1
|
Zielińska M, Pacholak A, Orwat B, Sandomierski M, Kownacki I, Kaczorek E, Voelkel A. Comparative analysis of risedronate and its regioisomers synthesized via microwave-assisted method: bone affinity, cytotoxicity, permeability, and therapeutic potential. Pharmacol Rep 2025; 77:517-531. [PMID: 39928090 DOI: 10.1007/s43440-025-00703-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/11/2025]
Abstract
BACKGROUND Bisphosphonates (BPs) are widely used for treating bone diseases such as osteoporosis due to their strong affinity for hydroxyapatite (HA) in bones. Minor structural variations among BPs can significantly affect their therapeutic potential. This study aimed to synthesize risedronate (RSD) and its two regioisomers (2-RSD, 4-RSD) and investigate the impact of these variations on bone affinity, permeability, and cytotoxicity. METHODS RSD and its regioisomers were synthesized using a microwave-assisted method. Bone affinity was assessed through sorption studies on HA and two polymer-ceramic materials mimicking bone properties. Compound permeability was predicted using the Parallel Artificial Membrane Permeability Assay (PAMPA). Cytotoxicity was evaluated by analyzing the response of bacterial cells to BPs using metabolic activity assays. RESULTS 2-RSD demonstrated a higher bone affinity and similar permeability than commercially available RSD. 2-RSD also showed reduced cytotoxicity in bacterial cell assays, indicating enhanced biocompatibility. These findings suggest that minor structural changes can lead to significant differences in therapeutic efficacy. CONCLUSIONS The study highlights the potential of the 2-RSD as a more effective treatment for bone diseases. Structural variations in BPs can greatly influence their biological properties, paving the way for the development of improved therapeutic agents.
Collapse
Affiliation(s)
- Monika Zielińska
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznań, Poland.
| | - Amanda Pacholak
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznań, Poland
| | - Bartosz Orwat
- Department of Molecular Physics, Lodz University of Technology, Lodz, Poland
- Center for Advanced Technologies, Adam Mickiewicz University, Poznan, Poland
- Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| | - Mariusz Sandomierski
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznań, Poland
| | - Ireneusz Kownacki
- Center for Advanced Technologies, Adam Mickiewicz University, Poznan, Poland
- Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| | - Ewa Kaczorek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznań, Poland
| | - Adam Voelkel
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznań, Poland
| |
Collapse
|
2
|
Nakamura-Takahashi A, Ishizuka S, Hirai K, Matsunaga S, Kasahara N, Shintani S, Abe S, Kasahara M. Administration of Bisphosphonate Preparations to Mice with Mild-type Hypophosphatasia Reduces the Quality of Spontaneous Locomotor Activity. Calcif Tissue Int 2025; 116:30. [PMID: 39789326 PMCID: PMC11717816 DOI: 10.1007/s00223-024-01326-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/04/2024] [Indexed: 01/12/2025]
Abstract
Hypophosphatasia (HPP) is a congenital bone disease caused by tissue-nonspecific mutations in the alkaline phosphatase gene. It is classified into six types: severe perinatal, benign prenatal, infantile, pediatric, adult, and odonto. HPP with femoral hypoplasia on fetal ultrasonography, seizures, or early loss of primary teeth can be easily diagnosed. In contrast, pediatric, adult, and odonto types of HPP over 4 years of age are less likely to be diagnosed because they do not have typical symptoms. Consequently, it may be misdiagnosed as common osteoporosis, and treatments incompatible with HPP may be implemented. The purpose of this study was to analyze the effects of bisphosphonate preparations administration on the femur of Akp2+/- mice, a mild-type HPP mice model. Zoledronic acid (Zol) was subcutaneously administered to 4-week-old Akp2+/- mice at 1 mg/kg (volume: 200 μL) once a week for a total of 5 times. Afterward, spontaneous locomotor activity analysis was performed, and serum and femur bones were collected at 9 weeks of age. Additionally, micro-computed tomography (CT) analysis, histological analysis, and analysis of the expression levels of various marker proteins and genes were performed. Age-matched Akp2+/+ mice served as controls. The results demonstrated that the administration of Zol to Akp2+/- mice, compared to Akp2+/+ mice, insufficiently promotive bone formation, torn femoral head cartilage, and decreased spontaneous locomotor activity. Therefore, it is important to accurately diagnose patients with mild-type HPP.
