1
|
Ko PY, Chen SY, Hsu CC, Jou IM, Su FC, Wu PT. Suppression of experimental knee osteoarthritis by combination therapy of cross-linked hyaluronate and corticosteroids via anti-senescent effects. Int J Biol Macromol 2025; 308:142425. [PMID: 40132714 DOI: 10.1016/j.ijbiomac.2025.142425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 03/08/2025] [Accepted: 03/21/2025] [Indexed: 03/27/2025]
Abstract
Osteoarthritis (OA) mainly affects the knee joint. Senescence and inflammation are key factors in knee OA pathogenesis, suggesting a potential therapeutic target. This study aims to explore the therapeutic effects of the optimized cross-linked hyaluronate (cHA) combined with corticosteroids formulation in mitigating OA progression by targeting anti-senescence. Human OA chondrocytes underwent treatment with various cHA formulations along with DEX, and assessments were made by cell viability, senescence phenotypes, and gene expression, including inflammatory cytokines, and matrix metalloproteinases (MMPs). Furthermore, in a rat OA model, the therapeutic effects of the targeted cHA + DEX formulations were evaluated via dynamic weight-bearing tests, micro-CT scans, histopathological and immunohistochemical examinations, and qRT-PCR analysis. Formulations of cHA(50:50) + DEX and cHA(20:80) + DEX effectively shielded chondrocytes from DEX-induced cytotoxicity and senescence, concurrently reducing inflammatory and matrix-degrading enzyme expressions. In the rat OA model, cHA(50:50) + DEX significantly ameliorated OA features, including histological scores and dynamic weight bearing ratio (p < 0.05, both), while suppressing senescence and inflammation marker expressions. Our findings underscore the effects of cHA(50:50) + DEX combination in mitigating OA progression by addressing senescence and inflammatory responses, so called inflammaging.
Collapse
Affiliation(s)
- Po-Yen Ko
- Department of Orthopaedics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Yao Chen
- Department of Nursing, College of Nursing, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Che-Chia Hsu
- Department of Orthopaedics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - I-Ming Jou
- Department of Orthopaedics, E-Da Hospital, Kaohsiung, Taiwan; School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan; GEG Orthopedic Clinic, Tainan, Taiwan
| | - Fong-Chin Su
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Po-Ting Wu
- Department of Orthopaedics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan; Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Orthopaedics, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
2
|
Xu Y, Yang Y, Song H, Li M, Shi W, Yu T, Lin J, Yu Y. The Role of Exerkines in the Treatment of Knee Osteoarthritis: From Mechanisms to Exercise Strategies. Orthop Surg 2025; 17:1021-1035. [PMID: 39854050 PMCID: PMC11962297 DOI: 10.1111/os.14365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/25/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025] Open
Abstract
With the increasing prevalence of knee osteoarthritis (KOA), the limitations of traditional treatments, such as their limited efficacy in halting disease progression and their potential side effects, are becoming more evident. This situation has prompted scientists to seek more effective strategies. In recent years, exercise therapy has gained prominence in KOA treatment due to its safety, efficacy, and cost-effectiveness, which are underpinned by the molecular actions of exerkines. Unlike conventional therapies, exerkines offer specific advantages by targeting inflammatory responses, enhancing chondrocyte proliferation, and slowing cartilage degradation at the molecular level. This review explores the potential mechanisms involved in and application prospects of exerkines in KOA treatment and provides a comprehensive analysis of their role. Studies show that appropriate exercise not only promotes overall health, but also positively impacts KOA by stimulating exerkine production. The effectiveness of exerkines, however, is influenced by exercise modality, intensity, and duration of exercise, making the development of personalized exercise plans crucial for KOA patients. Based on these insights, this paper proposes targeted exercise strategies designed to maximize exerkine benefits, aiming to provide novel perspectives for KOA prevention and treatment.
