1
|
Wang S, Zhu J, Feng Y, Hua Y, You G, Su J, Shi B. Effects of Teriparatide and Alendronate on Functional Recovery from Spinal Cord Injury and Postinjury Bone Loss. Biomedicines 2025; 13:342. [PMID: 40002755 PMCID: PMC11852434 DOI: 10.3390/biomedicines13020342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/25/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
OBJECTIVES This study evaluated the efficacy of teriparatide (TPTD) and alendronate (ALN) in mitigating bone loss, enhancing bone structure, and facilitating motor function recovery following spinal cord injury (SCI). METHODS All the rats were allocated into four groups: a sham surgery group (SHAM group), a normal saline group (SCI + NS group), a TPTD treatment group after SCI (SCI + TPTD group), and an ALN treatment group after SCI (SCI + ALN group). The Basso, Beattie, and Bresnahan (BBB) scores and gait analyses were used to assess the motor abilities of rats following SCI and the effects of treatment. HE staining, Masson's trichrome staining, and LFB staining were performed to evaluate the extent of spinal cord tissue damage. Micro-CT was used to measure 12 bone-related parameters of the proximal tibia and create 3D images, and structural changes in the proximal tibial bone tissue were observed under a light microscope after HE staining. RESULTS After 12 weeks of treatment, the micro-CT data indicated that TPTD significantly increased key bone indicators, such as bone mineral density, after SCI (p < 0.01), whereas ALN did not significantly improve these indicators (p > 0.05). Compared with the SCI + NS group, the SCI + TPTD group presented significantly greater BBB scores and near-normal gait parameters (p < 0.05). Analyses of pathological sections revealed that TPTD significantly reduced the cavity area in the spinal cord after SCI, decreased the proportion of scar tissue, and increased the retention of neural myelin (p < 0.05). However, ALN had no significant effect on these indicators (p > 0.05). CONCLUSIONS TPTD was more effective than ALN at mitigating bone loss and promoting motor function recovery after SCI, and it demonstrated significant advantages in reducing spinal cord damage and improving tissue structure.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; (S.W.); (J.Z.); (Y.H.); (G.Y.); (J.S.)
| | - Jingliang Zhu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; (S.W.); (J.Z.); (Y.H.); (G.Y.); (J.S.)
| | - Yuping Feng
- Department of Clinical Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China;
| | - Yuchen Hua
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; (S.W.); (J.Z.); (Y.H.); (G.Y.); (J.S.)
| | - Gangjun You
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; (S.W.); (J.Z.); (Y.H.); (G.Y.); (J.S.)
| | - Jahui Su
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; (S.W.); (J.Z.); (Y.H.); (G.Y.); (J.S.)
| | - Benchao Shi
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; (S.W.); (J.Z.); (Y.H.); (G.Y.); (J.S.)
| |
Collapse
|
2
|
Cao J, Lv J, Yin Y, Bai Q, Li M, Hou Z. Covalent Organic Frameworks with Fe/Co Single-Atom Nanozyme for Alendronate Sodium Detection. ACS APPLIED NANO MATERIALS 2025; 8:1490-1498. [DOI: 10.1021/acsanm.4c06116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Affiliation(s)
- Jingcheng Cao
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang 050051, China
- Orthopaedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | - Jie Lv
- College of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, China
- Postdoctoral Mobile Station of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Yingchao Yin
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang 050051, China
- Orthopaedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | - Qingqing Bai
- College of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, China
| | - Meng Li
- College of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, China
| | - Zhiyong Hou
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang 050051, China
- Orthopaedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| |
Collapse
|
3
|
Al Lawati H, Al Busaidi S, Al Rawahi T, Al Lawati A, Kifah A, Das S. Alendronate for Effective Treatment of Male Osteoporosis: An Insight. Curr Pharm Des 2025; 31:26-36. [PMID: 39238374 DOI: 10.2174/0113816128310838240820065324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/12/2024] [Accepted: 07/19/2024] [Indexed: 09/07/2024]
Abstract
Osteoporosis is a major global health problem. The increase in the incidence of osteoporosis in the elderly poses a challenge to treat and also results in an economic burden for the nation. Osteoporosis has been given more importance in females, and there is an urgent need to address this disease in males. Various drugs, such as nitrogen-containing bisphosphonates, RANK ligand inhibitors, parathormones, and alendronate, have been used for effective treatment of osteoporosis. Alendronate (alendronic acid), a nitrogen-containing bisphosphonate that inhibits bone resorption by osteoclasts, was synthesized during the 1970s. In the present review, we discuss the pharmacokinetics, mechanism of action, adverse effects, contraindications, and toxicity monitoring of alendronate. The drug may be effectively used for the treatment of male osteoporosis in order to increase bone mineral density and prevent fractures.
Collapse
Affiliation(s)
- Hanan Al Lawati
- Department of Pharmaceutics, Oman College of Health Sciences, Muscat, Oman
| | - Sara Al Busaidi
- Medical Department, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Thuraiya Al Rawahi
- Medical Department, Royal College of Surgeons in Ireland - Bahrain, Muharraq, Kingdom of Bahrain
| | - Abdullah Al Lawati
- College of Medicine and Health Science, Sultan Qaboos University Hospital, Muscat, Sultanate of Oman
| | - Ahmed Kifah
- Medical Department, National University, Sohar, Oman
| | - Srijit Das
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
4
|
Alimy AR, Anastasilakis AD, Carey JJ, D’Oronzo S, Naciu AM, Paccou J, Yavropoulou MP, Lems WF, Rolvien T. Conservative Treatments in the Management of Acute Painful Vertebral Compression Fractures: A Systematic Review and Network Meta-Analysis. JAMA Netw Open 2024; 7:e2432041. [PMID: 39240564 PMCID: PMC11380106 DOI: 10.1001/jamanetworkopen.2024.32041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/11/2024] [Indexed: 09/07/2024] Open
Abstract
Importance Osteoporotic vertebral compression fractures (VCFs) frequently cause substantial pain and reduced mobility, posing a major health problem. Despite the critical need for effective pain management to restore functionality and improve patient outcomes, the value of various conservative treatments for acute VCF has not been systematically investigated. Objective To assess and compare different conservative treatment options in managing acute pain related to VCF. Data Sources On May 16, 2023, 4 databases-PubMed, Embase, Scopus, and CINAHL-were searched. In addition, a gray literature search within Scopus and Embase was also conducted. Study Selection Included studies were prospective comparative and randomized clinical trials that assessed conservative treatments for acute VCF. Data Extraction and Synthesis Data extraction and synthesis were performed by 2 authors according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Network Meta-Analyses recommendations. A frequentist graph-theoretical model and a random-effects model were applied for the meta-analysis. Main Outcomes and Measures Primary outcomes were short-term (4 weeks) pain during activity and long-term (latest available follow-up) nonspecified pain in patients with acute VCF. Results The study included 20 trials, encompassing 2102 patients, and evaluated various interventions for managing VCF. Calcitonin (standardized mean difference [SMD], -4.86; 95% CI, -6.87 to -2.86) and nonsteroidal anti-inflammatory drugs (NSAIDs; SMD, -3.94; 95% CI, -7.30 to -0.58) were beneficial regarding short-term pain during activity compared with placebo. For long-term nonspecific pain management, bisphosphonates were associated with inferior pain outcomes compared with daily (SMD, 1.21; 95% CI, 0.11 to 2.31) or weekly (SMD, 1.13; 95% CI, 0.05 to 2.21) administration of teriparatide, with no treatment being superior to NSAIDs. The qualitative analysis of adverse events highlighted that typical adverse events associated with these medications were observed. Conclusions and Relevance NSAIDs and teriparatide may be the preferred treatment options for pain management in acute osteoporotic VCF. Although calcitonin also proved to be beneficial, its safety profile and potential adverse effects restrict its widespread application. The limited evidence on braces and analgesics underscores the urgent need for future research.
