1
|
Li X, Tian F, Liu G, Liu X, Fu M, E Z, Wang C, Gao F. miR-129-5p targets HOXC10 to control BMSC adipogenesis and osteogenesis in a model of steroid-induced osteonecrosis of the femoral head. Am J Transl Res 2024; 16:7374-7384. [PMID: 39822543 PMCID: PMC11733387 DOI: 10.62347/chgj7909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/19/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND Steroid-induced osteonecrosis of the femoral head (SONFH) is a pathological condition primarily driven by an impaired balance in the differentiation of bone marrow mesenchymal stem cells (BMSCs) into adipogenic and osteogenic lineages. This study aimed to explore the role of miR-129-5p as a regulator of SONFH progression and associated mechanisms. METHODS BMSCs were harvested from a rat SONFH model. qPCR was leveraged to assess miR-129-5p levels, while both qPCR and Western immunoblotting were utilized to evaluate HOXC10 expression. CCK8 assay was used to measure the proliferative activity of BMSCs, while their differentiation was analyzed using qPCR and Western blot. RESULTS SONFH was associated with reduced miR-129-5p levels. Downregulation of miR-129-5p promoted BMSC adipogenesis while inhibiting their osteogenic differentiation and enhancing their adipogenesis differentiation. Mechanistically, miR-129-5p was found to regulate these processes by targeting the expression of the HOXC10 gene. CONCLUSIONS MiR-129-5p is downregulated in a rat SONFH model. Reduced miR-129-5p levels facilitated adipogenesis and suppressed osteogenesis in BMSCs through its inhibition of HOXC10. These findings offer novel insights into the prevention and treatment of SONFH.
Collapse
Affiliation(s)
- Xuezhao Li
- Department of Orthopedics, Heilongjiang Provincial HospitalHarbin 150036, Heilongjiang, China
| | - Fangqiu Tian
- Department of Orthopedics, Heilongjiang Provincial HospitalHarbin 150036, Heilongjiang, China
| | - Guohua Liu
- Department of Orthopedics, Heilongjiang Provincial HospitalHarbin 150036, Heilongjiang, China
| | - Xiang Liu
- Department of Orthopedics, Heilongjiang Provincial HospitalHarbin 150036, Heilongjiang, China
| | - Ming Fu
- Department of Orthopedics, Heilongjiang Provincial HospitalHarbin 150036, Heilongjiang, China
| | - Zhiyin E
- Department of Orthopedics, Heilongjiang Provincial HospitalHarbin 150036, Heilongjiang, China
| | - Cong Wang
- Department of Orthopedics, Heilongjiang Provincial HospitalHarbin 150036, Heilongjiang, China
| | - Fapeng Gao
- Department of Orthopedics, Huai’an Hospital of Huai’an CityHuai’an 223200, Jiangsu, China
| |
Collapse
|
2
|
Duan P, Yu YL, Cheng YN, Nie MH, Yang Q, Xia LH, Ji YX, Pan ZY. Exosomal miR-1a-3p derived from glucocorticoid-stimulated M1 macrophages promotes the adipogenic differentiation of BMSCs in glucocorticoid-associated osteonecrosis of the femoral head by targeting Cebpz. J Nanobiotechnology 2024; 22:648. [PMID: 39438865 PMCID: PMC11494760 DOI: 10.1186/s12951-024-02923-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND By interacting with bone marrow mesenchymal stem cells (BMSCs) and regulating their function through exosomes, bone macrophages play crucial roles in various bone-related diseases. Research has highlighted a notable increase in the number of M1 macrophages in glucocorticoid-associated osteonecrosis of the femoral head (GA-ONFH). Nevertheless, the intricate crosstalk between M1 macrophages and BMSCs in the glucocorticoid-stimulated environment has not been fully elucidated, and the underlying regulatory mechanisms involved in the occurrence of GA-ONFH remain unclear. METHODS We employed in vivo mouse models and clinical samples from GA-ONFH patients to investigate the interactions between M1 macrophages and BMSCs. Immunofluorescence staining was used to assess the colocalization of M1 macrophages and BMSCs. Flow cytometry and transcriptomic analysis were performed to evaluate the impact of exosomes derived from normal (n-M1) and glucocorticoid-stimulated M1 macrophages (GC-M1) on BMSC differentiation. Additionally, miR-1a-3p expression was altered in vitro and in vivo to assess its role in regulating adipogenic differentiation. RESULTS In vivo, the colocalization of M1 macrophages and BMSCs was observed, and an increase in M1 macrophage numbers and a decrease in bone repair capabilities were further confirmed in both GA-ONFH patients and mouse models. Both n-M1 and GC-M1 were identified as contributors to the inhibition of osteogenic differentiation in BMSCs to a