1
|
Nishimura H, Layne J, Yamaura K, Marcucio R, Morioka K, Basbaum AI, Weinrich JAP, Bahney CS. A bad break: mechanisms and assessment of acute and chronic pain after bone fracture. Pain 2025:00006396-990000000-00920. [PMID: 40408239 DOI: 10.1097/j.pain.0000000000003646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 03/25/2025] [Indexed: 05/25/2025]
Abstract
ABSTRACT Pain is one of the primary indicators of a bone fracture and serves both a functional and practical role in guiding recovery. However, fracture pain can persist long after the fracture itself has clinically healed. The neural and molecular mechanisms that drive acute pain postfracture, and how these mechanisms are pathologically usurped to trap patients into persistent, debilitating, and often difficult to treat, chronic pain, are not well understood. The aim of this review is to provide insight into the risk factors for pain persistence after fracture, review the physiological and pathophysiological mechanisms of fracture pain, and critically evaluate the literature around fracture pain assessment techniques/models. Taken together, the concepts covered herein will provide a strong foundation to support the development of more effective treatments to better alleviate postfracture pain.
Collapse
Affiliation(s)
- Haruki Nishimura
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, United States
- Department of Orthopaedic Surgery, University Hospital of Occupational and Environmental Health, Fukuoka, Japan
| | - Jonathan Layne
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, United States
- The Orthopaedic Trauma Institute, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Kohei Yamaura
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, United States
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ralph Marcucio
- The Orthopaedic Trauma Institute, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Kazuhito Morioka
- The Orthopaedic Trauma Institute, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Allan I Basbaum
- Department of Anatomy, UCSF, San Francisco, CA, United States
| | - Jarret A P Weinrich
- Department of Anatomy, UCSF, San Francisco, CA, United States
- Department of Anesthesia and Perioperative Care, UCSF, San Francisco, CA, United States
| | - Chelsea S Bahney
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, United States
- The Orthopaedic Trauma Institute, University of California, San Francisco (UCSF), San Francisco, CA, United States
| |
Collapse
|
2
|
King JS, Wan M, Kim A, Prabhu S, Novak S, Kalajzic I, Delany AM, Sanjay A. Effects of aging on the immune and periosteal response to fracture injury. Bone 2025; 198:117524. [PMID: 40381878 DOI: 10.1016/j.bone.2025.117524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/14/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025]
Abstract
Aging predisposes individuals to reduced bone mass and fragility fractures, which are costly and linked to high mortality. Understanding how aging affects fracture healing is essential for developing therapies to enhance bone regeneration in older adults. During the inflammatory phase of fracture healing, immune cells are recruited to the injury site as periosteal skeletal stem/progenitor cells (pSSPCs) rapidly proliferate and differentiate into osteochondral lineages, allowing for fibrocartilaginous callus formation and, subsequently, complete bone healing. Irrespective of age, how periosteal mesenchymal and immune cells interact during early fracture healing is incompletely understood, limiting our ability to modulate this process. To address this, we directly analyzed, in parallel, at a single-cell level, isolated murine CD45(+) and CD45(-) periosteal cells dissected from intact and fractured bones, collected three days after injury. Comprehensive analysis, corroborated by bulk RNA-sequencing, flow cytometry, and histology, demonstrated that aging decreased pSSPC proliferation, markedly reduced expression of genes required for callus formation, and increased senescence signature. During the regeneration phase, at 14 days post injury, aged mice demonstrated reduced mineralization of the callus, accompanied by elevated Sox9 expression and increased cartilage content, suggesting delayed repair. We also found that the chemokine Cxcl9 was highly upregulated in aged intact Prrx1+ pSSPCs, which has the potential to directly regulate other pSSPCs, and was associated with increased recruitment of CD8+ T cells at the fracture site. Cell-to-cell communication analysis provided further appreciation of the complex interactions among the many mesenchymal and hematopoietic cell types regulating fracture healing and highlighted the impact of aging on these interactions. Together, these results provide insight into age-induced alterations in early fracture healing, which could facilitate the development of improved therapeutic approaches for fracture repair in the elderly.
