1
|
Pan R, Li Y. The association of weight-adjusted waist index with the risk of osteoporosis in patients with type 2 diabetes: a cross-sectional study. J Orthop Surg Res 2024; 19:518. [PMID: 39210413 PMCID: PMC11360797 DOI: 10.1186/s13018-024-04991-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The relationship between obesity and type 2 diabetes with bone health has always been a topic of debate. The weight-adjusted waist index has become a commonly used indicator for assessing central obesity, fat, and muscle mass. However, currently there is no research reporting the association between weight-adjusted waist index and risk of osteoporosis in populations of type 2 diabetes. Therefore, this study aims to provide new information on the association between weight-adjusted waist index and risk of osteoporosis in type 2 diabetes. METHODS This cross-sectional study involved 963 patients with type 2 diabetes who were admitted to the Department of Endocrinology of Cangzhou Central Hospital. Multivariate logistic regression models were used to assess the association between weight-adjusted waist index and osteoporosis. The potential nonlinear association was evaluated. The effects of interaction between subgroups were assessed using the likelihood ratio test. RESULTS Weight-adjusted waist index was positively associated with the risk of osteoporosis, regardless of traditional confounding factors. For each 1 unit increased in weight-adjusted waist index, the risk of osteoporosis increased by 67%. Furthermore, there was a nonlinear relationship between weight-adjusted waist index and osteoporosis. The subgroup analysis did not reveal any significant interactions. CONCLUSIONS Our study indicated a positive association between weight-adjusted waist index and the risk of osteoporosis in adult Chinese type 2 diabetes patients, and this relationship was nonlinear.
Collapse
Affiliation(s)
- Runzhou Pan
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
- Department of Endocrinology, Cangzhou Central Hospital, Cangzhou, Hebei Province, China
| | - Yukun Li
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China.
| |
Collapse
|
2
|
Xu C, Li H, Xu Q, Zhao K, Hao M, Lin W, Ma X, Gao X, Kuang H. Dapagliflozin ameliorated retinal vascular permeability in diabetic retinopathy rats by suppressing inflammatory factors. J Diabetes Complications 2024; 38:108631. [PMID: 38340519 DOI: 10.1016/j.jdiacomp.2023.108631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/28/2023] [Accepted: 10/15/2023] [Indexed: 02/12/2024]
Abstract
BACKGROUND Diabetic retinopathy is a common microvascular complication of diabetes and one of the major causes of blindness in the working-age population. Emerging evidence has elucidated that inflammation drives the key mechanism of diabetes-mediated retinal disturbance. As a new therapeutic drug targeting diabetes, whether dapagliflozin could improve vascular permeability from the perspective of anti-inflammatory effect need to be further explored. METHODS Type 2 diabetic retinopathy rat model was established and confirmed by fundus fluorescein angiography (FFA). ELISA detected level of plasma inflammatory factors and C-peptide. HE staining, immunohistochemistry and western blot detected histopathology changes of retina, expression of retinal inflammatory factors and tight junction proteins. RESULTS Dapagliflozin exhibited hypoglycemic effect comparable to insulin, but did not affect body weight. By inhibiting expression of inflammatory factors (NLRP3, Caspase-1, IL-18, NF-κB) in diabetic retina and plasma, dapagliflozin reduced damage of retinal tight junction proteins and improved retinal vascular permeability. The anti-inflammatory effect of dapagliflozin was superior to insulin. CONCLUSIONS Dapagliflozin improved retinal vascular permeability by reducing diabetic retinal and plasma inflammatory factors. The anti-inflammatory mechanism of dapagliflozin is independent of hypoglycemic effect and superior to insulin.