Collapse
Affiliation(s)
- Aki Nakamura-Takahashi
- Department of Pharmacology, Tokyo Dental College, 2-9-18, Kandamisaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan.
- Tokyo Dental College Research Branding Project, Tokyo Dental College, Tokyo, Japan.
| | - Satoshi Ishizuka
- Department of Pharmacology, Tokyo Dental College, 2-9-18, Kandamisaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Kengo Hirai
- Department of Pediatric Dentistry, Tokyo Dental College, Tokyo, Japan
| | - Satoru Matsunaga
- Tokyo Dental College Research Branding Project, Tokyo Dental College, Tokyo, Japan
- Department of Anatomy, Tokyo Dental College, Tokyo, Japan
| | - Norio Kasahara
- Tokyo Dental College Research Branding Project, Tokyo Dental College, Tokyo, Japan
- Department of Histology and Developmental Biology, Tokyo Dental College, Tokyo, Japan
| | - Seikou Shintani
- Tokyo Dental College Research Branding Project, Tokyo Dental College, Tokyo, Japan
- Department of Pediatric Dentistry, Tokyo Dental College, Tokyo, Japan
| | - Shinichi Abe
- Tokyo Dental College Research Branding Project, Tokyo Dental College, Tokyo, Japan
- Department of Anatomy, Tokyo Dental College, Tokyo, Japan
| | - Masataka Kasahara
- Department of Pharmacology, Tokyo Dental College, 2-9-18, Kandamisaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan.
- Tokyo Dental College Research Branding Project, Tokyo Dental College, Tokyo, Japan.
| |
Collapse
|
3
|
Zielińska M, Pacholak A, Burlaga N, Chmielewska E, Voelkel A, Kaczorek E. Determination of bisphosphonate properties in terms of bioavailability, bone affinity, and cytotoxicity. Pharmacol Rep 2024; 76:1160-1173. [PMID: 39007946 PMCID: PMC11387443 DOI: 10.1007/s43440-024-00624-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND The study aimed to evaluate the therapeutic potential of fourteen newly synthesized bisphosphonates by assessing their bioavailability, bone affinity, and cytotoxicity. These bisphosphonates included a series of aminomethylenebisphosphonates and standard compounds such as risedronate and tiludronate. METHODS Drug permeability was determined using Parallel Artificial Membrane Permeability Assays (PAMPA), while bone affinity was assessed by sorption on hydroxyapatite. Bacterial cell response to the bisphosphonates was also examined using Lactobacillus paracasei cells as a model. RESULTS Several tested compounds, including BP3 to BP8 and BP11, which feature substituents in the pyridine ring such as methyl groups, iodine, bromine, chlorine, or hydroxyl groups, demonstrated potentially more beneficial therapeutic properties than commercially used bisphosphonates. These compounds showed stronger bone affinity and higher gastrointestinal absorption with comparable or lower cytotoxic effects. Specifically, BP11 exhibited the highest bone affinity, while BP8 and BP11 showed the greatest permeability. CONCLUSIONS The findings suggest that BP3 BP8, and BP11 are promising candidates for further research. These results highlight the importance of comprehensively evaluating bisphosphonates' therapeutic properties to identify effective treatments for osteoporosis and other bone diseases.
Collapse
Affiliation(s)
- Monika Zielińska
- Institute of Chemical Technology and Engineering, Poznań University of Technology, Berdychowo 4, 60-965, Poznań, Poland.