certain extent via exosome secretion. More importantly, exosomes derived from GC-M1 macrophages exhibited a heightened capacity to regulate the adipogenic differentiation of BMSCs, which was mediated by miR-1a-3p. In vivo and in vitro, miR-1a-3p promoted the adipogenic differentiation of BMSCs by targeting Cebpz and played an important role in the onset and progression of GA-ONFH. CONCLUSION We demonstrated that exosomes derived from GC-M1 macrophages disrupt the balance between osteogenic and adipogenic differentiation in BMSCs, contributing to the pathogenesis of GA-ONFH. Inhibiting miR-1a-3p expression, both in vitro and in vivo, significantly mitigates the preferential adipogenic differentiation of BMSCs, thus slowing the progression of GA-ONFH. These findings provide new insights into the regulatory mechanisms underlying GA-ONFH and highlight potential therapeutic targets for intervention.
Collapse
Affiliation(s)
- Ping Duan
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yong-Le Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yan-Nan Cheng
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Meng-Han Nie
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China
| | - Qing Yang
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China
| | - Liang-Hui Xia
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China
| | - Yan-Xiao Ji
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China.
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| | - Zhen-Yu Pan
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
3
|
Yuan Y, Zou M, Wu S, Liu C, Hao L. Recent advances in nanomaterials for the treatment of femoral head necrosis. Hum Cell 2024; 37:1290-1305. [PMID: 38995503 DOI: 10.1007/s13577-024-01102-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024]
Abstract
Osteonecrosis of the femoral head (ONFH) is a condition that causes considerable pain and discomfort for patients, and its pathogenic mechanisms are not yet fully understood. While there have been many studies that suggest multiple factors may contribute to its development, current treatments involve both surgical and nonsurgical options. However, there is still much room for improvement in these treatment methods, particularly when it comes to preventing postoperative complications and optimizing surgical procedures. Nanomaterials, as a type of small molecule material, have shown great promise in treating bone tissue diseases, including ONFH. In fact, several nanocomposite materials have demonstrated specific effects in preventing ONFH, promoting bone tissue repair and growth, and optimizing surgical treatment. This article provides a comprehensive overview of current treatments for ONFH, including their advantages and limitations, and reviews the latest advances in nanomaterials for treating this condition. Additionally, this article explores the therapeutic mechanisms involved in using nanomaterials to treat ONFH and to identify new methods and ideas for improving outcomes for patients.
Collapse
Affiliation(s)
- Yalin Yuan
- Department of Orthopedics, Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Mi Zou
- Department of Orthopedics, Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Shuqin Wu
- Department of Orthopedics, Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Congcong Liu
- Department of Orthopedics, Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Liang Hao
- Department of Orthopedics, Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
4
|
Zhang J, Cao J, Liu Y, Zhao H. Advances in the Pathogenesis of Steroid-Associated Osteonecrosis of the Femoral Head. Biomolecules 2024; 14:667. [PMID: 38927070 PMCID: PMC11202272 DOI: 10.3390/biom14060667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Osteonecrosis of the femoral head (ONFH) is a refractory orthopedic condition characterized by bone cell ischemia, necrosis, bone trabecular fracture, and clinical symptoms such as pain, femoral head collapse, and joint dysfunction that can lead to disability. The disability rate of ONFH is very high, which imposes a significant economic burden on both families and society. Steroid-associated osteonecrosis of the femoral head (SANFH) is the most common type of ONFH. However, the pathogenesis of SANFH remains unclear, and it is an urgent challenge for orthopedic surgeons to explore it. In this paper, the pathogenesis of SANFH and its related signaling pathways were briefly reviewed to enhance comprehension of the pathogenesis and prevention of SANFH.
