1
|
Faris J, Abdelfattah KR, Clark AT, Levi B, Coffey R. Ethnicity does not change burn resuscitation and time to first excision. Burns 2025; 51:107360. [PMID: 39721236 DOI: 10.1016/j.burns.2024.107360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/26/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Health and racial disparities can limit access to preventative, trauma, and chronic disease care but have not been addressed in burn resuscitation. Over- and under-resuscitation contribute to increased overall hospital costs, and morbidity and mortality rates. The primary objective of this study was to identify potential racial disparities that may exist during the initial fluid resuscitation after burn injury. This was a retrospective review of all burn patients > 14 years of age admitted between January 1, 2020 and December 31, 2022 to a county safety net hospital. Patients were excluded if they transitioned to comfort care within 24 hours of admission. Data collected included baseline demographics, relevant burn injury information, and laboratory parameters. Outcomes included hospital and ICU length of stay, duration of mechanical ventilation, payor status, and mortality. Patients were divided into white (59 %) vs. African American-Hispanic (AA-HIS) (41 %) and included 105 patients. The median age (IQR) was 44.5(30) for whites vs 34(36) for AA-HIS. There were no statistically significant differences in severity of burn injury, cause of burn injury, rates of inhalation injury, or ICU or hospital lengths of stay. In both groups 55 % of the patients required mechanical ventilation while 18 % required renal replacement therapy. Overall mortality was not higher in the AA-HIS group at 32.6 % vs 17.7 % (p = 0.081). There were no differences in amount of fluid administered, urine output, laboratory values during resuscitation, or patient outcomes between the groups. The use of protocols for burn resuscitation can be instrumental in protecting against racial and ethnic disparities.
Collapse
Affiliation(s)
- Janie Faris
- Parkland Health, 5200 Harry Hines Blvd, Dallas, TX 75235, USA
| | - Kareem R Abdelfattah
- Department of Surgery, Clements University Hospital, Burn, Trauma, and Critical Care Surgeon, UT-Southwestern Medical Center, USA
| | | | - Benjamin Levi
- University of Texas Southwestern Medical Center, USA
| | - Rebecca Coffey
- Parkland Health, 5200 Harry Hines Blvd, Dallas, TX 75235, USA.
| |
Collapse
|
2
|
Ma L, Kang X, Tan J, Wang Y, Liu X, Tang H, Guo L, Tang K, Bian X. Denervation‑induced NRG3 aggravates muscle heterotopic ossification via the ErbB4/PI3K/Akt signaling pathway. Mol Med Rep 2025; 31:9. [PMID: 39450542 PMCID: PMC11529186 DOI: 10.3892/mmr.2024.13374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/14/2024] [Indexed: 10/26/2024] Open
Abstract
Peripheral nerve injury exacerbates progression of muscle heterotopic ossification (HO) and induces changes in expression of local cytokines in muscle tissue. The objective of the present study was to assess the impact of peripheral nerve injury on muscle HO development and the mechanism of cytokine modulation. A mouse model of gastrocnemius muscle HO was established and the sciatic nerve cut to simulate peripheral nerve injury. To evaluate the underlying factors contributing to the exacerbation of muscle HO resulting from denervation, fresh muscle tissue was collected and micro‑computed tomography, histochemical staining, RNA‑sequencing, reverse transcription‑quantitative PCR, Western blot, muscle tissue chip array were performed to analyze the molecular mechanisms. Sciatic nerve injury exacerbated HO in the gastrocnemius muscle of mice. Moreover the osteogenic differentiation of nerve‑injured muscle tissue‑derived fibro‑adipogenic progenitors (FAPs) increased in vitro. The expression of neuregulin 3 (NRG3) was demonstrated to be increased after nerve injury by muscle tissue chip array. Subsequent transcriptome sequencing analysis of muscle tissue revealed an enrichment of the PI3K/Akt pathway following nerve injury and an inhibitor of the PI3K/Akt pathway reduced the osteogenic differentiation of FAPs. Mechanistically, in vitro, peripheral nerve injury increased secretion of NRG3, which, following binding to ErbB4 on the cell surface of FAPs, promoted expression of osteogenesis‑associated genes via the PI3K/Akt signaling pathway, thus contributing to osteogenic differentiation of FAPs. In vivo, inhibition of the PI3K/Akt pathway effectively protected against muscle HO induced by peripheral nerve injury in mice. The present study demonstrated that the regulatory roles of NRG3 and the PI3K/Akt pathway in peripheral nerve injury exacerbated muscle HO and highlights a potential therapeutic intervention for treatment of peripheral nerve injury‑induced muscle HO.
Collapse
Affiliation(s)
- Lin Ma
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Xia Kang
- Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Jindong Tan
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Yunjiao Wang
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Xiao Liu
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Hong Tang
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Lin Guo
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Kanglai Tang
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Xuting Bian
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
- Department of Health Service, Shigatse Branch, Xinqiao Hospital, Army Medical University, Shigatse 857000, Tibet Autonomous Region. P.R. China
| |
Collapse
|
3
|
Rementer C, Yavirach A, Buranaphatthana W, Walczak PA, Speer M, Pierce K, Dharmarajan S, Leber E, Sangiorzan B, Bain S, Scatena M, Blümke A, Giachelli CM. Engineered myeloid precursors differentiate into osteoclasts and resorb heterotopic ossification in mice. Front Bioeng Biotechnol 2024; 12:1491962. [PMID: 39650237 PMCID: PMC11620886 DOI: 10.3389/fbioe.2024.1491962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/11/2024] [Indexed: 12/11/2024] Open
Abstract
Introduction Heterotopic ossification (HO) occurs following orthopedic trauma, spinal cord injuries, brain trauma and limb amputations. Once symptomatic, HO causes pain, limited mobility and decreased quality of life. Current treatments are limited and have significant complications with high recurrence rates, underscoring the need for improved therapeutic interventions. Osteoclasts (OCs) are physiological bone resorptive cells that secrete enzymes and protons to degrade bone. Methods In this study, we describe the use of genetically engineered OCs as a novel cell therapy approach to treat HO. Inducible, engineered myeloid precursors (iRANK cells) treated with a chemical inducer of dimerization (CID) differentiated into TRAP+ multinucleated OCs and resorbed mineralized tissues in vitro. Results In vivo, BMP-2-induced murine HO lesions were significantly regressed following treatment using iRANK cells with concomitant systemic administration of CID. Moreover, many OCs were TRAP+, MMP9+, and GFP+, indicating that they differentiated from delivered iRANK cells. Discussion In summary, these data con rm the ability of engineered myeloid precursors to differentiate into OCs and resorb HO in vivo paving the way for OC delivery as a promising approach for HO treatment.
Collapse
Affiliation(s)
- Cameron Rementer
- Department of Bioengineering, School of Medicine, University of Washington, Seattle, WA, United States
| | - Apichai Yavirach
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, United States
- Department of Prosthodontics, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Worakanya Buranaphatthana
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, United States
- Department of Oral Biology and Oral Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Philip A. Walczak
- Department of Bioengineering, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, United States
| | - Mei Speer
- Department of Bioengineering, School of Medicine, University of Washington, Seattle, WA, United States
| | - Kat Pierce
- Department of Bioengineering, School of Medicine, University of Washington, Seattle, WA, United States
| | - Subramanian Dharmarajan
- Department of Bioengineering, School of Medicine, University of Washington, Seattle, WA, United States
| | - Elizabeth Leber
- Department of Bioengineering, School of Medicine, University of Washington, Seattle, WA, United States
| | - Bruce Sangiorzan
- Department of Orthopedics and Sports Medicine, University of Washington, Seattle, WA, United States
| | - Steven Bain
- Department of Orthopedics and Sports Medicine, University of Washington, Seattle, WA, United States
| | - Marta Scatena
- Department of Bioengineering, School of Medicine, University of Washington, Seattle, WA, United States
| | - Alexander Blümke
- Department of Bioengineering, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Orthopedics and Trauma Surgery, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Cecilia M. Giachelli
- Department of Bioengineering, School of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
4
|
Zhao Y, Liu F, Pei Y, Lian F, Lin H. Involvement of the Wnt/β-catenin signalling pathway in heterotopic ossification and ossification-related diseases. J Cell Mol Med 2024; 28:e70113. [PMID: 39320014 PMCID: PMC11423343 DOI: 10.1111/jcmm.70113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024] Open
Abstract
Heterotopic ossification (HO) is a pathological condition characterized by the formation of bone within soft tissues. The development of HO is a result of abnormal activation of the bone formation programs, where multiple signalling pathways, including Wnt/β-catenin, BMP and hedgehog signalling, are involved. The Wnt/β-catenin signalling pathway, a conserved pathway essential for various fundamental activities, has been found to play a significant role in pathological bone formation processes. It regulates angiogenesis, chondrocyte hypertrophy and osteoblast differentiation during the development of HO. More importantly, the crosstalk between Wnt signalling and other factors including BMP, Hedgehog signalling, YAP may contribute in a HO-favourable manner. Moreover, several miRNAs may also be involved in HO formation via the regulation of Wnt signalling. This review aims to summarize the role of Wnt/β-catenin signalling in the pathogenesis of HO, its interactions with related molecules, and potential preventive and therapeutic measures targeting Wnt/β-catenin signalling.
Collapse
Affiliation(s)
- Yike Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Queen Mary school, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Fangzhou Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Queen Mary school, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yiran Pei
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Queen Mary school, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Fengyu Lian
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Queen Mary school, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Hui Lin
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
5
|
Wang Z, Wu Y, Yi W, Yu Y, Fang X, Li Z, Yu A. Estrogen Deficiency Exacerbates Traumatic Heterotopic Ossification in Mice. J Inflamm Res 2024; 17:5587-5598. [PMID: 39193123 PMCID: PMC11348928 DOI: 10.2147/jir.s477382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
Background Traumatic heterotopic ossification (HO) is a devastating sequela of orthopedic surgeries and traumatic injuries; however, few studies have explored the effects of the estrogen-deficient state on HO formation. In the present study, we investigated the impact of estrogen deficiency on ectopic cartilage and bone formation in tendon after Achilles tenotomy in an ovariectomized mouse model. Methods A total of 45 female C57BL/6 mice were randomly divided into three groups: sham-operated (control), estrogen depletion by ovariectomy (OVX) and OVX with 17β-estradiol supplementation (OVX + E2), with 15 animals in each group. Three weeks after OVX, all mice were subjected to an Achilles tenotomy using a posterior midpoint approach to induce HO. At 1, 3 and 9 weeks after tenotomy, the left hind limbs were harvested for histology, immunohistochemistry and immunofluorescence evaluations. The volume of ectopic bone was assessed by micro-CT. Results Mice in the OVX group formed more ectopic cartilage 3 weeks after tenotomy, as well as ectopic bone 9 weeks after tenotomy, compared to the control group. Estrogen deficiency resulted in more severe inflammatory infiltration at the injury sites 1 week after tenotomy, involving the recruitment of more macrophages and mast cells, as well as increasing the expressions of pro-inflammatory mediators, including IL-1β, IL-6, and TNF-α. Moreover, the local TGF-β/SMAD signaling pathway was dysregulated after OVX, which manifested as upregulated expressions of TGF-β and pSMAD2/3. E2 supplementation protected against OVX-induced HO deterioration, inhibited inflammatory infiltration, and downregulated the TGF-β/SMAD signaling pathway. Conclusion Estrogen deficiency exacerbated HO formation in the Achilles tenotomy model. These findings might be attributable to the disturbance of the inflammatory response and the activation of TGF-β/SMAD signaling at the injury sites during the early stages of HO development.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Hubei Clinical Medical Research Center of Trauma and Microsurgery, Wuhan, Hubei, People’s Republic of China
| | - Yifan Wu
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Hubei Clinical Medical Research Center of Trauma and Microsurgery, Wuhan, Hubei, People’s Republic of China
| | - Wanrong Yi
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Hubei Clinical Medical Research Center of Trauma and Microsurgery, Wuhan, Hubei, People’s Republic of China
| | - Yifeng Yu
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Hubei Clinical Medical Research Center of Trauma and Microsurgery, Wuhan, Hubei, People’s Republic of China
| | - Xue Fang
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Hubei Clinical Medical Research Center of Trauma and Microsurgery, Wuhan, Hubei, People’s Republic of China
| | - Zonghuan Li
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Hubei Clinical Medical Research Center of Trauma and Microsurgery, Wuhan, Hubei, People’s Republic of China
| | - Aixi Yu
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Hubei Clinical Medical Research Center of Trauma and Microsurgery, Wuhan, Hubei, People’s Republic of China
| |
Collapse
|
6
|
Li SN, Ran RY, Chen J, Liu MC, Dang YM, Lin H. Angiogenesis in heterotopic ossification: From mechanisms to clinical significance. Life Sci 2024; 351:122779. [PMID: 38851421 DOI: 10.1016/j.lfs.2024.122779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/21/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
Heterotopic ossification (HO) refers to the formation of pathologic bone in nonskeletal tissues (including muscles, tendons or other soft tissues). HO typically occurs after a severe injury and can occur in any part of the body. HO lesions are highly vascularized. Angiogenesis, which is the formation of new blood vessels, plays an important role in the pathophysiology of HO. Surgical resection is considered an effective treatment for HO. However, it is difficult to completely remove new vessels, which can lead to the recurrence of HO and is often accompanied by significant problems such as intraoperative hemorrhage, demonstrating the important role of angiogenesis in HO. Here, we broadly summarize the current understanding of how angiogenesis contributes to HO; in particular, we focus on new insights into the cellular and signaling mechanisms underlying HO angiogenesis. We also review the development and current challenges associated with antiangiogenic therapy for HO.