| | - Amanda Pacholak
- Institute of Chemical Technology and Engineering, Poznań University of Technology, Berdychowo 4, 60-965, Poznań, Poland
| | - Natalia Burlaga
- Institute of Chemical Technology and Engineering, Poznań University of Technology, Berdychowo 4, 60-965, Poznań, Poland
| | - Ewa Chmielewska
- Faculty of Chemistry, Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Adam Voelkel
- Institute of Chemical Technology and Engineering, Poznań University of Technology, Berdychowo 4, 60-965, Poznań, Poland
| | - Ewa Kaczorek
- Institute of Chemical Technology and Engineering, Poznań University of Technology, Berdychowo 4, 60-965, Poznań, Poland
| |
Collapse
|
4
|
Chen YJ, Jia LH, Han TH, Zhao ZH, Yang J, Xiao JP, Yang HJ, Yang K. Osteoporosis treatment: current drugs and future developments. Front Pharmacol 2024; 15:1456796. [PMID: 39188952 PMCID: PMC11345277 DOI: 10.3389/fphar.2024.1456796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024] Open
Abstract
Osteoporosis is a common systemic metabolic disease characterized by a decrease in bone density and bone mass, destruction of bone tissue microstructure, and increased bone fragility leading to fracture susceptibility. Pharmacological treatment of osteoporosis is the focus of current research, and anti-osteoporosis drugs usually play a role in inhibiting bone resorption, promoting bone formation, and having a dual role. However, most of the drugs have the disadvantages of single target and high toxic and side effects. There are many types of traditional Chinese medicines (TCM), from a wide range of sources and mostly plants. Herbal plants have unique advantages in regulating the relationship between osteoporosis and the immune system, acupuncture therapy has significant therapeutic effects in combination with medicine for osteoporosis. The target cells and specific molecular mechanisms of TCM in preventing and treating osteoporosis have not been fully elucidated. At present, there is a lack of comprehensive understanding of the pathological mechanism of the disease. Therefore, a better understanding of the pathological signaling pathways and key molecules involved in the pathogenesis of osteoporosis is crucial for the design of therapeutic targets and drug development. In this paper, we review the development and current status of anti-osteoporosis drugs currently in clinical application and under development to provide relevant basis and reference for drug prevention and treatment of osteoporosis, with the aim of promoting pharmacological research and new drug development.
Collapse
Affiliation(s)
- Ya-jing Chen
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Urology, Jinhua Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Jinhua, China
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Li-hua Jia
- Department of Urology, Jinhua Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Jinhua, China
| | - Tao-hong Han
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Zhi-hui Zhao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Dexing Research and Training Center of Chinese Medical Sciences, Dexing, China
| | - Jun-ping Xiao
- Jiangxi Prozin Pharmaceutical Co., Ltd., Jiangxi, China
| | - Hong-Jun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ke Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| |
Collapse
|
5
|
Stapleton JR, Ard JD, Beavers DP, Cogdill LS, Fernandez AZ, Howard MJ, Justice JN, Lynch SD, Newman JJ, Weaver AA, Beavers KM. Strategies to reduce the onset of sleeve gastrectomy associated bone loss (STRONG BONES): Trial design and methods. Contemp Clin Trials Commun 2023; 34:101181. [PMID: 37456507 PMCID: PMC10344650 DOI: 10.1016/j.conctc.2023.101181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/05/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023] Open
Abstract
Background Despite recognized improvements in obesity-related comorbidities, mounting evidence implicates surgical weight loss in the onset of skeletal fragility. Sleeve gastrectomy (SG) is the most commonly performed bariatric procedure and is associated with 3-7% axial bone loss in the year following surgery. Bisphosphonates are FDA-approved medications for the prevention and treatment of age-related bone loss and may represent a strategy to reduce bone loss following SG surgery. Methods The Strategies to Reduce the Onset of Sleeve Gastrectomy Associated Bone Loss (STRONG BONES) trial (NCT04922333) is designed to definitively test whether monthly administration of the bisphosphonate, risedronate, for six months can effectively counter SG-associated bone loss. Approximately 120 middle-aged and older (≥40 years) SG patients will be randomized to six months of risedronate or placebo treatment, with skeletal outcomes assessed at baseline, six, and 12-months post-surgery. The primary outcome of the trial is 12-month change in total hip areal bone mineral density (aBMD), measured by dual energy x-ray absorptiometry (DXA). This will be complemented by DXA-acquired aBMD assessment at other skeletal sites and quantitative computed tomography (QCT) derived changes in bone quality. Change in muscle mass and function will also be assessed, as well as biomarkers of bone health, turnover, and crosstalk, providing mechanistic insight into intervention-related changes to the bone-muscle unit. Discussion Results from the STRONG BONES trial have the potential to influence current clinical practice by determining the ability of bisphosphonate use to mitigate bone loss and concomitant fracture risk in middle-aged and older SG patients.
