | - Chao Wang
- Department of Bioinformatics, Novel Bioinformatics Ltd., Co., Shanghai, China
| | - Di Li
- Department of Orthopedics, Changhai Hospital, Secondary Military Medical University, Shanghai, China
| | - Chen Ding
- Department of Orthopedics, Changhai Hospital, Secondary Military Medical University, Shanghai, China
| | - Qiang Wei
- Department of Orthopedics, Changhai Hospital, Secondary Military Medical University, Shanghai, China
| | - Zhenyu Fan
- Department of Orthopedics, Changhai Hospital, Secondary Military Medical University, Shanghai, China
| | - Hao Tang
- Department of Orthopedics, Changhai Hospital, Secondary Military Medical University, Shanghai, China
| | - Fang Ji
- Department of Orthopedics, Changhai Hospital, Secondary Military Medical University, Shanghai, China
- Department of Orthopedics, The Ninth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
11
|
Ganadhiepan G, Miramini S, Patel M, Mendis P, Zhang L. Optimal time-dependent levels of weight-bearing for bone fracture healing under Ilizarov circular fixators. J Mech Behav Biomed Mater 2021; 121:104611. [PMID: 34082182 DOI: 10.1016/j.jmbbm.2021.104611] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/25/2021] [Accepted: 05/23/2021] [Indexed: 02/09/2023]
Abstract
It is known that weight-bearing exercises under Ilizarov circular fixators (ICF) could enhance bone fracture healing by mechano-regulation. However, interfragmentary movements at the fracture site induced by weight-bearing may inhibit angiogenesis and ultimately delay the healing process. To tackle this challenge, a computational model is presented in this study which considers the spatial and temporal changes in mechanical properties of fracture callus to predict optimal levels of weight-bearing during fracture healing under ICF. The study takes sheep fractures as example and shows that the developed model has the capability of predicting patient specific, time-dependent optimal levels of weight-bearing which enhances mechano-regulation mediated healing without hindering the angiogenesis process. The results demonstrate that allowable level of weight-bearing and timings depend on fracture gap size. For normal body weights (BW) and moderate fracture gap sizes (e.g. 3 mm), weight-bearing with 30% BW could start by week 4 post-operation and gradually increase to 100% BW by week 11. In contrast, for relatively large fracture gap sizes (i.e. 6 mm), weight-bearing is recommended to commence in later stages of healing (e.g. week 11 post-operation). Furthermore, increasing ICF stiffness (e.g. using half pins instead of pretension wires) can increase the level of weight-bearing significantly in the early stages up to a certain time point (e.g. week 8 post-operation) beyond which no noticeable benefits could be achieved. The findings of this study have potential applications in designing post-operative weight bearing exercises.
Collapse
Affiliation(s)
| | - Saeed Miramini
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, Australia
| | - Minoo Patel
- Epworth Hospital Richmond, Victoria, 3121, Australia
| | - Priyan Mendis
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, Australia
| | - Lihai Zhang
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
12
|
Subchondral bone microenvironment in osteoarthritis and pain. Bone Res 2021; 9:20. [PMID: 33731688 PMCID: PMC7969608 DOI: 10.1038/s41413-021-00147-z] [Citation(s) in RCA: 249] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/20/2021] [Accepted: 02/01/2021] [Indexed: 01/31/2023] Open
Abstract
Osteoarthritis comprises several joint disorders characterized by articular cartilage degeneration and persistent pain, causing disability and economic burden. The incidence of osteoarthritis is rapidly increasing worldwide due to aging and obesity trends. Basic and clinical research on osteoarthritis has been carried out for decades, but many questions remain unanswered. The exact role of subchondral bone during the initiation and progression osteoarthritis remains unclear. Accumulating evidence shows that subchondral bone lesions, including bone marrow edema and angiogenesis, develop earlier than cartilage degeneration. Clinical interventions targeting subchondral bone have shown therapeutic potential, while others targeting cartilage have yielded disappointing results. Abnormal subchondral bone remodeling, angiogenesis and sensory nerve innervation contribute directly or indirectly to cartilage destruction and pain. This review is about bone-cartilage crosstalk, the subchondral microenvironment and the critical role of both in osteoarthritis progression. It also provides an update on the pathogenesis of and interventions for osteoarthritis and future research targeting subchondral bone.