Collapse
Affiliation(s)
- Sai-Nan Li
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; First Clinical School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Ruo-Yue Ran
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; First Clinical School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Jie Chen
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Meng-Chao Liu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yan-Miao Dang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Hui Lin
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
7
|
Li D, Liu C, Wang H, Li Y, Wang Y, An S, Sun S. The Role of Neuromodulation and Potential Mechanism in Regulating Heterotopic Ossification. Neurochem Res 2024; 49:1628-1642. [PMID: 38416374 DOI: 10.1007/s11064-024-04118-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/17/2024] [Accepted: 01/28/2024] [Indexed: 02/29/2024]
Abstract
Heterotopic ossification (HO) is a pathological process characterized by the aberrant formation of bone in muscles and soft tissues. It is commonly triggered by traumatic brain injury, spinal cord injury, and burns. Despite a wide range of evidence underscoring the significance of neurogenic signals in proper bone remodeling, a clear understanding of HO induced by nerve injury remains rudimentary. Recent studies suggest that injury to the nervous system can activate various signaling pathways, such as TGF-β, leading to neurogenic HO through the release of neurotrophins. These pathophysiological changes lay a robust groundwork for the prevention and treatment of HO. In this review, we collected evidence to elucidate the mechanisms underlying the pathogenesis of HO related to nerve injury, aiming to enhance our understanding of how neurological repair processes can culminate in HO.
Collapse
Affiliation(s)
- Dengju Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong First Medical University, Jinan, Shandong, China
| | - Changxing Liu
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Haojue Wang
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Yunfeng Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yaqi Wang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Senbo An
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- Shandong First Medical University, Jinan, Shandong, China.
| | - Shui Sun
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- Shandong First Medical University, Jinan, Shandong, China.
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
8
|
Gao C, Wan Q, Yan J, Zhu Y, Tian L, Wei J, Feng B, Niu L, Jiao K. Exploring the Link Between Autophagy-Lysosomal Dysfunction and Early Heterotopic Ossification in Tendons. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400790. [PMID: 38741381 PMCID: PMC11267276 DOI: 10.1002/advs.202400790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/26/2024] [Indexed: 05/16/2024]
Abstract
Heterotopic ossification (HO), the pathological formation of bone within soft tissues such as tendon and muscle, is a notable complication resulting from severe injury. While soft tissue injury is necessary for HO development, the specific molecular pathology responsible for trauma-induced HO remains a mystery. The previous study detected abnormal autophagy function in the early stages of tendon HO. Nevertheless, it remains to be determined whether autophagy governs the process of HO generation. Here, trauma-induced tendon HO model is used to investigate the relationship between autophagy and tendon calcification. In the early stages of tenotomy, it is observed that autophagic flux is significantly impaired and that blocking autophagic flux promoted the development of more rampant calcification. Moreover, Gt(ROSA)26sor transgenic mouse model experiments disclosed lysosomal acid dysfunction as chief reason behind impaired autophagic flux. Stimulating V-ATPase activity reinstated both lysosomal acid functioning and autophagic flux, thereby reversing tendon HO. This present study demonstrates that autophagy-lysosomal dysfunction triggers HO in the stages of tendon injury, with potential therapeutic targeting implications for HO.
Collapse
Affiliation(s)
- Chang‐He Gao
- Department of StomatologyTangdu HospitalState Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologySchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
- Department of StomatologyThe Third Affiliated Hospital of Xinxiang Medical UniversityXinxiangHenan453000P. R. China
| | - Qian‐Qian Wan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologySchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Jan‐Fei Yan
- Department of StomatologyTangdu HospitalState Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologySchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Yi‐Na Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologySchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Lei Tian
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologySchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Jian‐Hua Wei
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologySchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Bin Feng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologySchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Li‐Na Niu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologySchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Kai Jiao
- Department of StomatologyTangdu HospitalState Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| |
Collapse
|
9
|
Chen Y, Wu J, Wong C, Gao W, Qi X, Zhou H. Disturbed glycolipid metabolism activates CXCL13-CXCR5 axis in senescent TSCs to promote heterotopic ossification. Cell Mol Life Sci 2024; 81:265. [PMID: 38880863 PMCID: PMC11335191 DOI: 10.1007/s00018-024-05302-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024]
Abstract
Heterotopic ossification (HO) occurs as a common complication after injury, while its risk factor and mechanism remain unclear, which restricts the development of pharmacological treatment. Clinical research suggests that diabetes mellitus (DM) patients are prone to developing HO in the tendon, but solid evidence and mechanical research are still needed. Here, we combined the clinical samples and the DM mice model to identify that disordered glycolipid metabolism aggravates the senescence of tendon-derived stem cells (TSCs) and promotes osteogenic differentiation. Then, combining the RNA-seq results of the aging tendon, we detected the abnormally activated autocrine CXCL13-CXCR5 axis in TSCs cultured in a high fat, high glucose (HFHG) environment and also in the aged tendon. Genetic inhibition of CXCL13 successfully alleviated HO formation in DM mice, providing a potential therapeutic target for suppressing HO formation in DM patients after trauma or surgery.
Collapse
Affiliation(s)
- Yuyu Chen
- Department of Plastic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jinna Wu
- Department of Breast Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Chipiu Wong
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
| | - Wenjie Gao
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China.
| | - Xiangdong Qi
- Department of Plastic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Hang Zhou
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
10
|
Chen C, Song C, Liu B, Wang Y, Jia J, Pang K, Wang Y, Wang P. Activation of BMP4/SMAD pathway by HIF-1α in hypoxic environment promotes osteogenic differentiation of BMSCs and leads to ectopic bone formation. Tissue Cell 2024; 88:102376. [PMID: 38608407 DOI: 10.1016/j.tice.2024.102376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 03/15/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
OBJECTIVE Heterotopic ossification (HO), also known as ossifying myositis, is a condition that produces abnormal bone and cartilage tissue in the soft tissues. Hypoxia inducible factor lα (HIF-lα) regulates the expression of various genes, which is closely related to the promotion of bone formation, and Drosophila mothers against decapentaplegic protein (SMAD) mediates the signal transduction in the Bone morphogenetic protein (BMP) signaling pathway, which affects the function of osteoblasts and osteoclasts, and thus plays a key role in the regulation of bone remodeling. We aimed to investigate the mechanism by which HIF-1α induces osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in a hypoxic environment. METHODS A cellular hypoxia model was constructed to verify the expression of HIF-1α, while alizarin red staining was performed to observe the osteogenic differentiation ability of bone marrow mesenchymal stem cells (BMSCs). Alizarin red staining was used to analyze the late mineralization ability of the cells. Western blot analysis was performed to analyze the expression levels of osteogenesis-related factors OCN, OPN proteins as well as the pathway proteins BMP4, p-Smad1/5/8, and Smad1. We also constructed a rat model of ectopic bone formation, observed ectopic ossification by X-ray, and verified the success of the rat model by ELISA of HIF-1α. HE staining was used to observe the matrix and trabecular structure of bone, and Masson staining was used to observe the collagen and trabecular structure of bone. Immunohistochemistry analyzed the expression of OCN and OPN in ectopic bone tissues, and WB analyzed the expression of pathway proteins BMP4, p-Smad1/5/8 and Smad1 in ectopic bone tissues to verify the signaling pathway of ectopic bone formation. RESULTS Our results indicate that hypoxic environment upregulates HIF-1a expression and activates BMP4/SMAD signaling pathway. This led to an increase in ALP content and enhanced expression of the osteogenesis-related factors OCN and OPN, resulting in enhanced osteogenic differentiation of BMSCs. The results of our in vivo experiments showed that rats inoculated with BMSCs overexpressing HIF-1α showed bony structures in tendon tissues, enhanced expression of the bone signaling pathways BMP4 and p-Smad1/5/8, and enhanced expression levels of the osteogenic-related factors OCN and OPN, resulting in the formation of ectopic bone. CONCLUSIONS These data further suggest a novel mechanistic view that hypoxic bone marrow BMSCs activate the BMP4/SMAD pathway by up-regulating the expression level of HIF-1α, thereby promoting the secretion of osteogenic factors leading to ectopic bone formation.
Collapse
Affiliation(s)
- Cong Chen
- Department of Spine Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai 264200, China
| | - Chunhao Song
- Department of Medical Imaging, Weihai Wendeng District People Hospital, Weihai 264200, China
| | - Bo Liu
- Department of Spine Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai 264200, China
| | - Yitao Wang
- Department of Laboratory, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai 264200, China
| | - Jun Jia
- Department of Spine Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai 264200, China
| | - Kai Pang
- Department of Operations Management, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai 264200, China
| | - Yuanhao Wang
- Department of Spine Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai 264200, China
| | - Peng Wang
- Department of Spine Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai 264200, China.
| |
Collapse
|
11
|
Yamaguchi H, Li M, Kitami M, Swaminathan S, Mishina Y, Komatsu Y. Enhanced BMP signaling in Cathepsin K-positive tendon progenitors induces heterotopic ossification. Biochem Biophys Res Commun 2023; 688:149147. [PMID: 37948912 PMCID: PMC10952113 DOI: 10.1016/j.bbrc.2023.149147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Heterotopic ossification (HO) is abnormal bone growth in soft tissues that results from injury, trauma, and rare genetic disorders. Bone morphogenetic proteins (BMPs) are critical osteogenic regulators which are involved in HO. However, it remains unclear how BMP signaling interacts with other extracellular stimuli to form HO. To address this question, using the Cre-loxP recombination system in mice, we conditionally expressed the constitutively activated BMP type I receptor ALK2 with a Q207D mutation (Ca-ALK2) in Cathepsin K-Cre labeled tendon progenitors (hereafter "Ca-Alk2:Ctsk-Cre"). Ca-Alk2:Ctsk-Cre mice were viable but they formed spontaneous HO in the Achilles tendon. Histological and molecular marker analysis revealed that HO is formed via endochondral ossification. Ectopic chondrogenesis coincided with enhanced GLI1 production, suggesting that elevated Hedgehog (Hh) signaling is involved in the pathogenesis of HO. Interestingly, focal adhesion kinase, a critical mediator for the mechanotransduction pathway, was also activated in Ca-Alk2:Ctsk-Cre mice. Our findings suggest that enhanced BMP signaling may elevate Hh and mechanotransduction pathways, thereby causing HO in the regions of the Achilles tendon.
Collapse
Affiliation(s)
- Hiroyuki Yamaguchi
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Margaret Li
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA; Department of Kinesiology, Rice University Wiess School of Natural Science, Houston, TX, 77005, USA
| | - Megumi Kitami
- Division of Dental Pharmacology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8514, Japan; Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8514, Japan
| | - Sowmya Swaminathan
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA; The College of Natural Sciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yoshihiro Komatsu
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA; Graduate Program in Genetics and Epigenetics, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
12
|
Luo G, Sun Z, Liu H, Yuan Z, Wang W, Tu B, Li J, Fan C. Verteporfin attenuates trauma-induced heterotopic ossification of Achilles tendon by inhibiting osteogenesis and angiogenesis involving YAP/β-catenin signaling. FASEB J 2023; 37:e23057. [PMID: 37367700 DOI: 10.1096/fj.202300568r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
Heterotopic ossification occurs as a pathological ossification condition characterized by ectopic bone formation within soft tissues following trauma. Vascularization has long been established to fuel skeletal ossification during tissue development and regeneration. However, the feasibility of vascularization as a target of heterotopic ossification prevention remained to be further clarified. Here, we aimed to identify whether verteporfin as a widely used FDA-approved anti-vascularization drug could effectively inhibit trauma-induced heterotopic ossification formation. In the current study, we found that verteporfin not only dose dependently inhibited the angiogenic activity of human umbilical vein endothelial cells (HUVECs) but also the osteogenic differentiation of tendon stem cells (TDSCs). Moreover, YAP/β-catenin signaling axis was downregulated by the verteporfin. Application of lithium chloride, an agonist of β-catenin, recovered TDSCs osteogenesis and HUVECs angiogenesis that was inhibited by verteporfin. In vivo, verteporfin attenuated heterotopic ossification formation by decelerating osteogenesis and the vessels densely associated with osteoprogenitors formation, which could also be readily reversed by lithium chloride, as revealed by histological analysis and Micro-CT scan in a murine burn/tenotomy model. Collectively, this study confirmed the therapeutic effect of verteporfin on angiogenesis and osteogenesis in trauma-induced heterotopic ossification. Our study sheds light on the anti-vascularization strategy with verteporfin as a candidate treatment for heterotopic ossification prevention.