Collapse
Affiliation(s)
- Yuxiong Xu
- Sports & Medicine Integration Research CenterCapital University of Physical Education and SportsBeijingChina
| | - Yizhuo Yang
- Sports & Medicine Integration Research CenterCapital University of Physical Education and SportsBeijingChina
| | - Hanan Song
- Sports & Medicine Integration Research CenterCapital University of Physical Education and SportsBeijingChina
| | - Ming Li
- Sports & Medicine Integration Research CenterCapital University of Physical Education and SportsBeijingChina
| | - Weihao Shi
- Sports & Medicine Integration Research CenterCapital University of Physical Education and SportsBeijingChina
| | - Tongwu Yu
- Sports & Medicine Integration Research CenterCapital University of Physical Education and SportsBeijingChina
| | - Jianhao Lin
- Arthritis Clinic & Research CenterPeking University People's HospitalBeijingChina
| | - Yanli Yu
- Sports & Medicine Integration Research CenterCapital University of Physical Education and SportsBeijingChina
| |
Collapse
|
3
|
Wu Z, Guan Y, Chen Q, Song R, Xie J, Zhang X, Wang Y, Chen Q, Chen X. Essential role of the metabolite α-ketoglutarate in bone tissue and bone-related diseases. Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 39967425 DOI: 10.3724/abbs.2025020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
Bone metabolism in bone tissue is constantly maintained in a state of dynamic equilibrium. The mass of bone and joint tissues is determined by both bone formation and bone resorption. It is hypothesized that disrupted metabolic balance leads to osteoporosis, osteoarthritis, rheumatoid arthritis, and bone tumors. Such disruptions often manifest as either a reduction or abnormality in bone mass and are frequently accompanied by pathological changes such as inflammation, fractures, and pain. α-Ketoglutarate (α-KG) serves as a pivotal intermediate in various metabolic pathways in mammals, significantly contributing to cellular energy metabolism, amino acid metabolism, and other physiological processes. α-KG may be a therapeutic target for a variety of bone-related diseases, such as osteoporosis, osteoarthritis, and rheumatoid arthritis, because of its role in maintaining the metabolic balance of bone. After the application of α-KG, bone loss and inflammation in bone tissue are alleviated. This review focuses on the regulatory effects of α-KG on various cells in bone and joint tissues. Owing to the regulatory effect of α-KG on the balance of bone metabolism, the application of α-KG in the treatment of osteoporosis, osteoarthritis, rheumatoid arthritis, bone tumors, and other bone tissue diseases has been clarified.
Collapse
Affiliation(s)
- Zuping Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Yuzhe Guan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Qian Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Ruifeng Song
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Xin Zhang
- Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250000, China
| | - Yan Wang
- ShengSi County People's Hospital, Zhoushan 316000, China
| | - Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Xiaoyan Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| |
Collapse
|
4
|
Lan T, Yu M, Ming T, Wang H, Deng J, Cheng S, Shen Z, Kong D. A novel cytoprotective organ perfusion platform for reconstructing homeostasis of DCD liver while alleviating IRI injury. Bioeng Transl Med 2025; 10:e10724. [PMID: 39801755 PMCID: PMC11711209 DOI: 10.1002/btm2.10724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/21/2024] [Accepted: 09/06/2024] [Indexed: 01/16/2025] Open
Abstract
Pump is a vital component for expelling the perfusate in small animal isolated organ normothermic machine perfusion (NMP) systems whose flexible structure and rhythmic contraction play a crucial role in maintaining perfusion system homeostasis. However, the continuous extrusion forming with the rigid stationary shaft of the peristaltic pumps can damage cells, leading to metabolic disorders and eventual dysfunction of transplanted organs. Here, we developed a novel biomimetic blood-gas system (BBGs) for preventing cell damage. This system mimics the cardiac cycle and features an adjustable inspiratory-to-expiratory (IE) ratio to mitigate acidosis caused by continuous oxygen inhalation. In our study, adipose stem cells (ADSCs) were cultured within the circulatory system for 10 min, 2, and 4 h. Compared to the peristaltic pump, the BBGs significantly reduced cell apoptosis and morphological injury while enhancing cell proliferation and adhesion. Additionally, when the supernatant from ADSCs was introduced to LPS-induced macrophages for 24 h, the BBGs group demonstrated a more pronounced anti-inflammatory effect, characterized by reduced M1 macrophage expression. Besides, with isolated rat livers from donation after circulatory death (DCD) perfusion with ADSCs for 6 h by the BBGs, we detected fewer apoptotic cells and a reduced inflammatory response, evidenced by down-regulated TNF-α expression. The development of BBGs demonstrates the feasibility of recreating physiological liquid-gas circulation in vitro, offering an alternative platform for isolated organ perfusion, especially for applications involving cell therapy.