Collapse
|
13
|
Zinc chloride affects chondrogenesis via VEGF signaling. Exp Cell Res 2021; 399:112436. [PMID: 33358860 DOI: 10.1016/j.yexcr.2020.112436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/13/2020] [Accepted: 12/12/2020] [Indexed: 01/09/2023]
Abstract
Insulin mimetics, including zinc containing compounds, have previously been shown to influence chondrogenesis as it relates to healing of fractures in various preclinical models. However, the mechanism by which these compounds drive chondrogenic differentiation is yet undefined. Here, via next-generation sequencing (NGS) and in vitro functional validation, we show that Zinc Chloride (ZnCl2) induces expression of both chondrogenic genes (Sox9, Runx1, collagen) as well as genes associated with VEGF-mediated signal transduction, including VEGF receptors 1 and 2 and their ligands; VEGF-A and VEGF-B. Noticeably, although insulin was able to also induce expression of these pro-angiogenic and pro-chondrogenic genes, the impact of insulin on expression of VEGF receptor and ligand genes was marginal when compared to that of ZnCl2. Furthermore, while the VEGFR antagonist, Axitinib, was able to attenuate the pro-chondrogenic effects of both insulin and ZnCl2; a reduction in gene and protein expression was most profoundly observed when the antagonist was applied to cells treated with ZnCl2. Taken together, these data suggest an important role for the VEGF-mediated signal transduction pathways in the positive effects observed when applying zinc-based compounds as adjuvants for chondrogenesis-mediated fracture healing. In this regard, further mechanistic evaluation of ZnCl2 and other zinc-containing insulin mimetics may support rational design of therapies targeted for disease indications associated with impaired fracture healing.
Collapse
|
14
|
Articular cartilage regeneration by activated skeletal stem cells. Nat Med 2020; 26:1583-1592. [PMID: 32807933 DOI: 10.1038/s41591-020-1013-2] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/07/2020] [Indexed: 02/07/2023]
Abstract
Osteoarthritis (OA) is a degenerative disease resulting in irreversible, progressive destruction of articular cartilage1. The etiology of OA is complex and involves a variety of factors, including genetic predisposition, acute injury and chronic inflammation2-4. Here we investigate the ability of resident skeletal stem-cell (SSC) populations to regenerate cartilage in relation to age, a possible contributor to the development of osteoarthritis5-7. We demonstrate that aging is associated with progressive loss of SSCs and diminished chondrogenesis in the joints of both mice and humans. However, a local expansion of SSCs could still be triggered in the chondral surface of adult limb joints in mice by stimulating a regenerative response using microfracture (MF) surgery. Although MF-activated SSCs tended to form fibrous tissues, localized co-delivery of BMP2 and soluble VEGFR1 (sVEGFR1), a VEGF receptor antagonist, in a hydrogel skewed differentiation of MF-activated SSCs toward articular cartilage. These data indicate that following MF, a resident stem-cell population can be induced to generate cartilage for treatment of localized chondral disease in OA.
Collapse
|
15
|
Montagna G, Cristofaro F, Fassina L, Bruni G, Cucca L, Kochen A, Divieti Pajevic P, Bragdon B, Visai L, Gerstenfeld L. An in vivo Comparison Study Between Strontium Nanoparticles and rhBMP2. Front Bioeng Biotechnol 2020; 8:499. [PMID: 32612980 PMCID: PMC7308719 DOI: 10.3389/fbioe.2020.00499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/29/2020] [Indexed: 01/24/2023] Open
Abstract
The osteoinductive property of strontium was repeatedly proven in the last decades. Compelling in vitro data demonstrated that strontium hydroxyapatite nanoparticles exert a dual action, by promoting osteoblasts-driven matrix secretion and inhibiting osteoclasts-driven matrix resorption. Recombinant human bone morphogenetic protein 2 (rhBMP2) is a powerful osteoinductive biologic, used for the treatment of vertebral fractures and critically-sized bone defects. Although effective, the use of rhBMP2 has limitations due its recombinant morphogen nature. In this study, we examined the comparison between two osteoinductive agents: rhBMP2 and the innovative strontium-substituted hydroxyapatite nanoparticles. To test their effectiveness, we independently loaded Gelfoam sponges with the two osteoinductive agents and used the sponges as agent-carriers. Gelfoam are FDA-approved biodegradable medical devices used as delivery system for musculoskeletal defects. Their porous structure and spongy morphology make them attractive in orthopedic field. The abiotic characterization of the loaded sponges, involving ion release pattern and structure investigation, was followed by in vivo implantation onto the periosteum of healthy mice and comparison of the effects induced by each implant was performed. Abiotic analysis demonstrated that strontium was continuously released from the sponges over 28 days with a pattern similar to rhBMP2. Histological observations and gene expression analysis showed stronger endochondral ossification elicited by strontium compared to rhBMP2. Osteoclast activity was more inhibited by strontium than by rhBMP2. These results demonstrated the use of sponges loaded with strontium nanoparticles as potential bone grafts might provide better outcomes for complex fractures. Strontium nanoparticles are a novel and effective non-biologic treatment for bone injuries and can be used as novel powerful therapeutics for bone regeneration.