Collapse
Affiliation(s)
- Joshua R. Stapleton
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jamy D. Ard
- Weight Management Center, Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Daniel P. Beavers
- Department of Statistical Sciences, Wake Forest University, Winston-Salem, NC, USA
| | - Lori S. Cogdill
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC, USA
| | - Adolfo Z. Fernandez
- Weight Management Center, Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA
| | - Marjorie J. Howard
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jamie N. Justice
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - S. Delanie Lynch
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jovita J. Newman
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC, USA
| | - Ashley A. Weaver
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Kristen M. Beavers
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC, USA
| |
Collapse
|
6
|
Özer T, Guliyeva V, Aktaş A, Barış E, Ocak M. Can locally applied risedronate be an effective agent when combined with xenografts? An animal study. BMC Oral Health 2023; 23:514. [PMID: 37488504 PMCID: PMC10367424 DOI: 10.1186/s12903-023-03231-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/16/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND To examine the effects of local risedronate application with xenografts on healing of rabbit skull defects using histological, histomorphometric, immunohistochemical, and three-dimensional radiological methods. METHODS Two critical-sized defects with a diameter of 10 mm were created in 16 rabbits and filled with xenogenic bone graft and xenogenic bone graft + 5 mg risedronate in the control I and risedronate (RIS) groups, respectively. Residual graft, new bone, soft tissue areas, and bone volume were evaluated in the 4- and 8-week study groups. RESULTS In both the 4- and 8-week samples, the RIS group samples had significantly higher mean new bone area values than the C group (p < 0.05). In both groups, the values for the new bone area were significantly higher in the 8-week-old samples than in the 4-week-old samples (p < 0.05). The h scores obtained for sialoprotein and osteopontin did not differ significantly between the groups at either time point (p > 0.05). The results of radiological evaluation showed that the bone density value was significantly higher in the C group than in the RIS group at either time point (p < 0.05). CONCLUSIONS Although this study aimed to demonstrate the effect of risedronate on the osteoconductive properties of xenografts when applied locally, targeted results could not be achieved.
Collapse
Affiliation(s)
- Taha Özer
- Department of Oral and Maxillofacial Surgery, Hacettepe University, Ankara, Türkiye.
| | - Vusala Guliyeva
- Department of Oral and Maxillofacial Surgery, Hacettepe University, Ankara, Türkiye
| | - Alper Aktaş
- Department of Oral and Maxillofacial Surgery, Hacettepe University, Ankara, Türkiye
| | - Emre Barış
- Department of Oral Pathology, Gazi University, Ankara, Türkiye
| | - Mert Ocak
- Department of Anatomy, Ankara University, Ankara, Türkiye
| |
Collapse
|
7
|
Özer T, Guliyeva V, Aktaş A, Barış E, Ocak M. Effects of a locally administered risedronate/autogenous bone graft combination on bone healing in a critical-size rabbit defect model. J Orthop Surg Res 2023; 18:88. [PMID: 36737772 PMCID: PMC9898954 DOI: 10.1186/s13018-023-03568-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Risedronate is a bisphosphonate with poor oral absorption. An extremely hydrophilic molecule that has a high affinity for bone, risedronate also inhibits the farnesyl diphosphate synthase enzyme, inhibiting osteoclastic activity and reducing bone turnover and resorption. Autogenous bone grafts contain osteogenic cells and osteoinductive factors that are essential for bone regeneration and are therefore considered the gold standard. Thus, this study aimed to investigate the impact of local risedronate administered with autogenous bone grafts on the healing of defects in rabbit skulls using histological, histomorphometric, immunohistochemical, and three-dimensional radiological methods. METHODS Two 10-mm-diameter critical-size defects were created in 16 rabbits and filled with autogenous bone graft and autogenous bone graft + 5 mg risedronate in the control (C) and risedronate (RIS) groups, respectively. Residual graft, new bone, soft tissue areas, and bone volume were evaluated in the 4- and 8-week study groups. RESULTS There were no statistically significant differences in bone graft, new bone, or soft tissue area between the groups at 4 weeks (p > 0.05). At 8 weeks, the new bone area was significantly higher in the RIS group than in the C group (p < 0.05). The h scores obtained from sialoprotein and osteopontin did not differ significantly between the groups (p > 0.05). The radiologically measured total bone volume was significantly higher in the RIS group than in the C group at both time points (p < 0.05). CONCLUSIONS In this study, risedronate enhanced the osteoconductive properties of autogenous bone grafts and rapidly created better-quality bone. This could improve future patient outcomes.