Collapse
Affiliation(s)
- Tingting Lan
- Research Institute of Transplant Medicine, Tianjin First Central Hospital, School of Medicine, Nankai UniversityTianjinChina
| | - Mingxing Yu
- State Key Laboratory of Medicinal Chemical BiologyCollege of Life Science, Nankai UniversityTianjinChina
| | - Tao Ming
- Research Institute of Transplant Medicine, Tianjin First Central Hospital, School of Medicine, Nankai UniversityTianjinChina
| | - Hong Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Juan Deng
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Shuhan Cheng
- State Key Laboratory of Medicinal Chemical BiologyCollege of Life Science, Nankai UniversityTianjinChina
| | - Zhongyang Shen
- Research Institute of Transplant Medicine, Tianjin First Central Hospital, School of Medicine, Nankai UniversityTianjinChina
| | - Deling Kong
- Research Institute of Transplant Medicine, Tianjin First Central Hospital, School of Medicine, Nankai UniversityTianjinChina
- State Key Laboratory of Medicinal Chemical BiologyCollege of Life Science, Nankai UniversityTianjinChina
| |
Collapse
|
5
|
Guidoni K, Chiaradia E, Pepe M, Di Meo A, Tognoloni A, Seccaroni M, Beccati F. The Combined Use of Triamcinolone and Platelet-Rich Plasma in Equine Metacarpophalangeal Joint Osteoarthritis Treatments: An In Vivo and In Vitro Study. Animals (Basel) 2024; 14:3645. [PMID: 39765549 PMCID: PMC11672629 DOI: 10.3390/ani14243645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/11/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
Intra-articular corticosteroids, such as triamcinolone acetonide (TA), help reduce pain related to osteoarthritis (OA), but they may impair cartilage metabolism. In contrast, platelet-rich plasma (PRP) therapy, a regenerative therapy, has shown potential to promote healing and regeneration of articular cartilage. This study investigates the effects of combining PRP with TA to treat osteoarthritis in racehorses. The study proposes that PRP injection following TA treatment could reduce side effects and improve treatment outcomes. Firstly, in the in vitro study, chondrocytes were exposed to different TA concentrations, with or without PRP. TA dramatically reduced chondrocyte viability. However, this was prevented by the addition of PRP, which also increased cell proliferation. In the in vivo study, 32 racehorses with metacarpophalangeal (MCP) joint OA were separated into two groups: one received only TA, while the other received TA followed by PRP. For both groups, there were improved flexion assessments one week following the last treatment, but by two weeks following the last treatment, only TA+PRP had improved flexion assessments. TA+PRP also had improved lameness scores two weeks after the last treatment. In conclusion, combining PRP with TA could enhance chondrocyte viability and provide a better long-term therapeutic option for treating OA in racehorses. Further trials are required to thoroughly assess this technique's safety and efficacy.
Collapse
Affiliation(s)
- Kübra Guidoni
- Veterinary Teaching Hospital, Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (K.G.); (M.P.); (A.D.M.); (A.T.); (M.S.); (F.B.)
| | - Elisabetta Chiaradia
- Veterinary Teaching Hospital, Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (K.G.); (M.P.); (A.D.M.); (A.T.); (M.S.); (F.B.)
| | - Marco Pepe
- Veterinary Teaching Hospital, Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (K.G.); (M.P.); (A.D.M.); (A.T.); (M.S.); (F.B.)
- Sport Horse Research Center, Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Antonio Di Meo
- Veterinary Teaching Hospital, Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (K.G.); (M.P.); (A.D.M.); (A.T.); (M.S.); (F.B.)
| | - Alessia Tognoloni
- Veterinary Teaching Hospital, Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (K.G.); (M.P.); (A.D.M.); (A.T.); (M.S.); (F.B.)
| | - Matteo Seccaroni
- Veterinary Teaching Hospital, Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (K.G.); (M.P.); (A.D.M.); (A.T.); (M.S.); (F.B.)
| | - Francesca Beccati
- Veterinary Teaching Hospital, Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (K.G.); (M.P.); (A.D.M.); (A.T.); (M.S.); (F.B.)
- Sport Horse Research Center, Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| |
Collapse
|
6
|
Ye X, Li X, Qiu J, Kuang Y, Hua B, Liu X. Alpha-ketoglutarate ameliorates age-related and surgery induced temporomandibular joint osteoarthritis via regulating IKK/NF-κB signaling. Aging Cell 2024; 23:e14269. [PMID: 38992995 PMCID: PMC11561675 DOI: 10.1111/acel.14269] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/03/2024] [Accepted: 06/18/2024] [Indexed: 07/13/2024] Open
Abstract
Recent studies have shed light on the important role of aging in the pathogenesis of joint degenerative diseases and the anti-aging effect of alpha-ketoglutarate (αKG). However, whether αKG has any effect on temporomandibular joint osteoarthritis (TMJOA) is unknown. Here, we demonstrate that αKG administration improves condylar cartilage health of middle-aged/aged mice, and ameliorates pathological changes in a rat model of partial discectomy (PDE) induced TMJOA. In vitro, αKG reverses IL-1β-induced/H2O2-induced decrease of chondrogenic markers (Col2, Acan and Sox9), and inhibited IL-1β-induced/ H2O2-induced elevation of cartilage catabolic markers (ADAMTS5 and MMP13) in condylar chondrocytes. In addition, αKG downregulates senescence-associated (SA) hallmarks of aged chondrocytes, including the mRNA/protein level of SA genes (p16 and p53), markers of nuclear disorders (Lamin A/C) and SA-β-gal activities. Mechanically, αKG decreases the expressions of p-IKK and p-NF-κB, protecting TMJ from inflammation and senescence-related damage by regulating the NF-κB signaling. Collectively, our findings illuminate that αKG can ameliorate age-related TMJOA and PDE-induced TMJOA, maintain the homeostasis of cartilage matrix, and exert anti-aging effects in chondrocytes, with a promising therapeutic potential in TMJOA, especially age-related TMJOA.
