1
|
Pollastri F, Fassio A, Ferraro PM, Andreola S, Gambaro G, Spasiano A, Caletti C, Stefani L, Gatti M, Fabbrini P, Rossini M, Galvagni I, Gatti D, Adami G, Viapiana O. Long-Term Changes in Parameters of Bone Quality in Kidney Transplant Recipients Treated with Denosumab. Calcif Tissue Int 2025; 116:42. [PMID: 39982454 PMCID: PMC11845414 DOI: 10.1007/s00223-025-01349-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/30/2025] [Indexed: 02/22/2025]
Abstract
Kidney transplant recipients (KTRs) have an elevated fracture risk. While dual-energy X-ray absorptiometry (DXA) is commonly used to assess areal bone mineral density (aBMD), it does not capture all aspects of bone quality. We investigated the long-term effects on bone DXA-derived indices of bone quality in KTRs treated with denosumab and untreated with denosumab. This is a retrospective study, including KTRs treated with denosumab and untreated age and sex-matched KTR controls. DXA-derived parameters, including trabecular bone score (TBS) and 3D-DXA parameters, were measured at the lumbar spine and femur at baseline and after four years. Hierarchical linear models were used to assess the between-group effect of treatment over time, also adjusting for site-specific aBMDs. We enrolled 23 KTRs treated with denosumab and 23 KTR denosumab-untreated KTRs. Significant between-group differences over time in favor of the denosumab group were observed for TBS (0.843, 95%CI 0.439; 1.248,p < 0.001), trabecular volumetric BMD at the total hip (Tb.vBMD TH) (13.492, 95%CI 1.707; 25.278, p = 0.003), cortical volumetric BMD at the femoral neck (Ct.vBMD FN) (28.766, 95%CI 8.373; 49.158, p = 0.008), cortical surface BMD at the total hip (c.sBMD TH) (10.507, 95%CI 4.140; 16.873,p = 0.002), cortical surface at the femoral neck (c.sBMD FN) (8.795, 95%CI 2.818; 14.771, p = 0.006), and cortical thickness at the total hip (Ct.th.TH) (0.075, 95%CI 0.020; 0.130, p = 0.010). After adjusting for BMD, the differences on TBS and Ct.vBMD FN and c.sBMD FN remained significant. Denosumab treatment in KTRs was associated with better outcomes in terms of bone quality and geometry parameters, independent of changes in aBMD.
Collapse
Affiliation(s)
- Francesco Pollastri
- Rheumatology Unit, University of Verona, Policlinico GB Rossi, 37134, Verona, Italy.
| | - Angelo Fassio
- Rheumatology Unit, University of Verona, Policlinico GB Rossi, 37134, Verona, Italy
| | | | | | | | | | | | - Lisa Stefani
- Nephrology Unit, University of Verona, Verona, Italy
| | - Matteo Gatti
- Department of Nephrology and Dialysis, Ospedale Bassini, ASST Nord Milano-Cinisello Balsamo, Milan, Italy
| | - Paolo Fabbrini
- Department of Nephrology and Dialysis, Ospedale Bassini, ASST Nord Milano-Cinisello Balsamo, Milan, Italy
| | - Maurizio Rossini
- Rheumatology Unit, University of Verona, Policlinico GB Rossi, 37134, Verona, Italy
| | - Isotta Galvagni
- Rheumatology Unit, University of Verona, Policlinico GB Rossi, 37134, Verona, Italy
| | - Davide Gatti
- Rheumatology Unit, University of Verona, Policlinico GB Rossi, 37134, Verona, Italy
| | - Giovanni Adami
- Rheumatology Unit, University of Verona, Policlinico GB Rossi, 37134, Verona, Italy
| | - Ombretta Viapiana
- Rheumatology Unit, University of Verona, Policlinico GB Rossi, 37134, Verona, Italy
| |
Collapse
|
2
|
Bioletto F, Barale M, Maiorino F, Pusterla A, Fraire F, Arvat E, Ghigo E, Procopio M. Trabecular Bone Score as a Marker of Skeletal Fragility Across the Spectrum of Chronic Kidney Disease: A Systematic Review and Meta-analysis. J Clin Endocrinol Metab 2024; 109:e1534-e1543. [PMID: 38079472 DOI: 10.1210/clinem/dgad724] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Indexed: 06/18/2024]
Abstract
CONTEXT The impairment of bone microarchitecture is a key determinant of skeletal fragility in patients with chronic kidney disease (CKD). The trabecular bone score (TBS) has been developed as a reliable noninvasive index of bone quality. However, its utility in this setting is still debated. OBJECTIVE The aim of this systematic review and meta-analysis was to summarize the available evidence about TBS as a marker of skeletal fragility across the spectrum of CKD. METHODS PubMed/Medline, EMBASE, and Cochrane Library databases were systematically searched until July 2023 for studies reporting data about TBS in patients with CKD. Effect sizes were pooled through a random-effect model. RESULTS Compared to controls, lower TBS values were observed in CKD patients not on dialysis (-0.057, 95%CI:[-0.090, -0.024], P < .01), in dialysis patients (-0.106, 95%CI:[-0.141, -0.070], P < .01), and in kidney transplant recipients (KTRs) (-0.058, 95%CI:[-0.103, -0.012], P = .01). With respect to fracture risk, TBS was able to predict incident fractures in nondialysis patients at unadjusted analyses (hazard ratio [HR] per SD decrease: 1.45, 95%CI:[1.05, 2.00], P = .02), though only a nonsignificant trend was maintained when fully adjusting the model for FRAX® (HR = 1.26, 95%CI:[0.88, 1.80], P = .21). Dialysis patients with prevalent fractures had lower TBS values compared to unfractured ones (-0.070, 95% CI:[-0.111, -0.028], P < .01). Some studies supported a correlation between TBS and fracture risk in KTRs, but results could not be pooled due to the lack of sufficient data. CONCLUSION CKD patients are characterized by an impairment of bone microarchitecture, as demonstrated by lower TBS values, across the whole spectrum of kidney disease. TBS can also be helpful in the discrimination of fracture risk, with lower values being correlated with a higher risk of prevalent and incident fractures.