Collapse
Affiliation(s)
- Jie Zhang
- The First Clinical College of Medicine, Lanzhou University, Lanzhou 730000, China; (J.Z.); (J.C.); (Y.L.)
| | - Jianze Cao
- The First Clinical College of Medicine, Lanzhou University, Lanzhou 730000, China; (J.Z.); (J.C.); (Y.L.)
| | - Yongfei Liu
- The First Clinical College of Medicine, Lanzhou University, Lanzhou 730000, China; (J.Z.); (J.C.); (Y.L.)
| | - Haiyan Zhao
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
5
|
Xia C, Xu H, Fang L, Chen J, Yuan W, Fu D, Wang X, He B, Xiao L, Wu C, Tong P, Chen D, Wang P, Jin H. β-catenin inhibition disrupts the homeostasis of osteogenic/adipogenic differentiation leading to the development of glucocorticoid-induced osteonecrosis of the femoral head. eLife 2024; 12:RP92469. [PMID: 38376133 PMCID: PMC10942600 DOI: 10.7554/elife.92469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024] Open
Abstract
Glucocorticoid-induced osteonecrosis of the femoral head (GONFH) is a common refractory joint disease characterized by bone damage and the collapse of femoral head structure. However, the exact pathological mechanisms of GONFH remain unknown. Here, we observed abnormal osteogenesis and adipogenesis associated with decreased β-catenin in the necrotic femoral head of GONFH patients. In vivo and in vitro studies further revealed that glucocorticoid exposure disrupted osteogenic/adipogenic differentiation of bone marrow mesenchymal cells (BMSCs) by inhibiting β-catenin signaling in glucocorticoid-induced GONFH rats. Col2+ lineage largely contributes to BMSCs and was found an osteogenic commitment in the femoral head through 9 mo of lineage trace. Specific deletion of β-catenin gene (Ctnnb1) in Col2+ cells shifted their commitment from osteoblasts to adipocytes, leading to a full spectrum of disease phenotype of GONFH in adult mice. Overall, we uncover that β-catenin inhibition disrupting the homeostasis of osteogenic/adipogenic differentiation contributes to the development of GONFH and identify an ideal genetic-modified mouse model of GONFH.
Collapse
Affiliation(s)
- Chenjie Xia
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
- Department of Orthopedic Surgery, the Affiliated Lihuili Hospital of Ningbo UniversityNingboChina
| | - Huihui Xu
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
- The First College of Clinical Medicine, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Liang Fang
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
| | - Jiali Chen
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
| | - Wenhua Yuan
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
| | - Danqing Fu
- School of Basic Medical Sciences, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Xucheng Wang
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
| | - Bangjian He
- Department of Orthopedic Surgery, the First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Luwei Xiao
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
| | - Chengliang Wu
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
| | - Peijian Tong
- Department of Orthopedic Surgery, the First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Di Chen
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced TechnologyShenzhenChina
| | - Pinger Wang
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
- The First College of Clinical Medicine, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Hongting Jin
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
- The First College of Clinical Medicine, Zhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
6
|
Jiang H, Wang W, Mao Y, Jiang L, Yu J, Zhu X, Fu H, Lin Z, Shen H, Pan X, Xue X. Morroniside-mediated mitigation of stem cell and endothelial cell dysfunction for the therapy of glucocorticoid-induced osteonecrosis of the femoral head. Int Immunopharmacol 2024; 127:111421. [PMID: 38157694 DOI: 10.1016/j.intimp.2023.111421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Prolonged use of glucocorticoids (GCs) potentially lead to a condition known as GCs-induced osteonecrosis of the femoral head (GIONFH). The primary mechanisms underlying this phenomenon lies in stem cells and endothelial cells dysfunctions. Morroniside, an iridoid glycoside sourced from Cornus officinalis, possesses numerous biological capabilities, including combating oxidative stress, preventing apoptosis, opposing ischemic effects, and promoting the regeneration of bone tissue. PURPOSE This study aimed to analyze the impact of Morroniside on Dexamethasone (DEX)-induced dysfunction in stem cells and endothelial cells, and its potential as a therapeutic agent for GIONFH in rat models. METHODS ROS assay, JC-1 assay, and TUNEL assay were used to detect oxidative stress and apoptosis levels in vitro. For the evaluation of the osteogenic capability of bone marrow-derived mesenchymal stem cells, we employed ALP and ARS staining. Additionally, the angiogenic ability of endothelial cells was assessed using tube formation assay and migration assay. Microcomputed tomography analysis, hematoxylin-eosin staining, and immunohistochemical staining were utilized to evaluate the in vivo therapeutic efficacy of Morroniside. RESULTS Morroniside mitigates DEX-induced excessive ROS expression and cell apoptosis, effectively reducing oxidative stress and alleviating cell death. In terms of osteogenesis, Morroniside reverses DEX-induced osteogenic impairment, as evidenced by enhanced ALP and ARS staining, as well as increased osteogenic protein expression. In angiogenesis, Morroniside counteracts DEX-induced vascular dysfunction, demonstrated by an increase in tube-like structures in tube formation assays, a rise in the number of migrating cells, and elevated levels of angiogenic proteins. In vivo, our results further indicate that Morroniside alleviates the progression of GIONFH. CONCLUSION The experimental findings suggest that Morroniside concurrently mitigates stem cell and endothelial cell dysfunction through the PI3K/AKT signaling pathway both in vitro and in vivo. These outcomes suggest that Morroniside serves as a potential therapeutic agent for GIONFH.