Collapse
Affiliation(s)
- Xiaoping Ye
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhouChina
| | - Xinping Li
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhouChina
| | - Jin Qiu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhouChina
| | - Yiwen Kuang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhouChina
| | - Bingqiang Hua
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhouChina
| | - Xianwen Liu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhouChina
| |
Collapse
|
7
|
Li C, Tian Z, Li X, Sun Y, Tian J, Wu Y, Cai J, He Y, Sanganyado E, Li P, Liang B, Liu W. Toxicogenomic assessment of hydroxylated metabolites of PBDEs on cetaceans: An in vitro study. CHEMOSPHERE 2024; 366:143350. [PMID: 39326706 DOI: 10.1016/j.chemosphere.2024.143350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024]
Abstract
Despite their ban, polybrominated diphenyl ethers (PBDEs) are frequently detected in various environmental compartments including marine and coastal ecosystems due to their persistence, bio-accumulative, high production volumes, and widespread use. One of the major concerns from PBDEs is the transformation products, such as hydroxylated polybrominated diphenyl ethers (OH-BDEs), which are more bioactive than the parent compounds. For example, 6-hydroxy-2,2',4',4-tetrabromodiphenyl ether (6-OH-BDE-47) is a typical metabolite of PBDEs and cause endocrine system disruption, developmental toxicity, and neurotoxicity in different species. Despite being widely detected in marine environments, investigations on the toxicological mechanisms of 6-OH-BDE-47 in cetaceans remain scarce. High concentrations of PBDEs accumulate in cetaceans due to the long lifespan and large fat reserve. The accumulated PBDEs have become the major source of OH-BDEs in cetaceans. We exposed immortalized fibroblast cell lines from the skin of pygmy killer whales (PKW-LWHT) and Indo-Pacific finless porpoises (FP-LWHT) to 6-OH-BDE-47 and analyzed changes in cellular function using transcriptomic data, along with enzymatic activity. Exposure to the body-relevant body burdens of 6-OH-BDE-47 (250 and 500 ng mL-1) significantly decreased cell viability. Differentially expressed genes in FP-LWHT exposed to 6-OH-BDE-47 were primarily enriched in the pathways associated with steroid metabolism. Total cholesterol was decreased by 6-OH-BDE-47, whereas low-density lipoprotein cholesterol and triglyceride levels were significantly increased in FP-LWHT cells. In contrast, glycolysis was the main enriched function of differentially expressed genes in PKW-LWHT cells exposed to 6-OH-BDE-47, and the enzyme activity of phosphofructokinase and hexokinase was upregulated. Thus, even though the cell viability of both cell lines from these two species was significantly suppressed by 6-OH-BDE-47, the cellular response or affected cellular function was different between the Pygmy killer whale and the Indo-Pacific Finless Porpoise, suggesting a diverse response towards OH-BDEs exposure.
Collapse
Affiliation(s)
- Chengzhang Li
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Ziyao Tian
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Xinying Li
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Yajing Sun
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Jiashen Tian
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Yuqi Wu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Jingting Cai
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Yijie He
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Edmond Sanganyado
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE2 4PB, UK
| | - Ping Li
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Bo Liang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China.
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China.
| |
Collapse
|
8
|
Fan X, Tang Y, Wei Z, Shi F, Cui Y, Li Q. Mitochondrial dysfunction and NDUFS3: Insights from a PINK1 B9 Drosophila model in Parkinson's disease pathogenesis. Neurosci Lett 2024; 839:137917. [PMID: 39102941 DOI: 10.1016/j.neulet.2024.137917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/30/2024] [Accepted: 07/28/2024] [Indexed: 08/07/2024]
Abstract
PTEN-induced kinase1 (PINK1) mutation is the main cause of autosomal recessive inheritance and early-onset Parkinson's disease. Mitochondrial respiratory chain complex I (CI) functional impairment has been considered to be an important factor in the pathogenesis of PD in recent years. In addition, NDUFS3 (nicotinamide adenine dinucleotide deoxylase iron-thionein 3) is one of the core subunits of mitochondrial CI. Therefore, this study explored the role of NDUFS3 gene in PINK1B9 transgenic Drosophila and its possible related mechanisms. In this study, the PD transgenic Drosophila model of MHC-Gal4/UAS system was selected to specifically activate the expression of PINK1B9 gene in the chest muscle tissue of Drosophila melanogaster. NDUFS3 RNAi interference was used to interfere with PINK1B9 transgenic Drosophila melanogaster and its effect on PD transgenic flies was studied. The results suggest that down-regulation of NDUFS3 gene expression may have a protective effect on PINK1B9 transgenic Drosophila melanogaster, and we speculate that down-regulation of NDUFS3 gene expression to reduce oxidative stress and restore mitochondrial function may be related to mitochondrial stress response.