Collapse
Affiliation(s)
- Justin S King
- Department of Orthopedic Surgery, United States of America; UConn Musculoskeletal Institute, United States of America
| | - Matthew Wan
- Department of Orthopedic Surgery, United States of America; UConn Musculoskeletal Institute, United States of America
| | - Adam Kim
- Department of Medicine, United States of America
| | - Shagun Prabhu
- Department of Orthopedic Surgery, United States of America; UConn Musculoskeletal Institute, United States of America
| | - Sanja Novak
- UConn Musculoskeletal Institute, United States of America; Center for Regenerative Medicine and Skeletal Development, United States of America
| | - Ivo Kalajzic
- UConn Musculoskeletal Institute, United States of America; Center for Regenerative Medicine and Skeletal Development, United States of America
| | - Anne M Delany
- Department of Medicine, United States of America; Center for Molecular Oncology, UConn Health, Farmington, CT 06032, United States of America
| | - Archana Sanjay
- Department of Orthopedic Surgery, United States of America; UConn Musculoskeletal Institute, United States of America.
| |
Collapse
|
3
|
Menger MM, Manuschewski R, Hans S, Braun BJ, Kayali MKDE, Ehnert S, Ampofo E, Wrublewsky S, Menger MD, Histing T, Laschke MW. Age-related alterations of angiogenesis, inflammation and bone microarchitecture during fracture healing in mice. GeroScience 2025:10.1007/s11357-025-01584-y. [PMID: 40108067 DOI: 10.1007/s11357-025-01584-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/24/2025] [Indexed: 03/22/2025] Open
Abstract
The surgical treatment of geriatric patients represents a major challenge in traumatology. It is well known that aging affects fracture healing. However, the exact pathophysiology of age-related changes in angiogenesis, inflammation and bone remodeling remains still elusive. Therefore, we herein studied the differences of femoral fracture healing in young adult (3-4 months) and aged (16-18 months) CD-1 mice by using a stable closed femoral fracture model with intramedullary screw fixation. The callus tissue was analyzed by means of X-ray, micro-computed tomography (µCT), histology and immunohistochemistry. We found a deteriorated trabecular architecture and a reduced bone formation within the callus tissue of aged mice. Moreover, aged animals showed an increased number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts at an early healing time point, whereas the fraction of mature α-smooth muscle actin (SMA)-positive microvessels was significantly reduced. Furthermore, the numbers of macrophages and granulocytes were higher in the callus tissue of aged animals at the end of the healing process. Taken together, these results demonstrate a delayed femoral fracture healing in aged CD-1 mice. This is most likely caused by an early overshooting osteoclast response, a decelerated maturation of the callus microvasculature and a late increased recruitment of pro-inflammatory cells. Targeting these alterations may contribute to the development of novel treatment approaches for the stimulation of bone regeneration in geriatric patients.
Collapse
Affiliation(s)
- Maximilian M Menger
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany.
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg, Germany.
| | - Ruben Manuschewski
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Sandra Hans
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Benedikt J Braun
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| | - Moses K D El Kayali
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Sabrina Ehnert
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| | - Emmanuel Ampofo
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Selina Wrublewsky
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Tina Histing
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| | - Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg, Germany
| |
Collapse
|
4
|
King JS, Wan M, Kim A, Novak S, Prabhu S, Kalajzic I, Delany AM, Sanjay A. Effects of Aging on the Immune and Periosteal Response to Fracture in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.06.622348. [PMID: 39574733 PMCID: PMC11580938 DOI: 10.1101/2024.11.06.622348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Aging predisposes individuals to reduced bone mass and fragility fractures, which are costly and linked to high mortality. Understanding how aging affects fracture healing is essential for developing therapies to enhance bone regeneration in older adults. During the inflammatory phase of fracture healing, immune cells are recruited to the injury site as periosteal skeletal stem/progenitor cells (pSSPCs) rapidly proliferate and differentiate into osteochondral lineages, allowing for fibrocartilaginous callus formation and complete bone healing. Irrespective of age, how periosteal mesenchymal and immune cells interact during early fracture healing is incompletely understood, limiting our ability to potentially modulate these processes. To address this, we directly analyzed, in parallel, at a single-cell level, isolated murine CD45(+) and CD45(-) periosteal cells dissected from intact and fractured bones, collected three days after injury. Through comprehensive analysis, corroborated by bulk RNA-sequencing, flow cytometry, and histology, we found aging decreases pSSPCs proliferative, marked by a reduced expression of genes required for callus formation and an increased senescence signature. We found that the chemokine Cxcl9 was highly upregulated in aged intact Prrx1+ pSSPCs, predicted to interact with other pSSPCs directly, and associated with increased recruitment of CD8+ T cells at the fracture site three days after injury. Cell-to-cell communication analysis provided insight into the complexity of interactions among the many cell types regulating fracture healing and the impact of aging on these processes. Together, these results provide insight into age-induced alterations in fracture healing, informing the development of improved therapeutic approaches for fragility fractures.