Collapse
Affiliation(s)
- Hongyi Jiang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Weidan Wang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yiwen Mao
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Liting Jiang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiachen Yu
- The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xinyi Zhu
- The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Haonan Fu
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhongnan Lin
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hanting Shen
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiaoyun Pan
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Xinghe Xue
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
7
|
Ding S, Ma Y, Yang J, Tang Y, Jin Y, Li L, Ma C. MiR-224-5p inhibits osteoblast differentiation and impairs bone formation by targeting Runx2 and Sp7. Cytotechnology 2023; 75:505-516. [PMID: 37841957 PMCID: PMC10575840 DOI: 10.1007/s10616-023-00593-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 08/24/2023] [Indexed: 10/17/2023] Open
Abstract
Osteoporosis is a complicated multifactorial disorder characterized by low bone mass and deteriorated bone microarchitecture with an elevated fracture risk. MicroRNAs play important roles in osteoblastic differentiation. In the present study, we found that miR-224-5p was markedly downregulated during the osteogenic differentiation of C2C12 cells. Overexpression of miR-224-5p in C2C12 cells inhibited osteoblast activity, as indicated by reduced ALP activity, matrix mineralization and the expression of osteogenic marker genes. Moreover, we demonstrated that Runx2 and Sp7 were direct targets of miR-224-5p. Furthermore, the specific inhibition of miR-224-5p by femoral bone marrow cavity injection with miR-224-5p antagomir prevented ovariectomy-induced bone loss. Finally, we found that the levels of miR-224-5p were markedly elevated in the sera of patients with osteoporosis. Collectively, this study revealed that miR-224-5p negatively regulates osteogenic differentiation by targeting Runx2 and Sp7. It also highlights the potential use of miR-224-5p as a therapeutic target and diagnostic biomarker for osteoporosis. Supplementary information The online version contains supplementary material available at 10.1007/s10616-023-00593-z.