Collapse
Affiliation(s)
- Gang Luo
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Ziyang Sun
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Hang Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Zhengqiang Yuan
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Wei Wang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Bing Tu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Juehong Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Cunyi Fan
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, PR China
| |
Collapse
|
13
|
Marcucio R, Miclau T, Bahney C. A Shifting Paradigm: Transformation of Cartilage to Bone during Bone Repair. J Dent Res 2023; 102:13-20. [PMID: 36303415 PMCID: PMC9791286 DOI: 10.1177/00220345221125401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
While formation and regeneration of the skeleton have been studied for a long period of time, significant scientific advances in this field continue to emerge based on an unmet clinical need to improve options to promote bone repair. In this review, we discuss the relationship between mechanisms of bone formation and bone regeneration. Data clearly show that regeneration is not simply a reinduction of the molecular and cellular programs that were used for development. Instead, the mechanical environment exerts a strong influence on the mode of repair, while during development, cell-intrinsic processes drive the mode of skeletal formation. A major advance in the field has shown that cell fate is flexible, rather than terminal, and that chondrocytes are able to differentiate into osteoblasts and other cell types during development and regeneration. This is discussed in a larger context of regeneration in vertebrates as well as the clinical implication that this shift in understanding presents.
Collapse
Affiliation(s)
- R.S. Marcucio
- University of California, San Francisco (UCSF), Orthopaedic Trauma Institute, San Francisco, CA, USA
| | - T. Miclau
- University of California, San Francisco (UCSF), Orthopaedic Trauma Institute, San Francisco, CA, USA
| | - C.S. Bahney
- University of California, San Francisco (UCSF), Orthopaedic Trauma Institute, San Francisco, CA, USA
- Steadman Philippon Research Institute, Vail, CO, USA
| |
Collapse
|
14
|
Abstract
Heterotopic ossification (HO) refers to benign ectopic bone formation in soft tissue and is common following trauma surgery. HO bone can restrict movement and progress into ankylosis that may necessitate surgical intervention. This article discusses the current literature on the pathophysiology, prophylaxis, treatment, and epidemiology of postoperative HO following orthopedic trauma.
Collapse
Affiliation(s)
- Jad Lawand
- Department of Orthopaedic Surgery, John Peter Smith Health Network, Fort Worth, Texas, USA.
| | - Zachary Loeffelholz
- Department of Orthopaedic Surgery, John Peter Smith Health Network, Fort Worth, Texas, USA
| | - Bilal Khurshid
- Texas College of Osteopathic Medicine, Fort Worth, Texas, USA
| | - Eric Barcak
- Department of Orthopaedic Surgery, John Peter Smith Health Network, Fort Worth, Texas, USA
| |
Collapse
|
15
|
Gingival epithelial cell-derived microvesicles activate mineralization in gingival fibroblasts. Sci Rep 2022; 12:15779. [PMID: 36138045 PMCID: PMC9500071 DOI: 10.1038/s41598-022-19732-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 09/02/2022] [Indexed: 11/08/2022] Open
Abstract
Soft tissue calcification occurs in many parts of the body, including the gingival tissue. Epithelial cell-derived MVs can control many functions in fibroblasts but their role in regulating mineralization has not been explored. We hypothesized that microvesicles (MVs) derived from gingival epithelial cells could regulate calcification of gingival fibroblast cultures in osteogenic environment. Human gingival fibroblasts (HGFs) were cultured in osteogenic differentiation medium with or without human gingival epithelial cell-derived MV stimulation. Mineralization of the cultures, localization of the MVs and mineral deposits in the HGF cultures were assessed. Gene expression changes associated with MV exposure were analyzed using gene expression profiling and real-time qPCR. Within a week of exposure, epithelial MVs stimulated robust mineralization of HGF cultures that was further enhanced by four weeks. The MVs taken up by the HGF's did not calcify themselves but induced intracellular accumulation of minerals. HGF gene expression profiling after short exposure to MVs demonstrated relative dominance of inflammation-related genes that showed increases in gene expression. In later cultures, OSX, BSP and MMPs were significantly upregulated by the MVs. These results suggest for the first time that epithelial cells maybe associated with the ectopic mineralization process often observed in the soft tissues.
Collapse
|
16
|
Zou N, Liu R, Li C. Cathepsin K+ Non-Osteoclast Cells in the Skeletal System: Function, Models, Identity, and Therapeutic Implications. Front Cell Dev Biol 2022; 10:818462. [PMID: 35912093 PMCID: PMC9326176 DOI: 10.3389/fcell.2022.818462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Cathepsin K (Ctsk) is a cysteine protease of the papain superfamily initially identified in differentiated osteoclasts; it plays a critical role in degrading the bone matrix. However, subsequent in vivo and in vitro studies based on animal models elucidate novel subpopulations of Ctsk-expressing cells, which display markers and properties of mesenchymal stem/progenitor cells. This review introduces the function, identity, and role of Ctsk+ cells and their therapeutic implications in related preclinical osseous disorder models. It also summarizes the available in vivo models for studying Ctsk+ cells and their progeny. Further investigations of detailed properties and mechanisms of Ctsk+ cells in transgenic models are required to guide potential therapeutic targets in multiple diseases in the future.
Collapse
Affiliation(s)
- Nanyu Zou
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Ran Liu
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Changjun Li
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- *Correspondence: Changjun Li,
| |
Collapse
|
17
|
Lobov A, Malashicheva A. Osteogenic differentiation: a universal cell program of heterogeneous mesenchymal cells or a similar extracellular matrix mineralizing phenotype? BIOLOGICAL COMMUNICATIONS 2022; 67. [DOI: 10.21638/spbu03.2022.104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Despite the popularity of mesenchymal stem cells (MSCs), many fundamental aspects of their physiology still have not been understood. The information accumulated to date argues that MSCs from different sources vary in their differentiation potential and, probably, in molecular mechanisms of trilineage differentiation. Therefore, this review consists of two parts. Firstly, we focus on the data on inter- and intra-source variation of MSCs. We discuss in detail MSC variation at the single-cell level and direct omics comparison of MSCs from four main tissue sources: bone marrow, adipose tissue, umbilical cord and tooth. MSCs from all tissues represent heterogeneous populations in vivo with sub-populational structures reflecting their functional role in the tissue. After in vitro cultivation MSCs lose their natural heterogeneity, but obtain a new one, which might be regarded as a cultivation artifact. Nevertheless, MSCs from various sources still keep their functional differences after in vitro cultivation. In the second part of the review, we discuss how these differences influence molecular mechanisms of osteogenic differentiation. We highlight at least one subtype of mesenchymal cells differentiation with matrix mineralization — odontoblastic differentiation. We also discuss differences in molecular mechanisms of pathological heterotopic osteogenic differentiation of valve interstitial and tumor cells, but these assumptions need additional empirical confirmation. Finally, we observe differences in osteogenic differentiation molecular mechanisms of several MSC types and argue that this differentiation might be influenced by the cell context. Nevertheless, bone marrow and adipose MSCs seem to undergo osteogenic differentiation similarly, by the same mechanisms.
Collapse
|
18
|
Li Y, Zhu Y, Xie Z, Jiang C, Li F. Long-term radial extracorporeal shock wave therapy for neurogenic heterotopic ossification after spinal cord injury: A case report. J Spinal Cord Med 2022; 45:476-480. [PMID: 32397914 PMCID: PMC9135417 DOI: 10.1080/10790268.2020.1760507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Context: Heterotopic ossification is characterized by abnormal growth of bone in soft tissues. Neurogenic heterotopic ossification is also closely related to central nervous system injuries and has been reported to respond to radial extracorporeal shock wave therapy.Findings: In this case, a radial extracorporeal shock wave therapy (five times per week, lasted for almost one year) was applied to a patient with neurogenic heterotopic ossification on the left hip as a result of spinal cord injury. Throughout the treatment session, the heterotopic ossification lesion was gradually diminished, associated with the increase in joint range of motion, pain mitigation and decrease in serum alkaline phosphatase level.Conclusion/clinical relevance: Long-term radial extracorporeal shock wave therapy offers a promising therapeutic alternative for neurogenic heterotopic ossification.
Collapse
Affiliation(s)
- Yun Li
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Yulan Zhu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Zhen Xie
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Congyu Jiang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Fang Li
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China,Correspondence to: Fang Li, Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai200040, People’s Republic of China.
| |
Collapse
|
19
|
Palovarotene Can Attenuate Heterotopic Ossification Induced by Tendon Stem Cells by Downregulating the Synergistic Effects of Smad and NF-κB Signaling Pathway following Stimulation of the Inflammatory Microenvironment. Stem Cells Int 2022; 2022:1560943. [PMID: 35530413 PMCID: PMC9071930 DOI: 10.1155/2022/1560943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 11/18/2022] Open
Abstract
Heterotopic ossification (HO) is defined as the formation of bone tissues outside the bones, such as in the muscles. Currently, the mechanism of HO is still unclear. Tendon stem cells (TSCs) play important roles in the occurrence and development of HO. The inflammatory microenvironment dominated by macrophages also plays an important role in the course of HO. The commonly used clinical treatment methods, such as nonsteroidal anti-inflammatory drugs and radiotherapy, have relatively large side effects, and more efficient treatment methods are needed in clinical practice. Under physiological conditions, retinoic acid receptor (RAR) signal transduction pathway inhibits osteogenic progenitor cell aggregation and chondrocyte differentiation. We focus on palovarotene, a retinoic acid γ-receptor activator, showing an inhibitory effect on HO mice, but the specific mechanism is still unclear. This study was aimed at exploring the specific molecular mechanism of palovarotene by blocking osteogenic differentiation and HO formation of TSCs in vitro and in vivo in an inflammatory microenvironment. We constructed a coculture model of TCSs and polarized macrophages, as well as overexpression and knockdown models of the Smad signaling pathway of TCSs. In addition, a rat model of HO, which was constructed by Achilles tendon resection, was also established. These models explored the role of inflammatory microenvironment and Smad signaling pathways in the osteogenic differentiation of TSCs which lead to HO, as well as the reversal role played by palovarotene in this process. Our results suggest that, under the stimulation of inflammatory microenvironment and trauma, the injured site was in an inflammatory state, and macrophages were highly concentrated in the injured site. The expression of osteogenic and inflammation-related proteins, as well as Smad proteins, was upregulated. Osteogenic differentiation was performed in TCSs. We also found that TCSs activated Smad and NF-κB signaling pathways, which initiated the formation of HO. Palovarotene inhibited the aggregation of osteogenic progenitor cells and macrophages and attenuated HO by blocking Smad and NF-κB signaling pathways. Therefore, palovarotene may be a novel HO inhibitor, while other drugs or antibodies targeting Smad and NF-κB signaling pathways may also prevent or treat HO. The expressions of Smad5, Id1, P65, and other proteins may predict HO formation.
Collapse
|
20
|
Xu R, Liu Y, Zhou Y, Lin W, Yuan Q, Zhou X, Yang Y. Gnas Loss Causes Chondrocyte Fate Conversion in Cranial Suture Formation. J Dent Res 2022; 101:931-941. [PMID: 35220829 DOI: 10.1177/00220345221075215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Calvaria development is distinct from limb formation. Craniosynostosis is a skull deformity characterized by premature cranial suture fusion due to the loss of the GNAS gene and, consequently, its encoded protein Gαs. This birth defect requires surgery, with potential lethal consequences. So far, hardly any early-stage nonsurgical interventions for GNAS loss-related craniosynostosis are available. Here, we investigated the role of the Gnas gene in mice in guarding the distinctiveness of intramembranous ossification and how loss of Gnas triggered endochondral-like ossification within the cranial sutures. Single-cell RNA sequencing (scRNA-seq) of normal neonatal mice cranial suture chondrocytes showed a Hedgehog (Hh) inactivation pattern, which was associated with Gαs signaling activation. Loss of Gnas evoked chondrocyte-to-osteoblast fate conversion and resulted in cartilage heterotopic ossification (HO) within cranial sutures and fontanels of the mouse model, leading to a skull deformity resembling craniosynostosis in patients with loss of GNAS. Activation of ectopic Hh signaling within cranial chondrocytes stimulated the conversion of cell identity through a hypertrophy-like stage, which shared features of endochondral ossification in vivo. Reduction of Gli transcription activity by crossing with a loss-of-function Gli2 allele or injecting GLI1/2 antagonist hindered the progression of cartilage HO in neonatal stage mice. Our study uncovered the role of Gαs in maintaining cranial chondrocyte identity during neonatal calvaria development in mice and how reduction of Hh signaling could be a nonsurgical intervention to reduce skull deformity in craniosynostosis due to loss of GNAS.