Collapse
Affiliation(s)
- Fabio Bioletto
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin 10126, Italy
| | - Marco Barale
- Oncological Endocrinology, Department of Medical Sciences, University of Turin, Turin 10126, Italy
| | - Federica Maiorino
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin 10126, Italy
| | - Alessia Pusterla
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin 10126, Italy
| | - Federica Fraire
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin 10126, Italy
| | - Emanuela Arvat
- Oncological Endocrinology, Department of Medical Sciences, University of Turin, Turin 10126, Italy
| | - Ezio Ghigo
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin 10126, Italy
| | - Massimo Procopio
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin 10126, Italy
| |
Collapse
|
3
|
Jaiswal R, Zoulakis M, Axelsson KF, Sundh D, Litsne H, Johansson L, Lorentzon M. Reply to the Submitted Comment Regarding our Publication "Increased Bone Material Strength Index Is Positively Associated With the Risk of Incident Osteoporotic Fractures in Older Swedish Women". J Bone Miner Res 2023; 38:1543-1544. [PMID: 37652404 DOI: 10.1002/jbmr.4903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 09/02/2023]
Affiliation(s)
- Raju Jaiswal
- Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Michail Zoulakis
- Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Department of Geriatric Medicine, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Kristian F Axelsson
- Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Närhälsan Norrmalm, Health Centre, Skövde, Sweden
| | - Daniel Sundh
- Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Litsne
- Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Lisa Johansson
- Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Department of Orthopedic Surgery, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Mattias Lorentzon
- Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Department of Geriatric Medicine, Sahlgrenska University Hospital, Mölndal, Sweden
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Shevroja E, Reginster JY, Lamy O, Al-Daghri N, Chandran M, Demoux-Baiada AL, Kohlmeier L, Lecart MP, Messina D, Camargos BM, Payer J, Tuzun S, Veronese N, Cooper C, McCloskey EV, Harvey NC. Update on the clinical use of trabecular bone score (TBS) in the management of osteoporosis: results of an expert group meeting organized by the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO), and the International Osteoporosis Foundation (IOF) under the auspices of WHO Collaborating Center for Epidemiology of Musculoskeletal Health and Aging. Osteoporos Int 2023; 34:1501-1529. [PMID: 37393412 PMCID: PMC10427549 DOI: 10.1007/s00198-023-06817-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/31/2023] [Indexed: 07/03/2023]
Abstract
PURPOSE Trabecular bone score (TBS) is a grey-level textural measurement acquired from dual-energy X-ray absorptiometry lumbar spine images and is a validated index of bone microarchitecture. In 2015, a Working Group of the European Society on Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO) published a review of the TBS literature, concluding that TBS predicts hip and major osteoporotic fracture, at least partly independent of bone mineral density (BMD) and clinical risk factors. It was also concluded that TBS is potentially amenable to change as a result of pharmacological therapy. Further evidence on the utility of TBS has since accumulated in both primary and secondary osteoporosis, and the introduction of FRAX and BMD T-score adjustment for TBS has accelerated adoption. This position paper therefore presents a review of the updated scientific literature and provides expert consensus statements and corresponding operational guidelines for the use of TBS. METHODS An Expert Working Group was convened by the ESCEO and a systematic review of the evidence undertaken, with defined search strategies for four key topics with respect to the potential use of TBS: (1) fracture prediction in men and women; (2) initiating and monitoring treatment in postmenopausal osteoporosis; (3) fracture prediction in secondary osteoporosis; and (4) treatment monitoring in secondary osteoporosis. Statements to guide the clinical use of TBS were derived from the review and graded by consensus using the Grades of Recommendation, Assessment, Development and Evaluation (GRADE) approach. RESULTS A total of 96 articles were reviewed and included data on the use of TBS for fracture prediction in men and women, from over 20 countries. The updated evidence shows that TBS enhances fracture risk prediction in both primary and secondary osteoporosis, and can, when taken with BMD and clinical risk factors, inform treatment initiation and the choice of antiosteoporosis treatment. Evidence also indicates that TBS provides useful adjunctive information in monitoring treatment with long-term denosumab and anabolic agents. All expert consensus statements were voted as strongly recommended. CONCLUSION The addition of TBS assessment to FRAX and/or BMD enhances fracture risk prediction in primary and secondary osteoporosis, adding useful information for treatment decision-making and monitoring. The expert consensus statements provided in this paper can be used to guide the integration of TBS in clinical practice for the assessment and management of osteoporosis. An example of an operational approach is provided in the appendix. This position paper presents an up-to-date review of the evidence base, synthesised through expert consensus statements, which informs the implementation of Trabecular Bone Score in clinical practice.