Collapse
|
5
|
Menger MM, Speicher R, Hans S, Histing T, El Kayali MKD, Ehnert S, Menger MD, Ampofo E, Wrublewsky S, Laschke MW. Nlrp3 Deficiency Does Not Substantially Affect Femoral Fracture Healing in Mice. Int J Mol Sci 2024; 25:11788. [PMID: 39519338 PMCID: PMC11546854 DOI: 10.3390/ijms252111788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Inflammation has been recognized as major factor for successful bone regeneration. On the other hand, a prolonged or overshooting inflammatory response can also cause fracture healing failure. The nucleotide-binding oligomerization domain (NOD)-like receptor protein (NLRP)3 inflammasome plays a crucial role in inflammatory cytokine production. However, its role during fracture repair remains elusive. We investigated the effects of Nlrp3 deficiency on the healing of closed femoral fractures in Nlrp3-/- and wildtype mice. The callus tissue was analyzed by means of X-ray, biomechanics, µCT and histology, as well as immunohistochemistry and Western blotting at 2 and 5 weeks after surgery. We found a significantly reduced trabecular thickness at 2 weeks after fracture in the Nlrp3-/- mice when compared to the wildtype animals. However, the amount of bone tissue did not differ between the two groups. Additional immunohistochemical analyses showed a reduced number of CD68-positive macrophages within the callus tissue of the Nlrp3-/- mice at 2 weeks after fracture, whereas the number of myeloperoxidase (MPO)-positive granulocytes was increased. Moreover, we detected a significantly lower expression of vascular endothelial growth factor (VEGF) and a reduced number of microvessels in the Nlrp3-/- mice. The expression of the absent in melanoma (AIM)2 inflammasome was increased more than 2-fold in the Nlrp3-/- mice, whereas the expression of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18 was not affected. Our results demonstrate that Nlrp3 deficiency does not markedly affect femoral fracture healing in mice. This is most likely due to the unaltered expression of pro-inflammatory cytokines and pro-osteogenic growth factors.
Collapse
Affiliation(s)
- Maximilian M. Menger
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany; (T.H.)
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (R.S.); (S.H.); (M.K.D.E.K.); (M.D.M.); (E.A.); (S.W.); (M.W.L.)
| | - Rouven Speicher
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (R.S.); (S.H.); (M.K.D.E.K.); (M.D.M.); (E.A.); (S.W.); (M.W.L.)
| | - Sandra Hans
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (R.S.); (S.H.); (M.K.D.E.K.); (M.D.M.); (E.A.); (S.W.); (M.W.L.)
| | - Tina Histing
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany; (T.H.)
| | - Moses K. D. El Kayali
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (R.S.); (S.H.); (M.K.D.E.K.); (M.D.M.); (E.A.); (S.W.); (M.W.L.)
| | - Sabrina Ehnert
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany;
| | - Michael D. Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (R.S.); (S.H.); (M.K.D.E.K.); (M.D.M.); (E.A.); (S.W.); (M.W.L.)
| | - Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (R.S.); (S.H.); (M.K.D.E.K.); (M.D.M.); (E.A.); (S.W.); (M.W.L.)