Collapse
Affiliation(s)
- Assil-Ramin Alimy
- Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Athanasios D. Anastasilakis
- European Calcified Tissue Society Clinical Practice Action Group, Brussels, Belgium
- Department of Endocrinology, 424 General Military Hospital, Thessaloniki, Greece
| | - John J. Carey
- European Calcified Tissue Society Clinical Practice Action Group, Brussels, Belgium
- Department of Rheumatology, Galway University Hospitals, Galway, Ireland
| | - Stella D’Oronzo
- European Calcified Tissue Society Clinical Practice Action Group, Brussels, Belgium
- Interdisciplinary Department of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Anda M. Naciu
- European Calcified Tissue Society Clinical Practice Action Group, Brussels, Belgium
- Unit of Metabolic Bone and Thyroid Diseases, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Julien Paccou
- European Calcified Tissue Society Clinical Practice Action Group, Brussels, Belgium
- Department of Rheumatology, MABLab ULR 4490, CHU Lille, University Lille, Lille, France
| | - Maria P. Yavropoulou
- European Calcified Tissue Society Clinical Practice Action Group, Brussels, Belgium
- First Department of Propedeutic and Internal Medicine Centre of Expertise for Rare Endocrine Diseases, Medical School National and Kapodistrian University of Athens, Athens, Greece
| | - Willem F. Lems
- European Calcified Tissue Society Clinical Practice Action Group, Brussels, Belgium
- Department of Rheumatology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Tim Rolvien
- Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- European Calcified Tissue Society Clinical Practice Action Group, Brussels, Belgium
| |
Collapse
|
5
|
Zhang G, Kang Y, Dong J, Shi D, Xiang Y, Gao H, Lin Z, Wei X, Ding R, Fan B, Zhang H, Zhu T, Wang L, Yan X. Fluffy hybrid nanoadjuvants for reversing the imbalance of osteoclastic and osteogenic niches in osteoporosis. Bioact Mater 2024; 39:354-374. [PMID: 38846529 PMCID: PMC11153935 DOI: 10.1016/j.bioactmat.2024.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/04/2024] [Accepted: 05/20/2024] [Indexed: 06/09/2024] Open
Abstract
Osteoporosis is majorly caused by an imbalance between osteoclastic and osteogenic niches. Despite the development of nationally recognized first-line anti-osteoporosis drugs, including alendronate (AL), their low bioavailability, poor uptake rate, and dose-related side effects present significant challenges in treatment. This calls for an urgent need for more effective bone-affinity drug delivery systems. In this study, we produced hybrid structures with bioactive components and stable fluffy topological morphology by cross-linking calcium and phosphorus precursors based on mesoporous silica to fabricate nanoadjuvants for AL delivery. The subsequent grafting of -PEG-DAsp8 ensured superior biocompatibility and bone targeting capacity. RNA sequencing revealed that these fluffy nanoadjuvants effectively activated adhesion pathways through CARD11 and CD34 molecular mechanisms, hence promoting cellular uptake and intracellular delivery of AL. Experiments showed that small-dose AL nanoadjuvants effectively suppress osteoclast formation and potentially promote osteogenesis. In vivo results restored the balance between osteogenic and osteoclastic niches against osteoporosis as well as the consequent significant recovery of bone mass. Therefore, this study constructed a drug nanoadjuvant with peculiar topological structures and high bone targeting capacities, efficient intracellular drug delivery as well as bone bioactivity. This provides a novel perspective on drug delivery for osteoporosis and treatment strategies for other bone diseases.
Collapse
Affiliation(s)
- Guoyang Zhang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
- Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
- Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
| | - Yuhao Kang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
- Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
- Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
| | - Jizhao Dong
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, No.333 Longteng Road, Shanghai, 201620, China
| | - Dingyi Shi
- Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
| | - Yu Xiang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
- Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
- Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
| | - Haihan Gao
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
- Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
- Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
| | - Zhiqi Lin
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
- Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
- Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
| | - Xiaojuan Wei
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
- Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
| | - Ren Ding
- Shanghai Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, Department of Orthopedics, No. 181 Youyi Road, Shanghai, 201900, China
| | - Beibei Fan
- Shanghai Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, Department of Pharmacy, No. 181 Youyi Road, Shanghai, 201900, China
| | - Hongmei Zhang
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, No.333 Longteng Road, Shanghai, 201620, China
| | - Tonghe Zhu
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, No.333 Longteng Road, Shanghai, 201620, China
| | - Liren Wang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
- Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
- Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
| | - Xiaoyu Yan
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
- Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
- Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
| |
Collapse
|
6
|
Billington E, Aghajafari F, Skulsky E, Kline GA. Bisphosphonates. BMJ 2024; 386:e076898. [PMID: 39168493 DOI: 10.1136/bmj-2023-076898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Affiliation(s)
- Emma Billington
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary AB, Canada T2T5C7
| | - Fariba Aghajafari
- Department of Family Medicine and Community Health Sciences, Cumming School of Medicine, University of Calgary
| | | | - Gregory A Kline
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary AB, Canada T2T5C7
- Dr. David Hanley Osteoporosis Centre, Cumming School of Medicine, University of Calgary
| |
Collapse
|
7
|
Shang G, Zhou X, Yin J, Niu X, Zhao Y, Li X, Tong Q, Bao B, Cao Y, Cheng F, Li Z, Yao W. Multi-omics analysis of kidney, bone and bone marrow explored potential mechanisms of Erzhi Wan against osteoporosis with kidney-Yin deficiency. J Pharm Biomed Anal 2024; 246:116211. [PMID: 38759323 DOI: 10.1016/j.jpba.2024.116211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024]
Abstract
Osteoporosis (OP) is a metabolic bone disease that can lead to major health challenges. The theory of Traditional Chinese medicine believes that kidney-Yin deficiency (KYD) is the main cause of postmenopausal osteoporosis. This study was aimed to investigate the effect of EZW on anti-osteoporosis with KYD, and explore potential mechanisms from the perspective of the kidney, bone and bone marrow through analysis of metabolomics and proteomics. The model of OP with KYD was established by rats treated with bilateral ovariectomy (OVX), and then given intragastric administration of thyroid and reserpine to induce. Micro-CT was applied to determine the microstructures of bone. Serum levels associated with bone turnover markers and kidney-Yin deficiency were detected by enzyme-linked immunosorbent (ELISA) assay. The differential metabolites in the kidney, bone and bone marrow were analyzed by metabolomics. The differentially expressed proteins in these three tissues were detected via proteomics. The findings suggested that EZW could alleviate a variety of metabolites and proteins among the kidney, bone and bone marrow, primarily in amino acid metabolism, carbohydrate metabolism, nucleotide metabolism and lipid metabolism, thus leading to improvements of OP with KYD, which provided theoretical basis for clinical treatment of EZW on OP with KYD.
Collapse
Affiliation(s)
- Guanxiong Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Xiaoqi Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Jiu Yin
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Xuan Niu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yan Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Xin Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Qingheng Tong
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Beihua Bao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yudan Cao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Fangfang Cheng
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Zhipeng Li
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210009, PR China.
| | - Weifeng Yao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
8
|
Chen YJ, Jia LH, Han TH, Zhao ZH, Yang J, Xiao JP, Yang HJ, Yang K. Osteoporosis treatment: current drugs and future developments. Front Pharmacol 2024; 15:1456796. [PMID: 39188952 PMCID: PMC11345277 DOI: 10.3389/fphar.2024.1456796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024] Open
Abstract
Osteoporosis is a common systemic metabolic disease characterized by a decrease in bone density and bone mass, destruction of bone tissue microstructure, and increased bone fragility leading to fracture susceptibility. Pharmacological treatment of osteoporosis is the focus of current research, and anti-osteoporosis drugs usually play a role in inhibiting bone resorption, promoting bone formation, and having a dual role. However, most of the drugs have the disadvantages of single target and high toxic and side effects. There are many types of traditional Chinese medicines (TCM), from a wide range of sources and mostly plants. Herbal plants have unique advantages in regulating the relationship between osteoporosis and the immune system, acupuncture therapy has significant therapeutic effects in combination with medicine for osteoporosis. The target cells and specific molecular mechanisms of TCM in preventing and treating osteoporosis have not been fully elucidated. At present, there is a lack of comprehensive understanding of the pathological mechanism of the disease. Therefore, a better understanding of the pathological signaling pathways and key molecules involved in the pathogenesis of osteoporosis is crucial for the design of therapeutic targets and drug development. In this paper, we review the development and current status of anti-osteoporosis drugs currently in clinical application and under development to provide relevant basis and reference for drug prevention and treatment of osteoporosis, with the aim of promoting pharmacological research and new drug development.