Collapse
Affiliation(s)
- Siyang Ding
- Department of Medical Genetics, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166 China
- Jiangsu Key Laboratory of Oral Disease, Department of Sixth Outpatient, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 210029 China
| | - Yunfei Ma
- Department of Medical Genetics, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166 China
| | - Jiashu Yang
- Department of Medical Genetics, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166 China
| | - Yuting Tang
- Department of Medical Genetics, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166 China
| | - Yucui Jin
- Department of Medical Genetics, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166 China
| | - Lingyun Li
- Department of Medical Genetics, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166 China
| | - Changyan Ma
- Department of Medical Genetics, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166 China
| |
Collapse
|
8
|
Chen S, Dai M. The miR-224-5p/SIRT3/AMPK/mTOR axis is involved in the melatonin-mediated inhibition of glucocorticoid-induced osteoporosis by activating autophagy. Hum Cell 2023; 36:1965-1977. [PMID: 37486565 DOI: 10.1007/s13577-023-00929-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/02/2023] [Indexed: 07/25/2023]
Abstract
Melatonin has been shown to exert an inhibitory effect on osteoporosis. This study investigates the function of the miR-224-5p/SIRT3/AMPK/mTOR axis in melatonin-mediated effects against osteoporosis. Human bone marrow mesenchymal stem cells (hBMSCs) were treated with glucocorticoid dexamethasone to induce an in vitro osteoporosis model. After melatonin treatment, miR-224-5p and SIRT3 levels were measured by RT‒PCR. Transmission electron microscopy and immunofluorescence were conducted for evaluating autophagy. Western blotting was carried out to determine the expression of osteogenesis-related proteins (Runx2, OSX, OPN, and OCN), SIRT3-AMPK-mTOR axis, and autophagy-related markers (LC3 and p62). Alizarin red staining was used to measure matrix mineralization. The data showed that melatonin inhibited dexamethasone-induced osteoporosis in vitro, and enhanced autophagic levels (as indicated by increased LC3 puncta, LC3II/I ratio, and autophagic vacuoles). In terms of the mechanisms, melatonin decreased miR-224-5p expression and increased SIRT3. SRIT3 was shown to be a direct target of miR-224-5p. miR-224-5p upregulation or SIRT3 downregulation reversed the effects of melatonin on osteoporosis and suppressed autophagy. Additionally, miR-224-5p inhibited SIRT3 expression and AMPK pathway activation. In summary, we discovered that melatonin suppressed glucocorticoid-induced osteoporosis and autophagy inhibition via the miR-224-5p/SIRT3/AMPK/mTOR axis.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Orthopedic, Shaoxing Second Hospital, No.123 Yan'an Road, Shaoxing, 312000, Zhejiang, China
| | - Min Dai
- Department of Orthopedic, The First Affiliated Hospital of Nanchang University, No.17 Yongwai Zheng Street, Donghu District, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
9
|
Loh HY, Norman BP, Lai KS, Cheng WH, Nik Abd Rahman NMA, Mohamed Alitheen NB, Osman MA. Post-Transcriptional Regulatory Crosstalk between MicroRNAs and Canonical TGF-β/BMP Signalling Cascades on Osteoblast Lineage: A Comprehensive Review. Int J Mol Sci 2023; 24:ijms24076423. [PMID: 37047394 PMCID: PMC10094338 DOI: 10.3390/ijms24076423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 04/14/2023] Open
Abstract
MicroRNAs (miRNAs) are a family of small, single-stranded, and non-protein coding RNAs about 19 to 22 nucleotides in length, that have been reported to have important roles in the control of bone development. MiRNAs have a strong influence on osteoblast differentiation through stages of lineage commitment and maturation, as well as via controlling the activities of osteogenic signal transduction pathways. Generally, miRNAs may modulate cell stemness, proliferation, differentiation, and apoptosis by binding the 3'-untranslated regions (3'-UTRs) of the target genes, which then can subsequently undergo messenger RNA (mRNA) degradation or protein translational repression. MiRNAs manage the gene expression in osteogenic differentiation by regulating multiple signalling cascades and essential transcription factors, including the transforming growth factor-beta (TGF-β)/bone morphogenic protein (BMP), Wingless/Int-1(Wnt)/β-catenin, Notch, and Hedgehog signalling pathways; the Runt-related transcription factor 2 (RUNX2); and osterix (Osx). This shows that miRNAs are essential in regulating diverse osteoblast cell functions. TGF-βs and BMPs transduce signals and exert diverse functions in osteoblastogenesis, skeletal development and bone formation, bone homeostasis, and diseases. Herein, we highlighted the current state of in vitro and in vivo research describing miRNA regulation on the canonical TGF-β/BMP signalling, their effects on osteoblast linage, and understand their mechanism of action for the development of possible therapeutics. In this review, particular attention and comprehensive database searches are focused on related works published between the years 2000 to 2022, using the resources from PubMed, Google Scholar, Scopus, and Web of Science.