Collapse
Affiliation(s)
- R. Xu
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, MA, USA
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y. Liu
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, MA, USA
| | - Y. Zhou
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, MA, USA
| | - W. Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Q. Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - X. Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y. Yang
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, MA, USA
| |
Collapse
|
21
|
Xu Y, Huang M, He W, He C, Chen K, Hou J, Huang M, Jiao Y, Liu R, Zou N, Liu L, Li C. Heterotopic Ossification: Clinical Features, Basic Researches, and Mechanical Stimulations. Front Cell Dev Biol 2022; 10:770931. [PMID: 35145964 PMCID: PMC8824234 DOI: 10.3389/fcell.2022.770931] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 01/03/2022] [Indexed: 12/13/2022] Open
Abstract
Heterotopic ossification (HO) is defined as the occurrence of extraskeletal bone in soft tissue. Although this pathological osteogenesis process involves the participation of osteoblasts and osteoclasts during the formation of bone structures, it differs from normal physiological osteogenesis in many features. In this article, the primary characteristics of heterotopic ossification are reviewed from both clinical and basic research perspectives, with a special highlight on the influence of mechanics on heterotopic ossification, which serves an important role in the prophylaxis and treatment of HO.
Collapse
Affiliation(s)
- Yili Xu
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Mei Huang
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Wenzhen He
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Chen He
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Kaixuan Chen
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Jing Hou
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Min Huang
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Yurui Jiao
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Ran Liu
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Nanyu Zou
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Ling Liu
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Changjun Li
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| |
Collapse
|
22
|
Liang Q, Lu Y, Yu L, Zhu Q, Xie W, Wang Y, Ye L, Li Q, Liu S, Liu Y, Zhu C. Disruption of the mouse Bmal1 locus promotes heterotopic ossification with aging via TGF-beta/BMP signaling. J Bone Miner Metab 2022; 40:40-55. [PMID: 34626248 DOI: 10.1007/s00774-021-01271-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/12/2021] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Heterotopic ossification of tendons and ligaments is a painful and debilitating disease with no effective treatment. Although aging has been reported to be correlated with the occurrence and development of this disease, the mechanism remains unknown. MATERIALS AND METHODS In the present study, we generated Bmal1-/- mice, which disrupted the circadian clock and displayed premature aging, as an aging model to explore the role of Bmal1 in TGF-beta (β)/BMP signaling in progressive heterotopic ossification of tendons and ligaments with aging. RESULTS We first confirmed that BMAL1 expression is downregulated in human fibroblasts from ossification of the posterior longitudinal ligament using online datasets. Bmal1 deficiency in mice caused significantly progressive heterotopic ossification with aging starting at week 6, notably in the Achilles tendons and posterior longitudinal ligaments. Ossification of the Achilles tendons was accompanied by progressive motor dysfunction of the ankle joint. Histology and immunostaining showed markedly increased endochondral ossification in the posterior longitudinal ligaments and Achilles tendons of Bmal1-/- mice. Ligament-derived Bmal1-/- fibroblasts showed an osteoblast-like phenotype, upregulated osteogenic and chondrogenic markers, and activated TGFβ/BMP signaling, which was enhanced by TGFβ1 stimulation. Furthermore, Bmal1-/- mouse embryonic fibroblasts had a stronger potential for osteogenic differentiation with activation of TGFβ/BMP signaling. CONCLUSIONS These findings demonstrated that Bmal1 negatively regulates endochondral ossification in heterotopic ossification of tendons and ligaments with aging via TGFβ/BMP signaling, thereby identifying a new regulatory mechanism in age-related heterotopic ossification of tendons and ligaments.
Collapse
Affiliation(s)
- Qian Liang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Yingsi Lu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Lu Yu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Qingqing Zhu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Wenlin Xie
- Department of Pathology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Yun Wang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Liping Ye
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Qiji Li
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Shaoyu Liu
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yan Liu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Chengming Zhu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
23
|
Delgado Caceres M, Angerpointner K, Galler M, Lin D, Michel PA, Brochhausen C, Lu X, Varadarajan AR, Warfsmann J, Stange R, Alt V, Pfeifer CG, Docheva D. Tenomodulin knockout mice exhibit worse late healing outcomes with augmented trauma-induced heterotopic ossification of Achilles tendon. Cell Death Dis 2021; 12:1049. [PMID: 34741033 PMCID: PMC8571417 DOI: 10.1038/s41419-021-04298-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 12/23/2022]
Abstract
Heterotopic ossification (HO) represents a common problem after tendon injury with no effective treatment yet being developed. Tenomodulin (Tnmd), the best-known mature marker for tendon lineage cells, has important effects in tendon tissue aging and function. We have reported that loss of Tnmd leads to inferior early tendon repair characterized by fibrovascular scaring and therefore hypothesized that its lack will persistently cause deficient repair during later stages. Tnmd knockout (Tnmd-/-) and wild-type (WT) animals were subjected to complete Achilles tendon surgical transection followed by end-to-end suture. Lineage tracing revealed a reduction in tendon-lineage cells marked by ScleraxisGFP, but an increase in alpha smooth muscle actin myofibroblasts in Tnmd-/- tendon scars. At the proliferative stage, more pro-inflammatory M1 macrophages and larger collagen II cartilaginous template were detected in this group. At the remodeling stage, histological scoring revealed lower repair quality in the injured Tnmd-/- tendons, which was coupled with higher HO quantified by micro-CT. Tendon biomechanical properties were compromised in both groups upon injury, however we identified an abnormal stiffening of non-injured Tnmd-/- tendons, which possessed higher static and dynamic E-moduli. Pathologically thicker and abnormally shaped collagen fibrils were observed by TEM in Tnmd-/- tendons and this, together with augmented HO, resulted in diminished running capacity of Tnmd-/- mice. These novel findings demonstrate that Tnmd plays a protecting role against trauma-induced endochondral HO and can inspire the generation of novel therapeutics to accelerate repair.
Collapse
Affiliation(s)
- Manuel Delgado Caceres
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Katharina Angerpointner
- Hand, Elbow and Plastic Surgery Department, Schön Klinik München Harlaching, Munich, Germany
| | - Michael Galler
- Department of Trauma Surgery, Caritas Hospital St. Josef, Regensburg, Germany
| | - Dasheng Lin
- Orthopaedic Center of People's Liberation Army, The Affiliated Southeast Hospital of Xiamen University, Zhangzhou, China
| | - Philipp A Michel
- Department of Trauma-, Hand-, and Reconstructive Surgery, University Hospital Münster, Münster, Germany
| | | | - Xin Lu
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Adithi R Varadarajan
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Jens Warfsmann
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Richard Stange
- Department of Regenerative Musculoskeletal Medicine, Institute for Musculoskeletal Medicine, University Hospital Münster, Westfälische Wilhelms-University, Münster, Germany
| | - Volker Alt
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
- Clinic and Policlinic for Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Christian G Pfeifer
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
- Clinic and Policlinic for Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Denitsa Docheva
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany.
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
24
|
Jin W, Lin X, Pan H, Zhao C, Qiu P, Zhao R, Hu Z, Zhou Y, Wu H, Chen X, Ouyang H, Xie Z, Tang R. Engineered osteoclasts as living treatment materials for heterotopic ossification therapy. Nat Commun 2021; 12:6327. [PMID: 34732696 PMCID: PMC8566554 DOI: 10.1038/s41467-021-26593-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/14/2021] [Indexed: 01/14/2023] Open
Abstract
Osteoclasts (OCs), the only cells capable of remodeling bone, can demineralize calcium minerals biologically. Naive OCs have limitations for the removal of ectopic calcification, such as in heterotopic ossification (HO), due to their restricted activity, migration and poor adhesion to sites of ectopic calcification. HO is the formation of pathological mature bone within extraskeletal soft tissues, and there are currently no reliable methods for removing these unexpected calcified plaques. In the present study, we develop a chemical approach to modify OCs with tetracycline (TC) to produce engineered OCs (TC-OCs) with an enhanced capacity for targeting and adhering to ectopic calcified tissue due to a broad affinity for calcium minerals. Unlike naive OCs, TC-OCs are able to effectively remove HO both in vitro and in vivo. This achievement indicates that HO can be reversed using modified OCs and holds promise for engineering cells as "living treatment agents" for cell therapy.
Collapse
Affiliation(s)
- Wenjing Jin
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, 310006, China
| | - Xianfeng Lin
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang, 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Haihua Pan
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Chenchen Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang, 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Pengcheng Qiu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang, 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Ruibo Zhao
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Zihe Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, 310006, China
| | - Yanyan Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, 310006, China
| | - Haiyan Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, 310006, China
| | - Xiao Chen
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongwei Ouyang
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhijian Xie
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, 310006, China.
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
| |
Collapse
|
25
|
Macrophages in heterotopic ossification: from mechanisms to therapy. NPJ Regen Med 2021; 6:70. [PMID: 34702860 PMCID: PMC8548514 DOI: 10.1038/s41536-021-00178-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 09/30/2021] [Indexed: 01/04/2023] Open
Abstract
Heterotopic ossification (HO) is the formation of extraskeletal bone in non-osseous tissues. It is caused by an injury that stimulates abnormal tissue healing and regeneration, and inflammation is involved in this process. It is worth noting that macrophages are crucial mediators of inflammation. In this regard, abundant macrophages are recruited to the HO site and contribute to HO progression. Macrophages can acquire different functional phenotypes and promote mesenchymal stem cell (MSC) osteogenic differentiation, chondrogenic differentiation, and angiogenesis by expressing cytokines and other factors such as the transforming growth factor-β1 (TGF-β1), bone morphogenetic protein (BMP), activin A (Act A), oncostatin M (OSM), substance P (SP), neurotrophin-3 (NT-3), and vascular endothelial growth factor (VEGF). In addition, macrophages significantly contribute to the hypoxic microenvironment, which primarily drives HO progression. Thus, these have led to an interest in the role of macrophages in HO by exploring whether HO is a "butterfly effect" event. Heterogeneous macrophages are regarded as the "butterflies" that drive a sequence of events and ultimately promote HO. In this review, we discuss how the recruitment of macrophages contributes to HO progression. In particular, we review the molecular mechanisms through which macrophages participate in MSC osteogenic differentiation, angiogenesis, and the hypoxic microenvironment. Understanding the diverse role of macrophages may unveil potential targets for the prevention and treatment of HO.
Collapse
|
26
|
Chen Y, Sun Y, Xu Y, Lin WW, Luo Z, Han Z, Liu S, Qi B, Sun C, Go K, Kang XR, Chen J. Single-Cell Integration Analysis of Heterotopic Ossification and Fibrocartilage Developmental Lineage: Endoplasmic Reticulum Stress Effector Xbp1 Transcriptionally Regulates the Notch Signaling Pathway to Mediate Fibrocartilage Differentiation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7663366. [PMID: 34737845 PMCID: PMC8563124 DOI: 10.1155/2021/7663366] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/21/2021] [Accepted: 10/01/2021] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Regeneration of fibrochondrocytes is essential for the healing of the tendon-bone interface (TBI), which is similar to the formation of neurogenic heterotopic ossification (HO). Through single-cell integrative analysis, this study explored the homogeneity of HO cells and fibrochondrocytes. METHODS This study integrated six datasets, namely, GSE94683, GSE144306, GSE168153, GSE138515, GSE102929, and GSE110993. The differentiation trajectory and key transcription factors (TFs) for HO occurrence were systematically analyzed by integrating single-cell RNA (scRNA) sequencing, bulk RNA sequencing, and assay of transposase accessible chromatin seq. The differential expression and enrichment pathways of TFs in heterotopically ossified tissues were identified. RESULTS HO that mimicked pathological cells was classified into HO1 and HO2 cell subsets. Results of the pseudo-temporal sequence analysis suggested that HO2 is a differentiated precursor cell of HO1. The analysis of integrated scRNA data revealed that ectopically ossified cells have similar transcriptional characteristics to cells in the fibrocartilaginous zone of tendons. The modified SCENIC method was used to identify specific transcriptional regulators associated with ectopic ossification. Xbp1 was defined as a common key transcriptional regulator of ectopically ossified tissues and the fibrocartilaginous zone of tendons. Subsequently, the CellPhoneDB database was completed for the cellular ligand-receptor analysis. With further pathway screening, this study is the first to propose that Xbp1 may upregulate the Notch signaling pathway through Jag1 transcription. Twenty-four microRNAs were screened and were found to be potentially associated with upregulation of XBP1 expression after acute ischemic stroke. CONCLUSION A systematic analysis of the differentiation landscape and cellular homogeneity facilitated a molecular understanding of the phenotypic similarities between cells in the fibrocartilaginous region of tendon and HO cells. Furthermore, by identifying Xbp1 as a hub regulator and by conducting a ligand-receptor analysis, we propose a potential Xbp1/Jag1/Notch signaling pathway.