Collapse
Affiliation(s)
- Ya-jing Chen
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Urology, Jinhua Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Jinhua, China
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Li-hua Jia
- Department of Urology, Jinhua Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Jinhua, China
| | - Tao-hong Han
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Zhi-hui Zhao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Dexing Research and Training Center of Chinese Medical Sciences, Dexing, China
| | - Jun-ping Xiao
- Jiangxi Prozin Pharmaceutical Co., Ltd., Jiangxi, China
| | - Hong-Jun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ke Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| |
Collapse
|
9
|
Jerez HE, Simioni YR, Ghosal K, Morilla MJ, Romero EL. Cholesterol nanoarchaeosomes for alendronate targeted delivery as an anti-endothelial dysfunction agent. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:517-534. [PMID: 38774586 PMCID: PMC11106671 DOI: 10.3762/bjnano.15.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/16/2024] [Indexed: 05/24/2024]
Abstract
Sodium alendronate (ALN) is a very hydrosoluble and poorly permeable molecule used as an antiresorptive agent and with vascular anticalcifying capacity. Loaded into targeted nanovesicles, its anti-inflammatory activity may be amplified towards extra-osseous and noncalcified target cells, such as severely irritated vascular endothelium. Here cytotoxicity, mitochondrial membrane potential, ATP content, and membrane fluidity of human endothelial venous cells (HUVECs) were determined after endocytosis of ALN-loaded nanoarchaeosomes (nanoARC-Chol(ALN), made of polar lipids from Halorubrum tebenquichense: cholesterol 7:3 w/w, 166 ± 5 nm, 0.16 ± 0.02 PDI, -40.8 ± 5.4 mV potential, 84.7 ± 21 µg/mg ALN/total lipids, TL). The effect of nanoARC-Chol(ALN) was further assessed on severely inflamed HUVECs. To that aim, HUVECs were grown on a porous barrier on top of a basal compartment seeded either with macrophages or human foam cells. One lighter and one more pronounced inflammatory context was modelled by adding lipopolysaccharide (LPS) to the apical or the apical and basal compartments. The endocytosis of nanoARC-Chol(ALN), was observed to partly reduce the endothelial-mesenchymal transition of HUVECs. Besides, while 10 mg/mL dexamethasone, 7.6 mM free ALN and ALN-loaded liposomes failed, 50 μg/mL TL + 2.5 μg/mL ALN (i.e., nanoARC-Chol(ALN)) reduced the IL-6 and IL-8 levels by, respectively, 75% and 65% in the mild and by, respectively, 60% and 40% in the pronounced inflammation model. This is the first report showing that the endocytosis of nanoARC-Chol(ALN) by HUVECs magnifies the anti-inflammatory activity of ALN even under conditions of intense irritation, not only surpassing that of free ALN but also that of dexamethasone.
Collapse
Affiliation(s)
- Horacio Emanuel Jerez
- Nanomedicine Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| | - Yamila Roxana Simioni
- Nanomedicine Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| | - Kajal Ghosal
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja Subodh Chandra Mallick Rd., Jadavpur, Kolkata 700032, West Bengal, India
| | - Maria Jose Morilla
- Nanomedicine Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| | - Eder Lilia Romero
- Nanomedicine Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| |
Collapse
|
10
|
Shieh YF, Hung FM, Yeh SN, Kao LT, Chen JC, Liao FE, Huang J, Wang CH, Lee CY, Shiea J. High throughput analysis of alendronate in human samples with derivatization-free hydrophilic-interactive chromatography mass spectrometry. J Pharm Biomed Anal 2024; 237:115775. [PMID: 37839263 DOI: 10.1016/j.jpba.2023.115775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023]
Abstract
A derivatization-free hydrophilic-interactive chromatography-mass spectrometry (HILIC-MS/MS) method was developed for quantifying low levels of alendronate in human plasma. Alendronate was separated and concentrated using calcium co-precipitation and analyzed by HILIC-MS/MS, requiring only a 300 μL plasma sample for each analysis. The method is simpler, safer, and more environmentally friendly than the conventional LC-MS/MS method that requires solid-phase extraction and derivatization steps during sample pretreatment. The method was validated for selectivity, linearity, precision, accuracy, extraction recovery, matrix effect and limit of quantification. The between-run precisions were no more than 7.1 % with accuracy ranging from - 1.7-6.3 %; extraction recovery was determined to be 85.3 %; while validation results indicated that the method was suitable for accurately quantifying alendronate concentrations in the range from 0.2 to 50 ng/mL. The approach was used successfully for high throughput analysis of alendronate in more than 3700 plasma samples from 120 subjects in a bioequivalence study.
Collapse
Affiliation(s)
| | | | | | | | | | - Fu-En Liao
- NOVOTECH laboratory Taiwan, Taipei, Taiwan
| | | | | | - Chi-Yang Lee
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Jentaie Shiea
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan; Rapid Screening Research Center for Toxicology and Biomedicine, National Sun Yat-Sen University, Kaohsiung, Taiwan; Department of Medical Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
11
|
Abstract
For many years, antibody drug conjugates (ADC) have teased with the promise of targeted payload delivery to diseased cells, embracing the targeting of the antibody to which a cytotoxic payload is conjugated. During the past decade this promise has started to be realised with the approval of more than a dozen ADCs for the treatment of various cancers. Of these ADCs, brentuximab vedotin really laid the foundations of a template for a successful ADC with lysosomal payload release from a cleavable dipeptide linker, measured DAR by conjugation to the Cys-Cys interchain bonds of the antibody and a cytotoxic payload. Using this ADC design model oncology has now expanded their repertoire of payloads to include non-cytotoxic compounds. These new payload classes have their origins in prior medicinal chemistry programmes aiming to design selective oral small molecule drugs. While this may not have been achieved, the resulting compounds provide excellent starting points for ADC programmes with some compounds amenable to immediate linker attachment while for others extensive SAR and structural information offer invaluable design insights. Many of these new oncology payload classes are of interest to other therapeutic areas facilitating rapid access to drug-linkers for exploration as non-oncology ADCs. Other therapeutic areas have also pursued unique payload classes with glucocorticoid receptor modulators (GRM) being the most clinically advanced in immunology. Here, ADC payloads come full circle, as oncology is now investigating GRM payloads for the treatment of cancer. This chapter aims to cover all these new ADC approaches while describing the medicinal chemistry origins of the new non-cytotoxic payloads.
Collapse
Affiliation(s)
- Adrian D Hobson
- Small Molecule Therapeutics & Platform Technologies, AbbVie Bioresearch Center, Worcester, MA, United States.
| |
Collapse
|
12
|
Yuan H, Wang C, Liu L, Wang C, Zhang Z, Qu S. Association Between CTSK Gene Polymorphisms and Response to Alendronate Treatment in Postmenopausal Chinese Women with Low Bone Mineral Density. Pharmgenomics Pers Med 2023; 16:925-932. [PMID: 37920752 PMCID: PMC10619967 DOI: 10.2147/pgpm.s425357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023] Open
Abstract
Purpose The aim of this study was to explore the association between CTSK polymorphisms and the response to alendronate treatment in postmenopausal Chinese women with low bone mineral density. Patients and Methods In this study, 460 postmenopausal women from Shanghai were included. All of them were treated with weekly oral alendronate 70 mg, daily calcium 600 mg and vitamin D 125 IU for a year. Four tag single nucleotide polymorphisms (SNPs) in CTSK gene were genotyped. Bone mineral densities of lumbar spine (L1-L4), femoral neck and total hip were measured at baseline and after 12 months of treatment, respectively. Results After 1-year of treatment, there was no significant differences in BMI between baseline and follow-up. After alendronate treatment, the BMD of L1-4, femoral neck and total hip all increased significantly (all P < 0.001), with average increases of 4.33 ± 6.42%, 1.85 ± 4.20%, and 2.36 ± 3.79%, respectively. There was no significant difference in BMD at L1-L4, the femoral neck and total hip between different genotype groups at baseline (P>0.05). After 1-year treatment with alendronate, rs12746973 and rs10847 were associated with the % change of BMD at L1-L4 (P=0.038) and % change of BMD at femoral neck (P=0.038), respectively. Furthermore, rs10847 was associated with BMD response at femoral neck (P=0.013). However, the associations were not significant after Bonferroni correction. Conclusion We concluded that the common variations of CTSK gene were potentially associated with the therapeutic response to alendronate treatment in Chinese women with low bone mineral density. However, further validation is needed.