Collapse
Affiliation(s)
- Xueting Fan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Yafang Tang
- Clinical Research Center for Neurological Diseases of Guangxi Province, The Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Zaiwa Wei
- Guangxi Key Laboratory of Liver Disease Immunity and Metabolism, The First Affiliated Hospital of Guangxi Medical University, Guangxi 530021, China
| | - Fang Shi
- Laboratory of Neuroscience, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China
| | - Yilei Cui
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Qinghua Li
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, Guangxi 541004, China; Clinical Research Center for Neurological Diseases of Guangxi Province, The Affiliated Hospital of Guilin Medical University, Guilin 541001, China; Laboratory of Neuroscience, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China.
| |
Collapse
|
9
|
Sharma V, Sakhalkar U, Nadkarni P, Mishal R, Parandhaman D, Vichare K, Francis A, Khanna M, Kukreja M, Sharma A. Cytoprotective Effect of Growth Factors Derived From Platelets on Corticosteroid-Treated Primary Anterior Cruciate Ligament-Derived Stromal Cells and Chondrocytes. Cureus 2024; 16:e65566. [PMID: 39192919 PMCID: PMC11348450 DOI: 10.7759/cureus.65566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2024] [Indexed: 08/29/2024] Open
Abstract
Background The use of corticosteroids, such as methylprednisolone, for pain management is a common clinical practice. However, it is well known that corticosteroids induce toxicity in anterior cruciate ligament (ACL)-derived stromal cells and chondrocytes. Growth factors from platelets have anti-inflammatory effects that can potentially limit the cytotoxic effects of corticosteroids. In this study, we explored the role of growth factors obtained from the OssinextTM kit (commercially available Wockhardt growth factor concentrate (GFC) kit) in recovering methylprednisolone-induced cell damage. Methodology Primary ACL-derived stromal cells and chondrocytes were isolated from human ligament tissue and articular cartilage, respectively, and characterized by immunophenotyping, gene expression analysis, and immunostaining. GFC obtained from OssinextTM kit was used for the experiments. The ACL-derived stromal cells and chondrocytes were treated with methylprednisolone, alone or in combination with GFC. Cell viability was measured by the neutral red uptake assay. Changes in cell morphology and collagen pattern were observed microscopically by H&E staining and immunostaining, respectively. Cell proliferation was assessed by cell migration assay, and the cell ultra-structure was analyzed using transmission electron microscopy. Results Methylprednisolone was found to induce cytotoxicity, altered cell morphology, reduced cell proliferation, and organelle damage in both ACL-derived stromal cells and chondrocytes. GFC obtained from the OssinextTM kit was able to restore cell viability and reverse the cell structure damages induced by methylprednisolone. GFC was found to recover and protect the cells, both when used in combination with steroids and when used after the steroid treatment. Conclusions The results indicate that GFC may be clinically beneficial when used in combination with steroids to mitigate their adverse effects.
Collapse
Affiliation(s)
- Vijay Sharma
- Department of Regenerative Medicine, Wockhardt Regenerative Pvt. Ltd., Mumbai, IND
| | - Ulka Sakhalkar
- Department of Regenerative Medicine, Wockhardt Regenerative Pvt. Ltd., Mumbai, IND
| | - Pratiksha Nadkarni
- Department of Regenerative Medicine, Wockhardt Regenerative Pvt. Ltd., Mumbai, IND
| | - Rashmi Mishal
- Department of Regenerative Medicine, Wockhardt Regenerative Pvt. Ltd., Mumbai, IND
| | - Dinesh Parandhaman
- Department of Regenerative Medicine, Wockhardt Regenerative Pvt. Ltd., Mumbai, IND
| | - Kirti Vichare
- Department of Regenerative Medicine, Wockhardt Regenerative Pvt. Ltd., Mumbai, IND
| | - Anjalina Francis
- Department of Regenerative Medicine, Wockhardt Regenerative Pvt. Ltd., Mumbai, IND
| | - Mudit Khanna
- Orthopaedic Surgery, Wockhardt Hospital, Mumbai, IND
| | - Mohit Kukreja
- Orthopaedic Surgery, Wockhardt Hospital, Mumbai, IND
| | - Anuka Sharma
- Department of Regenerative Medicine, Wockhardt Regenerative Pvt. Ltd., Mumbai, IND
| |
Collapse
|
10
|
Yu X, Li S. Specific regulation of epigenome landscape by metabolic enzymes and metabolites. Biol Rev Camb Philos Soc 2024; 99:878-900. [PMID: 38174803 DOI: 10.1111/brv.13049] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
Metabolism includes anabolism and catabolism, which play an essential role in many biological processes. Chromatin modifications are post-translational modifications of histones and nucleic acids that play important roles in regulating chromatin-associated processes such as gene transcription. There is a tight connection between metabolism and chromatin modifications. Many metabolic enzymes and metabolites coordinate cellular activities with alterations in nutrient availability by regulating gene expression through epigenetic mechanisms such as DNA methylation and histone modifications. The dysregulation of gene expression by metabolism and epigenetic modifications may lead to diseases such as diabetes and cancer. Recent studies reveal that metabolic enzymes and metabolites specifically regulate chromatin modifications, including modification types, modification residues and chromatin regions. This specific regulation has been implicated in the development of human diseases, yet the underlying mechanisms are only beginning to be uncovered. In this review, we summarise recent studies of the molecular mechanisms underlying the metabolic regulation of histone and DNA modifications and discuss how they contribute to pathogenesis. We also describe recent developments in technologies used to address the key questions in this field. We hope this will inspire further in-depth investigations of the specific regulatory mechanisms involved, and most importantly will shed lights on the development of more effective disease therapies.