Collapse
Affiliation(s)
- Giulia Montagna
- Department of Molecular Medicine (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Pavia, Italy.,Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Francesco Cristofaro
- Department of Molecular Medicine (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Pavia, Italy
| | - Lorenzo Fassina
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Giovanna Bruni
- C.S.G.I. Department of Chemistry, Physical-Chemistry Section, University of Pavia, Pavia, Italy
| | - Lucia Cucca
- Department of Chemistry, University of Pavia, Pavia, Italy
| | - Alejandro Kochen
- Department of Translational Dental Medicine, Goldman School of Dental Medicine, Boston University, Boston, MA, United States
| | - Paola Divieti Pajevic
- Department of Translational Dental Medicine, Goldman School of Dental Medicine, Boston University, Boston, MA, United States
| | - Beth Bragdon
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, MA, United States
| | - Livia Visai
- Department of Molecular Medicine (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Pavia, Italy.,Department of Occupational Medicine, Toxicology and Environmental Risks, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Louis Gerstenfeld
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
16
|
Bioinformatics Analysis of the Molecular Mechanism of Late-Stage Heterotopic Ossification. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5097823. [PMID: 32382555 PMCID: PMC7180431 DOI: 10.1155/2020/5097823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/06/2020] [Indexed: 12/16/2022]
Abstract
Background Heterotopic ossification (HO) is a common disease happened in soft tissues after injury. The present study utilized the bioinformatics method to analyze the HO samples in a mouse burn/tenotomy-induced HO model to identify the possible key points and treatment targets. Methods The transcriptome profiles of GSE126118 were obtained from the Gene Expression Omnibus (GEO) database. The study was based on a mouse burn/tenotomy-induced HO model, and 2 tenotomy samples and 3 uninjured contralateral hindlimb tendon samples were collected at 3 weeks after injury for further analysis. The transcripts per million approach was performed for background correction and normalization; then, the differentially expressed genes (DEGs) were detected using the limma R package with the settings p < 0.01 and ∣log2FC∣ > 2.0. The Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, and the protein-protein interaction (PPI) network analysis were performed with the detected DEGs. Results A total of 74 DEGs were upregulated, and 159 DEGs were downregulated between the tenotomy and uninjured tendon group. Pathway and process enrichment analyses demonstrated that the upregulated DEGs were mainly associated with terms related to ECM remodeling, ossification, angiogenesis, inflammation, etc., and the downregulated DEGs were mainly associated with oxidative phosphorylation, metabolic process, etc. Conclusion The results of GO, KEGG, and PPI network analyses suggested that the ECM remodeling, ossification, angiogenesis, and inflammation processes were markedly upregulated in the tenotomy site. And the oxidative phosphorylation and metabolic processes were markedly downregulated. These findings provide valuable clues for highlighting the characteristics of late-stage HO and investigating possible treatments.