Collapse
Affiliation(s)
- Hu Yuan
- Department of Endocrinology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215001, People’s Republic of China
| | - Caihong Wang
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215001, People’s Republic of China
| | - Li Liu
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Disease, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, 200233, People’s Republic of China
| | - Chun Wang
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Disease, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, 200233, People’s Republic of China
| | - Zhenlin Zhang
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Disease, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, 200233, People’s Republic of China
| | - Shen Qu
- Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, Clinical Medical College of Nanjing Medical University, Shanghai, 200072, People’s Republic of China
| |
Collapse
|
13
|
Kline GA, Morin SN, Lix LM, Leslie WD. A Population-Based Registry Study of Extended Bisphosphonate Use: Minimal Shift After Landmark Publications About Shorter Treatment Duration. J Bone Miner Res 2023; 38:1435-1442. [PMID: 37462900 DOI: 10.1002/jbmr.4885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/27/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023]
Abstract
Optimal duration of bisphosphonate therapy was unknown until the FLEX study was published in 2006 showing a 5-year course to be adequate for most women. In 2008, a link between long-term bisphosphonate and atypical femoral fractures was reported and confirmed in later studies. We hypothesized these landmark observations should have led to a decrease in use of bisphosphonates for >5 or 10 years, from 2010 onward. The Manitoba Bone Mineral Density (BMD) Registry with linkage to provincial pharmacy data was used to determine the percentage of long- and very long-term bisphosphonate users from therapy start. The cohort comprised women aged >50 years with BMD between 1995 and 2018 with oral bisphosphonate first prescribed for >90 days with adherence >75% in the first year. For each calendar year of continued therapy, the percentage of patients and medication possession rate was tabulated. The percentage of users beyond 5 years was compared among patients who started therapy in 1998-2004 (those taking 5 years of therapy still finish before 2010) versus 2005-2012 (all new therapy starts overlap 2010 in those taking ≥5 years of treatment). The cohort included 2991 women with mean follow-up 8.8 (1.3) years, 64.9% of whom took continuous oral bisphosphonate for >5 years and 41.9% for >10 years. In the earlier versus later era, there were 74.4% versus 70.2% who completed 5 years. With respect to longer treatment, there were 68.0% and 60.5% of patients treated for 6 or more years (p < 0.0001) and 46.6% versus 33.5% treated for >10 years (p = 0.08). Medication possession rate was >79% in every year of therapy. Landmark studies leading to more limited bisphosphonate courses may have slightly reduced longer-term treatment, but up to one-third of adherent patients in the modern era still receive continuous bisphosphonate therapy for >10 years. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Gregory A Kline
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | | | - Lisa M Lix
- Department of Community Health Science, University of Manitoba, Winnipeg, Canada
| | - William D Leslie
- Department of Community Health Science, University of Manitoba, Winnipeg, Canada
- Departments of Medicine and Radiology, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
14
|
Wu M, Qin M, Wang X. Therapeutic effects of isoquercetin on ovariectomy-induced osteoporosis in mice. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:20. [PMID: 37289308 PMCID: PMC10250279 DOI: 10.1007/s13659-023-00383-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/25/2023] [Indexed: 06/09/2023]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) are non-hematopoietic multipotent stem cells capable of differentiating into mature cells. Isoquercetin, an extract from natural sources, has shown promise as a potential treatment for osteoporosis. To investigate the therapeutic effects of isoquercetin on osteoporosis, bone marrow mesenchymal stem cells (BMSCs) were cultured in vitro, and osteogenesis or adipogenesis was induced in the presence of isoquercetin for 14 days. We evaluated cell viability, osteogenic and adipogenic differentiation, as well as mRNA expression levels of Runx2, Alpl, and OCN in osteoblasts, and mRNA expression levels of Pparγ, Fabp4, and Cebpα in adipocytes. The results showed that isoquercetin dose-dependently increased cell viability and promoted osteogenic differentiation, as evidenced by Alizarin Red and alkaline phosphatase staining and mRNA expression levels of Runx2, Alpl, and OCN in osteoblasts (P < 0.05). In contrast, isoquercetin inhibited adipogenic differentiation and decreased the mRNA expression levels of Pparγ, Fabp4, and Cebpα in adipocytes (P < 0.05). In vivo, isoquercetin treatment increased bone quantity and density in an osteoporosis model mice group, as determined by μCT scanning and immunohistochemistry (P < 0.05). These findings suggest that isoquercetin may have therapeutic potential for osteoporosis by promoting the proliferation and differentiation of BMSCs towards osteoblasts while inhibiting adipogenic differentiation.
Collapse
Affiliation(s)
- Mengjing Wu
- Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Mengyu Qin
- Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Xian Wang
- Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China.
| |
Collapse
|
15
|
Mousavi S, Vakili S, Zal F, Savardashtaki A, Jafarinia M, Sabetian S, Razmjoue D, Veisi A, Azadbakht O, Sabaghan M, Behrouj H. Quercetin potentiates the anti-osteoporotic effects of alendronate through modulation of autophagy and apoptosis mechanisms in ovariectomy-induced bone loss rat model. Mol Biol Rep 2023; 50:3693-3703. [PMID: 36829081 DOI: 10.1007/s11033-023-08311-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/27/2023] [Indexed: 02/26/2023]
Abstract
BACKGROUND Osteoporosis is a bone disease leading to bone fracture and affects 200 million women worldwide. Autophagy and apoptosis are two fundamental mechanisms that are involved in the development of osteoporosis. In this study we aim to investigate the combined effects of quercetin and alendronate on the markers of osteoporosis, autophagy, and apoptosis in the bone of ovariectomized rats. METHODS AND RESULTS Fifty adult female Sprague-Dawley rats were ovariectomized and treated with alendronate alone (5 µg/kg/day) or alendronate (5 µg/kg/day) in combination with quercetin (15 mg/kg/day) for 12 weeks. Then, ELISA, stereological tests, Real-time PCR analysis, and immunofluorescence assay were used to measure the markers of osteoporosis, autophagy, and apoptosis in the serum and tibia of rats. The serum osteocalcin was significantly decreased in ovariectomized rats that received quercetin and alendronate compared with alendronate only. Stereological data showed that except for osteoclasts, the total trabecular volume, bone weight, bone volume, osteocyte, and osteoblast numbers were increased in an ovariectomized group that was treated with quercetin and alendronate compared with alendronate alone. Except for Bcl2, the autophagy markers (Beclin-1 and LC3B) and Caspase-3 were significantly downregulated in ovariectomized rats that received quercetin and alendronate compared with those treated with alendronate alone. CONCLUSION Our results show that quercetin enhances the anti-osteoporotic effects of alendronate, possibly through the regulation of autophagy and apoptosis mechanisms. These findings suggest that the combination of quercetin and alendronate could be a useful therapeutic strategy in the treatment of osteoporosis in postmenopausal women.
Collapse
Affiliation(s)
- Sima Mousavi
- Department of obstetrics and gynecology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Sina Vakili
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Fatemeh Zal
- Department of Biochemistry, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Biotechnology Department, School of advanced medical sciences and technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Morteza Jafarinia
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soudabeh Sabetian
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Damoun Razmjoue
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Ali Veisi
- Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | | | | | - Hamid Behrouj
- Behbahan Faculty of Medical Sciences, Behbahan, Iran.
| |
Collapse
|
16
|
Yang Y, Yuan L, Cao H, Guo J, Zhou X, Zeng Z. Application and Molecular Mechanisms of Extracellular Vesicles Derived from Mesenchymal Stem Cells in Osteoporosis. Curr Issues Mol Biol 2022; 44:6346-6367. [PMID: 36547094 PMCID: PMC9776574 DOI: 10.3390/cimb44120433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Osteoporosis (OP) is a chronic bone disease characterized by decreased bone mass, destroyed bone microstructure, and increased bone fragility. Accumulative evidence shows that extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) (MSC-EVs), especially exosomes (Exos), exhibit great potential in the treatment of OP. However, the research on MSC-EVs in the treatment of OP is still in the initial stage. The potential mechanism has not been fully clarified. Therefore, by reviewing the relevant literature of MSC-EVs and OP in recent years, we summarized the latest application of bone targeted MSC-EVs in the treatment of OP and further elaborated the potential mechanism of MSC-EVs in regulating bone formation, bone resorption, bone angiogenesis, and immune regulation through internal bioactive molecules to alleviate OP, providing a theoretical basis for the related research of MSC-EVs in the treatment of OP.