Collapse
Affiliation(s)
- Chengye Xu
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongxue Li
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qian Xu
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kangqi Zhao
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ming Hao
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenjian Lin
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuefei Ma
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinyuan Gao
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongyu Kuang
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
3
|
Wu X, Gong H, Hu X. Fluid-solid coupling numerical simulation of the effects of different doses of verapamil on cancellous bone in type 2 diabetic rats. BMC Musculoskelet Disord 2024; 25:123. [PMID: 38336651 PMCID: PMC10854077 DOI: 10.1186/s12891-024-07235-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND The purpose of this study was to investigate the effects of four different doses of verapamil on the mechanical behaviors of solid and the characteristics of fluid flow in cancellous bone of distal femur of type 2 diabetes rats under dynamic external load. METHODS Based on the micro-CT images, the finite element models of cancellous bones and fluids at distal femurs of rats in control group, diabetes group, treatment groups VER 4, VER 12, VER 24, and VER 48 (verapamil doses of 4, 12, 24, and 48 mg/kg/day, respectively) were constructed. A sinusoidal time-varying displacement load with an amplitude of 0.8 μm and a period of 1s was applied to the upper surface of the solid region. Then, fluid-solid coupling numerical simulation method was used to analyze the magnitudes and distributions of von Mises stress, flow velocity, and fluid shear stress of cancellous bone models in each group. RESULTS The results for mean values of von Mises stress, flow velocity and FSS (t = 0.25s) were as follows: their values in control group were lower than those in diabetes group; the three parameters varied with the dose of verapamil; in the four treatment groups, the values of VER 48 group were the lowest, they were the closest to control group, and they were smaller than diabetes group. Among the four treatment groups, VER 48 group had the highest proportion of the nodes with FSS = 1-3 Pa on the surface of cancellous bone, and more areas in VER 48 group were subjected to fluid shear stress of 1-3 Pa for more than half of the time. CONCLUSION It could be seen that among the four treatment groups, osteoblasts on the cancellous bone surface in the highest dose group (VER 48 group) were more easily activated by mechanical loading, and the treatment effect was the best. This study might help in understanding the mechanism of verapamil's effect on the bone of type 2 diabetes mellitus, and provide theoretical guidance for the selection of verapamil dose in the clinical treatment of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Xiaodan Wu
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - He Gong
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Xiaorong Hu
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| |
Collapse
|
4
|
Dwivedi KK, Lakhani P, Sihota P, Tikoo K, Kumar S, Kumar N. The multiscale characterization and constitutive modeling of healthy and type 2 diabetes mellitus Sprague Dawley rat skin. Acta Biomater 2023; 158:324-346. [PMID: 36565785 DOI: 10.1016/j.actbio.2022.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/26/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
In type 2 diabetes mellitus (T2DM), elevated glucose level impairs the biochemistry of the skin which may result in alteration of its mechanical and structural properties. The several aspects of structural and mechanical changes in skin due to T2DM remain poorly understood. To fill these research gaps, we developed a non-obese T2DM rat (Sprague Dawley (SD)) model for investigating the effect of T2DM on the in vivo strain stress state, mechanical and structural properties of skin. In vivo strain and mechanical anisotropy of healthy and T2DM skin were measured using the digital imaging correlation (DIC) technique and DIC coupled bulge experiment, respectively. Fluorescence microscopy and histology were used to assess the collagen and elastin fibers microstructure whereas nanoscale structure was captured through atomic force microscopy (AFM). Based on the microstructural observations, skin was modeled as a multilayer membrane where in and out of plane distribution of collagen fibers and planar distribution of elastin fibers were cast in constitutive model. Further, the state of in vivo stresses of healthy and T2DM were measured using model parameters and in vivo strain in the constitutive model. The results showed that T2DM causes significant loss in in vivo stresses (p < 0.01) and increase in anisotropy (p < 0.001) of skin. These changes were found in good correlation with T2DM associated alteration in skin microstructure. Statistical analysis emphasized that increase in blood glucose concentration (HbA1c) was the main cause of impaired biomechanical properties of skin. The presented data in this study can help to understand the skin pathology and to simulate the skin related clinical procedures. STATEMENT OF SIGNIFICANCE: Our study is significant as it presents findings related to the effect of T2DM on the physiologic stress strain, structural and mechanical response of SD rat skin. In this study, we developed a non-obese T2DM SD rat model which mimics the phenotype of Asian type 2 diabetics (non-obese). Several structural and mechanical characterization techniques were explored for multiscale characterization of healthy and T2DM skin. Further, based on microstructural information, we presented the constitutive models that incorporate the real microstructure of skin. The presented results can be helpful to simulate the realistic mechanical response of skin during various clinical trials.