Collapse
Affiliation(s)
- Enisa Shevroja
- Interdisciplinary Center for Bone Diseases, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Jean-Yves Reginster
- World Health Organization Collaborating Center for Epidemiology of Musculoskeletal Health and Aging, Liège, Belgium
- Department of Public Health, Epidemiology and Health Economics, University of Liège, CHU Sart Tilman B23, 4000 Liège, Belgium
| | - Olivier Lamy
- Interdisciplinary Center for Bone Diseases, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Nasser Al-Daghri
- Biochemistry Department, College of Science, King Saud University, 11451 Riyadh, Kingdom of Saudi Arabia
| | - Manju Chandran
- Osteoporosis and Bone Metabolism Unit, Department of Endocrinology, Singapore General Hospital, ACADEMIA, 20, College Road, Singapore, 169856 Singapore
| | | | - Lynn Kohlmeier
- Spokane Strides for Strong Bones, Medical Director, West Coast Bone Health CME TeleECHO, Spokane, WA USA
| | | | - Daniel Messina
- IRO Medical Research Center, Buenos Aires and Rheumatology Section, Cosme Argerich, Buenos Aires, Argentina
| | - Bruno Muzzi Camargos
- Rede Materdei de Saúde - Hospital Santo Agostinho - Densitometry Unit Coordinator, Belo Horizonte, Brazil
| | - Juraj Payer
- 5th Department of Internal Medicine, Comenius University Faculty of Medicine, University Hospital, Bratislava, Slovakia
- Ružinovská 6, 82101 Bratislava, Slovakia
| | - Sansin Tuzun
- Department of Physical Medicine and Rehabilitation, Cerrahpaşa School of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Nicola Veronese
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, SO16 6YD UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Eugene V. McCloskey
- Centre for Metabolic Bone Diseases, University of Sheffield, Sheffield, UK
- MRC Versus Arthritis Centre for Integrated Research in Musculoskeletal Ageing, Mellanby Centre for Musculoskeletal Research, University of Sheffield, Sheffield, UK
| | - Nicholas C. Harvey
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, SO16 6YD UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|
5
|
Jaiswal R, Zoulakis M, Axelsson KF, Darelid A, Rudäng R, Sundh D, Litsne H, Johansson L, Lorentzon M. Increased Bone Material Strength Index Is Positively Associated With the Risk of Incident Osteoporotic Fractures in Older Swedish Women. J Bone Miner Res 2023; 38:860-868. [PMID: 37088885 DOI: 10.1002/jbmr.4816] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/04/2023] [Accepted: 04/16/2023] [Indexed: 04/25/2023]
Abstract
No previous studies have investigated the association between the bone material strength index (BMSi; an indicator of bone material properties obtained by microindentation) and the risk of incident fracture. The primary purpose of this prospective cohort study was to evaluate if BMSi is associated with incident osteoporotic fracture in older women and, secondarily, with prevalent fractures, anthropometric traits, or measurements of bone mineral density (BMD) by dual-energy X-ray absorptiometry (DXA). In a population-based cohort, 647 women aged 75 to 80 years underwent bone microindentation using the OsteoProbe device. Data on clinical risk factors (CRFs), prevalent fractures, and incident fractures were collected using questionnaires, medical records, and a regional X-ray archive. BMD and vertebral fracture assessment (VFA) were assessed by DXA (Hologic, Discovery A). Associations between BMSi, anthropometrics, BMD, and prevalent fractures were investigated using correlation and linear and logistic regression. Cox proportional hazards and competing risks analysis by Fine and Gray were used to study the association between BMSi and the risk of fracture and mortality. BMSi was weakly associated with age (r = -0.13, p < 0.001) and BMI (r = -0.21, p < 0.001) and with BMD of lumbar spine (β = 0.09, p = 0.02) and total hip (β = 0.08, p = 0.05), but only after adjustments. No significant associations were found between BMSi and prevalent fractures (self-reported and/or VFA identified, n = 332). During a median follow-up time of 6.0 years, 121 major osteoporotic fractures (MOF), 151 any fractures, and 50 deaths occurred. Increasing BMSi (per SD) was associated with increased risk of MOF (hazard ratio [HR] = 1.29, 95% confidence interval [CI] 1.07-1.56), any fracture (HR = 1.29, 95% CI 1.09-1.53), and mortality (HR = 1.44, 95% CI 1.07-1.93). The risk of fracture did not materially change with adjustment for confounders, CRFs, femoral neck BMD, or when considering the competing risk of death. In conclusion, unexpectedly increasing BMSi was associated with greater fracture risk. The clinical relevance and potential mechanisms of this finding require further study. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Raju Jaiswal
- Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Michail Zoulakis
- Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Department of Geriatric Medicine, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Kristian F Axelsson
- Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Närhälsan Norrmalm, Health Centre, Skövde, Sweden
| | - Anna Darelid
- Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Robert Rudäng
- Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Daniel Sundh
- Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Litsne
- Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Lisa Johansson
- Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Department of Orthopedic Surgery, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Mattias Lorentzon
- Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Department of Geriatric Medicine, Sahlgrenska University Hospital, Mölndal, Sweden
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| |
Collapse
|
6
|
Rufus-Membere P, Holloway-Kew KL, Diez-Perez A, Appelman-Dijkstra NM, Bouxsein ML, Eriksen EF, Farr JN, Khosla S, Kotowicz MA, Nogues X, Rubin M, Pasco JA. Reference Intervals for Bone Impact Microindentation in Healthy Adults: A Multi-Centre International Study. Calcif Tissue Int 2023; 112:338-349. [PMID: 36729139 PMCID: PMC9968254 DOI: 10.1007/s00223-022-01047-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/30/2022] [Indexed: 02/03/2023]
Abstract
Impact microindentation (IMI) is a novel technique for assessing bone material strength index (BMSi) in vivo, by measuring the depth of a micron-sized, spherical tip into cortical bone that is then indexed to the depth of the tip into a reference material. The aim of this study was to define the reference intervals for men and women by evaluating healthy adults from the United States of America, Europe and Australia. Participants included community-based volunteers and participants drawn from clinical and population-based studies. BMSi was measured on the tibial diaphysis using an OsteoProbe in 479 healthy adults (197 male and 282 female, ages 25 to 98 years) across seven research centres, between 2011 and 2018. Associations between BMSi, age, sex and areal bone mineral density (BMD) were examined following an a posteriori method. Unitless BMSi values ranged from 48 to 101. The mean (± standard deviation) BMSi for men was 84.4 ± 6.9 and for women, 79.0 ± 9.1. Healthy reference intervals for BMSi were identified as 71.0 to 97.9 for men and 59.8 to 95.2 for women. This study provides healthy reference data that can be used to calculate T- and Z-scores for BMSi and assist in determining the utility of BMSi in fracture prediction. These data will be useful for positioning individuals within the population and for identifying those with BMSi at the extremes of the population.