Collapse
Affiliation(s)
- Yajing Yang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
- Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Lei Yuan
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Hong Cao
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Jianmin Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Xuchang Zhou
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
- Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Zhipeng Zeng
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| |
Collapse
|
17
|
Significance of medication discontinuation on bisphosphonate-related jaw osteonecrosis in a rat model. Sci Rep 2022; 12:21449. [PMID: 36509781 PMCID: PMC9744902 DOI: 10.1038/s41598-022-25347-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
Bisphosphonate (BP) discontinuation has been advised as a measure to prevent the incidence of bisphosphonate-related osteonecrosis of the jaw (BRONJ), however, its efficacy remains controversial. This study aimed to analyze the efficacy of BP discontinuation in reducing BRONJ severity following tooth extraction in a rat model. Thirty-four male Sprague-Dawley rats were divided into two BRONJ model categories: oral administration (PO) of alendronate (1 mg/kg) for 3 and 8 weeks and intraperitoneal (IP) injection of pamidronate (3 mg/kg) and dexamethasone (1 mg/kg) for 20 days. The PO model was divided into five groups (a control group without BPs and four experimental groups with 1-week discontinuation). The IP model was divided into two groups consisting of group I (without discontinuation) and group II (1-week discontinuation). One molar from both sides of the mandible was extracted. After extraction, the PO models were sacrificed at 3 and 5 weeks, and the IP models were sacrificed either immediately or at 2, 4, 6, and 8 weeks. Micro-CT showed non-significant differences among PO groups but significant differences were observed between IP groups. Most bone remodeling parameters within group I of the IP model differed significantly (p-value < 0.05). Histologically, group I showed a significantly higher percentage of necrotic bone than group II (51.93 ± 12.75%, p < 0.05) and a higher number of detached osteoclasts in TRAP staining. With discontinuation of medication for at least 1 week in rats, the effects of BPs on alveolar bone are suppressed and bone turnover and osteoclast functions are restored.
Collapse
|
18
|
Eissa DM, Mabrouk MM, Ebeid EZM, Abdel Hamid MA. Hydrophilic gold nanospheres: influence of alendronate, memantine, and tobramycin on morphostructural features. BMC Chem 2022; 16:101. [PMID: 36419078 PMCID: PMC9682697 DOI: 10.1186/s13065-022-00891-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
Turkevich gold nanospheres are the original nanospheres that have been modified over time. Its combination with targeting medications such as alendronate, memantine, and tobramycin will provide additional benefits in targeting specific areas in the bone, brain, and microorganisms, respectively. Hence, The reactivity and stability of nanospheres with various drug concentrations (milli-,micro-, and nano-levels) have been studied. With alendronate, the absorbance spectra of nanospheres at [Formula: see text] 520 nm were always stable and no redshifts occurred. In contrast, the spectra with memantine and tobramycin were stable at the nano-level and redshifts occurred at the milli- and micro-levels. HRTEM and DLS revealed that the core diameter was relatively stable in all cases, whereas the hydrodynamic diameter and zeta potential varied with varying drug concentrations. Increasing concentration increased hydrodynamic diameter slightly with memantine (from 64.99 to 98.41 nm), dramatically with tobramycin (from 135.3 to 332.16 nm), and almost negligibly with alendronate (from 52.08 to 58.94 nm ). Zeta Potential, conversely, is reduced as concentration increases. Memantine had the greatest reduction in negativity, followed by tobramycin, but alendronate had a slight increase in negativity. Benefits from this research would be in targeted drug delivery, where stability and reactivity of gold nanospheres are critical.
Collapse
Affiliation(s)
- Dina M. Eissa
- grid.415762.3Ministry of Health and Population, Menoufia, Egypt
| | - Mokhtar M. Mabrouk
- grid.412258.80000 0000 9477 7793Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Tanta University, Elgeish Street, Tanta, 31111 Egypt
| | - El Zeiny M. Ebeid
- grid.412258.80000 0000 9477 7793Chemistry Department, Faculty of Science, Tanta University, Elgeish Street, Tanta, 31111 Egypt
| | - Mohamed A. Abdel Hamid
- grid.412258.80000 0000 9477 7793Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Tanta University, Elgeish Street, Tanta, 31111 Egypt
| |
Collapse
|
19
|
Calvo-Gallego JL, Pivonka P, Ruiz-Lozano R, Martínez-Reina J. Mechanistic PK-PD model of alendronate treatment of postmenopausal osteoporosis predicts bone site-specific response. Front Bioeng Biotechnol 2022; 10:940620. [PMID: 36061434 PMCID: PMC9428150 DOI: 10.3389/fbioe.2022.940620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Alendronate is the most widely used drug for postmenopausal osteoporosis (PMO). It inhibits bone resorption, affecting osteoclasts. Pharmacokinetics (PK) and pharmacodynamics (PD) of alendronate have been widely studied, but few mathematical models exist to simulate its effect. In this work, we have developed a PK model for alendronate, valid for short- and long-term treatments, and a mechanistic PK-PD model for the treatment of PMO to predict bone density gain (BDG) at the hip and lumbar spine. According to our results, at least three compartments are required in the PK model to predict the effect of alendronate in both the short and long terms. Clinical data of a 2-year treatment of alendronate, reproduced by our PK-PD model, demonstrate that bone response is site specific (hip: 7% BDG, lumbar spine: 4% BDG). We identified that this BDG is mainly due to an increase in tissue mineralization and a decrease in porosity. The difference in BDG between sites is linked to the different loading and dependence of the released alendronate on the bone-specific surface and porosity. Osteoclast population diminishes quickly within the first month of alendronate treatment. Osteoblast population lags behind but also falls due to coupling of resorption and formation. Two dosing regimens were studied (70 mg weekly and 10 mg daily), and both showed very similar BDG evolution, indicating that alendronate accumulates quickly in bone and saturates. The proposed PK-PD model could provide a valuable tool to analyze the effect of alendronate and to design patient-specific treatments, including drug combinations.
Collapse
Affiliation(s)
- José L. Calvo-Gallego
- Departamento de Ingeniería Mecánica y Fabricación, Universidad de Sevilla, Seville, Spain
- *Correspondence: José L. Calvo-Gallego,
| | - Peter Pivonka
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Rocío Ruiz-Lozano
- Departamento de Ingeniería Mecánica y Fabricación, Universidad de Sevilla, Seville, Spain
| | - Javier Martínez-Reina
- Departamento de Ingeniería Mecánica y Fabricación, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
20
|
Watts NB. Romosozumab and Renal Function. J Bone Miner Res 2022; 37:1435-1436. [PMID: 35869697 DOI: 10.1002/jbmr.4645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Nelson B Watts
- Mercy Health Osteoporosis and Bone Health Services, Cincinnati, OH, USA
| |
Collapse
|
21
|
Bisphosphonate Drug Holiday and Fracture Risk: Reviewing the Evidence. CURRENT TREATMENT OPTIONS IN RHEUMATOLOGY 2022. [DOI: 10.1007/s40674-022-00191-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
22
|
Xu S, Xia T, Zhang J, Jiang Y, Wang N, Xin H. Protective effects of bitter acids from Humulus lupulus L. against senile osteoporosis via activating Nrf2/HO-1/NQO1 pathway in D-galactose induced aging mice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
23
|
Inhibition of osteoclastogenesis after bisphosphonate therapy discontinuation: an in vitro approach. J Mol Histol 2022; 53:669-677. [PMID: 35701706 DOI: 10.1007/s10735-022-10083-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/26/2022] [Indexed: 10/18/2022]
Abstract
Osteoclasts are specialized cells that degrade and resorb bone. Bisphosphonates (BPs) are drugs with well-known capacity to inhibit the resorption of mineralized tissues. Nitrogen-containing BPs, like alendronate (ALN) and zoledronic acid (ZA), inactivate osteoclast activity mostly by alterations on the cytoskeleton architecture of the cell. In this study, we used an in vitro model to test the hypothesis that bisphosphonates may have inhibitory effects on the osteoclastogenesis and osteoclast activity after the therapy was discontinued. Primary osteoclasts were generated from mouse bone marrow in media supplemented with 1,25-dihydroxyvitamin D3 and cultivated over bones pre-treated with ALN and ZA. The pre-saturation of the bone slices with bisphosphonates did not affect cell viability. We found, however, that by disrupting the gene expression of RANKL and OPG the osteoclastogenesis and resorption activity of osteoclasts was significantly disturbed. These inhibitory effects were confirmed by scanning electron microscopy resorption assay, assessment of osteoclast ultrastructure, and by gene expression analysis of TRAP and Cathepsin K. In conclusion, ALN and ZA adhered to the bone matrix reduced the osteoclast activity in vitro.