Collapse
Affiliation(s)
- Krashn Kr Dwivedi
- Department of Biomedical Engineering, Indian institute of Technology Ropar, India
| | - Piyush Lakhani
- Department of Mechanical Engineering, Indian institute of Technology Ropar, India
| | - Praveer Sihota
- Department of Mechanical Engineering, Indian institute of Technology Ropar, India
| | - Kulbhushan Tikoo
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Mohali, India
| | - Sachin Kumar
- Department of Mechanical Engineering, Indian institute of Technology Ropar, India.
| | - Navin Kumar
- Department of Biomedical Engineering, Indian institute of Technology Ropar, India; Department of Mechanical Engineering, Indian institute of Technology Ropar, India.
| |
Collapse
|
5
|
Wang J, Shu B, Tang DZ, Li CG, Xie XW, Jiang LJ, Jiang XB, Chen BL, Lin XC, Wei X, Leng XY, Liao ZY, Li BL, Zhang Y, Cui XJ, Zhang Q, Lu S, Shi Q, Wang YJ. The prevalence of osteoporosis in China, a community based cohort study of osteoporosis. Front Public Health 2023; 11:1084005. [PMID: 36875399 PMCID: PMC9978786 DOI: 10.3389/fpubh.2023.1084005] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Background Osteoporosis has already been a growing health concern worldwide. The influence of living area, lifestyle, socioeconomic, and medical conditions on the occurrence of osteoporosis in the middle-aged and elderly people in China has not been fully addressed. Methods The study was a multicenter cross-sectional study on the middle-aged and elderly permanent residents, which gathered information of 22,081 residents from June 2015 to August 2021 in seven representative regions of China. The bone mineral density of lumbar vertebrae and hip were determined using the dual-energy X-ray absorptiometry densitometer instruments. Serum levels of bone metabolism markers were also measured. Information about education, smoking, and chronic diseases were also collected through face-to-face interviews. Age-standardized prevalence and 95% confidence intervals (CIs) of osteopenia and osteoporosis by various criteria were estimated by subgroups and overall based on the data of China 2010 census. The relationships between the osteoporosis or osteopenia and sociodemographic variables or other factors were examined using univariate linear models and multivariable multinomial logit analyses. Results After screening, 19,848 participants (90%) were enrolled for the final analysis. The age-standardized prevalence of osteoporosis was estimated to be 33.49%(95%CI, 32.80-34.18%) in the middle-aged and elderly Chinese permanent residents, for men and women was 20.73% (95% CI, 19.58-21.87%) and 38.05% (95% CI, 37.22-38.89%), respectively. The serum concentrations of bone metabolic markers, and calcium and phosphorus metabolism were influenced by age, body mass index (BMI), gender, education level, regions, and bone mass status. Women, aged 60 or above, BMI lower than 18.5 kg/m2, low education level including middle school, primary school and no formal education as well as current regular smoking, a history of fracture were all significantly associated with a higher risk of osteoporosis and osteopenia in the middle-aged and elderly people. Conclusions This study revealed dramatic regional differences in osteoporosis prevalence in China, and female, aged 60 or older, low BMI, low education level, current regular smoking, and a history of fracture were associated with a high risk of osteoporosis. More prevention and treatment resources should be invested into particular population exposed to these risk factors.
Collapse
Affiliation(s)
- Jing Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China.,Shanghai Geriatric Institute of Chinese Medicine, Shanghai, China
| | - Bing Shu
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China.,Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - De-Zhi Tang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China.,Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Chen-Guang Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Xing-Wen Xie
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Li-Juan Jiang
- Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, China
| | - Xiao-Bing Jiang
- The First Hospital Affiliated to Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Bo-Lai Chen
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Xin-Chao Lin
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xu Wei
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiang-Yang Leng
- Hospital Affiliated to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Zhang-Yu Liao
- Ganzhou Nankang District Traditional Chinese Medicine Hospital, Ganzhou, China
| | - Bao-Lin Li
- Shenzhen Pingle Orthopaedic Hospital, Shenzhen, China
| | - Yan Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China.,Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Xue-Jun Cui
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Qing Zhang
- The First People's Hospital of Nankang District, Ganzhou, China
| | - Sheng Lu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China.,Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Qi Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China.,Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Jun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China.,Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
6
|
Liu H, Tian F, Hu Y, Ping S, Zhang L. Liraglutide in Combination with Insulin Has a Superior Therapeutic Effect to Either Alone on Fracture Healing in Diabetic Rats. Diabetes Metab Syndr Obes 2023; 16:1235-1245. [PMID: 37151908 PMCID: PMC10155808 DOI: 10.2147/dmso.s404392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