Collapse
Affiliation(s)
- Pamela Rufus-Membere
- IMPACT- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia.
- IMPACT Institute, School of Medicine, Deakin University, Geelong, VIC, Australia.
| | - Kara L Holloway-Kew
- IMPACT- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia
| | - Adolfo Diez-Perez
- Department of Internal Medicine, Hospital del Mar-IMIM, Autonomous University of Barcelona and CIBERFES, Instituto Carlos III, Barcelona, Spain
| | - Natasha M Appelman-Dijkstra
- Department of Internal Medicine: Division of Endocrinology and Center for Bone Quality, Leiden University Medical Center, Leiden, the Netherlands
| | - Mary L Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, USA
| | - Erik F Eriksen
- Spesialistsenteret Pilestredet Park and Faculty of Odontology, University of Oslo, Oslo, Norway
| | - Joshua N Farr
- Kogod Center On Aging and Division of Endocrinology, Mayo Clinic, Rochester, MN, USA
| | - Sundeep Khosla
- Kogod Center On Aging and Division of Endocrinology, Mayo Clinic, Rochester, MN, USA
| | - Mark A Kotowicz
- IMPACT- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia
- Barwon Health, Geelong, Australia
- Department of Medicine-Western Health, The University of Melbourne, St. Albans, Australia
| | - Xavier Nogues
- Department of Internal Medicine, Hospital del Mar-IMIM, Pompeu Fabra University Barcelona- and CIBERFES, Instituto Carlos III, Barcelona, Spain
| | - Mishaela Rubin
- Department of Medicine, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| | - Julie A Pasco
- IMPACT- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia
- Barwon Health, Geelong, Australia
- Department of Medicine-Western Health, The University of Melbourne, St. Albans, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| |
Collapse
|
7
|
Abdalbary M, Sobh M, Elnagar S, Elhadedy MA, Elshabrawy N, Abdelsalam M, Asadipooya K, Sabry A, Halawa A, El-Husseini A. Management of osteoporosis in patients with chronic kidney disease. Osteoporos Int 2022; 33:2259-2274. [PMID: 35748896 DOI: 10.1007/s00198-022-06462-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/31/2022] [Indexed: 12/19/2022]
Abstract
Patients with CKD have a 4-fivefold higher rate of fractures. The incidence of fractures increases with deterioration of kidney function. The process of skeletal changes in CKD patients is characterized by compromised bone strength because of deterioration of bone quantity and/or quality. The fractures lead to a deleterious effect on the quality of life and higher mortality in patients with CKD. The pathogenesis of bone loss and fracture is complex and multi-factorial. Renal osteodystrophy, uremic milieu, drugs, and systemic diseases that lead to renal failure all contribute to bone damage in CKD patients. There is no consensus on the optimal diagnostic method of compromised bone assessment in patients with CKD. Bone quantity and mass can be assessed by dual-energy x-ray absorptiometry (DXA) or quantitative computed tomography (QCT). Bone quality on the other side can be assessed by non-invasive methods such as trabecular bone score (TBS), high-resolution bone imaging methods, and invasive bone biopsy. Bone turnover markers can reflect bone remodeling, but some of them are retained by kidneys. Understanding the mechanism of bone loss is pivotal in preventing fracture in patients with CKD. Several non-pharmacological and therapeutic interventions have been reported to improve bone health. Controlling laboratory abnormalities of CKD-MBD is crucial. Anti-resorptive therapies are effective in improving BMD and reducing fracture risk, but there are uncertainties about safety and efficacy especially in advanced CKD patients. Accepting the prevalent of low bone turnover in patients with advanced CKD, the osteo-anabolics are possibly promising. Parathyroidectomy should be considered a last resort for intractable cases of renal hyperparathyroidism. There is a wide unacceptable gap in osteoporosis management in patients with CKD. This article is focusing on the updated management of CKD-MBD and osteoporosis in CKD patients. Chronic kidney disease deteriorates bone quality and quantity. The mechanism of bone loss mainly determines pharmacological treatment. DXA and QCT provide information about bone quantity, but assessing bone quality, by TBS, high-resolution bone imaging, invasive bone biopsy, and bone turnover markers, can guide us about the mechanism of bone loss.