Collapse
|
24
|
Chen J, Xie L, Ruan Q, Gao A, Liao Q, Mo S, Lv Y, Tong L, Wang H, Chu PK, Li X. Diamond-like carbon coating and surface grafting of osteoprotegerin and alendronate on polyetheretherketone to ameliorate the mechanical performance and osseointegration simultaneously. COMPOSITES PART B: ENGINEERING 2022; 236:109815. [DOI: 10.1016/j.compositesb.2022.109815] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
|
25
|
Zhang X, Liu Q, Zhang T, Gao P, Wang H, Yao L, Huang J, Jiang S. Bone-targeted nanoplatform enables efficient modulation of bone tumor microenvironment for prostate cancer bone metastasis treatment. Drug Deliv 2022; 29:889-905. [PMID: 35285760 PMCID: PMC8928789 DOI: 10.1080/10717544.2022.2050845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
As there is currently no effective therapy for patients with prostate cancer (PCa) bone metastasis, it was stringent to explore the relevant treatment strategies. Actually, the interaction between cancer cells and bone microenvironment plays important role in prostate cancer bone metastasis, especially the Sonic hedgehog protein (SHH) signaling in the bone microenvironment. The SHH promotes osteoblast maturation and osteoblast then secretes RANKL to induce osteoclastogenesis. Herein, this study develops bone-targeting calcium phosphate lipid hybrid nanoparticles (NPs) loaded with docetaxel (DTXL) and SHH siRNA for PCa bone metastasis treatment. For bone targeting purposes, the nanoplatform was modified with alendronate (ALN). (DTXL + siRNA)@NPs-ALN NPs effectively change the bone microenvironment by inhibiting the SHH paracrine and autocrine signaling, enhancing the anti-tumor effects of DTXL. Besides showing good in vitro cellular uptake, the NPs-ALN also inhibited tumor growth both in vitro and in vivo by inducing apoptosis, cell cycle arrest, and autophagy. This DDS comprised of (DTXL + siRNA)-loaded NPs provides an excellent strategy to treat PCa bone metastasis.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Postdoctoral of Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Pathology, Jining No. 1 People's Hospital, Jining Medical University, Jining, China
| | - Qingbin Liu
- Clinical Medical Laboratory Center, Jining No. 1 People's Hospital, Jining Medical University, Jining, China
| | - Tingting Zhang
- Jining No. 1 People's Hospital, Jining Medical University, Jining, China
| | - Pei Gao
- Jining No. 1 People's Hospital, Jining Medical University, Jining, China
| | - Hui Wang
- Jining No. 1 People's Hospital, Jining Medical University, Jining, China
| | - Lu Yao
- Jining No. 1 People's Hospital, Jining Medical University, Jining, China
| | - Jingwen Huang
- The First Affiliated Hospital of Bengbu Medical College, Tumor Hospital Affiliated to Bengbu Medical College, Bengbu, China
| | - Shulong Jiang
- Clinical Medical Laboratory Center, Jining No. 1 People's Hospital, Jining Medical University, Jining, China
| |
Collapse
|
26
|
Song S, Guo Y, Yang Y, Fu D. Advances in pathogenesis and therapeutic strategies for osteoporosis. Pharmacol Ther 2022; 237:108168. [PMID: 35283172 DOI: 10.1016/j.pharmthera.2022.108168] [Citation(s) in RCA: 220] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 02/07/2023]
Abstract
Osteoporosis, is the most common bone disorder worldwide characterized by low bone mineral density, leaving affected bones vulnerable to fracture. Bone homeostasis depends on the precise balance between bone resorption by osteoclasts and bone matrix formation by mesenchymal lineage osteoblasts, and involves a series of complex and highly regulated steps. Bone homeostasis will be disrupted when the speed of bone resorption is faster than bone formation. Based on various regulatory mechanisms of bone homeostasis, a series of drugs targeting osteoporosis have emerged in clinical practice, including bisphosphonates, selective estrogen receptor modulators, calcitonin, molecular-targeted drugs and so on. However, many drugs have major adverse effects or are unsuitable for long-term use. Therefore, it is very urgent to find more effective therapeutic drugs based on the new pathogenesis of osteoporosis. In this review, we summarize novel mechanisms involved in the pathological process of osteoporosis, including the roles of gut microbiome, autophagy, iron balance and cellular senescence. Based on the above pathological mechanism, we found promising drugs for osteoporosis treatment, such as: probiotics, alpha-ketoglutarate, senolytics and hydrogen sulfide. This new finding may provide an important basis for elucidating the complex pathological mechanisms of osteoporosis and provide promising drugs for clinical osteoporosis treatment.
Collapse
Affiliation(s)
- Shasha Song
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, PR China
| | - Yuanyuan Guo
- Department of Pharmacy, Liyuan Hospital, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei 430077, PR China
| | - Yuehua Yang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, PR China
| | - Dehao Fu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, PR China.
| |
Collapse
|
27
|
Ebetino FH, Sun S, Cherian P, Roshandel S, Neighbors JD, Hu E, Dunford JE, Sedghizadeh PP, McKenna CE, Srinivasan V, Boeckman RK, Russell RGG. Bisphosphonates: The role of chemistry in understanding their biological actions and structure-activity relationships, and new directions for their therapeutic use. Bone 2022; 156:116289. [PMID: 34896359 PMCID: PMC11023620 DOI: 10.1016/j.bone.2021.116289] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/16/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022]
Abstract
The bisphosphonates ((HO)2P(O)CR1R2P(O)(OH)2, BPs) were first shown to inhibit bone resorption in the 1960s, but it was not until 30 years later that a detailed molecular understanding of the relationship between their varied chemical structures and biological activity was elucidated. In the 1990s and 2000s, several potent bisphosphonates containing nitrogen in their R2 side chains (N-BPs) were approved for clinical use including alendronate, risedronate, ibandronate, and zoledronate. These are now mostly generic drugs and remain the leading therapies for several major bone-related diseases, including osteoporosis and skeletal-related events associated with bone metastases. The early development of chemistry in this area was largely empirical and only a few common structural features related to strong binding to calcium phosphate were clear. Attempts to further develop structure-activity relationships to explain more dramatic pharmacological differences in vivo at first appeared inconclusive, and evidence for mechanisms underlying cellular effects on osteoclasts and macrophages only emerged after many years of research. The breakthrough came when the intracellular actions on the osteoclast were first shown for the simpler bisphosphonates, via the in vivo formation of P-C-P derivatives of ATP. The synthesis and biological evaluation of a large number of nitrogen-containing bisphosphonates in the 1980s and 1990s led to the key discovery that the antiresorptive effects of these more complex analogs on osteoclasts result mostly from their potency as inhibitors of the enzyme farnesyl diphosphate synthase (FDPS/FPPS). This key branch-point enzyme in the mevalonate pathway of cholesterol biosynthesis is important for the generation of isoprenoid lipids that are utilized for the post-translational modification of small GTP-binding proteins essential for osteoclast function. Since then, it has become even more clear that the overall pharmacological effects of individual bisphosphonates on bone depend upon two key properties: the affinity for bone mineral and inhibitory effects on biochemical targets within bone cells, in particular FDPS. Detailed enzyme-ligand crystal structure analysis began in the early 2000s and advances in our understanding of the structure-activity relationships, based on interactions with this target within the mevalonate pathway and related enzymes in osteoclasts and other cells have continued to be the focus of research efforts to this day. In addition, while many members of the bisphosphonate drug class share common properties, now it is more clear that chemical modifications to create variations in these properties may allow customization of BPs for different uses. Thus, as the appreciation for new potential opportunities with this drug class grows, new chemistry to allow ready access to an ever-widening variety of bisphosphonates continues to be developed. Potential new uses of the calcium phosphate binding mechanism of bisphosphonates for the targeting of other drugs to the skeleton, and effects discovered on other cellular targets, even at non-skeletal sites, continue to intrigue scientists in this research field.