Collapse
Affiliation(s)
- Yisheng Chen
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yaying Sun
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province 271000, China
| | - Wei-Wei Lin
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009 Zhejiang, China
| | - Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhihua Han
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Shaohua Liu
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Beijie Qi
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Chenyu Sun
- Internal Medicine, AMITA Health Saint Joseph Hospital Chicago, 2900 N. Lake Shore Drive, Chicago, 60657 Illinois, USA
| | - Ken Go
- Department of Clinical Training Centre, St. Marianna Hospital, Tokyo, Japan
| | - x.-R. Kang
- Shanghai Jiao Tong University, Shanghai 200080, China
| | - Jiwu Chen
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| |
Collapse
|
27
|
Cong Q, Liu Y, Zhou T, Zhou Y, Xu R, Cheng C, Chung HS, Yan M, Zhou H, Liao Z, Gao B, Bocobo GA, Covington TA, Song HJ, Su P, Yu PB, Yang Y. A self-amplifying loop of YAP and SHH drives formation and expansion of heterotopic ossification. Sci Transl Med 2021; 13:13/599/eabb2233. [PMID: 34162750 PMCID: PMC8638088 DOI: 10.1126/scitranslmed.abb2233] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 12/03/2020] [Accepted: 05/30/2021] [Indexed: 12/15/2022]
Abstract
Heterotopic ossification (HO) occurs as a common complication after injury or in genetic disorders. The mechanisms underlying HO remain incompletely understood, and there are no approved prophylactic or secondary treatments available. Here, we identify a self-amplifying, self-propagating loop of Yes-associated protein (YAP)-Sonic hedgehog (SHH) as a core molecular mechanism underlying diverse forms of HO. In mouse models of progressive osseous heteroplasia (POH), a disease caused by null mutations in GNAS, we found that Gnas-/- mesenchymal cells secreted SHH, which induced osteoblast differentiation of the surrounding wild-type cells. We further showed that loss of Gnas led to activation of YAP transcription activity, which directly drove Shh expression. Secreted SHH further induced YAP activation, Shh expression, and osteoblast differentiation in surrounding wild-type cells. This self-propagating positive feedback loop was both necessary and sufficient for HO expansion and could act independently of Gnas in fibrodysplasia ossificans progressiva (FOP), another genetic HO, and nonhereditary HO mouse models. Genetic or pharmacological inhibition of YAP or SHH abolished HO in POH and FOP and acquired HO mouse models without affecting normal bone homeostasis, providing a previously unrecognized therapeutic rationale to prevent, reduce, and shrink HO.
Collapse
Affiliation(s)
- Qian Cong
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, 188 Longwood Ave., Boston, MA 02115, USA
| | - Yuchen Liu
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, 188 Longwood Ave., Boston, MA 02115, USA
| | - Taifeng Zhou
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, 188 Longwood Ave., Boston, MA 02115, USA
| | - Yaxing Zhou
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, 188 Longwood Ave., Boston, MA 02115, USA
| | - Ruoshi Xu
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, 188 Longwood Ave., Boston, MA 02115, USA
| | - Caiqi Cheng
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, 188 Longwood Ave., Boston, MA 02115, USA
| | - Hye Soo Chung
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, 188 Longwood Ave., Boston, MA 02115, USA
| | - Meijun Yan
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Hang Zhou
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Zhiheng Liao
- Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Bo Gao
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, 188 Longwood Ave., Boston, MA 02115, USA
| | - Geoffrey A Bocobo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Taylor A Covington
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Hyeon Ju Song
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Peiqiang Su
- Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Paul B Yu
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Yingzi Yang
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, 188 Longwood Ave., Boston, MA 02115, USA.
| |
Collapse
|
28
|
Li J, Sun Z, Luo G, Wang S, Cui H, Yao Z, Xiong H, He Y, Qian Y, Fan C. Quercetin Attenuates Trauma-Induced Heterotopic Ossification by Tuning Immune Cell Infiltration and Related Inflammatory Insult. Front Immunol 2021; 12:649285. [PMID: 34093537 PMCID: PMC8173182 DOI: 10.3389/fimmu.2021.649285] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/13/2021] [Indexed: 12/17/2022] Open
Abstract
Heterotopic ossification (HO) is one of the most intractable disorders following musculoskeletal injury and is characterized by the ectopic presence of bone tissue in the soft tissue leading to severe loss of function in the extremities. Recent studies have indicated that immune cell infiltration and inflammation are involved in aberrant bone formation. In this study, we found increased monocyte/macrophage and mast cell accumulation during early HO progression. Macrophage depletion by clodronate liposomes and mast cell stabilization by cromolyn sodium significantly impeded HO formation. Therefore, we proposed that the dietary phytochemical quercetin could also suppress immune cell recruitment and related inflammatory responses to prevent HO. As expected, quercetin inhibited the monocyte-to-macrophage transition, macrophage polarization, and mast cell activation in vitro in a dose-dependent manner. Using a murine burn/tenotomy model, we also demonstrated that quercetin attenuated inflammatory responses and HO in vivo. Furthermore, elevated SIRT1 and decreased acetylated NFκB p65 expression were responsible for the mechanism of quercetin, and the beneficial effects of quercetin were reversed by the SIRT1 antagonist EX527 and mimicked by the SIRT agonist SRT1720. The findings in this study suggest that targeting monocyte/macrophage and mast cell activities may represent an attractive approach for therapeutic intervention of HO and that quercetin may serve as a promising therapeutic candidate for the treatment of trauma-induced HO by modulating SIRT1/NFκB signaling.
Collapse
Affiliation(s)
- Juehong Li
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziyang Sun
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gang Luo
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuo Wang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haomin Cui
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhixiao Yao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Xiong
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunwei He
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Qian
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cunyi Fan
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
29
|
Wang T, Chen P, Chen L, Zhou Y, Wang A, Zheng Q, Mitchell CA, Leys T, Tuan RS, Zheng MH. Reduction of mechanical loading in tendons induces heterotopic ossification and activation of the β-catenin signaling pathway. J Orthop Translat 2021; 29:42-50. [PMID: 34094857 PMCID: PMC8142054 DOI: 10.1016/j.jot.2021.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/15/2021] [Accepted: 03/01/2021] [Indexed: 11/24/2022] Open
Abstract
Background Tendons are the force transferring tissue that enable joint movement. Excessive mechanical loading is commonly considered as a primary factor causing tendinopathy, however, an increasing body of evidence supports the hypothesis that overloading creates microdamage of collagen fibers resulting in a localized decreased loading on the cell population within the damaged site. Heterotopic ossification is a complication of late stage tendinopathy, which can significantly affect the mechanical properties and homeostasis of the tendon. Here, we the examine the effect of mechanical underloading on tendon ossification and investigate its underlying molecular mechanism. Method Rabbit Achilles tendons were dissected and cultured in an underloading environment (3% cyclic tensile stain,0.25 Hz, 8 h/day) for either 10, 15 or 20 days. Using isolated tendon-derived stem cells (TDSCs) 3D constructs were generated, cultured and subjected to an underloading environment for 6 days. Histological assessments were performed to evaluate the structure of the 3D constructs; qPCR and immunohistochemistry were employed to study TDSC differentiation and the β-catenin signal pathway was investigated by Western blotting. Mechanical testing was used to determine ability of the tendon to withstand force generation. Result Tendons cultured for extended times in an environment of underloading showed progressive heterotopic ossification and a reduction in biomechanical strength. qPCR revealed that 3D TDSCs constructs cultured in an underloading environment exhibited increased expression of several osteogenic genes: these include RUNX2, ALP and osteocalcin in comparison to tenogenic differentiation markers (scleraxis and tenomodulin). Immunohistochemical analysis further confirmed high osteocalcin production in 3D TDSCs constructs subject to underloading. Western blotting of TDSC constructs revealed that β-catenin accumulation and translocation were associated with an increase in phosphorylation at Ser552 and decrease phosphorylation at Ser33. Conclusion These findings unveil a potential mechanism for heterotopic ossification in tendinopathy due to the underloading of TDSCs at the damage sites, and also that β-catenin could be a potential target for treating heterotopic ossification in tendons. The Translational potential Tendon heterotopic ossification detrimentally affect quality of life especially for those who has atheletic career. This study reveals the possible mechanism of heterotpic ossification in tendon related to mechanical loading. This study provided the possible to develop a mechanical stimulation protocol for preventive and therapeutic purpose for tendon heterotopic ossification.
Collapse
Affiliation(s)
- Tao Wang
- Centre for Orthopaedic Translational Research, School of Biomedical Sciences, University of Western Australia, Nedlands, Australia.,Division of Orthopaedic Surgery, Department of Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Peilin Chen
- Centre for Orthopaedic Translational Research, School of Biomedical Sciences, University of Western Australia, Nedlands, Australia
| | - Lianzhi Chen
- Centre for Orthopaedic Translational Research, School of Biomedical Sciences, University of Western Australia, Nedlands, Australia
| | - Yinghong Zhou
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia
| | - Allan Wang
- Centre for Orthopaedic Translational Research, School of Biomedical Sciences, University of Western Australia, Nedlands, Australia.,Sir Charles Gairdner Hospital, Perth, Australia
| | - Qiujian Zheng
- Division of Orthopaedic Surgery, Department of Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Christopher A Mitchell
- Centre for Orthopaedic Translational Research, School of Biomedical Sciences, University of Western Australia, Nedlands, Australia
| | - Toby Leys
- Sir Charles Gairdner Hospital, Perth, Australia
| | - Rocky S Tuan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Ming H Zheng
- Division of Orthopaedic Surgery, Department of Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
30
|
Ampadiotaki MM, Evangelopoulos DS, Pallis D, Vlachos C, Vlamis J, Evangelopoulos ME. New Strategies in Neurogenic Heterotopic Ossification. Cureus 2021; 13:e14709. [PMID: 34055549 PMCID: PMC8158068 DOI: 10.7759/cureus.14709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The term neurogenic heterotopic ossification (NHO) is used to describe the pathological bone formation in soft tissues, due to spinal cord or brain injury. Commonly is presented with pain and stiffness of the affected joint. NHO affects the quality of life of these patients, delays their rehabilitation and therefore increases morbidity. The aim of this article is to emphasize pathophysiology mechanism and review new molecular treatments of heterotopic ossification (HO). It was demonstrated that potent treatment strategies are based on understanding the molecular mechanisms and aiming to inhibit the pathological process of the HO in various stages. New treatments are targeting several factors such as bone morphogenetic proteins (BMPs), retinoic acid receptors (RARs), hypoxic inhibitors (Hif1-inhibitors, rapamycin), free radical scavengers and immunological agents (imatinib). The endogenous pathways that lead to HO at molecular and cellular levels have been the aim of many studies in recent years. New treatment options for HO should be recommended due to the ineffectiveness of traditional older options, such as anti-inflammatory drugs and radiation, especially in the case of NHO.
Collapse
Affiliation(s)
| | - Dimitrios S Evangelopoulos
- 3rd Orthopaedic Department, KAT Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, GRC
| | | | - Christos Vlachos
- 3rd Orthopaedic Department, KAT Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, GRC
| | - John Vlamis
- 3rd Orthopaedic Department, KAT Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, GRC
| | | |
Collapse
|
31
|
Hatano M, Kitajima I, Yamamoto S, Nakamura M, Isawa K, Hirota Y, Suwabe T, Hoshino J, Sawa N, Ubara Y. New bone-like tissue formation in calcific tendinopathy: A case report. Bone Rep 2021; 14:101062. [PMID: 33898660 DOI: 10.1016/j.bonr.2021.101062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 10/21/2022] Open
Abstract
Currently, the pathogenesis of nontraumatic heterotopic ossification (HO), e.g., bone-like tissue in calcific tendinopathy remains unclear. Here, we report a 75-year-old, right-handed Japanese woman who had been on hemodialysis for 3 years and was admitted to our hospital to evaluate pain and swelling of the right forearm. She worked as a cook, and her main job over the 3 most recent years had been the frequent and continuous shredding of cabbage. A radiograph showed the highly radiopaque material on the dorsal aspect of the right wrist and in the right shoulder. The biopsy of this radiopaque material revealed HO with marrow, as well as calcified material. Histomorphometric analysis of the HO identified a severe type of osteitis fibrosa with a fibrous tissue volume to total volume of 19.8% (>0.5% required for diagnosis) and an osteoid volume to bone volume of 20.0% (>15% required for diagnosis). We found more woven bone-like tissue than lamellar bone-like tissue. However, the intact parathyroid hormone level was 3-times the normal upper limit with 203 pg/mL, but histomorphometric analysis of the right iliac crest revealed normal bone structure. These findings indicate that the frequent and continuous shredding action with the right hand contributed to the nontraumatic HO localized on the dorsal aspect of the right wrist.