Collapse
Affiliation(s)
- M Abdalbary
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura, Egypt
- Division of Nephrology, Bone and Mineral Metabolism, University of Kentucky, 800 Rose Street, Room MN-560, Lexington, KY, 40536-0298, USA
| | - M Sobh
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura, Egypt
| | - S Elnagar
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura, Egypt
| | - M A Elhadedy
- Nephrology and Transplantation Unit, Mansoura Urology and Nephrology Center, Mansoura, Egypt
| | - N Elshabrawy
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura, Egypt
| | - M Abdelsalam
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura, Egypt
| | - K Asadipooya
- Division of Endocrinology, University of Kentucky, Lexington, USA
| | - A Sabry
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura, Egypt
| | - A Halawa
- Sheffield Teaching Hospital, University of Liverpool, Liverpool, UK
| | - A El-Husseini
- Division of Nephrology, Bone and Mineral Metabolism, University of Kentucky, 800 Rose Street, Room MN-560, Lexington, KY, 40536-0298, USA.
| |
Collapse
|
8
|
Uniyal P, Sharma A, Kumar N. Investigation on the sensitivity of indentation devices for detection of fatigue loading induced damage in bovine cortical bone. J Biomech 2022; 143:111274. [PMID: 36049386 DOI: 10.1016/j.jbiomech.2022.111274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 10/15/2022]
Abstract
Daily physiological activities subject our skeletal system to cyclic loading with varying frequencies and magnitudes. These loadings interact with the microstructure of bone and create microdamage, which can cause stress-induced injuries if not repaired on the time. The early detection is required to prevent the complications associated with these fractures. In the present study, to examine fatigue loading-induced damage in cortical bone, the sensitivity of four different indentation devices was investigated. For this, cortical bone samples were fatigued in four-point bending configuration at 0.5 Hz, 2 Hz and 4 Hz frequencies. Following the fatigue loading, cyclic reference point indentation (cRPI), impact reference point indentation (iRPI), Vickers microhardness and nanoindentation tests were performed on the bone samples. Results show that indentation devices are sensitive to detect fatigue loading induced damage only in 0.5 Hz group samples on compressive region. On the other hand, the sensitivity of indentation devices for tensile stress-induced damage is not clear. Also, histological examination of fatigued bone samples shows a significant increase in the crack density and crack length with fatigue loading only for the 0.5 Hz group samples. The present study provides insight into the sensitivity of different indentation devices to fatigue loading induced damage, which could be helpful in the development of new devices for the early diagnosis of stress induced injuries.
Collapse
Affiliation(s)
- Piyush Uniyal
- Department of Biomedical Engineering, IIT Ropar, India
| | - Akshay Sharma
- Department of Mechanical Engineering, IIT Ropar, India
| | - Navin Kumar
- Department of Biomedical Engineering, IIT Ropar, India; Department of Mechanical Engineering, IIT Ropar, India.
| |
Collapse
|
9
|
Fusaro M, Re Sartò GV, Gallieni M, Cosmai L, Messa P, Rossini M, Chiodini I, Plebani M, Evenepoel P, Harvey N, Ferrari S, Cannata-Andía J, Trombetti A, Brandi ML, Ketteler M, Nickolas TL, Cunningham J, Salam S, Della Rocca C, Scarpa A, Minisola S, Malberti F, Cetani F, Cozzolino M, Mazzaferro S, Morrone L, Tripepi G, Zaninotto M, Mereu MC, Ravera M, Cianciolo G, La Manna G, Aghi A, Giannini S, Dalle Carbonare L, on behalf of the SIN-SIOMMMS Bone Biopsy Promoting Group. Time for Revival of Bone Biopsy with Histomorphometric Analysis in Chronic Kidney Disease (CKD): Moving from Skepticism to Pragmatism. Nutrients 2022; 14:1742. [PMID: 35565717 PMCID: PMC9103887 DOI: 10.3390/nu14091742] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 12/04/2022] Open
Abstract
Bone Biopsy (BB) with histomorphometric analysis still represents the gold standard for the diagnosis and classification of different forms of renal osteodystrophy. Bone biopsy is the only technique able to provide comprehensive information on all bone parameters, measuring static and dynamic parameters of turnover, cortical and trabecular microarchitecture, and mineralization defects. In nephrological practice, bone biopsy yields relevant indications to support therapeutic choices in CKD, heavily impacting the management and prognosis of uremic patients. Unfortunately, the use of bone biopsy has decreased; a lack of expertise in performing and interpreting, perceived procedure invasiveness and pain, and reimbursement issues have all contributed to this decline. Nevertheless, both bone biomarkers and instrumental images cannot be considered reliable surrogates for histological findings, being insufficiently accurate to properly evaluate underlying mineral and bone disorders. This is a multidisciplinary position paper from the Nephrology and Osteoporosis Italian Scientific Societies with the purpose of restating the role of bone biopsy in CKD patient management and of providing strong solutions to allow diffusion of this technique in Italy, but potentially also in other countries. The Italian approach through the optimization and standardization of bone biopsy procedure, the construction of the Italian Hub and Spoke network, and a request for adjustment and national homogenization of reimbursement to the Italian Health Ministry has led the way to implement bone biopsy and to improve CKD patient management and prognosis.
Collapse
Affiliation(s)
- Maria Fusaro
- National Research Council (CNR), Institute of Clinical Physiology (IFC), 56124 Pisa, Italy
- Department of Medicine, University of Padova, 35128 Padova, Italy
| | - Giulia Vanessa Re Sartò
- Post-Graduate School of Specialization in Nephrology, University of Milano, 20157 Milano, Italy; (G.V.R.S.); (M.G.)
| | - Maurizio Gallieni
- Post-Graduate School of Specialization in Nephrology, University of Milano, 20157 Milano, Italy; (G.V.R.S.); (M.G.)