Collapse
Affiliation(s)
- Frank H Ebetino
- BioVinc LLC, 2265 E. Foothill Blvd, Pasadena, CA 91107, USA; Department of Chemistry, University of Rochester, Rochester, NY 14617, USA; Department of Oncology & Metabolism, University of Sheffield, Sheffield, UK.
| | - Shuting Sun
- BioVinc LLC, 2265 E. Foothill Blvd, Pasadena, CA 91107, USA.
| | - Philip Cherian
- BioVinc LLC, 2265 E. Foothill Blvd, Pasadena, CA 91107, USA
| | | | | | - Eric Hu
- BioVinc LLC, 2265 E. Foothill Blvd, Pasadena, CA 91107, USA
| | - James E Dunford
- Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences, The Oxford University Institute of Musculoskeletal Sciences, The Botnar Research Centre, Nuffield Orthopaedic Centre, Headington, Oxford OX3 7LD, UK
| | - Parish P Sedghizadeh
- Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Charles E McKenna
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Venkat Srinivasan
- Department of Chemistry, University of Rochester, Rochester, NY 14617, USA
| | - Robert K Boeckman
- Department of Chemistry, University of Rochester, Rochester, NY 14617, USA
| | - R Graham G Russell
- Department of Oncology & Metabolism, University of Sheffield, Sheffield, UK; Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences, The Oxford University Institute of Musculoskeletal Sciences, The Botnar Research Centre, Nuffield Orthopaedic Centre, Headington, Oxford OX3 7LD, UK; Mellanby Centre for Musculoskeletal Research, University of Sheffield, Sheffield, UK
| |
Collapse
|
28
|
de Faria LP, Sueyoshi G, de Oliveira TC, Holliday LS, Arana-Chavez VE. Effects of Alendronate and Dexamethasone on Osteoclast Gene Expression and Bone Resorption in Mouse Marrow Cultures. J Histochem Cytochem 2022; 70:169-179. [PMID: 34915746 PMCID: PMC8777375 DOI: 10.1369/00221554211063519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Osteoclasts are cells whose main function is the resorption of bone matrix. However, several factors, including medications, can interfere with the resorption process. Alendronate (ALN), a nitrogen-containing type of bisphosphonate, and dexamethasone (DEX), a glucocorticoid, are drugs that may affect the resorption activity. The aim of this study is to investigate the effects of ALN, and/or DEX on osteoclast gene expression and resorption activity in primary mouse marrow cultures stimulated with 1,25-dihydroxyvitamin D3, a model for the bone microenvironment. Cultures were treated only with ALN (10-5 M), DEX (10-6 M), and with a combination of both agents. Viability assays performed at days 5, 7, and 9 showed the highest number of viable cells at day 7. All the following assays were then performed at day 7 of cell culture: tartrate resistant acid phosphatase (TRAP) histochemistry, receptor activator of nuclear factor kappa B ligand (RANKL) immunofluorescence, osteoprotegerin (OPG), and RANKL gene expression by qPCR and resorption analysis by scanning electron microscopy. Treatment with ALN, DEX, and the combination of both did not promote significant changes in the number of TRAP+ cells, although larger giant cells were detected in groups treated with DEX. DEX treatment increased the gene expression of RANKL and reduced OPG. The treatment with ALN reduced the depth of the resorption pits, but their inhibitory effect was less effective when administered with DEX.
Collapse
Affiliation(s)
| | - Giuliana Sueyoshi
- Department of Biomaterials and Oral
Biology, School of Dentistry, University of São Paulo, São
Paulo, Brazil
| | - Taís Carvalho de Oliveira
- Department of Biomaterials and Oral
Biology, School of Dentistry, University of São Paulo, São
Paulo, Brazil
| | - L. Shannon Holliday
- Department of Orthodontics, College
of Dentistry, University of Florida, Gainesville, Florida
| | - Victor E. Arana-Chavez
- Victor E. Arana-Chavez, Department
of Biomaterials and Oral Biology, School of Dentistry, University of
São Paulo, São Paulo 05508-000, SP, Brazil. E-mail:
| |
Collapse
|
29
|
Synergistic Effect of Whitlockite Scaffolds Combined with Alendronate to Promote Bone Regeneration. Tissue Eng Regen Med 2021; 19:83-92. [PMID: 34962627 PMCID: PMC8782946 DOI: 10.1007/s13770-021-00416-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Due to the increasing aging of society, the number of patients suffering from senile diseases is increasing. Patients suffering from osteoporosis, which is a representative senile disease, take a long time to recover from fractures, and the resulting mortality rate is very high. Alendronate (Ald), which is widely used as a treatment for osteoporosis, alleviates osteoporosis by inhibiting osteoclasts. In addition, whitlockite (WH) promotes the osteogenic differentiation of bone cells and improves bone regeneration. Therefore, we intended to bring about a synergistic effect by using these substances together. METHODS In this study, a scaffold composed of gelatin/heparin was fabricated and applied to effectively use WH and Ald together. A scaffold was constructed using gelatin and heparin was used to effectively utilize the cations released from WH. In addition, it formed a porous structure for effective bone regeneration. In vitro and in vivo osteoclast inhibition, osteogenic differentiation, and bone regeneration were studied using the prepared scaffolds. RESULTS The inhibition of osteoclast was much higher when WH and Ald were applied in combination rather than individually. The highest level of osteogenic differentiation was observed when both substances were applied simultaneously. In addition, when applied to bone regeneration through the mouse calvarial defect model, combined treatment showed excellent bone regeneration. CONCLUSION Therefore, this study showed the synergistic effect of WH and Ald, and it is suggested that better bone regeneration is possible by applying this treatment to bones with fractures that are difficult to regenerate.
Collapse
|
30
|
Spanyer J, Barber LA, Lands H, Brown A, Bouxsein M, Heng M, Yakkanti M. Health-related quality of life outcomes after surgical treatment of atypical femur fractures: a multicenter retrospective cohort study. JBMR Plus 2021; 5:e10514. [PMID: 34761142 PMCID: PMC8567490 DOI: 10.1002/jbm4.10514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 11/10/2022] Open
Abstract
The objective of this study was to examine the health-related quality of life (HRQOL) outcomes for surgically-treated atypical femur fractures (AFFs) compared to typical femoral diaphyseal fractures. Two large trauma center databases were retrospectively queried for surgically-treated femur fractures. Fractures were grouped into AFFs and compared to a control cohort. Controls for the AFF group included women with diaphyseal fractures without additional AFF characteristics. Patients were contacted for administration of the Short Form-36v2 Health Survey. Surveys were completed an average of 30.3 months (range, 6-138 months) and 25.5 months (range, 5-77 months) postoperatively for the AFF and non-AFF groups, respectively. All patients were female, with 46 patients in the AFF and 26 patients in the non-AFF group. The average age of the AFF group was 70.1 years compared with an average age of 67.4 years in the non-AFF group (p = 0.287). Over 90% (91.3%) of patients in the AFF group had a history of bisphosphonate use while 26.9% of patients in the non-AFF group had used bisphosphonates (p < 0.0001). Patients with AFF reported their postoperative physical and mental health to be no different than similarly aged patients with femoral diaphyseal fractures, as measured by the Short Form 36, version 2 (SF-36v2) Health Survey. These data suggest that mid-term patient-reported quality of life outcomes are similar among women who sustain an AFF compared to a cohort of more typical femoral diaphyseal fractures. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
| | - Lauren A Barber
- Hospital for Special Surgery Orthopaedic Surgery New York New York USA
| | - Harrison Lands
- Dartmouth-Hitchcock Health System Lebanon New Hampshire USA
| | - Alexander Brown
- Andrews Sports Medicine and Orthopaedic Center Birmingham Alabama USA
| | - Mary Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center Boston Massachusetts USA
| | - Marilyn Heng
- Orthopaedic Trauma Surgery Massachusetts General Hospital Boston Massachusetts USA
| | | |
Collapse
|
31
|
Guo Y, Liu Y, Shi C, Wu T, Cui Y, Wang S, Liu P, Feng X, He Y, Fu D. Remote-controllable bone-targeted delivery of estradiol for the treatment of ovariectomy-induced osteoporosis in rats. J Nanobiotechnology 2021; 19:248. [PMID: 34407835 PMCID: PMC8371851 DOI: 10.1186/s12951-021-00976-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/27/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Osteoporosis (OP) is a systemic skeletal disease marked by bone mass reduction and bone tissue destruction. Hormone replacement therapy is an effective treatment for post-menopausal OP, but estrogen has poor tissue selectivity and severe side effects. RESULTS In this study, we constructed a poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs)-based drug delivery system to co-load 17β estradiol (E2) and iron oxide (Fe3O4) together, modified with alendronate (AL) to achieve bone targeting and realize a magnetically remote-controllable drug release. The NPs were fabricated through the emulsion solvent diffusion method. The particle size was approximately 200 nm while the encapsulation efficiency of E2 was 58.34 ± 9.21%. The NPs were found to be spherical with a homogenous distribution of particle size. The NPs showed good stability, good biocompatibility, high encapsulation ability of E2 and excellent magnetic properties. The NPs could be effectively taken up by Raw 264.7 cells and were effective in enriching drugs in bone tissue. The co-loaded NPs exposed to an external magnetic field ameliorated OVX-induced bone loss through increased BV/TV, decreased Tb.N and Tb.Sp, improved bone strength, increased PINP and OC, and downregulated CTX and TRAP-5b. The haematological index and histopathological analyses displayed the NPs had less side effects on non-skeletal tissues. CONCLUSIONS This study presented a remote-controlled release system based on bone-targeted multifunctional NPs and a new potential approach to bone-targeted therapy of OP.