Purpose Fractures in patients with type 2 diabetes mellitus are at a high risk of delayed union or non-union. Previous studies have shown a protective effect of liraglutide on bone. In the present study, we aimed to investigate the effects of a combination of liraglutide and insulin on fracture healing in a rat model of diabetes and the mechanisms involved. Materials and Methods Closed femoral mid-shaft fractures were established in male Sprague-Dawley rats with or without diabetes mellitus, and the diabetic rats were administered insulin and/or liraglutide. Six weeks after femoral fracture, the femoral callus was evaluated by immunohistochemistry, histology, and micro-computed tomography. Additionally, the effects of liraglutide on high-glucose-stimulated MC3T3-E1 cells were analyzed by Western blotting. Results Micro-computed tomography and safranin O/fast green staining showed that fracture healing was delayed in the diabetic rats, and this was accompanied by much lower expression of osteogenic markers and greater osteoclast activity. However, treatment with insulin and/or liraglutide prevented these changes. Liraglutide in combination with insulin treatment resulted in lower blood glucose concentrations and significantly higher osteocalcin (OCN) and collagen I (Col I) expression six weeks following fracture. Western blot analysis showed that liraglutide prevented the low expression of the bone morphogenetic protein-2, osterix/SP7, OCN, Col I, and β-catenin in high-glucose-stimulated MC3T3-E1 cells. Conclusion These results demonstrate that insulin and/or liraglutide promotes bone fracture healing in the DF model. The combination was more effective than either single treatment, which may be because of the two drugs' additive effects on the osteogenic ability of osteoblast precursors.
Collapse
Affiliation(s)
- Hao Liu
- Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Department of Orthopedic Syrgery, The Affiliated Hospital, North China University of Science and Technology, Tangshan, Hebei, People's Republic of China
| | - Faming Tian
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, People’s Republic of China
| | - Yunpeng Hu
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, People’s Republic of China
| | - Shaohua Ping
- Department of Orthopedic Syrgery, The Affiliated Hospital, North China University of Science and Technology, Tangshan, Hebei, People's Republic of China
| | - Liu Zhang
- Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Department of Orthopedic Surgery, Emergency Management General Hospital, Beijing, People’s Republic of China
- Correspondence: Liu Zhang, Department of Orthopedic Surgery, Emergency Management General Hospital, Xibahenanli 29, Chaoyang dis, Beijing, 100028, People’s Republic of China, Tel +86-10-64662308, Email
| |
Collapse
|
7
|
Entz L, Falgayrac G, Chauveau C, Pasquier G, Lucas S. The extracellular matrix of human bone marrow adipocytes and glucose concentration differentially alter mineralization quality without impairing osteoblastogenesis. Bone Rep 2022; 17:101622. [PMID: 36187598 PMCID: PMC9519944 DOI: 10.1016/j.bonr.2022.101622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/09/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022] Open
Abstract
Bone marrow adipocytes (BMAds) accrue in various states of osteoporosis and interfere with bone remodeling through the secretion of various factors. However, involvement of the extracellular matrix (ECM) produced by BMAds in the impairment of bone marrow mesenchymal stromal cell (BM-MSC) osteoblastogenesis has received little attention. In type 2 diabetes (T2D), skeletal fragility is associated with several changes in bone quality that are incompletely understood, and BMAd quantity increases in relationship to poor glycemic control. Considering their altered phenotype in this pathophysiological context, we aimed to determine the contribution of the ECM of mature BMAds to osteoblastogenesis and mineralization quality in the context of chronic hyperglycemia. Human BM-MSCs were differentiated for 21 days in adipogenic medium containing either a normoglycemic (LG, 5.5 mM) or a high glucose concentration (HG, 25 mM). The ECM laid down by BMAds were devitalized through cell removal to examine their impact on the proliferation and differentiation of BM-MSCs toward osteoblastogenesis in LG and HG conditions. Compared to control plates, both adipocyte ECMs promoted cell adhesion and proliferation. As shown by the unmodified RUNX2 and osteocalcin mRNA levels, BM-MSC commitment in osteoblastogenesis was hampered by neither the hyperglycemic condition nor the adipocyte matrices. However, adipocyte ECMs or HG condition altered the mineralization phase with perturbed expression levels of type 1 collagen, MGP and osteopontin. Despite higher ALP activity, mineralization levels per cell were decreased for osteoblasts grown on adipocyte ECMs compared to controls. Raman spectrometry revealed that culturing on adipocyte matrices specifically prevents type-B carbonate substitution and favors collagen crosslinking, in contrast to exposure to HG concentration alone. Moreover, the mineral to organic ratio was disrupted according to the presence of adipocyte ECM and the glucose concentration used for adipocyte or osteoblast culture. HG concentration and adipocyte ECM lead to different defects in mineralization quality, recapitulating contradictory changes reported in T2D osteoporosis. Our study shows that ECMs from BMAds do not impair osteoblastogenesis but alter both the quantity and quality of mineralization partly in a glucose concentration-dependent manner. This finding sheds light on the involvement of BMAds, which should be considered in the compromised bone quality of T2D and osteoporosis patients more generally. Glucose level alters the Extracellular Matrix composition of Bone Marrow adipocytes. Osteoblastogenesis on adipocyte ECMs is unaltered but produced less mineral amount. The quality of the mineral is altered differently by adipocyte ECMs or glucose levels. The presence of BM adipocytes should be valued in damaged osteoporosis bone quality.