Collapse
Affiliation(s)
- Taha Özer
- grid.14442.370000 0001 2342 7339Department of Oral and Maxillofacial Surgery, Hacettepe University, Ankara, Türkiye
| | - Vusala Guliyeva
- grid.14442.370000 0001 2342 7339Department of Oral and Maxillofacial Surgery, Hacettepe University, Ankara, Türkiye
| | - Alper Aktaş
- grid.14442.370000 0001 2342 7339Department of Oral and Maxillofacial Surgery, Hacettepe University, Ankara, Türkiye
| | - Emre Barış
- grid.25769.3f0000 0001 2169 7132Department of Oral Pathology, Gazi University, Ankara, Turkey
| | - Mert Ocak
- grid.7256.60000000109409118Vocational School of Health, Ankara University, Ankara, Turkey
| |
Collapse
|
8
|
Oike A, Iwata S, Hirayama A, Ono Y, Nagasato Y, Kawabata Y, Takai S, Sanematsu K, Wada N, Shigemura N. Bisphosphonate affects the behavioral responses to HCl by disrupting farnesyl diphosphate synthase in mouse taste bud and tongue epithelial cells. Sci Rep 2022; 12:21246. [PMID: 36481783 PMCID: PMC9732047 DOI: 10.1038/s41598-022-25755-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Little is known about the molecular mechanisms underlying drug-induced taste disorders, which can cause malnutrition and reduce quality of life. One of taste disorders is known adverse effects of bisphosphonates, which are administered as anti-osteoporotic drugs. Therefore, the present study evaluated the effects of risedronate (a bisphosphonate) on taste bud cells. Expression analyses revealed that farnesyl diphosphate synthase (FDPS, a key enzyme in the mevalonate pathway) was present in a subset of mouse taste bud and tongue epithelial cells, especially type III sour-sensitive taste cells. Other mevalonate pathway-associated molecules were also detected in mouse taste buds. Behavioral analyses revealed that mice administered risedronate exhibited a significantly enhanced aversion to HCl but not for other basic taste solutions, whereas the taste nerve responses were not affected by risedronate. Additionally, the taste buds of mice administered risedronate exhibited significantly lower mRNA expression of desmoglein-2, an integral component of desmosomes. Taken together, these findings suggest that risedronate may interact directly with FDPS to inhibit the mevalonate pathway in taste bud and tongue epithelial cells, thereby affecting the expression of desmoglein-2 related with epithelial barrier function, which may lead to alterations in behavioral responses to HCl via somatosensory nerves.
Collapse
Affiliation(s)
- Asami Oike
- grid.177174.30000 0001 2242 4849Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan ,grid.177174.30000 0001 2242 4849Section of Interdisciplinary Dentistry, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Shusuke Iwata
- grid.177174.30000 0001 2242 4849Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan ,grid.177174.30000 0001 2242 4849Research and Development Center for Five-Sense Devices, Kyushu University, Fukuoka, Japan
| | - Ayaka Hirayama
- grid.177174.30000 0001 2242 4849Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yurika Ono
- grid.177174.30000 0001 2242 4849Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yuki Nagasato
- grid.177174.30000 0001 2242 4849Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yuko Kawabata
- grid.177174.30000 0001 2242 4849Department of Cell Biology, Aging Science, and Pharmacology, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Shingo Takai
- grid.177174.30000 0001 2242 4849Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Keisuke Sanematsu
- grid.177174.30000 0001 2242 4849Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan ,grid.177174.30000 0001 2242 4849Research and Development Center for Five-Sense Devices, Kyushu University, Fukuoka, Japan ,grid.177174.30000 0001 2242 4849Oral Health/Brain Health/Total Health Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Naohisa Wada
- grid.177174.30000 0001 2242 4849Section of Interdisciplinary Dentistry, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Noriatsu Shigemura
- grid.177174.30000 0001 2242 4849Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan ,grid.177174.30000 0001 2242 4849Research and Development Center for Five-Sense Devices, Kyushu University, Fukuoka, Japan
| |
Collapse
|
9
|
Fluorescent risedronate analogue 800CW-pRIS improves tooth extraction-associated abnormal wound healing in zoledronate-treated mice. COMMUNICATIONS MEDICINE 2022; 2:112. [PMID: 36082175 PMCID: PMC9445170 DOI: 10.1038/s43856-022-00172-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 08/04/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Background
Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is a rare but serious side effect of nitrogen-containing bisphosphonate drugs (N-BPs) frequently prescribed to reduce skeletal-related events in bone malignancies and osteoporosis. BRONJ is associated with abnormal oral wound healing after dentoalveolar surgery and tooth extraction. We previously found that N-BP chemisorbed to bone mineral hydroxyapatite was dissociated by secondary applied N-BP. This study investigated the effect of the surface equilibrium-based removal of N-BP from jawbone on tooth extraction wound healing of zoledronate (ZOL)-treated mice.