Collapse
Affiliation(s)
- Hui-Yi Loh
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Brendan P Norman
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women's College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Wan-Hee Cheng
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, Nilai 71800, Negeri Sembilan, Malaysia
| | - Nik Mohd Afizan Nik Abd Rahman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Noorjahan Banu Mohamed Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohd Azuraidi Osman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
10
|
Han N, Qian F, Niu X, Chen G. Circ_0058792 regulates osteogenic differentiation through miR-181a-5p/Smad7 axis in steroid-induced osteonecrosis of the femoral head. Bioengineered 2022; 13:12807-12822. [PMID: 35611880 PMCID: PMC9276051 DOI: 10.1080/21655979.2022.2074617] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Osteonecrosis of the femoral head (ONFH) caused by steroids is a severe orthopedic disorder resulting from the use of high-dose steroid drugs, characterized by structural changes in the bone, joint dysfunction, and femoral head collapse. CircRNAs and miRNAs have increasingly been suggested to play pivotal roles in osteogenic differentiation and osteogenesis. Significant upregulation of circ_0058792 was observed in patients with steroid-induced ONFH. Bioinformatic analysis showed that circ_0058792 might act as a sponge for miR-181a-5p. This study further investigated the mechanisms underlying the role of circ_0058792 and miR-181a-5p in osteogenic differentiation in methylprednisolone-induced ONFH rats and MC3T3-E1 cells. The results showed a notable decrease in the serum of miR-181a-5p in methylprednisolone-induced ONFH rats. Silencing of circ_0058792 using siRNAs and overexpression of miR-181a-5p significantly increased alkaline phosphatase activity and matrix mineralization capacity. Additionally, markers for osteogenic differentiation were significantly upregulated in miR-181a-5p-transfected cells. However, overexpression of circ_0058792 and the addition of the miR-181a-5p inhibitor reversed this increase. Smad7 was identified to be miR-181a-5p's direct target and circ_0058792 was confirmed to be miR-181a-5p's competing endogenous RNA (ceRNA). Upregulation of miR-181a-5p promotes phosphorylation of Smad2 and Smad3. Furthermore, circ_0058792 and miR-181a-5p had opposing effects on Smad7 expression. Collectively, these findings indicate that circ_0058792 regulates osteogenic differentiation by sponging miR-181a-5p via the TGF-β/Smad7 pathway. These findings elucidated the functions of circ_0058792 and miR-181a-5p in the regulation of steroid-induced ONFH. Our findings also indicated that circ_0058792 and miR-181a-5p are possible diagnostic markers and therapeutic targets for treating steroid-induced ONFH.
Collapse
Affiliation(s)
- Ning Han
- Department of Orthopaedic Traumatology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fei Qian
- Department of Stomatology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xianping Niu
- Department of Geriatric Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guoting Chen
- Department of Emergency Traumatology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Liao Z, Jin Y, Chu Y, Wu H, Li X, Deng Z, Feng S, Chen N, Luo Z, Zheng X, Bao L, Xu Y, Tan H, Zhao L. Single-cell transcriptome analysis reveals aberrant stromal cells and heterogeneous endothelial cells in alcohol-induced osteonecrosis of the femoral head. Commun Biol 2022; 5:324. [PMID: 35388143 PMCID: PMC8987047 DOI: 10.1038/s42003-022-03271-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 03/14/2022] [Indexed: 01/14/2023] Open
Abstract
Alcohol-induced osteonecrosis of the femoral head (ONFH) is a disabling disease with a high incidence and elusive pathogenesis. Here, we used single-cell RNA sequencing to explore the transcriptomic landscape of mid- and advanced-stage alcohol-induced ONFH. Cells derived from age-matched hip osteoarthritis and femoral neck fracture samples were used as control. Our bioinformatics analysis revealed the disorder of osteogenic-adipogenic differentiation of stromal cells in ONFH and altered regulons such as MEF2C and JUND. In addition, we reported that one of the endothelial cell clusters with ACKR1 expression exhibited strong chemotaxis and a weak angiogenic ability and expanded with disease progression. Furthermore, ligand-receptor-based cell-cell interaction analysis indicated that ACKR1+ endothelial cells might specifically communicate with stromal cells through the VISFATIN and SELE pathways, thus influencing stromal cell differentiation in ONFH. Overall, our data revealed single cell transcriptome characteristics in alcohol-induced ONFH, which may contribute to the further investigation of ONFH pathogenesis. Single-cell RNA-seq of bone from patients with osteonecrosis of the femoral head (ONFH) highlights the relevance of stromal and endothelial cells to disease pathogenesis, and provides a resource for developing cell type-specific therapeutic strategies.