Collapse
Key Words
- AGEs, Advanced glycation end-products
- BM-MSC, Bone marrow mesenchymal stromal cell
- BMAd, Bone marrow adipocyte
- ECM, Extracellular matrix
- ECMBMAd HG, Extracellular matrix obtained from BMAds cultured in HG concentration
- ECMBMAd LG, Extracellular matrix obtained from BMAds cultured in LG concentration
- ECMBMAd, Extracellular matrix obtained from BMAds
- Extracellular matrix
- GAG, glycosaminoglycan
- HA, hydroxyapatite
- HG, High glucose
- Hyperglycemia
- LG, Low glucose
- LGM, Low glucose and mannitol
- Marrow adipocytes
- Osteoblast
- Osteoporosis
- Skeletal mesenchymal stromal cells
- T2D, Type 2 diabetes
Collapse
|
8
|
Hu X, Gong H, Hou A, Wu X, Shi P, Zhang Y. Effects of continuous subcutaneous insulin infusion on the microstructures, mechanical properties and bone mineral compositions of lumbar spines in type 2 diabetic rats. BMC Musculoskelet Disord 2022; 23:511. [PMID: 35637472 PMCID: PMC9150354 DOI: 10.1186/s12891-022-05452-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Continuous subcutaneous insulin infusion (CSII) for the treatment of type 2 diabetes (T2D) can improve the structure and strength of femur of rats, but the effect of CSII treatment on the lumbar spine of T2D rats is unknown. The purpose of this study is to investigate the effects of CSII on the microstructure, multi-scale mechanical properties and bone mineral composition of the lumbar spine in T2D rats. METHODS Seventy 6-week-old male Sprague-Dawley (SD) rats were divided into two batches, each including Control, T2D, CSII and Placebo groups, and the duration of insulin treatment was 4-week and 8-week, respectively. At the end of the experiment, the rats were sacrificed to take their lumbar spine. Microstructure, bone mineral composition and nanoscopic-mesoscopic-apparentand-macroscopic mechanical properties were evaluated through micro-computed tomography (micro-CT), Raman spectroscopy, nanoindentation test, nonlinear finite element analysis and compression test. RESULTS It was found that 4 weeks later, T2D significantly decreased trabecular thickness (Tb.Th), nanoscopic-apparent and partial mesoscopic mechanical parameters of lumbar spine (P < 0.05), and significantly increased bone mineral composition parameters of cortical bone (P < 0.05). It was shown that CSII significantly improved nanoscopic-apparent mechanical parameters (P < 0.05). In addition, 8 weeks later, T2D significantly decreased bone mineral density (BMD), bone volume fraction (BV/TV) and macroscopic mechanical parameters (P < 0.05), and significantly increased bone mineral composition parameters of cancellous bone (P < 0.05). CSII treatment significantly improved partial mesoscopic-macroscopic mechanical parameters and some cortical bone mineral composition parameters (P < 0.05). CONCLUSIONS CSII treatment can significantly improve the nanoscopic-mesoscopic-apparent-macroscopic mechanical properties of the lumbar spine in T2D rats, as well as the bone structure and bone mineral composition of the lumbar vertebrae, but it will take longer treatment time to restore the normal level. In addition, T2D and CSII treatment affected bone mineral composition of cortical bone earlier than cancellous bone of lumbar spine in rat. Our study can provide evidence for clinical prevention and treatment of T2D-related bone diseases.