| | - Selina Wrublewsky
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (R.S.); (S.H.); (M.K.D.E.K.); (M.D.M.); (E.A.); (S.W.); (M.W.L.)
| | - Matthias W. Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (R.S.); (S.H.); (M.K.D.E.K.); (M.D.M.); (E.A.); (S.W.); (M.W.L.)
| |
Collapse
|
6
|
Flanagan SD, Hougland JR, Zeng X, Cantrell PS, Sun M, Jones-Laughner J, Canino MC, Hughes JM, Foulis SA, Taylor KM, Walker LA, Guerriere KI, Sterczala AJ, Connaboy C, Beckner ME, Matheny RW, Nindl BC. Urinary Proteomic Biomarkers of Trabecular Bone Volume Change during Army Basic Combat Training. Med Sci Sports Exerc 2024; 56:1644-1654. [PMID: 38758530 DOI: 10.1249/mss.0000000000003464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
PURPOSE The purpose of this study is to optimize a dMS-based urinary proteomic technique and evaluate the relationship between urinary proteome content and adaptive changes in bone microarchitecture during BCT. METHODS Urinary proteomes were analyzed with an optimized dMS technique in two groups of 13 recruits ( N = 26) at the beginning (Pre) and end (Post) of BCT. Matched by age (21 ± 4 yr), sex (16 W), and baseline tibial trabecular bone volume fractions (Tb.BV/TV), these groups were distinguished by the most substantial (High) and minimal (Low) improvements in Tb.BV/TV. Differential protein expression was analyzed with mixed permutation ANOVA and false discovery proportion-based adjustment for multiple comparisons. RESULTS Tibial Tb.BV/TV increased from pre- to post-BCT in High (3.30 ± 1.64%, P < 0.0001) but not Low (-0.35 ± 1.25%, P = 0.4707). The optimized dMS technique identified 10,431 peptides from 1368 protein groups that represented 165 integrative biological processes. Seventy-four urinary proteins changed from pre- to post-BCT ( P = 0.0019), and neutrophil-mediated immunity was the most prominent ontology. Two proteins (immunoglobulin heavy constant gamma 4 and C-type lectin domain family 4 member G) differed from pre- to post-BCT in High and Low ( P = 0.0006). CONCLUSIONS The dMS technique can identify more than 1000 urinary proteins. At least 74 proteins are responsive to BCT, and other principally immune system-related proteins show differential expression patterns that coincide with adaptive bone formation.
Collapse
Affiliation(s)
| | | | - Xuemei Zeng
- Biomedical Mass Spectrometry Center, University of Pittsburgh, Pittsburgh, PA
| | - Pamela S Cantrell
- Biomedical Mass Spectrometry Center, University of Pittsburgh, Pittsburgh, PA
| | - Mai Sun
- Biomedical Mass Spectrometry Center, University of Pittsburgh, Pittsburgh, PA
| | | | - Maria C Canino
- Department of Sports Medicine and Nutrition, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Julie M Hughes
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA
| | - Stephen A Foulis
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA
| | - Kathryn M Taylor
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA
| | - Leila A Walker
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA
| | - Katelyn I Guerriere
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA
| | - Adam J Sterczala
- Department of Sports Medicine and Nutrition, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA
| | | | - Meaghan E Beckner
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA
| | - Ronald W Matheny
- Military Operational Medicine Research Program, Fort Detrick, MD
| | - Bradley C Nindl
- Department of Sports Medicine and Nutrition, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
7
|
Jeffery EC. The role of hematopoiesis in bone repair: an update. Curr Opin Hematol 2024; 31:163-167. [PMID: 38723188 DOI: 10.1097/moh.0000000000000821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
PURPOSE OF REVIEW The repair of bone after injury requires the participation of many different immune cell populations, which are derived from the hematopoietic lineage. The field of osteoimmunology, or the study of the interactions between bone and the immune system, is a growing field with emerging impact on both the basic science and clinical aspects of fracture healing. RECENT FINDINGS Despite previous focus on the innate immune system in fracture healing, recent studies have revealed an important role for the adaptive immune system in bone repair. The composition of adaptive and innate immune cell populations present at the fracture site is significantly altered during aging and diet-induced obesity, which may contribute to delayed healing. Recent data also suggest a complicated relationship between fracture repair and systemic inflammation, raising the possibility that immune populations from distant sites such as the gut can impact the bone repair process. SUMMARY These findings have important implications for the treatment of fracture patients with antibiotics or anti-inflammatory drugs. Furthermore, the effects of systemic inflammation on fracture repair in the contexts of aging or obesity should be carefully interpreted, as they may not be uniformly detrimental.