Collapse
Affiliation(s)
- Xilan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Shanshan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| |
Collapse
|
11
|
Zhang Y, Liu L, Qi Y, Lou J, Chen Y, Liu C, Li H, Chang X, Hu Z, Li Y, Zhang Y, Feng C, Zhou Y, Zhai Y, Li C. Lactic acid promotes nucleus pulposus cell senescence and corresponding intervertebral disc degeneration via interacting with Akt. Cell Mol Life Sci 2024; 81:24. [PMID: 38212432 PMCID: PMC11071984 DOI: 10.1007/s00018-023-05094-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/13/2024]
Abstract
The accumulation of metabolites in the intervertebral disc is considered an important cause of intervertebral disc degeneration (IVDD). Lactic acid, which is a metabolite that is produced by cellular anaerobic glycolysis, has been proven to be closely associated with IVDD. However, little is known about the role of lactic acid in nucleus pulposus cells (NPCs) senescence and oxidative stress. The aim of this study was to investigate the effect of lactic acid on NPCs senescence and oxidative stress as well as the underlying mechanism. A puncture-induced disc degeneration (PIDD) model was established in rats. Metabolomics analysis revealed that lactic acid levels were significantly increased in degenerated intervertebral discs. Elimination of excessive lactic acid using a lactate oxidase (LOx)-overexpressing lentivirus alleviated the progression of IVDD. In vitro experiments showed that high concentrations of lactic acid could induce senescence and oxidative stress in NPCs. High-throughput RNA sequencing results and bioinformatic analysis demonstrated that the induction of NPCs senescence and oxidative stress by lactic acid may be related to the PI3K/Akt signaling pathway. Further study verified that high concentrations of lactic acid could induce NPCs senescence and oxidative stress by interacting with Akt and regulating its downstream Akt/p21/p27/cyclin D1 and Akt/Nrf2/HO-1 pathways. Utilizing molecular docking, site-directed mutation and microscale thermophoresis assays, we found that lactic acid could regulate Akt kinase activity by binding to the Lys39 and Leu52 residues in the PH domain of Akt. These results highlight the involvement of lactic acid in NPCs senescence and oxidative stress, and lactic acid may become a novel potential therapeutic target for the treatment of IVDD.
Collapse
Affiliation(s)
- Yuyao Zhang
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
| | - Libangxi Liu
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
- Department of Orthopedics, General Hospital of Central Theater Command of PLA, Wuhan, 430000, China
| | - Yuhan Qi
- Institute of Basic Theory of Traditional Chinese Medicine, China Academy of Chinese Medical Science, Beijing, 100000, China
| | - Jinhui Lou
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
| | - Yuxuan Chen
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
| | - Chao Liu
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
| | - Haiyin Li
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
| | - Xian Chang
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
| | - Zhilei Hu
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
| | - Yueyang Li
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
| | - Yang Zhang
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
| | - Chencheng Feng
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
| | - Yue Zhou
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
| | - Yu Zhai
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China.
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China.
| | - Changqing Li
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China.
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
12
|
Jiang D, Guo J, Liu Y, Li W, Lu D. Glycolysis: an emerging regulator of osteoarthritis. Front Immunol 2024; 14:1327852. [PMID: 38264652 PMCID: PMC10803532 DOI: 10.3389/fimmu.2023.1327852] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024] Open
Abstract
Osteoarthritis (OA) has been a leading cause of disability in the elderly and there remains a lack of effective therapeutic approaches as the mechanisms of pathogenesis and progression have yet to be elucidated. As OA progresses, cellular metabolic profiles and energy production are altered, and emerging metabolic reprogramming highlights the importance of specific metabolic pathways in disease progression. As a crucial part of glucose metabolism, glycolysis bridges metabolic and inflammatory dysfunctions. Moreover, the glycolytic pathway is involved in different areas of metabolism and inflammation, and is associated with a variety of transcription factors. To date, it has not been fully elucidated whether the changes in the glycolytic pathway and its associated key enzymes are associated with the onset or progression of OA. This review summarizes the important role of glycolysis in mediating cellular metabolic reprogramming in OA and its role in inducing tissue inflammation and injury, with the aim of providing further insights into its pathological functions and proposing new targets for the treatment of OA.