Collapse
Key Words
- ALP, alkaline phosphatase
- BAP, bone alkaline phosphatase
- BFR/BV, bone formation rate per unit of bone volume
- BMPs, bone morphogenetic proteins
- BV/TV, trabecular bone volume to total volume
- Bone histomorphometry
- CKD-MBD, chronic kidney disease-mineral and bone disorder
- Calcific tendinopathy
- ES/BS, eroded surface to bone surface
- Fb.V/TV, fibrous tissue volume to total volume
- HO, heterotopic ossification
- Heterotopic ossification
- N.Oc/BS, number of osteoclasts to bone surface
- New bone-like tissue formation
- O.Th, osteoid thickness
- OS/BS, osteoid surface to bone surface
- OV/BV, osteoid volume to bone volume
- OV/TV, osteoid volume to tissue volume
- Ob.S/BS, osteoblasts surface to bone surface
- PTH, parathyroid hormone
- Tb.Th, trabecular thickness
- W.Th, trabecular unit wall thickness
Collapse
Affiliation(s)
- Masaki Hatano
- Department of Orthopaedic Surgery, Toranomon Hospital, Tokyo, Japan
| | - Izuru Kitajima
- Department of Orthopaedic Surgery, Toranomon Hospital, Tokyo, Japan
| | - Seizo Yamamoto
- Department of Orthopaedic Surgery, Toranomon Hospital, Tokyo, Japan
| | - Masaki Nakamura
- Department of Orthopaedic Surgery, Toranomon Hospital, Tokyo, Japan
| | - Kazuya Isawa
- Department of Orthopaedic Surgery, Toranomon Hospital, Tokyo, Japan
| | - Yutaka Hirota
- Department of Orthopaedic Surgery, Toranomon Hospital, Tokyo, Japan
| | - Tatsuya Suwabe
- Department of Nephrology Center, Toranomon Hospital, Tokyo, Japan.,Okinaka Memorial Institute for Medical Research, Toranomon Hospital, Tokyo, Japan
| | - Junichi Hoshino
- Department of Nephrology Center, Toranomon Hospital, Tokyo, Japan.,Okinaka Memorial Institute for Medical Research, Toranomon Hospital, Tokyo, Japan
| | - Naoki Sawa
- Department of Nephrology Center, Toranomon Hospital, Tokyo, Japan.,Okinaka Memorial Institute for Medical Research, Toranomon Hospital, Tokyo, Japan
| | - Yoshihumi Ubara
- Department of Nephrology Center, Toranomon Hospital, Tokyo, Japan.,Okinaka Memorial Institute for Medical Research, Toranomon Hospital, Tokyo, Japan
| |
Collapse
|
32
|
Wong KR, Mychasiuk R, O'Brien TJ, Shultz SR, McDonald SJ, Brady RD. Neurological heterotopic ossification: novel mechanisms, prognostic biomarkers and prophylactic therapies. Bone Res 2020; 8:42. [PMID: 33298867 PMCID: PMC7725771 DOI: 10.1038/s41413-020-00119-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/20/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
Neurological heterotopic ossification (NHO) is a debilitating condition where bone forms in soft tissue, such as muscle surrounding the hip and knee, following an injury to the brain or spinal cord. This abnormal formation of bone can result in nerve impingement, pain, contractures and impaired movement. Patients are often diagnosed with NHO after the bone tissue has completely mineralised, leaving invasive surgical resection the only remaining treatment option. Surgical resection of NHO creates potential for added complications, particularly in patients with concomitant injury to the central nervous system (CNS). Although recent work has begun to shed light on the physiological mechanisms involved in NHO, there remains a significant knowledge gap related to the prognostic biomarkers and prophylactic treatments which are necessary to prevent NHO and optimise patient outcomes. This article reviews the current understanding pertaining to NHO epidemiology, pathobiology, biomarkers and treatment options. In particular, we focus on how concomitant CNS injury may drive ectopic bone formation and discuss considerations for treating polytrauma patients with NHO. We conclude that understanding of the pathogenesis of NHO is rapidly advancing, and as such, there is the strong potential for future research to unearth methods capable of identifying patients likely to develop NHO, and targeted treatments to prevent its manifestation.
Collapse
Affiliation(s)
- Ker Rui Wong
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Stuart J McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Rhys D Brady
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia. .,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
33
|
Feng H, Xing W, Han Y, Sun J, Kong M, Gao B, Yang Y, Yin Z, Chen X, Zhao Y, Bi Q, Zou W. Tendon-derived cathepsin K-expressing progenitor cells activate Hedgehog signaling to drive heterotopic ossification. J Clin Invest 2020; 130:6354-6365. [PMID: 32853181 PMCID: PMC7685727 DOI: 10.1172/jci132518] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 08/20/2020] [Indexed: 12/31/2022] Open
Abstract
Heterotopic ossification (HO) is pathological bone formation characterized by ossification within muscle, tendons, or other soft tissues. However, the cells of origin and mechanisms involved in the pathogenesis of HO remain elusive. Here we show that deletion of suppressor of fused (Sufu) in cathepsin K-Cre-expressing (Ctsk-Cre-expressing) cells resulted in spontaneous and progressive ligament, tendon, and periarticular ossification. Lineage tracing studies and cell functional analysis demonstrated that Ctsk-Cre could label a subpopulation of tendon-derived progenitor cells (TDPCs) marked by the tendon marker Scleraxis (Scx). Ctsk+Scx+ TDPCs are enriched for tendon stem cell markers and show the highest self-renewal capacity and differentiation potential. Sufu deficiency caused enhanced chondrogenic and osteogenic differentiation of Ctsk-Cre-expressing tendon-derived cells via upregulation of Hedgehog (Hh) signaling. Furthermore, pharmacological intervention in Hh signaling using JQ1 suppressed the development of HO. Thus, our results show that Ctsk-Cre labels a subpopulation of TDPCs contributing to HO and that their cell-fate changes are driven by activation of Hh signaling.
Collapse
Affiliation(s)
- Heng Feng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Wenhui Xing
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yujiao Han
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jun Sun
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Mingxiang Kong
- Department of Orthopedics and Joint Surgery, Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Bo Gao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yang Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zi Yin
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao Chen
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yun Zhao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Qing Bi
- Department of Orthopedics and Joint Surgery, Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
34
|
Zhu W, Xie K, Yang J, Li L, Wang X, Xu L, Fang S. Diagnosis of Klippel-Trenaunay syndrome and extensive heterotopic ossification in a patient with a femoral fracture: a case report and literature review. BMC Musculoskelet Disord 2020; 21:223. [PMID: 32278353 PMCID: PMC7149888 DOI: 10.1186/s12891-020-03224-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/19/2020] [Indexed: 01/19/2023] Open
Abstract
Background Klippel-Trenaunay syndrome (KTS) is a rare complex vessel malformation syndrome characterized by venous varicosities, capillary malformations, and limb hypertrophy. However, extensive heterotopic ossification (HO) secondary to this syndrome is extremely rare. Case presentation We report the case of a patient with previously undiagnosed KTS and extensive HO who presented with a femoral fracture secondary to a motor vehicle accident. Extensive ossification, which leads to compulsive contracture deformity and dysfunction of the leg, was distributed on the flexor muscle side, as revealed by the radiograph. The diagnosis was finally established by combining imaging and histological analysis with classical clinical symptoms. Amputation was performed at the fracture site proximal to the infected necrotic foci. Open management of the fracture was challenging owning to the pervasive ossification and tendency for excessive bleeding. Gene sequencing analysis showed homozygous mutation of FoxO1 gene. Conclusions Definitive diagnosis of a combination of KTS and extensive HO requires detailed imaging analysis and pathologic evidence. Mutation of the FoxO1 gene, which regulates bone formation by resistance to oxidative stress in osteoblasts, is a potential factor in the microenvironment of malformed vessels caused by KTS.
Collapse
|
35
|
Lin H, Shi F, Jiang S, Wang Y, Zou J, Ying Y, Huang D, Luo L, Yan X, Luo Z. Metformin attenuates trauma-induced heterotopic ossification via inhibition of Bone Morphogenetic Protein signalling. J Cell Mol Med 2020; 24:14491-14501. [PMID: 33169942 PMCID: PMC7754007 DOI: 10.1111/jcmm.16076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/04/2020] [Accepted: 10/25/2020] [Indexed: 11/06/2022] Open
Abstract
AMP‐activated protein kinase (AMPK) is an intracellular sensor of energy homoeostasis that is activated under energy stress and suppressed in energy surplus. AMPK activation leads to inhibition of anabolic processes that consume ATP. Osteogenic differentiation is a process that highly demands ATP during which AMPK is inhibited. The bone morphogenetic proteins (BMPs) signalling pathway plays an essential role in osteogenic differentiation. The present study examines the inhibitory effect of metformin on BMP signalling, osteogenic differentiation and trauma‐induced heterotopic ossification. Our results showed that metformin inhibited Smad1/5 phosphorylation induced by BMP6 in osteoblast MC3T3‐E1 cells, concurrent with up‐regulation of Smad6, and this effect was attenuated by knockdown of Smad6. Furthermore, we found that metformin suppressed ALP activity and mineralization of the cells, an event that was attenuated by the dominant negative mutant of AMPK and mimicked by its constitutively active mutant. Finally, administration of metformin prevented the trauma‐induced heterotopic ossification in mice. In conjuncture, AMPK activity and Smad6 and Smurf1 expression were enhanced by metformin treatment in the muscle of injured area, concurrently with the reduction of ALK2. Collectively, our study suggests that metformin prevents heterotopic ossification via activation of AMPK and subsequent up‐regulation of Smad6. Therefore, metformin could be a potential therapeutic drug for heterotopic ossification induced by traumatic injury.
Collapse
Affiliation(s)
- Hui Lin
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology and Department of Pathophysiology, School of Basic Medical Sciences, Queen Mary School, Nanchang University, Nanchang, China
| | - Fuli Shi
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology and Department of Pathophysiology, School of Basic Medical Sciences, Queen Mary School, Nanchang University, Nanchang, China
| | - Shanshan Jiang
- Institute of Hematological Research, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yuanyuan Wang
- Clinical Systems Biology Laboratory, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Junrong Zou
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology and Department of Pathophysiology, School of Basic Medical Sciences, Queen Mary School, Nanchang University, Nanchang, China
| | - Ying Ying
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology and Department of Pathophysiology, School of Basic Medical Sciences, Queen Mary School, Nanchang University, Nanchang, China
| | - Deqiang Huang
- Research Institute of Digestive Diseases, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Lingyu Luo
- Research Institute of Digestive Diseases, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Xiaohua Yan
- Institute of Basic Biomedical Sciences and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Zhijun Luo
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology and Department of Pathophysiology, School of Basic Medical Sciences, Queen Mary School, Nanchang University, Nanchang, China
| |
Collapse
|
36
|
Zhao Y, Ouyang N, Chen L, Zhao H, Shen G, Dai J. Stimulating Factors and Origins of Precursor Cells in Traumatic Heterotopic Ossification Around the Temporomandibular Joint in Mice. Front Cell Dev Biol 2020; 8:445. [PMID: 32626707 PMCID: PMC7314999 DOI: 10.3389/fcell.2020.00445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/13/2020] [Indexed: 12/13/2022] Open
Abstract
The contributing factors and the origins of precursor cells in traumatic heterotopic ossification around the temporomandibular joint (THO-TMJ), which causes obvious restriction of mouth opening and maxillofacial malformation, remain unclear. In this study, our findings demonstrated that injured chondrocytes in the condylar cartilage, but not osteoblasts in the injured subchondral bone, played definite roles in the development of THO-TMJ in mice. Injured condylar chondrocytes without articular disc reserves might secrete growth factors, such as IGF1 and TGFβ2, that stimulate precursor cells, such as endothelial cells and muscle-derived cells, to differentiate into chondrocytes or osteoblasts and induce THO-TMJ. Preserved articular discs can alleviate the pressure on the injured cartilage and inhibit the development of THO-TMJ by inhibiting the secretion of these growth factors from injured chondrocytes. However, the exact molecular relationships among trauma, the injured condylar cartilage, growth factors such as TGFβ2, and pressure need to be explored in detail in the future.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Oral & Cranio-maxillofacial Science, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center for Oral Disease, Shanghai, China
| | - Ningjuan Ouyang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Long Chen
- Department of Oral & Cranio-maxillofacial Science, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center for Oral Disease, Shanghai, China
| | - Hanjiang Zhao
- Department of Oral & Cranio-maxillofacial Science, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center for Oral Disease, Shanghai, China
| | - Guofang Shen
- Department of Oral & Cranio-maxillofacial Science, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center for Oral Disease, Shanghai, China
| | - Jiewen Dai
- Department of Oral & Cranio-maxillofacial Science, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center for Oral Disease, Shanghai, China
| |
Collapse
|
37
|
Robinson T, Eisenstein N, Cox S, Moakes R, Thompson A, Ahmed Z, Hughes E, Hill L, Stapley S, Grover L. Local injection of a hexametaphosphate formulation reduces heterotopic ossification in vivo. Mater Today Bio 2020; 7:100059. [PMID: 32613185 PMCID: PMC7322360 DOI: 10.1016/j.mtbio.2020.100059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 12/17/2022] Open
Abstract
Heterotopic ossification (HO), the pathological formation of ectopic bone, is a debilitating condition which can cause chronic pain, limit joint movement, and prevent prosthetic limb fitting. The prevalence of this condition has risen in the military population, due to increased survivorship following blast injuries. Current prophylaxes, which aim to target the complex upstream biological pathways, are inconsistently effective and have a range of side-effects that make them unsuitable for combat-injured personnel. As such, many patients must undergo further surgery to remove the formed ectopic bone. In this study, a non-toxic, U.S. Food and Drug Administration (FDA) -approved calcium chelator, hexametaphosphate (HMP), is explored as a novel treatment paradigm for this condition, which targets the chemical, rather that biological, bone formation pathways. This approach allows not only prevention of pathological bone formation but also uniquely facilitates reversal, which current drugs cannot achieve. Targeted, minimally invasive delivery is achieved by loading HMP into an injectable colloidal alginate. These formulations significantly reduce the length of the ectopic bone formed in a rodent model of HO, with no effect on the adjacent skeletal bone. This study demonstrates the potential of localized dissolution as a new treatment and an alternative to surgery for pathological ossification and calcification conditions.