Collapse
Affiliation(s)
- Elise C Jeffery
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
8
|
Han J, Rindone AN, Elisseeff JH. Immunoengineering Biomaterials for Musculoskeletal Tissue Repair across Lifespan. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311646. [PMID: 38416061 PMCID: PMC11239302 DOI: 10.1002/adma.202311646] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/23/2024] [Indexed: 02/29/2024]
Abstract
Musculoskeletal diseases and injuries are among the leading causes of pain and morbidity worldwide. Broad efforts have focused on developing pro-regenerative biomaterials to treat musculoskeletal conditions; however, these approaches have yet to make a significant clinical impact. Recent studies have demonstrated that the immune system is central in orchestrating tissue repair and that targeting pro-regenerative immune responses can improve biomaterial therapeutic outcomes. However, aging is a critical factor negatively affecting musculoskeletal tissue repair and immune function. Hence, understanding how age affects the response to biomaterials is essential for improving musculoskeletal biomaterial therapies. This review focuses on the intersection of the immune system and aging in response to biomaterials for musculoskeletal tissue repair. The article introduces the general impacts of aging on tissue physiology, the immune system, and the response to biomaterials. Then, it explains how the adaptive immune system guides the response to injury and biomaterial implants in cartilage, muscle, and bone and discusses how aging impacts these processes in each tissue type. The review concludes by highlighting future directions for the development and translation of personalized immunomodulatory biomaterials for musculoskeletal tissue repair.
Collapse
Affiliation(s)
- Jin Han
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University; Baltimore, MD 21231, USA
| | - Alexandra N. Rindone
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University; Baltimore, MD 21231, USA
| | - Jennifer H. Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University; Baltimore, MD 21231, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine; Baltimore, MD 21231, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University; Baltimore, MD 21231, USA
| |
Collapse
|
9
|
Molitoris KH, Huang M, Baht GS. Osteoimmunology of Fracture Healing. Curr Osteoporos Rep 2024; 22:330-339. [PMID: 38616228 PMCID: PMC11186872 DOI: 10.1007/s11914-024-00869-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 04/16/2024]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize what is known in the literature about the role inflammation plays during bone fracture healing. Bone fracture healing progresses through four distinct yet overlapping phases: formation of the hematoma, development of the cartilaginous callus, development of the bony callus, and finally remodeling of the fracture callus. Throughout this process, inflammation plays a critical role in robust bone fracture healing. RECENT FINDINGS At the onset of injury, vessel and matrix disruption lead to the generation of an inflammatory response: inflammatory cells are recruited to the injury site where they differentiate, activate, and/or polarize to secrete cytokines for the purposes of cell signaling and cell recruitment. This process is altered by age and by sex. Bone fracture healing is heavily influenced by the presence of inflammatory cells and cytokines within the healing tissue.
Collapse
Affiliation(s)
- Kristin Happ Molitoris
- Department of Orthopaedic Surgery, Duke Molecular Physiology Institute, Duke University, 300 North Duke Street, Durham, NC, 27701, USA
| | - Mingjian Huang
- Department of Orthopaedic Surgery, Duke Molecular Physiology Institute, Duke University, 300 North Duke Street, Durham, NC, 27701, USA
| | - Gurpreet Singh Baht
- Department of Orthopaedic Surgery, Duke Molecular Physiology Institute, Duke University, 300 North Duke Street, Durham, NC, 27701, USA.