Collapse
Affiliation(s)
- Dingming Jiang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianan Guo
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yingquan Liu
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenxin Li
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- Hangzhou Linping District Nanyuan Street Community Health Center, Hangzhou, China
| | - Dezhao Lu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
13
|
Kita A, Araki R, Yabe T. Chronic Corticosterone Treatment Decreases Extracellular pH and Increases Lactate Release via PDK4 Upregulation in Cultured Astrocytes. Biol Pharm Bull 2024; 47:1542-1549. [PMID: 39313390 DOI: 10.1248/bpb.b24-00396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The pathogenesis of stress-related disorders involves aberrant glucocorticoid secretion, and decreased pH and increased lactate in the brain are common phenotypes in several psychiatric disorders. Mice treated with glucocorticoids develop these phenotypes, but it is unclear how glucocorticoids affect brain pH. Therefore, we investigated the effect of corticosterone (CORT), the main glucocorticoid in rodents, on extracellular pH and lactate release in cultured astrocytes, which are the main glial cells that produce lactate in the brain. CORT treatment for one week decreased the extracellular pH and increased the extracellular lactate level via glucocorticoid receptors. CORT also increased the intracellular pyruvate level and upregulated pyruvate dehydrogenase kinase 4 (PDK4), while PDK4 overexpression increased extracellular lactate and decreased the extracellular pH. Furthermore, PDK4 inhibition suppressed the increase in extracellular lactate and the decrease in extracellular pH induced by CORT. These results suggest that increased lactate release via accumulation of intracellular pyruvate in astrocytes by chronic glucocorticoid exposure contributes to decreased brain pH.
Collapse
Affiliation(s)
- Ayami Kita
- Laboratory of Functional Biomolecules and Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Ryota Araki
- Laboratory of Functional Biomolecules and Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Takeshi Yabe
- Laboratory of Functional Biomolecules and Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University
| |
Collapse
|
14
|
Núñez-Carro C, Blanco-Blanco M, Villagrán-Andrade KM, Blanco FJ, de Andrés MC. Epigenetics as a Therapeutic Target in Osteoarthritis. Pharmaceuticals (Basel) 2023; 16:156. [PMID: 37259307 PMCID: PMC9964205 DOI: 10.3390/ph16020156] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 08/15/2023] Open
Abstract
Osteoarthritis (OA) is a heterogenous, complex disease affecting the integrity of diarthrodial joints that, despite its high prevalence worldwide, lacks effective treatment. In recent years it has been discovered that epigenetics may play an important role in OA. Our objective is to review the current knowledge of the three classical epigenetic mechanisms-DNA methylation, histone post-translational modifications (PTMs), and non-coding RNA (ncRNA) modifications, including microRNAs (miRNAs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs)-in relation to the pathogenesis of OA and focusing on articular cartilage. The search for updated literature was carried out in the PubMed database. Evidence shows that dysregulation of numerous essential cartilage molecules is caused by aberrant epigenetic regulatory mechanisms, and it contributes to the development and progression of OA. This offers the opportunity to consider new candidates as therapeutic targets with the potential to attenuate OA or to be used as novel biomarkers of the disease.
Collapse
Affiliation(s)
- Carmen Núñez-Carro
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| | - Margarita Blanco-Blanco
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| | - Karla Mariuxi Villagrán-Andrade
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| | - Francisco J. Blanco
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
- Grupo de Investigación en Reumatología y Salud, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, Campus de Oza, Universidade da Coruña (UDC), 15008 A Coruña, Spain
| | - María C. de Andrés
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| |
Collapse
|
15
|
Lv X, Zhao T, Dai Y, Shi M, Huang X, Wei Y, Shen J, Zhang X, Xie Z, Wang Q, Li Z, Qin D. New insights into the interplay between autophagy and cartilage degeneration in osteoarthritis. Front Cell Dev Biol 2022; 10:1089668. [PMID: 36544901 PMCID: PMC9760856 DOI: 10.3389/fcell.2022.1089668] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Autophagy is an intracellular degradation system that maintains the stable state of cell energy metabolism. Some recent findings have indicated that autophagy dysfunction is an important driving factor for the occurrence and development of osteoarthritis (OA). The decrease of autophagy leads to the accumulation of damaged organelles and macromolecules in chondrocytes, which affects the survival of chondrocytes and ultimately leads to OA. An appropriate level of autophagic activation may be a new method to prevent articular cartilage degeneration in OA. This minireview discussed the mechanism of autophagy and OA, key autophagy targets regulating OA progression, and evaluated therapeutic applications of drugs targeting autophagy in preclinical and clinical research. Some critical issues worth paying attention to were also raised to guide future research efforts.