Collapse
|
17
|
Wang D, Gilbert JR, Zhang X, Zhao B, Ker DFE, Cooper GM. Calvarial Versus Long Bone: Implications for Tailoring Skeletal Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2019; 26:46-63. [PMID: 31588853 DOI: 10.1089/ten.teb.2018.0353] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tissue-engineered graft substitutes have shown great potential to treat large bone defects. While we usually assume that therapeutic approaches developed for appendicular bone healing could be similarly translated for application in craniofacial reconstruction and vice versa, this is not necessarily accurate. In addition to those more well-known healing-associated factors, such as age, lifestyle (e.g., nutrition and smoking), preexisting disease (e.g., diabetes), medication, and poor blood supply, the developmental origins and surrounding tissue of the wound sites can largely affect the fracture healing outcome as well as designed treatments. Therefore, the strategies developed for long bone fracture repair might not be suitable or directly applicable to skull bone repair. In this review, we discuss aspects of development, healing process, structure, and tissue engineering considerations between calvarial and long bones to assist in designing the tailored bone repair strategies. Impact Statement We summarized, in this review, the existing body of knowledge between long bone and calvarial bone with regard to their development and healing, tissue structure, and consideration of current tissue engineering strategies. By highlighting their similarities and differences, we propose that tailored tissue engineering strategies, such as scaffold features, growth factor usage, and the source of cells for tissue or region-specific bone repair, are necessary to ensure an optimized healing outcome.
Collapse
Affiliation(s)
- Dan Wang
- Department of Stomatology, Tenth People's Hospital of Tongji University, Shanghai, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - James R Gilbert
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.,McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Xu Zhang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Bingkun Zhao
- Department of Stomatology, Tenth People's Hospital of Tongji University, Shanghai, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Dai Fei Elmer Ker
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Gregory M Cooper
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
18
|
Buettmann EG, McKenzie JA, Migotsky N, Sykes DA, Hu P, Yoneda S, Silva MJ. VEGFA From Early Osteoblast Lineage Cells (Osterix+) Is Required in Mice for Fracture Healing. J Bone Miner Res 2019; 34:1690-1706. [PMID: 31081125 PMCID: PMC6744295 DOI: 10.1002/jbmr.3755] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/23/2019] [Accepted: 05/01/2019] [Indexed: 12/21/2022]
Abstract
Bone formation via intramembranous and endochondral ossification is necessary for successful healing after a wide range of bone injuries. The pleiotropic cytokine, vascular endothelial growth factor A (VEGFA) has been shown, via nonspecific pharmacologic inhibition, to be indispensable for angiogenesis and ossification following bone fracture and cortical defect repair. However, the importance of VEGFA expression by different cell types during bone healing is not well understood. We sought to determine the role of VEGFA from different osteoblast cell subsets following clinically relevant models of bone fracture and cortical defect. Ubiquitin C (UBC), Osterix (Osx), or Dentin matrix protein 1 (Dmp1) Cre-ERT2 mice (male and female) containing floxed VEGFA alleles (VEGFAfl/fl ) were either given a femur full fracture, ulna stress fracture, or tibia cortical defect at 12 weeks of age. All mice received tamoxifen continuously starting 2 weeks before bone injury and throughout healing. UBC Cre-ERT2 VEGFAfl/fl (UBC cKO) mice, which were used to mimic nonspecific inhibition, had minimal bone formation and impaired angiogenesis across all bone injury models. UBC cKO mice also exhibited impaired periosteal cell proliferation during full fracture, but not stress fracture repair. Osx Cre-ERT2 VEGFAfl/fl (Osx cKO) mice, but not Dmp1 Cre-ERT2 VEGFAfl/fl (Dmp1 cKO) mice, showed impaired periosteal bone formation and angiogenesis in models of full fracture and stress fracture. Neither Osx cKO nor Dmp1 cKO mice demonstrated significant impairments in intramedullary bone formation and angiogenesis following cortical defect. These data suggest that VEGFA from early osteolineage cells (Osx+), but not mature osteoblasts/osteocytes (Dmp1+), is critical at the time of bone injury for rapid periosteal angiogenesis and woven bone formation during fracture repair. Whereas VEGFA from another cell source, not from the osteoblast cell lineage, is necessary at the time of injury for maximum cortical defect intramedullary angiogenesis and osteogenesis. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Evan G Buettmann