| |
Collapse
|
10
|
Duke VR, Philippon MJ, Lind DRG, Kasler H, Yamaura K, Huard M, Czachor M, Hollenbeck J, Brown J, Garcia A, Fukase N, Marcucio RS, Nelson AL, Hambright WS, Snapper DM, Huard J, Bahney CS. Murine Progeria Model Exhibits Delayed Fracture Healing with Dysregulated Local Immune Response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596277. [PMID: 38854043 PMCID: PMC11160782 DOI: 10.1101/2024.05.29.596277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Background Bone fracture is one of the most globally prevalent injuries, with an estimated 189 million bone fractures occurring annually. Delayed union or nonunion occurs in up to 15% of fractures and involves the interruption or complete failure of bone continuity following fracture. Preclinical testing is essential to support the translation of novel strategies to promote improved fracture repair treatment, but there is a paucity of small animal models that recapitulate clinical attributes associated with delayed fracture healing. This study explores whether the Zmpste24 -/- (Z24 -/- ) knockout mouse model of Hutchinson-Gilford progeria syndrome presents with delayed fracture healing. Leveraging the previously characterized Z24 -/- phenotype of genomic instability, epigenetic changes, and fragility, we hypothesize that these underlying alterations will lead to significantly delayed fracture healing relative to age-matched wild type (WT) controls. Methods WT and Z24 -/- mice received intramedullary fixed tibia fractures at ∼12 weeks of age. Mice were sacrificed throughout the time course of repair for the collection of organs that would provide information regarding the local (fracture callus, bone marrow, inguinal lymph nodes) versus peripheral (peripheral blood, contralateral tibia, abdominal organs) tissue microenvironments. Analyses of these specimens include histomorphometry, μCT, mechanical strength testing, protein quantification, gene expression analysis, flow cytometry for cellular senescence, and immunophenotyping. Results Z24 -/- mice demonstrated a significantly delayed rate of healing compared to WT mice with consistently smaller fracture calli containing higher proportion of cartilage and less bone after injury. Cellular senescence and pro-inflammatory cytokines were elevated in the Z24 -/- mice before and after fracture. These mice further presented with a dysregulated immune system, exhibiting generally decreased lymphopoiesis and increased myelopoiesis locally in the bone marrow, with more naïve and less memory T cell but greater myeloid activation systemically in the peripheral blood. Surprisingly, the ipsilateral lymph nodes had increased T cell activation and other pro-inflammatory NK and myeloid cells, suggesting that elevated myeloid abundance and activation contributes to an injury-specific hyperactivation of T cells. Conclusion Taken together, these data establish the Z24 -/- progeria mouse as a model of delayed fracture healing that exhibits decreased bone in the fracture callus, with weaker overall bone quality, immune dysregulation, and increased cellular senescence. Based on this mechanism for delayed healing, we propose this Z24 -/- progeria mouse model could be useful in testing novel therapeutics that could address delayed healing. The Translational Potential of this Article This study employs a novel animal model for delayed fracture healing that researchers can use to screen fracture healing therapeutics to address the globally prevalent issue of aberrant fracture healing.
Collapse
|
11
|
Evans AR, Giannoudis PV, Leucht P, McKinley TO, Gaski GE, Frey KP, Wenke JC, Lee C. The local and systemic effects of immune function on fracture healing. OTA Int 2024; 7:e328. [PMID: 38487403 PMCID: PMC10936162 DOI: 10.1097/oi9.0000000000000328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 03/17/2024]
Abstract
The immune system plays an integral role in the regulation of cellular processes responsible for fracture healing. Local and systemic influences on fracture healing correlate in many ways with fracture-related outcomes, including soft tissue healing quality and fracture union rates. Impaired soft tissue healing, restricted perfusion of a fracture site, and infection also in turn affect the immune response to fracture injury. Modern techniques used to investigate the relationship between immune system function and fracture healing include precision medicine, using vast quantities of data to interpret broad patterns of inflammatory response. Early data from the PRECISE trial have demonstrated distinct patterns of inflammatory response in polytrauma patients, which thereby directly and indirectly regulate the fracture healing response. The clearly demonstrated linkage between immune function and fracture healing suggests that modulation of immune function has significant potential as a therapeutic target that can be used to enhance fracture healing.