Methods
A pharmacologically inactive N-BP derivative (the 4-pyridyl isomer of risedronate equipped with a near-infrared 800CW fluorescent imaging dye, 800CW-pRIS) was designed and synthesized. 800CW-pRIS was intra-orally injected or topically applied in a deformable nano-scale vesicle formulation (DNV) to the palatal tissue of mice pretreated with ZOL, a potent N-BP. The female C56BL6/J mice were subjected to maxillary molar extraction and oral wound healing was compared for 800CW-pRIS/ZOL, ZOL and untreated control groups.
Results
800CW-pRIS is confirmed to be inactive in inhibiting prenylation in cultured osteoclasts while retaining high affinity for hydroxyapatite. ZOL-injected mice exhibit delayed tooth extraction wound healing with osteonecrosis relative to the untreated controls. 800CW-pRIS applied topically to the jaw one week before tooth extraction significantly reduces gingival oral barrier inflammation, improves extraction socket bone regeneration, and prevents development of osteonecrosis in ZOL-injected mice.
Conclusions
Topical pre-treatment with 800CW-RIS in DNV is a promising approach to prevent the complication of abnormal oral wound healing associated with BRONJ while retaining the anti-resorptive benefit of legacy N-BP in appendicular or vertebrate bones.
Collapse
|
10
|
Osteoporosis and Fragility Fractures: currently available pharmacological options and future directions. Best Pract Res Clin Rheumatol 2022; 36:101780. [PMID: 36163230 DOI: 10.1016/j.berh.2022.101780] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Osteoporosis is a systemic skeletal disease characterized by low bone mass and microarchitectural deterioration of bone tissue, with a consequent increase in bone fragility and susceptibility to fracture. The average lifetime risk of a 50-year-old woman to suffer a fracture of the spine, hip, proximal humerus, or distal forearm has been estimated at close to 50%. In general, pharmacological treatment is recommended in patients who suffered a fragility fracture because their risk of suffering a subsequent fracture is increased dramatically. Therefore, many guidelines recommend pharmacological treatment in patients without a prevalent fracture if their fracture probability is comparable to or higher than that of a person of the same age with a prevalent fracture. The present review aims to highlight currently available pharmacological treatment options and their antifracture efficacy including safety aspects. Drug classes discussed comprise bisphosphonates, selective estrogen receptor modulators, parathyroid hormone peptides and derivatives, humanized monoclonal antibodies, and estrogens and gestagens and their combinations. Furthermore, a brief glimpse is provided into a potentially promising treatment option that involves mesenchymal stem cells.
Collapse
|
11
|
Watts NB. Romosozumab and Renal Function. J Bone Miner Res 2022; 37:1435-1436. [PMID: 35869697 DOI: 10.1002/jbmr.4645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Nelson B Watts
- Mercy Health Osteoporosis and Bone Health Services, Cincinnati, OH, USA
| |
Collapse
|
12
|
Ebetino FH, Sun S, Cherian P, Roshandel S, Neighbors JD, Hu E, Dunford JE, Sedghizadeh PP, McKenna CE, Srinivasan V, Boeckman RK, Russell RGG. Bisphosphonates: The role of chemistry in understanding their biological actions and structure-activity relationships, and new directions for their therapeutic use. Bone 2022; 156:116289. [PMID: 34896359 PMCID: PMC11023620 DOI: 10.1016/j.bone.2021.116289] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/16/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022]
Abstract
The bisphosphonates ((HO)2P(O)CR1R2P(O)(OH)2, BPs) were first shown to inhibit bone resorption in the 1960s, but it was not until 30 years later that a detailed molecular understanding of the relationship between their varied chemical structures and biological activity was elucidated. In the 1990s and 2000s, several potent bisphosphonates containing nitrogen in their R2 side chains (N-BPs) were approved for clinical use including alendronate, risedronate, ibandronate, and zoledronate. These are now mostly generic drugs and remain the leading therapies for several major bone-related diseases, including osteoporosis and skeletal-related events associated with bone metastases. The early development of chemistry in this area was largely empirical and only a few common structural features related to strong binding to calcium phosphate were clear. Attempts to further develop structure-activity