Collapse
Affiliation(s)
- Zheting Liao
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, 510515, Guangzhou, Guangdong, China
| | - Yu Jin
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, 510515, Guangzhou, Guangdong, China
| | - Yuhao Chu
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, 510515, Guangzhou, Guangdong, China
| | - Hansen Wu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, 510515, Guangzhou, Guangdong, China.,General Administration Office, ZhuJiang Hospital of Southern Medical University, 510280, Guangzhou, Guangdong, China
| | - Xiaoyu Li
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, 510515, Guangzhou, Guangdong, China
| | - Zhonghao Deng
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, 510515, Guangzhou, Guangdong, China
| | - Shuhao Feng
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, 510515, Guangzhou, Guangdong, China
| | - Nachun Chen
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, 510515, Guangzhou, Guangdong, China
| | - Ziheng Luo
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, 510515, Guangzhou, Guangdong, China
| | - Xiaoyong Zheng
- Orthopaedic Department, The 8th medical center of Chinese PLA General Hospital, 100091, Beijing, China
| | - Liangxiao Bao
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, China
| | - Yongqing Xu
- Department of Orthopaedic, The 920th Hospital of Joint Logistics Support Force, 650020, Kunming, Yunnan, China
| | - Hongbo Tan
- Department of Orthopaedic, The 920th Hospital of Joint Logistics Support Force, 650020, Kunming, Yunnan, China.
| | - Liang Zhao
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, China. .,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, 510515, Guangzhou, Guangdong, China. .,Department of Orthopaedic Surgery, Shunde First People Hospital, 528300, Foshan, Guangdong, China.
| |
Collapse
|
12
|
Lu Z, Han K. SMAD4 transcriptionally activates GCN5 to inhibit apoptosis and promote osteogenic differentiation in dexamethasone-induced human bone marrow mesenchymal stem cells. Steroids 2022; 179:108969. [PMID: 35122789 DOI: 10.1016/j.steroids.2022.108969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/30/2021] [Accepted: 01/22/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Steroid-induced osteonecrosis of the femoral head (SONFH) is a serious complication caused by long-term or excessive use of glucocorticoids (GCs). General control non-derepressible 5 (GCN5) has been reported to be lowly expressed in bone tissue. Therefore, this paper attempts to investigate the role of GCN5 in SONFH and identify the potential regulatory mechanism. EXPERIMENTAL DESIGN Following human bone mesenchymal stem cells (hBMSCs) being stimulated with dexamethasone (Dex), GCN5 expression was detected using RT-qPCR and western blotting. Then, GCN5 was overexpressed and cell viability was assessed by cell counting kit and lactate dehydrogenase kit. Cell apoptosis was determined with terminal deoxynucleotidyl transferase dUTPnickendlabeling (TUNEL) and the expression of apoptosis-related proteins was evaluated using western blotting. Alkaline phosphatase (ALP) staining and alizarin red staining were adopted for the analysis of osteogenic differentiation. Additionally, the relationship between small mothers against decapentaplegic protein 4 (SMAD4) and GCN5 was predicted by hTFtarget website and verified by luciferase reporter- and chromatin immunoprecipitation (ChIP) assays. Subsequently, SMAD4 was silenced to determine cell viability, apoptosis and osteogenic differentiation in Dex-induced hBMSCs with GCN5 upregulation. RESULTS GCN5 expressed lower in hBMSCs exposed to Dex. GCN5 overexpression elevated cell viability, attenuated apoptosis and promoted osteogenic differentiation of hBMSCs. Additionally, SMAD4 transcriptionally activated GCN5 and upregulated GCN5 expression. While SMAD4 knockdown reversed the protective effects of GCN5 overexpression on Dex-induced cell viability loss, apoptosis increase and osteogenic differentiation inhibition in hBMSCs. CONCLUSIONS SMAD4 transcriptionally activated GCN5 to inhibit apoptosis and promote osteogenic differentiation in Dex-induced hBMSCs.