Collapse
Affiliation(s)
- T.E. Robinson
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT, UK
- Royal Centre for Defence Medicine, Birmingham Research Park, Vincent Drive, Edgbaston, B15 2SQ, UK
| | - N.M. Eisenstein
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT, UK
- Royal Centre for Defence Medicine, Birmingham Research Park, Vincent Drive, Edgbaston, B15 2SQ, UK
| | - S.C. Cox
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT, UK
| | - R.J.A. Moakes
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT, UK
| | - A.M. Thompson
- Neuroscience and Opthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Z. Ahmed
- Neuroscience and Opthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, B15 2TT, UK
| | - E.A.B. Hughes
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Edgbaston, B15 2TH, UK
| | - L.J. Hill
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - S.A. Stapley
- Royal Centre for Defence Medicine, Birmingham Research Park, Vincent Drive, Edgbaston, B15 2SQ, UK
| | - L.M. Grover
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT, UK
| |
Collapse
|
38
|
Zhang Q, Zhou D, Wang H, Tan J. Heterotopic ossification of tendon and ligament. J Cell Mol Med 2020; 24:5428-5437. [PMID: 32293797 PMCID: PMC7214162 DOI: 10.1111/jcmm.15240] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/14/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023] Open
Abstract
Much of the similarities of the tissue characteristics, pathologies and mechanisms of heterotopic ossification (HO) formation are shared between HO of tendon and ligament (HOTL). Unmet need and no effective treatment has been developed for HOTL, primarily attributable to poor understanding of cellular and molecular mechanisms. HOTL forms via endochondral ossification, a common process of most kinds of HO. HOTL is a dynamic pathologic process that includes trauma/injury, inflammation, mesenchymal stromal cell (MSC) recruitment, chondrogenic differentiation and, finally, ossification. A variety of signal pathways involve HOTL with multiple roles in different stages of HO formation, and here in this review, we summarize the progress and provide an up‐to‐date understanding of HOTL.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Orthopaedic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Orthopedics, Changzhou No. 2 People's Hospital, Changzhou, China.,Division of Geriatric Medicine & Gerontology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Dong Zhou
- Department of Orthopedics, Changzhou No. 2 People's Hospital, Changzhou, China
| | - Haitao Wang
- Division of Geriatric Medicine & Gerontology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Jun Tan
- Department of Orthopaedic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Orthopedics, Pinghu Second People's Hospital, Pinghu, China
| |
Collapse
|
39
|
Huang Y, Wang X, Lin H. The hypoxic microenvironment: a driving force for heterotopic ossification progression. Cell Commun Signal 2020; 18:20. [PMID: 32028956 PMCID: PMC7006203 DOI: 10.1186/s12964-020-0509-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/02/2020] [Indexed: 12/23/2022] Open
Abstract
Heterotopic ossification (HO) refers to the formation of bone tissue outside the normal skeletal system. According to its pathogenesis, HO is divided into hereditary HO and acquired HO. There currently lack effective approaches for HO prevention or treatment. A deep understanding of its pathogenesis will provide promising strategies to prevent and treat HO. Studies have shown that the hypoxia-adaptive microenvironment generated after trauma is a potent stimulus of HO. The hypoxic microenvironment enhances the stability of hypoxia-inducible factor-1α (HIF-1α), which regulates a complex network including bone morphogenetic proteins (BMPs), vascular endothelial growth factor (VEGF), and neuropilin-1 (NRP-1), which are implicated in the formation of ectopic bone. In this review, we summarize the current understanding of the triggering role and underlying molecular mechanisms of the hypoxic microenvironment in the initiation and progression of HO, focusing mainly on HIF-1 and it's influenced genes BMP, VEGF, and NRP-1. A better understanding of the role of hypoxia in HO unveils novel therapeutic targets for HO that reduce the local hypoxic microenvironment and inhibit HIF-1α activity. Video Abstract. (MP4 52403 kb)
Collapse
Affiliation(s)
- Yifei Huang
- First Clinical Medical School, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Xinyi Wang
- First Clinical Medical School, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Hui Lin
- Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, 461 BaYi Avenue, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
40
|
Inhibition of immune checkpoints prevents injury-induced heterotopic ossification. Bone Res 2019; 7:33. [PMID: 31700694 PMCID: PMC6823457 DOI: 10.1038/s41413-019-0074-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/06/2019] [Accepted: 08/18/2019] [Indexed: 12/17/2022] Open
Abstract
Heterotopic ossification (HO), true bone formation in soft tissue, is closely associated with abnormal injury/immune responses. We hypothesized that a key underlying mechanism of HO might be injury-induced dysregulation of immune checkpoint proteins (ICs). We found that the earliest stages of HO are characterized by enhanced infiltration of polarized macrophages into sites of minor injuries in an animal model of HO. The non-specific immune suppressants, Rapamycin and Ebselen, prevented HO providing evidence of the central role of the immune responses. We examined the expression pattern of ICs and found that they are dysregulated in HO lesions. More importantly, loss of function of inhibitory ICs (including PD1, PD-L1, and CD152) markedly inhibited HO, whereas loss of function of stimulatory ICs (including CD40L and OX-40L) facilitated HO. These findings suggest that IC inhibitors may provide a therapeutic approach to prevent or limit the extent of HO.
Collapse
|
41
|
Mao D, Mi J, Pan X, Li F, Rui Y. Tamoxifen Inhibits the Progression of Trauma-Induced Heterotopic Ossification in Mice. Med Sci Monit 2019; 25:7872-7881. [PMID: 31631887 PMCID: PMC6820362 DOI: 10.12659/msm.916733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Heterotopic ossification (HO) is a kind of abnormal mineralized bone which usually occurs in muscle, tendon, or ligament. There are currently no effective drugs for the treatment and prevention of HO. Developing effective drugs that can inhibit HO is of profound significance and would provide new strategies for clinical treatment of this disease. The present investigation evaluated the inhibitory effect of tamoxifen against HO. MATERIAL AND METHODS Using an Achilles tendon trauma-induced HO female mice model, we screened different doses of tamoxifen (1, 3, and 9 mg/kg) in mice to determine the optimal dosage on the inhibition of the HO formation. The curative effect of tamoxifen was also illustrated at different HO progression stages including inflammation, chondrogenesis, osteogenesis, and HO maturation. RESULTS Heterotopic bone was formed with typical endochondral ossification in Achilles tendons 6 weeks after surgery and continued to enlarge up to 12 weeks. The formation of HO was significantly inhibited with the treatment of tamoxifen at the dosage of 9 mg/kg, whereas 1 mg/kg and 3 mg/kg did not reduce HO bone volume remarkably. The progression of HO was both attenuated by tamoxifen from Day 1 and Week 4 post-surgery, whereas no inhibitory effect was shown at the osteogenesis and maturation stages treated with tamoxifen. CONCLUSIONS Tamoxifen exerts an inhibitory effect on the heterotopic bone progression at inflammation and chondrogenesis stages, with the TGF-ß signaling pathway suppressed following the increase in estrogen receptor alpha activity.
Collapse
Affiliation(s)
- Dong Mao
- Research Institute of Hand Surgery, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, China (mainland)
| | - Jingyi Mi
- Department of Hand Surgery, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, China (mainland)
| | - Xiaoyun Pan
- Research Institute of Hand Surgery, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, China (mainland)
| | - Fengfeng Li
- Department of Orthopedics, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, China (mainland)
| | - Yongjun Rui
- Department of Orthopedics, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, China (mainland)
| |
Collapse
|
42
|
Tang J, Gu Y, Zhang H, Wu L, Xu Y, Mao J, Xin T, Ye T, Deng L, Cui W, Santos HA, Chen L. Outer-inner dual reinforced micro/nano hierarchical scaffolds for promoting osteogenesis. NANOSCALE 2019; 11:15794-15803. [PMID: 31432854 DOI: 10.1039/c9nr03264a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biomimetic scaffolds have been extensively studied for guiding osteogenesis through structural cues. Inspired by the natural bone growth process, we have employed a hierarchical outer-inner dual reinforcing strategy, which relies on the interfacial ionic bond interaction between amine/calcium and carboxyl groups, to build a nanofiber/particle dual strengthened hierarchical silk fibroin scaffold. This scaffold can provide an applicable form of osteogenic structural cue and mimic the natural bone forming process. Owing to the active interaction between compositions located in the outer pore space and the inner pore wall, the scaffold has over 4 times improvement in the mechanical properties, followed by a significant alteration of the cell-scaffold interaction pattern, demonstrated by over 2 times elevation in the spreading area and enhanced osteogenic activity potentially involving the activities of integrin, vinculin and Yes-associated protein (YAP). The in vivo performance of the scaffold identified the inherent osteogenic effect of the structural cue, which promotes rapid and uniform regeneration. Overall, the hierarchical scaffold is promising in promoting uniform bone regeneration through its specific structural cue endowed by its micro-nano construction.
Collapse
Affiliation(s)
- Jincheng Tang
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 708 Renmin Road, Suzhou, Jiangsu 215006, P.R. China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Shi F, Gao J, Zou J, Ying Y, Lin H. Targeting heterotopic ossification by inhibiting activin receptor‑like kinase 2 function (Review). Mol Med Rep 2019; 20:2979-2989. [PMID: 31432174 PMCID: PMC6755183 DOI: 10.3892/mmr.2019.10556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 07/15/2019] [Indexed: 11/17/2022] Open
Abstract
Heterotopic ossification (HO) refers to the appearance of osteoblasts in soft tissues under pathological conditions, such as trauma or infection. HO arises in an unpredictable way without any recognizable initiation. Activin receptor-like kinase-2 (ALK2) is a type I cell surface receptor for bone morphogenetic proteins (BMPs). The dysregulation of ALK2 signaling is associated with a variety of diseases, including cancer and HO. At present, the prevention and treatment of HO in the clinic predominantly includes nonsteroidal anti-inflammatory drugs (NSAIDs), bisphosphonates and other drug treatments, low-dose local radiation therapy and surgical resection, rehabilitation treatment and physical therapy. However, most of these therapies have adverse effects. These methods do not prevent the occurrence of HO. The pathogenesis of HO is not being specifically targeted; the current treatment strategies target the symptoms, not the disease. These treatments also cannot solve the fundamental problem of the occurrence of HO. Therefore, scholars have been working to develop targeted therapies based on the pathogenesis of HO. The present review focuses on advances in the understanding of the underlying mechanisms of HO, and possible options for the prevention and treatment of HO. In addition, the role of ALK2 in the process of HO is introduced and the progress made towards the targeted inhibition of ALK2 is discussed. The present study aims to offer a platform for further research on possible targets for the prevention and treatment of HO.
Collapse
Affiliation(s)
- Fuli Shi
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, School of Basic Medicine Sciences, Nanchang University Medical College, Nanchang, Jiangxi 330006, P.R. China
| | - Jiayu Gao
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, School of Basic Medicine Sciences, Nanchang University Medical College, Nanchang, Jiangxi 330006, P.R. China
| | - Junrong Zou
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, School of Basic Medicine Sciences, Nanchang University Medical College, Nanchang, Jiangxi 330006, P.R. China
| | - Ying Ying
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, School of Basic Medicine Sciences, Nanchang University Medical College, Nanchang, Jiangxi 330006, P.R. China
| | - Hui Lin
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, School of Basic Medicine Sciences, Nanchang University Medical College, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
44
|
Melo FG, Ocarino NM, Sena Reis AM, Gomes LA, Magalhães Cardoso KM, Gimeno EJ, Massone AR, Melo MM, Machado Botelho AF, Serakides R. Rat mesenchymal stem cell cultures as a model to elucidate the cellular and molecular pathogenesis of bone metaplasia induced by Solanum glaucophyllum intoxication. Toxicon 2019; 169:25-33. [PMID: 31421160 DOI: 10.1016/j.toxicon.2019.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/26/2019] [Accepted: 08/13/2019] [Indexed: 10/26/2022]
Abstract
The hypothesis of this experiment is that mesenchymal stem cells (MSCs) are involved in the genesis of the bone metaplasia caused by Solanum glaucophyllum intoxication. We determined using liquid chromatography that 1 mL of plant extract contained 3.8 μl of 1,25(OH)2D3. The ability of 100 μL, 1 mL and 5 mL of extract/L, containing 1 nM (0.4 μg/L), 10 nM (4 μg/L) and 50 nM (20 μg/L) of 1,25(OH)2D3, respectively, in inducing the osteogenic differentiation in bone marrow MSCs from rats was tested. At the concentrations of 1 and 5 mL of extract/L of culture medium without osteogenesis-inducing factors, the plant extract induced the osteogenic differentiation of the MSCs, as was evidenced by the greater synthesis of mineralized matrix. At the higher concentration (5 mL of extract/L), an increase in the relative expression of BMP-2 gene was observed. It was concluded that rat bone marrow MSC culture is a good model for studying the effects of the S. glaucophyllum extract on the osteogenic differentiation of undifferentiated cells. Also, S. glaucophyllum extracts containing 10 nM (4 μg/L) and 50 nM (20 μg/L) of 1,25(OH)2D3 induce the osteogenic differentiation of MSCs, suggesting that this is one of the mechanisms by which S. glaucophyllum causes bone metaplasia.