relationships to explain more dramatic pharmacological differences in vivo at first appeared inconclusive, and evidence for mechanisms underlying cellular effects on osteoclasts and macrophages only emerged after many years of research. The breakthrough came when the intracellular actions on the osteoclast were first shown for the simpler bisphosphonates, via the in vivo formation of P-C-P derivatives of ATP. The synthesis and biological evaluation of a large number of nitrogen-containing bisphosphonates in the 1980s and 1990s led to the key discovery that the antiresorptive effects of these more complex analogs on osteoclasts result mostly from their potency as inhibitors of the enzyme farnesyl diphosphate synthase (FDPS/FPPS). This key branch-point enzyme in the mevalonate pathway of cholesterol biosynthesis is important for the generation of isoprenoid lipids that are utilized for the post-translational modification of small GTP-binding proteins essential for osteoclast function. Since then, it has become even more clear that the overall pharmacological effects of individual bisphosphonates on bone depend upon two key properties: the affinity for bone mineral and inhibitory effects on biochemical targets within bone cells, in particular FDPS. Detailed enzyme-ligand crystal structure analysis began in the early 2000s and advances in our understanding of the structure-activity relationships, based on interactions with this target within the mevalonate pathway and related enzymes in osteoclasts and other cells have continued to be the focus of research efforts to this day. In addition, while many members of the bisphosphonate drug class share common properties, now it is more clear that chemical modifications to create variations in these properties may allow customization of BPs for different uses. Thus, as the appreciation for new potential opportunities with this drug class grows, new chemistry to allow ready access to an ever-widening variety of bisphosphonates continues to be developed. Potential new uses of the calcium phosphate binding mechanism of bisphosphonates for the targeting of other drugs to the skeleton, and effects discovered on other cellular targets, even at non-skeletal sites, continue to intrigue scientists in this research field.
Collapse
Affiliation(s)
- Frank H Ebetino
- BioVinc LLC, 2265 E. Foothill Blvd, Pasadena, CA 91107, USA; Department of Chemistry, University of Rochester, Rochester, NY 14617, USA; Department of Oncology & Metabolism, University of Sheffield, Sheffield, UK.
| | - Shuting Sun
- BioVinc LLC, 2265 E. Foothill Blvd, Pasadena, CA 91107, USA.
| | - Philip Cherian
- BioVinc LLC, 2265 E. Foothill Blvd, Pasadena, CA 91107, USA
| | | | | | - Eric Hu
- BioVinc LLC, 2265 E. Foothill Blvd, Pasadena, CA 91107, USA
| | - James E Dunford
- Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences, The Oxford University Institute of Musculoskeletal Sciences, The Botnar Research Centre, Nuffield Orthopaedic Centre, Headington, Oxford OX3 7LD, UK
| | - Parish P Sedghizadeh
- Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Charles E McKenna
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Venkat Srinivasan
- Department of Chemistry, University of Rochester, Rochester, NY 14617, USA
| | - Robert K Boeckman
- Department of Chemistry, University of Rochester, Rochester, NY 14617, USA
| | - R Graham G Russell
- Department of Oncology & Metabolism, University of Sheffield, Sheffield, UK; Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences, The Oxford University Institute of Musculoskeletal Sciences, The Botnar Research Centre, Nuffield Orthopaedic Centre, Headington, Oxford OX3 7LD, UK; Mellanby Centre for Musculoskeletal Research, University of Sheffield, Sheffield, UK
| |
Collapse
|
13
|
Coffman AA, Basta-Pljakic J, Guerra RM, Ebetino FH, Lundy MW, Majeska RJ, Schaffler MB. A Bisphosphonate With a Low Hydroxyapatite Binding Affinity Prevents Bone Loss in Mice After Ovariectomy and Reverses Rapidly With Treatment Cessation. JBMR Plus 2021; 5:e10476. [PMID: 33869992 PMCID: PMC8046044 DOI: 10.1002/jbm4.10476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/04/2021] [Indexed: 12/30/2022] Open
Abstract