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Jennifer A McKenzie
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Nicole Migotsky
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - David Aw Sykes
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Pei Hu
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Susumu Yoneda
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Matthew J Silva
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
19
|
Zhu X, Kong Y, Huang Y, Zhao B, Wang J. Influence of Strontium on Vascular Endothelial Growth Factor and Fibroblast Growth Factor 2 Expression in Rat Chondrocytes Cultured In Vitro. Biol Trace Elem Res 2019; 190:466-471. [PMID: 30414002 DOI: 10.1007/s12011-018-1564-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/01/2018] [Indexed: 10/27/2022]
Abstract
Strontium (Sr) can reduce cartilage degeneration and stimulate cartilage matrix formation. Angiogenesis plays a developmental role in chondrogenesis, and was stimulated by growth factors such as vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF2). However, the direct influence of Sr on VEGF and FGF2 expressions in chondrocytes is not entirely clear. The objective of this study was to investigate the effects of different Sr concentrations on VEGF and FGF2 expressions in rat chondrocytes in vitro. Chondrocytes were isolated from Wistar rat articular by enzymatic digestion. As a Sr source, strontium chloride hexahydrate (SrCl2·6H2O) was added to the culture solution at final concentrations of 0, 0.5, 1.0, 2.0, 5.0, 20.0, and 100.0 μg/mL. After 72 h of continuous culture, mRNA abundance and protein expression levels of VEGF and FGF2 in the chondrocytes were determined by real-time polymerase chain reaction (real-time PCR) and Western blot, respectively. The results showed that VEGF and FGF2 expressions were dose-dependently elevated with Sr concentration in chondrocytes. The mRNA abundance and protein expression levels of VEGF were extremely significantly higher than those in the control group (P < 0.01) at 1.0 μg/mL Sr treatment. For FGF2, there were markedly significant differences in mRNA and protein expression from control group (P < 0.01) when the Sr-treated concentration exceeded 5.0 μg/mL and 20.0 μg/mL, respectively. These results indicated that Sr might involve in the cartilage angiogenesis via regulating expression of VEGF and FGF2z.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yezi Kong
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yan Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Baoyu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jianguo Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
20
|
Pearson HB, Mason DE, Kegelman CD, Zhao L, Dawahare JH, Kacena MA, Boerckel JD. Effects of Bone Morphogenetic Protein-2 on Neovascularization During Large Bone Defect Regeneration. Tissue Eng Part A 2019; 25:1623-1634. [PMID: 30973074 DOI: 10.1089/ten.tea.2018.0326] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Insufficient blood vessel supply is a primary limiting factor for regenerative approaches to large bone defect repair. Recombinant bone morphogenetic protein-2 (BMP-2) delivery induces robust bone formation and has been observed to enhance neovascularization, but whether the angiogenic effects of BMP-2 are due to direct endothelial cell stimulation or due to indirect paracrine signaling remain unclear. In this study, we evaluated the effects of BMP-2 delivery on vascularized bone regeneration and tested whether BMP-2 induces neovascularization directly or indirectly. We found that delivery of BMP-2 (5 μg) enhanced both bone formation and neovascularization in critically sized (8 mm) rat femoral bone defects; however, BMP-2 did not directly stimulate angiogenesis in vitro. In contrast, conditioned medium from both mesenchymal progenitor cells and osteoblasts induced endothelial cell migration in vitro, suggesting a paracrine mechanism of BMP-2 action. Consistent with this inference, codelivery of BMP-2 with endothelial colony forming cells to a heterotopic site, distant from the skeletal stem cell-rich bone marrow niche, induced ossification but had no effect on neovascularization. Taken together, these data suggest that paracrine activation of osteoprogenitor cells is an important contributor to neovascularization during BMP-2-mediated bone regeneration. Impact Statement In this study, we show that bone morphogenetic protein-2 (BMP-2) robustly induces neovascularization during tissue-engineered large bone defect regeneration, and we found that BMP-2 induced angiogenesis, in part, through paracrine signaling from osteoprogenitor cells.