- Department of Biomedical and Clinical Sciences, Università di Milano, 20157 Milano, Italy
- Nephrology Unit, ASST Fatebenefratelli Sacco, 20157 Milano, Italy;
| | - Laura Cosmai
- Nephrology Unit, ASST Fatebenefratelli Sacco, 20157 Milano, Italy;
| | - Piergiorgio Messa
- Unit of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, 20157 Milano, Italy;
- Department of Clinical Sciences and Community Health, University of Milano, 20122 Milano, Italy
| | | | - Iacopo Chiodini
- Unit for Bone Metabolism Diseases and Diabetes & Lab of Endocrine and Metabolic Research, Istituto Auxologico Italiano, IRCCS, 20157 Milano, Italy;
| | - Mario Plebani
- Laboratory Medicine Unit, Department of Medicine, University of Padua, 35121 Padua, Italy; (M.P.); (M.Z.)
| | - Pieter Evenepoel
- Laboratory of Nephrology, Department of Immunology and Microbiology, KU Leuven, B-3000 Leuven, Belgium;
| | - Nicholas Harvey
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton SO16 6YD, UK;
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Serge Ferrari
- Service des Maladies Osseuses, Département de Médecine, HUG, 1205 Geneva, Switzerland;
| | - Jorge Cannata-Andía
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), REDinREN del ISCIII, Hospital Universitario Central de Asturias, Universidad de Oviedo, 33003 Oviedo, Spain;
| | - Andrea Trombetti
- Division of Bone Diseases, Department of Medicine, Geneva University Hospitals and Faculty of Medicine, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland;
| | - Maria Luisa Brandi
- Department of Surgery and Translational Medicine, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy;
| | - Markus Ketteler
- Department of General Internal Medicine and Nephrology, Robert-Bosch-Krankenhaus, 70376 Stuttgart, Germany;
| | - Thomas L. Nickolas
- Division of Nephrology, Columbia University Irving Medical Center, New York, NY 10027, USA;
| | - John Cunningham
- Centre for Nephrology, The Royal Free Hospital and UCL Medical School, London WC1E 6BT, UK;
| | - Syazrah Salam
- Sheffield Kidney Institute, Sheffield Teaching Hospitals National Health Service Foundation Trust, Sheffield S10 2JF, UK;
| | - Carlo Della Rocca
- Department of Medico-Surgical Sciences and Biotechnology, Sapienza University, Polo Pontino, 00185 Rome, Italy;
| | - Aldo Scarpa
- ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, 37134 Verona, Italy;
- Department of Pathology and Diagnostics, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Salvatore Minisola
- Department of Clinical, Internal, Anaesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy;
| | - Fabio Malberti
- UO Nefrologia e Dialisi ASST Cremona, 26100 Cremona, Italy;
| | - Filomena Cetani
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy;
| | - Mario Cozzolino
- Department of Health Sciences, Renal Division, San Paolo Hospital, University of Milan, 20142 Milan, Italy;
| | - Sandro Mazzaferro
- Nephrologic Unit, Department of Translational and Precision Medicine, University of Rome ‘La Sapienza’, 00185 Rome, Italy;
| | - Luigi Morrone
- Nephrology, Dialysis and Renal Transplantation Unit, University Hospital “Policlinico”, 70124 Bari, Italy;
| | - Giovanni Tripepi
- CNR-IFC, Clinical Epidemiology of Renal Diseases and Hypertension, Ospedali Riuniti, 89124 Reggio Calabria, Italy;
| | - Martina Zaninotto
- Laboratory Medicine Unit, Department of Medicine, University of Padua, 35121 Padua, Italy; (M.P.); (M.Z.)
| | | | | | - Giuseppe Cianciolo
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (G.C.); (G.L.M.)
| | - Gaetano La Manna
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (G.C.); (G.L.M.)
| | - Andrea Aghi
- Department of Medicine, Clinica Medica 1, University of Padua, 35128 Padua, Italy; (A.A.); (S.G.)
| | - Sandro Giannini
- Department of Medicine, Clinica Medica 1, University of Padua, 35128 Padua, Italy; (A.A.); (S.G.)
| | - Luca Dalle Carbonare
- Section of Internal Medicine, Department of Medicine, University of Verona, 37134 Verona, Italy;
| | | |
Collapse
|
10
|
Asadipooya K, Abdalbary M, Ahmad Y, Kakani E, Monier-Faugere MC, El-Husseini A. Bone Quality in CKD Patients: Current Concepts and Future Directions - Part I. KIDNEY DISEASES (BASEL, SWITZERLAND) 2021; 7:268-277. [PMID: 34395542 PMCID: PMC8314761 DOI: 10.1159/000515534] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND There is ample evidence that patients with CKD have an increased risk of osteoporotic fractures. Bone fragility is not only influenced by low bone volume and mass but also by poor microarchitecture and tissue quality. More emphasis has been given to the quantitative rather than qualitative assessment of bone health, both in general population and CKD patients. Although bone mineral density (BMD) is a very useful clinical tool in assessing bone strength, it may underestimate the fracture risk in CKD patients. Serum and urinary bone biomarkers have been found to be reflective of bone activities and predictive of fractures independently of BMD in CKD patients. Bone quality and fracture risk in CKD patients can be better assessed by utilizing new technologies such as trabecular bone score and high-resolution imaging studies. Additionally, invasive assessments such as bone histology and micro-indentation are useful counterparts in the evaluation of bone quality. SUMMARY A precise diagnosis of the underlying skeletal abnormalities in CKD patients is crucial to prevent further bone loss and fractures. We must consider bone quantity and quality abnormalities for management of CKD patients. Here in this part I, we are focusing on advances in bone quality diagnostics that are expected to help in proper understanding of the bone health in CKD patients. KEY MESSAGES Assessment of bone quality and quantity in CKD patients is essential. Both noninvasive and invasive techniques for the assessment of bone quality are available.