Collapse
|
45
|
de Vasconcellos JF, Zicari S, Fernicola SD, Griffin DW, Ji Y, Shin EH, Jones P, Christopherson GT, Bharmal H, Cirino C, Nguyen T, Robertson A, Pellegrini VD, Nesti LJ. In vivo model of human post-traumatic heterotopic ossification demonstrates early fibroproliferative signature. J Transl Med 2019; 17:248. [PMID: 31375141 PMCID: PMC6679453 DOI: 10.1186/s12967-019-1996-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/23/2019] [Indexed: 01/13/2023] Open
Abstract
Background The relationship between the tissue injury healing response and development of heterotopic ossification (HO) is poorly understood. Here we compare a rat blast model and human traumatized muscle from a blast injury to study the early signatures of osteogenesis and fibrosis during the formation of HO. Methods Rat and human tissues were characterized using histology, scanning electron microscopy, immunohistochemistry, as well as gene and protein expression analysis. Additionally, animals and humans were assessed radiographically for HO formation following injury. Results Markers of bone formation were dramatically increased in tissue samples from both humans and rats, and both displayed increased fibroproliferative regions within the injured tissues and elevated expression of markers of tissue fibrosis such as TGF-β1, Fibronectin, SMAD3 and PAI-1. Markers of inflammation and fibrosis (ACTA, TNFα, BMP1 and BMP3) were elevated at the RNA level in both rat and human samples. By day 42, bone formation in the rat blast model appeared similar in radiographs compared to human patients who progressed to develop post-traumatic HO. Conclusions Our data demonstrates that a similar early fibrotic response is evident in both the rat blast model and the human tissues following a traumatic injury and demonstrates the relevance of this animal model for future translational studies.
Collapse
Affiliation(s)
- Jaira F de Vasconcellos
- Department of Surgery, Walter Reed National Military Medical Center & Uniformed Services University of Health Sciences, 4801 Rockville Pike, Bethesda, MD, 20889, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Sonia Zicari
- Department of Surgery, Walter Reed National Military Medical Center & Uniformed Services University of Health Sciences, 4801 Rockville Pike, Bethesda, MD, 20889, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Stephen D Fernicola
- Department of Surgery, Walter Reed National Military Medical Center & Uniformed Services University of Health Sciences, 4801 Rockville Pike, Bethesda, MD, 20889, USA
| | - Daniel W Griffin
- Department of Surgery, Walter Reed National Military Medical Center & Uniformed Services University of Health Sciences, 4801 Rockville Pike, Bethesda, MD, 20889, USA
| | - Youngmi Ji
- Department of Surgery, Walter Reed National Military Medical Center & Uniformed Services University of Health Sciences, 4801 Rockville Pike, Bethesda, MD, 20889, USA
| | - Emily H Shin
- Department of Surgery, Walter Reed National Military Medical Center & Uniformed Services University of Health Sciences, 4801 Rockville Pike, Bethesda, MD, 20889, USA
| | - Patrick Jones
- Department of Surgery, Walter Reed National Military Medical Center & Uniformed Services University of Health Sciences, 4801 Rockville Pike, Bethesda, MD, 20889, USA
| | - Gregory T Christopherson
- Department of Surgery, Walter Reed National Military Medical Center & Uniformed Services University of Health Sciences, 4801 Rockville Pike, Bethesda, MD, 20889, USA
| | - Husain Bharmal
- Department of Surgery, Walter Reed National Military Medical Center & Uniformed Services University of Health Sciences, 4801 Rockville Pike, Bethesda, MD, 20889, USA
| | - Carl Cirino
- Department of Surgery, Walter Reed National Military Medical Center & Uniformed Services University of Health Sciences, 4801 Rockville Pike, Bethesda, MD, 20889, USA
| | - Thao Nguyen
- Department of Orthopaedic Surgery, University of Maryland Medical Center, 22 S. Green St., Baltimore, MD, 21201, USA
| | - Astor Robertson
- Department of Orthopaedic Surgery, University of Maryland Medical Center, 22 S. Green St., Baltimore, MD, 21201, USA
| | - Vincent D Pellegrini
- Department of Orthopaedic Surgery, Medical University of South Carolina, 171 Ashley Ave, Charleston, SC, 29425, USA
| | - Leon J Nesti
- Department of Surgery, Walter Reed National Military Medical Center & Uniformed Services University of Health Sciences, 4801 Rockville Pike, Bethesda, MD, 20889, USA. .,Department of Surgery, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Room A3008C, Bethesda, MD, 20892-8022, USA.
| |
Collapse
|
46
|
Zhao Y, Liu P, Chen Q, Ouyang N, Lin Y, Zhang W, Dai J, Shen G. Development process of traumatic heterotopic ossification of the temporomandibular joint in mice. J Craniomaxillofac Surg 2019; 47:1155-1161. [DOI: 10.1016/j.jcms.2018.11.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/22/2018] [Accepted: 11/28/2018] [Indexed: 10/27/2022] Open
|
47
|
Drouin G, Couture V, Lauzon MA, Balg F, Faucheux N, Grenier G. Muscle injury-induced hypoxia alters the proliferation and differentiation potentials of muscle resident stromal cells. Skelet Muscle 2019; 9:18. [PMID: 31217019 PMCID: PMC6582603 DOI: 10.1186/s13395-019-0202-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/27/2019] [Indexed: 02/06/2023] Open
Abstract
Background Trauma-induced heterotopic ossification (HO) is a complication that develops under three conditions: the presence of an osteogenic progenitor cell, an inducing factor, and a permissive environment. We previously showed that a mouse multipotent Sca1+ CD31− Lin− muscle resident stromal cell (mrSC) population is involved in the development of HO in the presence of inducing factors, members of the bone morphogenetic protein family. Interestingly, BMP9 unlike BMP2 causes HO only if the muscle is damaged by injection of cardiotoxin. Because acute trauma often results in blood vessel breakdown, we hypothesized that a hypoxic state in damaged muscles may foster mrSCs activation and proliferation and trigger differentiation toward an osteogenic lineage, thus promoting the development of HO. Methods Three- to - six-month-old male C57Bl/6 mice were used to induce muscle damage by injection of cardiotoxin intramuscularly into the tibialis anterior and gastrocnemius muscles. mrSCs were isolated from damaged (hypoxic state) and contralateral healthy muscles and counted, and their osteoblastic differentiation with or without BMP2 and BMP9 was determined by alkaline phosphatase activity measurement. The proliferation and differentiation of mrSCs isolated from healthy muscles was also studied in normoxic incubator and hypoxic conditions. The effect of hypoxia on BMP synthesis and Smad pathway activation was determined by qPCR and/or Western blot analyses. Differences between normally distributed groups were compared using a Student’s paired t test or an unpaired t test. Results The hypoxic state of a severely damaged muscle increased the proliferation and osteogenic differentiation of mrSCs. mrSCs isolated from damaged muscles also displayed greater sensitivity to osteogenic signals, especially BMP9, than did mrSCs from a healthy muscle. In hypoxic conditions, mrSCs isolated from a control muscle were more proliferative and were more prone to osteogenic differentiation. Interestingly, Smad1/5/8 activation was detected in hypoxic conditions and was still present after 5 days, while Smad1/5/8 phosphorylation could not be detected after 3 h of normoxic incubator condition. BMP9 mRNA transcripts and protein levels were higher in mrSCs cultured in hypoxic conditions. Our results suggest that low-oxygen levels in damaged muscle influence mrSC behavior by facilitating their differentiation into osteoblasts. This effect may be mediated partly through the activation of the Smad pathway and the expression of osteoinductive growth factors such as BMP9 by mrSCs. Conclusion Hypoxia should be considered a key factor in the microenvironment of damaged muscle that triggers HO. Electronic supplementary material The online version of this article (10.1186/s13395-019-0202-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Geneviève Drouin
- Centre de Recherche du CHUS, 12e Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada.,Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, J1M 0C8, Canada
| | - Vanessa Couture
- Centre de Recherche du CHUS, 12e Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada
| | - Marc-Antoine Lauzon
- Laboratory of 3D Cell Culture Systems, Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul Universite, Sherbrooke, QC, J1K 2R1, Canada
| | - Frédéric Balg
- Centre de Recherche du CHUS, 12e Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada.,Department of Orthopedic Surgery, Faculty of Medicine, Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada
| | - Nathalie Faucheux
- Centre de Recherche du CHUS, 12e Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada. .,Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul Universite, Sherbrooke, QC, J1K 2R1, Canada.
| | - Guillaume Grenier
- Centre de Recherche du CHUS, 12e Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada.,Department of Orthopedic Surgery, Faculty of Medicine, Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada
| |
Collapse
|
48
|
Abstract
Skeletal development is exquisitely controlled both spatially and temporally by cell signaling networks. Gαs is the stimulatory α-subunit in a heterotrimeric G protein complex transducing the signaling of G-protein-coupled receptors (GPCRs), responsible for controlling both skeletal development and homeostasis. Gαs, encoded by the GNAS gene in humans, plays critical roles in skeletal development and homeostasis by regulating commitment, differentiation and maturation of skeletal cells. Gαs-mediated signaling interacts with the Wnt and Hedgehog signaling pathways, both crucial regulators of skeletal development, remodeling and injury repair. Genetic mutations that disrupt Gαs functions cause human disorders with severe skeletal defects, such as fibrous dysplasia of bone and heterotopic bone formation. This chapter focuses on the crucial roles of Gαs signaling during skeletal development and homeostasis, and the pathological mechanisms underlying skeletal diseases caused by GNAS mutations.
Collapse
Affiliation(s)
- Qian Cong
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, United States
| | - Ruoshi Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yingzi Yang
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, United States.
| |
Collapse
|
49
|
Łęgosz P, Drela K, Pulik Ł, Sarzyńska S, Małdyk P. Challenges of heterotopic ossification-Molecular background and current treatment strategies. Clin Exp Pharmacol Physiol 2018; 45:1229-1235. [DOI: 10.1111/1440-1681.13025] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 01/27/2023]
Affiliation(s)
- Paweł Łęgosz
- Department of Orthopaedics and Traumatology; 1st Faculty of Medicine; Medical University of Warsaw; Warsaw Poland
| | - Katarzyna Drela
- NeuroRepair Department; Mossakowski Medical Research Centre; Polish Academy of Sciences; Warsaw Poland
| | - Łukasz Pulik
- Department of Orthopaedics and Traumatology; 1st Faculty of Medicine; Medical University of Warsaw; Warsaw Poland
| | - Sylwia Sarzyńska
- Department of Orthopaedics and Traumatology; 1st Faculty of Medicine; Medical University of Warsaw; Warsaw Poland
| | - Paweł Małdyk
- Department of Orthopaedics and Traumatology; 1st Faculty of Medicine; Medical University of Warsaw; Warsaw Poland
| |
Collapse
|
50
|
Convente MR, Chakkalakal SA, Yang E, Caron RJ, Zhang D, Kambayashi T, Kaplan FS, Shore EM. Depletion of Mast Cells and Macrophages Impairs Heterotopic Ossification in an Acvr1 R206H Mouse Model of Fibrodysplasia Ossificans Progressiva. J Bone Miner Res 2018; 33:269-282. [PMID: 28986986 PMCID: PMC7737844 DOI: 10.1002/jbmr.3304] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 09/27/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023]
Abstract
Heterotopic ossification (HO) is a clinical condition that often reduces mobility and diminishes quality of life for affected individuals. The most severe form of progressive HO occurs in those with fibrodysplasia ossificans progressiva (FOP; OMIM #135100), a genetic disorder caused by a recurrent heterozygous gain-of-function mutation (R206H) in the bone morphogenetic protein (BMP) type I receptor ACVR1/ALK2. In individuals with FOP, episodes of HO frequently follow injury. The first sign of active disease is commonly an inflammatory "flare-up" that precedes connective tissue degradation, progenitor cell recruitment, and endochondral HO. We used a conditional-on global knock-in mouse model expressing Acvr1R206H (referred to as Acvr1cR206H/+ ) to investigate the cellular and molecular inflammatory response in FOP lesions following injury. We found that the Acvr1 R206H mutation caused increased BMP signaling in posttraumatic FOP lesions and early divergence from the normal skeletal muscle repair program with elevated and prolonged immune cell infiltration. The proinflammatory cytokine response of TNFα, IL-1β, and IL-6 was elevated and prolonged in Acvr1cR206H/+ lesions and in Acvr1cR206H/+ mast cells. Importantly, depletion of mast cells and macrophages significantly impaired injury-induced HO in Acvr1cR206H/+ mice, reducing injury-induced HO volume by ∼50% with depletion of each cell population independently, and ∼75% with combined depletion of both cell populations. Together, our data show that the immune system contributes to the initiation and development of HO in FOP. Further, the expression of Acvr1R206H in immune cells alters cytokine expression and cellular response to injury and unveils novel therapeutic targets for treatment of FOP and nongenetic forms of HO. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Michael R Convente
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Salin A Chakkalakal
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - EnJun Yang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert J Caron
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Deyu Zhang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Frederick S Kaplan
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eileen M Shore
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|