Collapse
Affiliation(s)
- Hope B Pearson
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Devon E Mason
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana.,Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Christopher D Kegelman
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Liming Zhao
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - James H Dawahare
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana.,Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Joel D Boerckel
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana.,Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
21
|
Zhang C, Feinberg D, Alharbi M, Ding Z, Lu C, O’Connor JP, Graves DT. Chondrocytes Promote Vascularization in Fracture Healing Through a FOXO1-Dependent Mechanism. J Bone Miner Res 2019; 34:547-556. [PMID: 30347467 PMCID: PMC6414243 DOI: 10.1002/jbmr.3610] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 10/08/2018] [Accepted: 10/11/2018] [Indexed: 12/17/2022]
Abstract
Chondrocytes play an essential role in fracture healing by producing cartilage, which forms an anlage for endochondral ossification that stabilizes the healing fracture callus. More recently it has been appreciated that chondrocytes have the capacity to produce factors that may affect the healing process. We examined the role of chondrocytes in angiogenesis during fracture healing and the role of the transcription factor forkhead box-O 1 (FOXO1), which upregulates wound healing in soft tissue. Closed fractures were induced in experimental mice with lineage-specific FOXO1 deletion by Cre recombinase under the control of a collagen-2α1 promoter element (Col2α1Cre+ FOXO1L/L ) and Cre recombinase negative control littermates containing flanking loxP sites (Col2α1Cre- FOXO1L/L ). Experimental mice had significantly reduced CD31+ new vessel formation. Deletion of FOXO1 in chondrocytes in vivo suppressed the expression of vascular endothelial growth factor-A (VEGFA) at both the protein and mRNA levels. Overexpression of FOXO1 in chondrocytes in vitro increased VEGFA mRNA levels and VEGFA transcriptional activity whereas silencing FOXO1 reduced it. Moreover, FOXO1 interacted directly with the VEGFA promoter and a deacetylated FOXO1 mutant enhanced VEGFA expression whereas an acetylated FOXO1 mutant did not. Lastly, FOXO1 knockdown by siRNA significantly reduced the capacity of chondrocytes to stimulate microvascular endothelial cell tube formation in vitro. The results indicate that chondrocytes play a key role in angiogenesis which is FOXO1 dependent and that FOXO1 in chondrocytes regulates a potent angiogenic factor, VEGFA. These studies provide new insight into fracture healing given the important role of vessel formation in the fracture repair process. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Citong Zhang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Implantology, School of Stomatology, Jilin University, Changchun, China
| | - Daniel Feinberg
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mohammed Alharbi
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Endodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, KSA
| | - Zhenjiang Ding
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatric Dentistry, School of Stomatology, China Medical University, Shenyang, China
- Key Laboratory of Oral Disease and Liaoning Province, Shenyang, China
| | - Chanyi Lu
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - J Patrick O’Connor
- Department of Orthopaedics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Dana T Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
22
|
Walter SG, Ossendorff R, Schildberg FA. Articular cartilage regeneration and tissue engineering models: a systematic review. Arch Orthop Trauma Surg 2019; 139:305-316. [PMID: 30382366 DOI: 10.1007/s00402-018-3057-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Cartilage regeneration and restoration is a major topic in orthopedic research as cartilaginous degeneration and damage is associated with osteoarthritis and joint destruction. This systematic review aims to summarize current research strategies in cartilage regeneration research. MATERIALS AND METHODS A Pubmed search for models investigating single-site cartilage defects as well as chondrogenesis was conducted and articles were evaluated for content by title and abstract. Finally, only manuscripts were included, which report new models or approaches of cartilage regeneration. RESULTS The search resulted in 2217 studies, 200 of which were eligible for inclusion in this review. The identified manuscripts consisted of a large spectrum of research approaches spanning from cell culture to tissue engineering and transplantation as well as sophisticated computational modeling. CONCLUSIONS In the past three decades, knowledge about articular cartilage and its defects has multiplied in clinical and experimental settings and the respective body of research literature has grown significantly. However, current strategies for articular cartilage repair have not yet succeeded to replicate the structure and function of innate articular cartilage, which makes it even more important to understand the current strategies and their impact. Therefore, the purpose of this review was to globally summarize experimental strategies investigating cartilage regeneration in vitro as well as in vivo. This will allow for better referencing when designing new models or strategies and potentially improve research translation from bench to bedside.
Collapse
Affiliation(s)
- Sebastian G Walter
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Robert Ossendorff
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Frank A Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany.