Collapse
Affiliation(s)
- Kamyar Asadipooya
- Division of Endocrinology, University of Kentucky, Lexington, Kentucky, USA
| | - Mohamed Abdalbary
- Division of Nephrology & Bone and Mineral Metabolism, University of Kentucky, Lexington, Kentucky, USA
- Nephrology and Dialysis Unit, Mansoura University, Mansoura, Egypt
| | - Yahya Ahmad
- Division of Nephrology & Bone and Mineral Metabolism, University of Kentucky, Lexington, Kentucky, USA
| | - Elijah Kakani
- Division of Nephrology & Bone and Mineral Metabolism, University of Kentucky, Lexington, Kentucky, USA
| | | | - Amr El-Husseini
- Division of Nephrology & Bone and Mineral Metabolism, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
11
|
Bover J, Ureña-Torres P, Cozzolino M, Rodríguez-García M, Gómez-Alonso C. The Non-invasive Diagnosis of Bone Disorders in CKD. Calcif Tissue Int 2021; 108:512-527. [PMID: 33398414 DOI: 10.1007/s00223-020-00781-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022]
Abstract
Abnormal bone metabolism is an integral part of the chronic kidney disease-mineral bone disorder (CKD-MBD). For several reasons, the difficult bone compartment was neglected for some time, but there has been renewed interest as a result of the conception of bone as a new endocrine organ, the increasing recognition of the cross-talk between bone and vessels, and, especially, the very high risk of osteoporotic fractures (and associated mortality) demonstrated in patients with CKD. Therefore, it has been acknowledged in different guidelines that action is needed in respect of fracture risk assessment and the diagnosis and treatment of osteoporosis in the context of CKD and CKD-MBD, even beyond renal osteodystrophy. These updated guidelines clearly underline the need to improve a non-invasive approach to these bone disorders in order to guide treatment decisions aimed at not only controlling CKD-MBD but also decreasing the risk of fracture. In this report, we review the current role of the most often clinically used or promising biochemical circulating biomarkers such as parathyroid hormone, alkaline phosphatases, and other biochemical markers of bone activity as alternatives to some aspects of bone histomorphometry. We also mention the potential role of classic and new imaging techniques for CKD patients. Information on many aspects is still scarce and heterogeneous, but many of us consider that it is indeed time for action, recognizing our definitely limited ability to base certain treatment decisions only on our current non-comprehensive knowledge.
Collapse
Affiliation(s)
- Jordi Bover
- Department of Nephrology, Fundació Puigvert and Universitat Autònoma, IIB Sant Pau, REDinREN, C. Cartagena 340-350, 08025, Barcelona, Catalonia, Spain.
| | - Pablo Ureña-Torres
- Department of Dialysis, AURA Nord Saint Ouen and Department of Renal Physiology, Necker Hospital, University of Paris Descartes, Paris, France
| | - Mario Cozzolino
- Renal Division, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Minerva Rodríguez-García
- Unidad de Gestión Clínica de Nefrología, Hospital Universitario Central de Asturias, REDinREN, Universidad de Oviedo, Oviedo, Spain
| | - Carlos Gómez-Alonso
- Unidad de Gestión Clínica de Metabolismo Óseo y Mineral, Instituto de Investigación Sanitaria del Principado de Asturias, Hospital Universitario Central de Asturias, Oviedo, Spain
| |
Collapse
|
12
|
Rufus-Membere P, Holloway-Kew KL, Diez-Perez A, Kotowicz MA, Pasco JA. Associations between Bone Material Strength Index, Calcaneal Quantitative Ultrasound, and Bone Mineral Density in Men. J Endocr Soc 2021; 5:bvaa179. [PMID: 33728389 PMCID: PMC7940167 DOI: 10.1210/jendso/bvaa179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVES Impact micro-indentation (IMI) measures bone material strength index (BMSi) in vivo. This study investigated how IMI is associated with calcaneal quantitative ultrasound and bone densitometry parameters in men. METHODS BMSi was measured on the tibial plateau using the OsteoProbe in 377 men (age 33-96 years) from the Geelong Osteoporosis Study. Broadband ultrasound attenuation (BUA), speed of sound (SOS), and stiffness index (SI) were assessed at the calcaneus using an ultrasonometer. Areal BMD was measured at several skeletal sites using dual-energy x-ray absorptiometry. Linear associations between parameters were tested using Pearson's correlation. Multivariable regression techniques were used to determine associations between BMSi and other measures of bone, independent of confounders. RESULTS BMSi was negatively correlated with age (r = -0.171, P = .001), weight (r = -0.100, P = .052), and body mass index (r = -0.187, P = .001), and positively with height (r = +0.109, P = .034). There was some evidence to support a positive association between BMSi and BUA (β = 0.052, P = .037), SOS (β = 0.013, P = .144), and SI (β = 0.036, P = .051). After age adjustment, this association was attenuated. No correlations were observed between BMSi and BMD at any skeletal site (r values ranged from -0.006 to +0.079, all P ≥ .13). CONCLUSION There was a small positive association between BMSi and quantitative ultrasound (QUS) parameters, which were not independent of age. No associations were detected between BMSi and BMD. This suggests that BMSi and QUS are capturing common age-dependent properties of bone. Further research on the utility of IMI alone and complementary to conventional bone testing methods for predicting fracture risk is warranted.