Bisphosphonates (BPs) are a mainstay of osteoporosis treatment; however, concerns about bone health based on oversuppression of remodeling remain. Long‐term bone remodeling suppression adversely affects bone material properties with microdamage accumulation and reduced fracture toughness in animals and increases in matrix mineralization and atypical femur fractures in patients. Although a “drug holiday” from BPs to restore remodeling and improve bone quality seems reasonable, clinical BPs have long functional half‐lives because of their high hydroxyapatite (HAP) binding affinities. This places a practical limit on the reversibility and effectiveness of a drug holiday. BPs with low HAP affinity and strong osteoclast inhibition potentially offer an alternative approach; their antiresorptive effect should reverse rapidly when dosing is discontinued. This study tested this concept using NE‐58025, a BP with low HAP affinity and moderate osteoclast inhibition potential. Young adult female C57Bl/6 mice were ovariectomized (OVX) and treated with NE‐58025, risedronate, or PBS vehicle for 3 months to test effectiveness in preventing long‐term bone loss. Bone microarchitecture, histomorphometry, and whole‐bone mechanical properties were assessed. To test reversibility, OVX mice were similarly treated for 3 months, treatment was stopped, and bone was assessed up to 3 months post‐treatment. NE‐58025 and RIS inhibited long‐term OVX‐induced bone loss, but NE‐58025 antiresorptive effects were more pronounced. Withdrawing NE‐58025 treatment led to the rapid onset of trabecular resorption with a 200% increase in osteoclast surface and bone loss within 1 month. Cessation of risedronate treatment did not lead to increases in resorption indices or bone loss. These results show that NE‐58025 prevents OVX‐induced bone loss, and its effects reverse quickly following cessation treatment in vivo. Low‐HAP affinity BPs may have use as reversible, antiresorptive agents with a rapid on/off profile, which may be useful for maintaining bone health with long‐term BP treatment. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Abigail A Coffman
- Department of Biomedical Engineering The City College of New York New York NY USA
| | - Jelena Basta-Pljakic
- Department of Biomedical Engineering The City College of New York New York NY USA
| | - Rosa M Guerra
- Department of Biomedical Engineering The City College of New York New York NY USA
| | - Frank H Ebetino
- Department of Chemistry University of Rochester Rochester NY USA.,BioVinc, LLC Pasadena CA USA
| | - Mark W Lundy
- BioVinc, LLC Pasadena CA USA.,Department of Anatomy and Cell Biology Indiana University Indianapolis IN USA
| | - Robert J Majeska
- Department of Biomedical Engineering The City College of New York New York NY USA
| | - Mitchell B Schaffler
- Department of Biomedical Engineering The City College of New York New York NY USA
| |
Collapse
|
14
|
Matsumoto T, Endo I. RANKL as a target for the treatment of osteoporosis. J Bone Miner Metab 2021; 39:91-105. [PMID: 33057808 DOI: 10.1007/s00774-020-01153-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 08/23/2020] [Indexed: 12/11/2022]
Abstract
Osteoporosis is characterized by compromised bone strength, predisposing to an increased risk of fracture. Because bone is constantly remodeled, and bone mass and structure are determined by the balance between bone resorption and bone formation, it is important to maintain normal bone turnover. Therefore, therapies that reduce bone resorption have been the mainstream of osteoporosis treatment. Receptor activator of nuclear factor-kappa B ligand (RANKL)-RANK signaling was found to play a pivotal role in the regulation of osteoclastic bone resorption, and inhibition of RANKL-RANK system has become an important therapeutic target for the treatment of osteoporosis. Denosumab, a fully human monoclonal anti-RANKL neutralizing antibody, is developed as a drug for the treatment of osteoporosis. This review summarized pharmacokinetic and pharmacodynamic properties of denosumab, clinical studies including phase 2 dose-ranging and its extension study, phase 3 fracture prevention study (FREEDOM) with extension up to 10 years, studies on male osteoporosis (ADAMO study), and on glucocorticoid-induced osteoporosis, along with relevant clinical studies in Japan. In addition, mechanism of denosumab action that can explain its long-term sustained effects, combination and sequential treatment as well as the problems in discontinuation of denosumab, and finally safety of denosumab therapy is discussed.
Collapse
Affiliation(s)
- Toshio Matsumoto
- Fujii Memorial Institute of Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima-shi, Tokushima, 770-8503, Japan.
| | - Itsuro Endo
- Department of Bioregulatory Sciences, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan
| |
Collapse
|