| |
Collapse
|
23
|
Baumgartner W, Otto L, Hess SC, Stark WJ, Märsmann S, Bürgisser GM, Calcagni M, Cinelli P, Buschmann J. Cartilage/bone interface fabricated under perfusion: Spatially organized commitment of adipose‐derived stem cells without medium supplementation. J Biomed Mater Res B Appl Biomater 2018; 107:1833-1843. [DOI: 10.1002/jbm.b.34276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 09/27/2018] [Accepted: 10/17/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Walter Baumgartner
- Division of Plastic and Hand SurgeryUniversity Hospital Zürich ZKF, Zürich Switzerland
| | - Lukas Otto
- Division of Plastic and Hand SurgeryUniversity Hospital Zürich ZKF, Zürich Switzerland
| | - Samuel C. Hess
- Institute for Chemical‐ and BioengineeringDepartment of Chemistry and Applied Biosciences ETH Zürich, Zürich Switzerland
| | - Wendelin J. Stark
- Institute for Chemical‐ and BioengineeringDepartment of Chemistry and Applied Biosciences ETH Zürich, Zürich Switzerland
| | - Sonja Märsmann
- Division of Plastic and Hand SurgeryUniversity Hospital Zürich ZKF, Zürich Switzerland
- Division of Trauma SurgeryUniversity Hospital Zürich ZKF, Zürich Switzerland
| | | | - Maurizio Calcagni
- Division of Plastic and Hand SurgeryUniversity Hospital Zürich ZKF, Zürich Switzerland
| | - Paolo Cinelli
- Division of Trauma SurgeryUniversity Hospital Zürich ZKF, Zürich Switzerland
| | - Johanna Buschmann
- Division of Plastic and Hand SurgeryUniversity Hospital Zürich ZKF, Zürich Switzerland
| |
Collapse
|
24
|
Abstract
Interfragmental ischaemia is a prerequisite for the initiation of the inflammatory and immunological response to fracturing of bone.Intrafragmental ischaemia is inevitable: the extent of the initial ischaemic insult does not, however, directly relate to the outcome for healing of the fracture zones and avascular necrosis of the humeral head. The survival of distal regions of fragments with critical perfusion may be the result of a type of inosculation (blood vessel contact), which establishes reperfusion before either revascularization or neo-angiogenesis has occurred.Periosteum has a poorly defined role in fracture healing in the proximal humerus. The metaphyseal periosteal perfusion may have a profound effect, as yet undefined, on the healing of most metaphyseal fractures of the proximal humerus, and may be disturbed further by inadvertent surgical manipulation.The metaphysis can be considered as a 'torus' or ring of bone, its surface covered by periosteum antero- and posterolaterally, through which the tuberosity segments gain perfusion and capsular reflections antero- and posteromedially, through which the humeral head (articular) fragment gains perfusion.The torus is broken in relatively simple primary patterns: a fracture line at the upper surface of the torus is an anatomical 'neck' fracture; a fracture line at the lower surface of the torus is the surgical 'neck' fracture. Secondary fragmentation (through compression and/or distraction) of the torus itself creates complexity for analysis (classification), alters the capacity and outcome for healing (by variable interruption of the fragmental blood supply) and influences interfragmental stability. Cite this article: EFORT Open Rev 2018;3 DOI: 10.1302/2058-5241.3.180005.
Collapse
|
25
|
Bai L, Du Z, Du J, Yao W, Zhang J, Weng Z, Liu S, Zhao Y, Liu Y, Zhang X, Huang X, Yao X, Crawford R, Hang R, Huang D, Tang B, Xiao Y. A multifaceted coating on titanium dictates osteoimmunomodulation and osteo/angio-genesis towards ameliorative osseointegration. Biomaterials 2018; 162:154-169. [PMID: 29454274 DOI: 10.1016/j.biomaterials.2018.02.010] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/15/2018] [Accepted: 02/02/2018] [Indexed: 12/15/2022]
Abstract
A multifaceted coating for hard tissue implants, with favorable osteogenesis, angiogenesis, and osteoimmunomodulation abilities, would be of great value since it could improve osseointegration and alleviate prosthesis loosening. However, to date there are few coatings that fully satisfy these criteria. Herein we describe a microporous TiO2 coating decorated with hydroxyapatite (HA) nanoparticles that is generated by micro-arc oxidation of pure titanium (Ti) and followed annealing. By altering the annealing temperature, it is possible to simultaneously tune the coating's physical (morphology and wettability) and chemical (composites and crystallinity) properties. A coating produced with micro-arc oxidization (MAO) with an annealing temperature of 650 °C (MAO-650) exhibits numerous favorable physicochemical properties, such as hybrid micro-nano morphology, superhydrophilicity, and highly crystalline HA nanoparticles. In vitro experiments reveal that the MAO-650 coating not only supports proliferation and differentiation of both osteoblasts and endothelial cells, but also inhibits the inflammatory response of macrophages and enables a favorable osteoimmunomodulation to facilitate osteo/angio-genesis. In vivo evaluation mirrors these results, and shows that the MAO-650 coating results in ameliorative osseointegration when compared with the pristine MAO coating. These data highlight the profound effect of surface physicochemical properties on the regulation of osteo/angio-genesis and osteoimmunomodulation in the enhancement of osseointegration.