Collapse
Affiliation(s)
- Xiaorong Hu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - He Gong
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Aiqi Hou
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xiaodan Wu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Peipei Shi
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yingying Zhang
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, Key Laboratory of Human Motion Analysis and Rehabilitation Technology of the Ministry of Civil Affairs, National Research Center for Rehabilitation Technical Aids, Beijing, 100176, China.
| |
Collapse
|
9
|
Wu X, Gong H, Hu X, Shi P, Cen H, Li C. Effect of verapamil on bone mass, microstructure and mechanical properties in type 2 diabetes mellitus rats. BMC Musculoskelet Disord 2022; 23:363. [PMID: 35436905 PMCID: PMC9016927 DOI: 10.1186/s12891-022-05294-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 04/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Verapamil was mainly used to treat hypertension, cardiovascular disease, inflammation and improve blood glucose in patients with diabetes, but its effects on bone mass, microstructure and mechanical properties were unclear. This study described the effects of verapamil on bone mass, microstructure, macro and nano mechanical properties in type 2 diabetic rats. METHODS Rat models of type 2 diabetes were treated with verapamil at doses of 4, 12, 24 and 48 mg/kg/day by gavage respectively, twice a day. After 12 weeks, all rats were sacrificed under general anesthesia. Blood glucose, blood lipid, renal function and biochemical markers of bone metabolism were obtained by serum analysis, Micro-CT scanning was used to assess the microstructure parameters of cancellous bone of femoral head, three-point bending test was used to measure maximum load and elastic modulus of femoral shaft, and nano-indentation tests were used to measure indentation moduli and hardnesses of longitudinal cortical bone in femoral shaft, longitudinal and transverse cancellous bones in femoral head. RESULTS Compared with T2DM group, transverse indentation moduli of cancellous bones in VER 24 group, longitudinal and transverse indentation moduli and hardnesses of cancellous bones in VER 48 group were significantly increased (p < 0.05). Furthermore, the effects of verapamil on blood glucoses, microstructures and mechanical properties in type 2 diabetic rats were dependent on drug dose. Starting from verapamil dose of 12 mg/kg/day, with dose increasing, the concentrations of P1NP, BMD, BV/TV, Tb. Th, Tb. N, maximum loads, elastic moduli, indentation moduli and hardnesses of femurs in rats in treatment group increased gradually, the concentrations of CTX-1 decreased gradually, but these parameters did not return to the level of the corresponding parameters of normal rats. Verapamil (48 mg/kg/day) had the best therapeutic effect. CONCLUSION Verapamil treatment (24, 48 mg/kg/day) significantly affected nano mechanical properties of the femurs, and tended to improve bone microstructures and macro mechanical properties of the femurs, which provided guidance for the selection of verapamil dose in the treatment of type 2 diabetic patients.
Collapse
Affiliation(s)
- Xiaodan Wu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - He Gong
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Xiaorong Hu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Peipei Shi
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Haipeng Cen
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Chenchen Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| |
Collapse
|
10
|
Dietary Complex and Slow Digestive Carbohydrates Promote Bone Mass and Improve Bone Microarchitecture during Catch-Up Growth in Rats. Nutrients 2022; 14:nu14061303. [PMID: 35334960 PMCID: PMC8951765 DOI: 10.3390/nu14061303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Catch-up growth is a process that promotes weight and height gains to recover normal growth patterns after a transient period of growth inhibition. Accelerated infant growth is associated with reduced bone mass and quality characterized by poor bone mineral density (BMD), content (BMC), and impaired microarchitecture. The present study evaluated the effects of a diet containing slow (SDC) or rapid (RDC) digestible carbohydrates on bone quality parameters during the catch-up growth period in a model of diet-induced stunted rats. The food restriction period negatively impacted BMD, BMC, and microarchitecture of appendicular and axial bones. The SDC diet was shown to improve BMD and BMC of appendicular and axial bones after a four-week refeeding period in comparison with the RDC diet. In the same line, the micro-CT analysis revealed that the trabecular microarchitecture of tibiae and vertebrae was positively impacted by the dietary intervention with SDC compared to RDC. Furthermore, features of the cortical microstructure of vertebra bones were also improved in the SDC group animals. Similarly, animals allocated to the SDC diet displayed modest improvements in growth plate thickness, surface, and volume compared to the RDC group. Diets containing the described SDC blend might contribute to an adequate bone formation during catch-up growth thus increasing peak bone mass, which could be linked to reduced fracture risk later in life in individuals undergoing transient undernutrition during early life.
Collapse
|