Collapse
Affiliation(s)
- Pamela Rufus-Membere
- Deakin University, IMPACT – Institute for Mental and Physical Health and Clinical Translation, Geelong, VIC, Australia
| | - Kara L Holloway-Kew
- Deakin University, IMPACT – Institute for Mental and Physical Health and Clinical Translation, Geelong, VIC, Australia
| | - Adolfo Diez-Perez
- Department of Internal Medicine, Hospital del Mar-IMIM, Autonomous University of Barcelona and CIBERFES, Instituto Carlos III, Barcelona, Spain
| | - Mark A Kotowicz
- Deakin University, IMPACT – Institute for Mental and Physical Health and Clinical Translation, Geelong, VIC, Australia
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
- Barwon Health, Geelong, VIC, Australia
| | - Julie A Pasco
- Deakin University, IMPACT – Institute for Mental and Physical Health and Clinical Translation, Geelong, VIC, Australia
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
- Barwon Health, Geelong, VIC, Australia
| |
Collapse
|
13
|
Hauge SC, Frost M, Hansen D. Understanding Bone Disease in Patients with Diabetic Kidney Disease: a Narrative Review. Curr Osteoporos Rep 2020; 18:727-736. [PMID: 33048275 DOI: 10.1007/s11914-020-00630-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Both diabetes and kidney disease associate with the development of bone disease and an increased risk of fragility fractures. The etiologies of bone disease in patients with diabetic kidney disease (DKD) are multiple and complex. This review explores the association between DKD and bone disease and discusses how the presence of both diabetes and kidney disease may impair bone quality and increase fracture risk. Diagnostic tools as well as future research areas are also discussed. RECENT FINDINGS Patients with DKD have an increased risk of fragility fracture, most pronounced in patients with type 1 diabetes, and in DKD a high prevalence of adynamic bone disease is found. Recent studies have demonstrated disturbances in the interplay between bone regulating factors in DKD, such as relative hypoparathyroidism and alterations of bone-derived hormones including fibroblast growth factor-23 (FGF-23), sclerostin and klotho, which lead to bone disease. This review examines the current knowledge on bone disease in patients with DKD, clinical considerations for patient care, as well as subjects for future research.
Collapse
Affiliation(s)
- Sabina Chaudhary Hauge
- Department of Nephrology, Herlev Hospital, Borgmester Ib Juuls Vej 1, 2730, Herlev, Denmark.
| | - Morten Frost
- Department of Endocrinology, Odense University Hospital, Kløvervænget 6, 5000, Odense C, Denmark
| | - Ditte Hansen
- Department of Nephrology, Herlev Hospital, Borgmester Ib Juuls Vej 1, 2730, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| |
Collapse
|
14
|
Rufus‐Membere P, Holloway‐Kew KL, Kotowicz MA, Diez‐Perez A, Pasco JA. Normative Data for Impact Microindentation for Australian Men: Cross-Sectional Data From the Geelong Osteoporosis Study. JBMR Plus 2020; 4:e10384. [PMID: 32995688 PMCID: PMC7507064 DOI: 10.1002/jbm4.10384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 05/29/2020] [Accepted: 06/04/2020] [Indexed: 11/10/2022] Open
Abstract
Impact microindentation (IMI) is a novel technique for assessing the bone material strength index (BMSi) in vivo. However, no studies have presented normative data for BMSi. The aim of this study was to develop such normative data using a population-based sample of men, randomly selected from electoral rolls for the Barwon Statistical Division in southeastern Australia to participate in the Geelong Osteoporosis Study. BMSi was measured on the tibial plateau using an OsteoProbe in 405 men (ages 33 to 96 years) during the period 2016 to 2019. Associations between BMSi, age, and anthropometry were examined using linear regression models. BMSi values ranged from 49.0 to 100.5. BMSi was negatively correlated with age (r = -0.152, p = 0.002), weight (r = -0.103, p = 0.039), and BMI (r = -0.187, p < 0.001), and positively correlated with height (r = +0.107, p = 0.032). Mean ± SD BMSi was 82.6 ± 7.0 for the whole group, and ranged from 85.6 ± 6.0 for ages 30 to 39 years to 79.8 ± 6.6 for ages 80+ years. This study provides normative data that can be used to calculate T- and Z-scores for BMSi. These data will be useful for identifying men with low BMSi. Further research is warranted to derive optimal cut points for BMSi that discriminate fracture risk. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
| | | | - Mark A Kotowicz
- School of Medicine, Deakin UniversityGeelongVictoriaAustralia
- Department of Medicine‐Western HealthMelbourne Medical School, The University of MelbourneMelbourneVictoriaAustralia
- Barwon HealthGeelongVictoriaAustralia
| | - Adolfo Diez‐Perez
- Department of Internal MedicineHospital del Mar‐IMIM, Autonomous University of Barcelona and CIBERFES, Instituto Carlos IIIMadridSpain
| | - Julie A Pasco
- School of Medicine, Deakin UniversityGeelongVictoriaAustralia
- Department of Medicine‐Western HealthMelbourne Medical School, The University of MelbourneMelbourneVictoriaAustralia
- Barwon HealthGeelongVictoriaAustralia
| |
Collapse
|