Collapse
Affiliation(s)
- Long Bai
- Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan, China; Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, 4059, Australia; Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, 4059, Australia
| | - Zhibin Du
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, 4059, Australia; Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, 4059, Australia
| | - Jingjing Du
- Department of Biomedical Engineering, Research Center for Nano-biomaterials and Regenerative Medicine, College of Mechanics, Taiyuan University of Technology, Taiyuan, China
| | - Wei Yao
- College and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
| | - Jiaming Zhang
- Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Zeming Weng
- Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Si Liu
- Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Ya Zhao
- Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Yanlian Liu
- Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Xiangyu Zhang
- Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Xiaobo Huang
- Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Xiaohong Yao
- Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Ross Crawford
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, 4059, Australia; Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, 4059, Australia
| | - Ruiqiang Hang
- Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan, China.
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials and Regenerative Medicine, College of Mechanics, Taiyuan University of Technology, Taiyuan, China.
| | - Bin Tang
- Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, 4059, Australia; Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, 4059, Australia.
| |
Collapse
|
26
|
Zhang L, Wang T, Chang M, Kaiser C, Kim JD, Wu T, Cao X, Zhang X, Schwarz EM. Teriparatide Treatment Improves Bone Defect Healing Via Anabolic Effects on New Bone Formation and Non-Anabolic Effects on Inhibition of Mast Cells in a Murine Cranial Window Model. J Bone Miner Res 2017; 32:1870-1883. [PMID: 28556967 PMCID: PMC5555820 DOI: 10.1002/jbmr.3178] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/03/2017] [Accepted: 05/24/2017] [Indexed: 02/06/2023]
Abstract
Investigations of teriparatide (recombinant parathyroid hormone [rPTH]) as a potential treatment for critical defects have demonstrated the predicted anabolic effects on bone formation, and significant non-anabolic effects on healing via undefined mechanisms. Specifically, studies in murine models of structural allograft healing demonstrated that rPTH treatment increased angiogenesis (vessels <30 μm), and decreased arteriogenesis (>30 μm) and mast cell numbers, which lead to decreased fibrosis and accelerated healing. To better understand these non-anabolic effects, we interrogated osteogenesis, vasculogenesis, and mast cell accumulation in mice randomized to placebo (saline), rPTH (20 μg/kg/2 days), or the mast cell inhibitor sodium cromolyn (SC) (24 μg/kg/ 2days), via longitudinal micro-computed tomography (μCT) and multiphoton laser scanning microscopy (MPLSM), in a critical calvaria defect model. μCT demonstrated that SC significantly increased defect window closure and new bone volume versus placebo (p < 0.05), although these effects were not as great as rPTH. Interestingly, both rPTH and SC have similar inhibitory effects on arteriogenesis versus placebo (p < 0.05) without affecting total vascular volume. MPLSM time-course studies in untreated mice revealed that large numbers of mast cells were detected 1 day postoperation (43 ± 17), peaked at 6 days (76 ± 6), and were still present in the critical defect at the end of the experiment on day 30 (20 ± 12). In contrast, angiogenesis was not observed until day 4, and functional vessels were first observed on 6 days, demonstrating that mast cell accumulation precedes vasculogenesis. To confirm a direct role of mast cells on osteogenesis and vasculogenesis, we demonstrated that specific diphtheria toxin-α deletion in Mcpt5-Cre-iDTR mice results in similar affects as SC treatment in WT mice. Collectively, these findings demonstrate that mast cells inhibit bone defect healing by stimulating arteriogenesis associated with fibrotic scaring, and that an efficacious non-anabolic effect of rPTH therapy on bone repair is suppression of arteriogenesis and fibrosis secondary to mast cell inhibition. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Longze Zhang
- Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,Department of Orthopaedics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Tao Wang
- Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,Department of Orthopaedics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Martin Chang
- Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,Department of Orthopaedics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Claire Kaiser
- Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,Department of Biomedical Engineering, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Jason D Kim
- Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Tianyu Wu
- Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Xiaoyi Cao
- Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Xinping Zhang
- Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,Department of Orthopaedics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,Department of Orthopaedics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,Department of Biomedical Engineering, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|