Collapse
Affiliation(s)
- Zhihua Lu
- Medical School, Yangzhou Polytechnic College, Yangzhou, Jiangsu 225009, China
| | - Kuijing Han
- Department of Orthopedics, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225001, China; Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, China
| |
Collapse
|
13
|
Wen Z, Li Y, Cai Z, Fan M, Wang J, Ding R, Huang C, Xiao W. Global Trends and Current Status in Osteonecrosis of the Femoral Head: A Bibliometric Analysis of Publications in the Last 30 Years. Front Endocrinol (Lausanne) 2022; 13:897439. [PMID: 35784575 PMCID: PMC9240286 DOI: 10.3389/fendo.2022.897439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/03/2022] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION Osteonecrosis of the femoral head (ONFH) is a progressive and disabling disease with severe socioeconomic burdens. In the last 30 years, a growing number of publications have reported significant advances in understanding ONFH. However, only a few studies have clarified its global trends and current status. Thus, the purpose of our study was to summarize the global trends and current status in ONFH through bibliometrics. MATERIALS AND METHODS Publications related to ONFH from 1991 to 2020 were searched from the Web of Science (WOS) core collection database. The data were analyzed with bibliometric methods. Microsoft Excel was used for statistical analysis and to draw bar charts. SPSS was applied to perform linear regression analysis. VOSviewer was used to conduct bibliographic coupling analysis, co-authorship analysis, co-citation analysis and co-occurrence analysis. RESULTS A total of 5,523 publications were covered. The United States consistently ranked first in total publications, sum of times cited, average citations per item and H-index. Kyushu University was the main contributor to ONFH. Clinical Orthopaedics and Related Research was the major publishing channels for ONFH-related articles. Takuaki Yamamoto published the most ONFH-related articles. Studies regarding ONFH could be divided into five clusters: 1) mechanism study, 2) treatment study, 3) complication study, 4) radiological study and 5) etiological study. Mechanism study might become a hot spot in the future. CONCLUSIONS The total number of publications in ONFH has generally increased over the last three decades. The United States was the leading country in ONFH research. Transplantation, engineering, cell and molecular biology, pharmacology and endocrinology have gradually increased and become hot topics in ONFH research. Mechanism study in ONFH including mesenchymal stem cells, apoptosis, oxidative stress, adipogenesis, osteogenic differentiation and endothelial progenitor cells, have attracted more attention and will become a hot spot in the future.
Collapse
Affiliation(s)
- Zeqin Wen
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Yusheng Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zijun Cai
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Meng Fan
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing, China
| | - Jian Wang
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing, China
| | - Ran Ding
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Ran Ding, ; Cheng Huang, ; Wenfeng Xiao,
| | - Cheng Huang
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Ran Ding, ; Cheng Huang, ; Wenfeng Xiao,
| | - Wenfeng Xiao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Ran Ding, ; Cheng Huang, ; Wenfeng Xiao,
| |
Collapse
|
14
|
Hsa_circ_0134111 promotes osteoarthritis progression by regulating miR-224-5p/CCL1 interaction. Aging (Albany NY) 2021; 13:20383-20394. [PMID: 34413269 PMCID: PMC8436948 DOI: 10.18632/aging.203420] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/17/2021] [Indexed: 11/25/2022]
Abstract
Mechanical, metabolic, inflammatory, and immune factors contribute to the development of osteoarthritis (OA), a joint disease characterized by cartilage destruction. The circular RNA (circRNA) hsa_circ_0134111 is upregulated in the cartilage of OA patients; however, its potential role in OA pathogenesis and progression remains unexplored. In this study, the effects of hsa_circ_0134111 knockdown were evaluated in primary human chondrocytes treated with IL-1β to simulate OA, as well as in a rat model of OA. Hsa_circ_0134111 expression was upregulated in IL-1β-stimulated chondrocytes. CCK-8 and flow cytometry assays showed that hsa_circ_0134111 knockdown reversed IL-1β-induced cell decline by inhibiting apoptosis. Following prediction analysis of circRNA and miRNA targets, dual-luciferase reporter and silencing/overexpression assays suggested that a regulatory network composed of hsa_circ_0134111, miR-224-5p, and CCL1 modulates IL-1β-mediated OA-like effects in chondrocytes. Accordingly, CCL1 overexpression abrogated the prosurvival effects of hsa_circ_0134111 knockdown in vitro. Moreover, hsa_circ_0134111 silencing in vivo alleviated cartilage destruction in an OA rat model, decreased IL-6 and TNF-α levels in synovial fluid, and downregulated CCL1 expression in the affected joints. These results suggest that hsa_circ_0134111 contributes to OA development by binding to miR-224-5p, thereby releasing the inhibition that miR-224-5p exerts over CCL1.
Collapse
|