Collapse
Affiliation(s)
- Yuanyuan Guo
- Department of Pharmacy, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongwei Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongzhi Cui
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Siyuan Wang
- Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Liu
- Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobo Feng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu He
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dehao Fu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China.
| |
Collapse
|
32
|
Oleksa V, Bernátová I, Patsula V, Líšková S, Bališ P, Radošinská J, Mičurová A, Kluknavský M, Jasenovec T, Radošinská D, Macková H, Horák D. Poly(ethylene glycol)-Alendronate-Coated Magnetite Nanoparticles Do Not Alter Cardiovascular Functions and Red Blood Cells' Properties in Hypertensive Rats. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1238. [PMID: 34067225 PMCID: PMC8151198 DOI: 10.3390/nano11051238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 12/19/2022]
Abstract
In this study, magnetite nanoparticles were prepared and coated with poly(ethylene glycol) terminated by alendronate to ensure firm binding to the iron oxide surface. Magnetic nanoparticles, designated as magnetite coated with poly(ethylene glycol)-alendronate (Fe3O4@PEG-Ale), were characterized in terms of number-average (Dn) and hydrodynamic (Dh) size, ζ-potential, saturation magnetization, and composition. The effect of particles on blood pressure, vascular functions, nitric oxide (NO), and superoxide production in the tissues of spontaneously hypertensive rats, as well as the effect on red blood cell (RBC) parameters, was investigated after intravenous administration (1 mg Fe3O4/kg of body weight). Results showed that Fe3O4@PEG-Ale particles did negatively affect blood pressure, heart rate and RBC deformability, osmotic resistance and NO production. In addition, Fe3O4@PEG-Ale did not alter functions of the femoral arteries. Fe3O4@PEG-Ale induced increase in superoxide production in the kidney and spleen, but not in the left heart ventricle, aorta and liver. NO production was reduced only in the kidney. In conclusion, the results suggest that acute intravenous administration of Fe3O4@PEG-Ale did not produce negative effects on blood pressure regulation, vascular function, and RBCs in hypertensive rats.
Collapse
Affiliation(s)
- Viktoriia Oleksa
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského Nám. 2, 162 06 Prague, Czech Republic; (V.O.); (V.P.); (H.M.)
| | - Iveta Bernátová
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71 Bratislava, Slovakia; (I.B.); (S.L.); (P.B.); (A.M.); (M.K.)
| | - Vitalii Patsula
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského Nám. 2, 162 06 Prague, Czech Republic; (V.O.); (V.P.); (H.M.)
| | - Silvia Líšková
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71 Bratislava, Slovakia; (I.B.); (S.L.); (P.B.); (A.M.); (M.K.)
- Institute of Pharmacology and Clinical Pharmacology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Peter Bališ
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71 Bratislava, Slovakia; (I.B.); (S.L.); (P.B.); (A.M.); (M.K.)
| | - Jana Radošinská
- Institute of Physiology, Faculty of Medicine, Comenius University, Sasinkova 2, 813 72 Bratislava, Slovakia; (J.R.); (T.J.)
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia
| | - Andrea Mičurová
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71 Bratislava, Slovakia; (I.B.); (S.L.); (P.B.); (A.M.); (M.K.)
| | - Michal Kluknavský
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71 Bratislava, Slovakia; (I.B.); (S.L.); (P.B.); (A.M.); (M.K.)
| | - Tomáš Jasenovec
- Institute of Physiology, Faculty of Medicine, Comenius University, Sasinkova 2, 813 72 Bratislava, Slovakia; (J.R.); (T.J.)
| | - Dominika Radošinská
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Mlynská Dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia;
| | - Hana Macková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského Nám. 2, 162 06 Prague, Czech Republic; (V.O.); (V.P.); (H.M.)
| | - Daniel Horák
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského Nám. 2, 162 06 Prague, Czech Republic; (V.O.); (V.P.); (H.M.)
| |
Collapse
|
33
|
Fuggle NR, Curtis B, Clynes M, Zhang J, Ward K, Javaid MK, Harvey NC, Dennison E, Cooper C. The treatment gap: The missed opportunities for osteoporosis therapy. Bone 2021; 144:115833. [PMID: 33359889 PMCID: PMC7116600 DOI: 10.1016/j.bone.2020.115833] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 02/07/2023]
Abstract
Despite substantial advances in delineation of the epidemiology, pathophysiology, risk assessment and treatment of osteoporosis over the last three decades, a substantial proportion of men and women at high risk of fracture remain untreated - the so-called "treatment gap". This review summarises the important patient-, physician- and policyrelated causes of this treatment gap, before discussing in greater detail: (a) the evidence base for the efficacy of bisphosphonates in osteoporosis; (b) recent evidence relating to the adverse effects of this widely used therapeutic class, most notably atypical femoral fracture and osteonecrosis of the jaw; (c) available strategies to improve both secondary and primary prevention pathways for the management of this disorder.
Collapse
Affiliation(s)
- Nicholas R Fuggle
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, UK; Rheumatology Department, University Hospitals Southampton NHS Foundation Trust, Southampton, UK
| | - Beth Curtis
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, UK; Rheumatology Department, University Hospitals Southampton NHS Foundation Trust, Southampton, UK
| | - Michael Clynes
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, UK; Rheumatology Department, University Hospitals Southampton NHS Foundation Trust, Southampton, UK
| | - Jean Zhang
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, UK; Rheumatology Department, University Hospitals Southampton NHS Foundation Trust, Southampton, UK
| | - Kate Ward
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, UK; NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospitals Southampton NHS Foundation Trust, Southampton, UK
| | - Muhammad Kassim Javaid
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, UK; NIHR Oxford Biomedical Research Unit, University of Oxford, Oxford, UK
| | - Nicholas C Harvey
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, UK; Rheumatology Department, University Hospitals Southampton NHS Foundation Trust, Southampton, UK; NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospitals Southampton NHS Foundation Trust, Southampton, UK
| | - Elaine Dennison
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, UK; Rheumatology Department, University Hospitals Southampton NHS Foundation Trust, Southampton, UK; NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospitals Southampton NHS Foundation Trust, Southampton, UK
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, UK; Rheumatology Department, University Hospitals Southampton NHS Foundation Trust, Southampton, UK; NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospitals Southampton NHS Foundation Trust, Southampton, UK; NIHR Oxford Biomedical Research Unit, University of Oxford, Oxford, UK.
| |
Collapse
|
34
|
Matsumoto T, Endo I. RANKL as a target for the treatment of osteoporosis. J Bone Miner Metab 2021; 39:91-105. [PMID: 33057808 DOI: 10.1007/s00774-020-01153-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 08/23/2020] [Indexed: 12/11/2022]
Abstract
Osteoporosis is characterized by compromised bone strength, predisposing to an increased risk of fracture. Because bone is constantly remodeled, and bone mass and structure are determined by the balance between bone resorption and bone formation, it is important to maintain normal bone turnover. Therefore, therapies that reduce bone resorption have been the mainstream of osteoporosis treatment. Receptor activator of nuclear factor-kappa B ligand (RANKL)-RANK signaling was found to play a pivotal role in the regulation of osteoclastic bone resorption, and inhibition of RANKL-RANK system has become an important therapeutic target for the treatment of osteoporosis. Denosumab, a fully human monoclonal anti-RANKL neutralizing antibody, is developed as a drug for the treatment of osteoporosis. This review summarized pharmacokinetic and pharmacodynamic properties of denosumab, clinical studies including phase 2 dose-ranging and its extension study, phase 3 fracture prevention study (FREEDOM) with extension up to 10 years, studies on male osteoporosis (ADAMO study), and on glucocorticoid-induced osteoporosis, along with relevant clinical studies in Japan. In addition, mechanism of denosumab action that can explain its long-term sustained effects, combination and sequential treatment as well as the problems in discontinuation of denosumab, and finally safety of denosumab therapy is discussed.
Collapse
Affiliation(s)
- Toshio Matsumoto
- Fujii Memorial Institute of Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima-shi, Tokushima, 770-8503, Japan.
| | - Itsuro Endo
- Department of Bioregulatory Sciences, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan
| |
Collapse
|