Collapse
Affiliation(s)
- Xiaoman Lv
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Ting Zhao
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Youwu Dai
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Mingqin Shi
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiaoyi Huang
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuanyuan Wei
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Jiayan Shen
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiaoyu Zhang
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhaohu Xie
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Qi Wang
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhaofu Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
16
|
Filipović SI, Stojanović NM, Mitić KV, Ranđelović PJ, Radulović NS. Revisiting the Effect of 3 Sesquiterpenoids From Conocephalum conicum (Snake Liverwort) on Rat Spleen Lymphocyte Viability and Membrane Functioning. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221119912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Previously 3 sesquiterpenoids from Conocephalum conicum (L.) Dum. (Conocephalaceae) were found to modulate lymphocyte response to different stimuli, suggesting their immunomodulatory potential. Herein we evaluated the impact of low concentrations of these sesquiterpenoids on rat splenocyte viability and membrane permeability, as well as lactate dehydrogenase (LDH) activity, in order to, possibly, shed light on their mechanism of action. After a 24 h incubation of splenocytes with the sesquiterpenoids (from 10−8 to 10−6 M), MTT and trypan blue (TB) assays, as well as histochemical staining for LDH, were performed. The tested compounds were shown not to reduce the ability of cells to metabolize MTT; however, cell membrane permeability to TB was altered, suggesting that a certain percentage of cells were dead. Histochemical staining for LDH presence releveled that only 2, out of the 3 sesquiterpenoids, decreased the staining intensity, indicating either LDH leakage or its inhibition. In conclusion, having in mind the already proven modulatory potential of the tested sesquiterpenoids, the present results suggest that through the changes in the cell membrane function and leakage/inhibition of LDH in unaltered immune cells, some of the tested compounds could be considered promising candidates for further research as anticancer agents.
Collapse
Affiliation(s)
| | | | - Katarina V. Mitić
- Institute of Physiology and Biochemistry “Ivan Ðaja”, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Pavle J. Ranđelović
- Department of Physiology, Faculty of Medicine, University of Niš, Niš, Serbia
| | - Niko S. Radulović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Niš, Serbia
| |
Collapse
|
17
|
Ning Y, Hu M, Gong Y, Huang R, Xu K, Chen S, Zhang F, Liu Y, Chen F, Chang Y, Zhao G, Li C, Zhou R, Lammi MJ, Guo X, Wang X. Comparative analysis of the gut microbiota composition between knee osteoarthritis and Kashin-Beck disease in Northwest China. Arthritis Res Ther 2022; 24:129. [PMID: 35637503 PMCID: PMC9150333 DOI: 10.1186/s13075-022-02819-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/21/2022] [Indexed: 12/15/2022] Open
Abstract
Background Osteoarthritis (OA) and Kashin-Beck disease (KBD) both are two severe osteochondral disorders. In this study, we aimed to compare the gut microbiota structure between OA and KBD patients. Methods Fecal samples collected from OA and KBD patients were used to characterize the gut microbiota using 16S rDNA gene sequencing. To identify whether gut microbial changes at the species level are associated with the genes or functions of the gut bacteria between OA and KBD groups, metagenomic sequencing of fecal samples from OA and KBD subjects was performed. Results The OA group was characterized by elevated Epsilonbacteraeota and Firmicutes levels. A total of 52 genera were identified to be significantly differentially abundant between the two groups. The genera Raoultella, Citrobacter, Flavonifractor, g__Lachnospiraceae_UCG-004, and Burkholderia-Caballeronia-Paraburkholderia were more abundant in the OA group. The KBD group was characterized by higher Prevotella_9, Lactobacillus, Coprococcus_2, Senegalimassilia, and Holdemanella. The metagenomic sequencing showed that the Subdoligranulum_sp._APC924/74, Streptococcus_parasanguinis, and Streptococcus_salivarius were significantly increased in abundance in the OA group compared to those in the KBD group, and the species Prevotella_copri, Prevotella_sp._CAG:386, and Prevotella_stercorea were significantly decreased in abundance in the OA group compared to those in the KBD group by using metagenomic sequencing. Conclusion Our study provides a comprehensive landscape of the gut microbiota between OA and KBD patients and provides clues for better understanding the mechanisms underlying the pathogenesis of OA and KBD. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-022-02819-5.
Collapse
Affiliation(s)
- Yujie Ning
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Minhan Hu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yi Gong
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Ruitian Huang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Ke Xu
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University, No.555, Youyi East Road, Xi'an, People's Republic of China
| | - Sijie Chen
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Feiyu Zhang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yanli Liu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Feihong Chen
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yanhai Chang
- Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
| | - Guanghui Zhao
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University, No.555, Youyi East Road, Xi'an, People's Republic of China
| | - Cheng Li
- Shaanxi Institute of Endemic Disease Prevention and Control, Xi'an, Shaanxi, 710003, People's Republic of China
| | - Rong Zhou
- Shaanxi Institute of Endemic Disease Prevention and Control, Xi'an, Shaanxi, 710003, People's Republic of China
| | - Mikko J Lammi
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China.,Department of Integrative Medical Biology, University of Umeå, Umeå, Sweden
| | - Xiong Guo
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xi Wang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China. .,Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China. .,Global Health Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China.
| |
Collapse
|