Collapse
Affiliation(s)
- Andrew R. Evans
- Warren Alpert School of Medicine at Brown University, University Orthopedics, Inc, Providence, RI
| | - Peter V. Giannoudis
- Academic Department of Trauma and Orthopaedics, School of Medicine, University of Leeds, Leeds General Infirmary, Clarendon Wing, Level D, Leeds, West Yorkshire, United Kingdom
| | | | | | - Greg E. Gaski
- University of Virginia School of Medicine, Inova Fairfax Medical Campus, Falls Church, VA
| | - Katherine P. Frey
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Joseph C. Wenke
- UTMB Department of Orthopaedic Surgery and Rehabilitation, Shriners Children's Texas, Galveston, TX
| | | |
Collapse
|
12
|
Capobianco CA, Hankenson KD, Knights AJ. Temporal dynamics of immune-stromal cell interactions in fracture healing. Front Immunol 2024; 15:1352819. [PMID: 38455063 PMCID: PMC10917940 DOI: 10.3389/fimmu.2024.1352819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/06/2024] [Indexed: 03/09/2024] Open
Abstract
Bone fracture repair is a complex, multi-step process that involves communication between immune and stromal cells to coordinate the repair and regeneration of damaged tissue. In the US, 10% of all bone fractures do not heal properly without intervention, resulting in non-union. Complications from non-union fractures are physically and financially debilitating. We now appreciate the important role that immune cells play in tissue repair, and the necessity of the inflammatory response in initiating healing after skeletal trauma. The temporal dynamics of immune and stromal cell populations have been well characterized across the stages of fracture healing. Recent studies have begun to untangle the intricate mechanisms driving the immune response during normal or atypical, delayed healing. Various in vivo models of fracture healing, including genetic knockouts, as well as in vitro models of the fracture callus, have been implemented to enable experimental manipulation of the heterogeneous cellular environment. The goals of this review are to (1): summarize our current understanding of immune cell involvement in fracture healing (2); describe state-of-the art approaches to study inflammatory cells in fracture healing, including computational and in vitro models; and (3) identify gaps in our knowledge concerning immune-stromal crosstalk during bone healing.
Collapse
Affiliation(s)
- Christina A. Capobianco
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Kurt D. Hankenson
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Alexander J. Knights
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
13
|
Miszuk J, Sun H. Biomimetic Therapeutics for Bone Regeneration: A Perspective on Antiaging Strategies. Macromol Biosci 2024; 24:e2300248. [PMID: 37769439 PMCID: PMC10922069 DOI: 10.1002/mabi.202300248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/15/2023] [Indexed: 09/30/2023]
Abstract
Advances in modern medicine and the significant reduction in infant mortality have steadily increased the population's lifespan. As more and more people in the world grow older, incidence of chronic, noncommunicable disease is anticipated to drastically increase. Recent studies have shown that improving the health of the aging population is anticipated to provide the most cost-effective and impactful improvement in quality of life during aging-driven disease. In bone, aging is tightly linked to increased risk of fracture, and markedly decreased regenerative potential, deeming it critical to develop therapeutics to improve aging-driven bone regeneration. Biomimetics offer a cost-effective method in regenerative therapeutics for bone, where there are numerous innovations improving outcomes in young models, but adapting biomimetics to aged models is still a challenge. Chronic inflammation, accumulation of reactive oxygen species, and cellular senescence are among three of the more unique challenges facing aging-induced defect repair. This review dissects many of the innovative biomimetic approaches research groups have taken to tackle these challenges, and discusses the further uncertainties that need to be addressed to push the field further. Through these research innovations, it can be noted that biomimetic therapeutics hold great potential for the future of aging-complicated defect repair.
Collapse
Affiliation(s)
- Jacob Miszuk
- Department of Oral and Maxillofacial Surgery, University of Iowa College of Dentistry, 801 Newton Road, Iowa City, IA, 52242, United States
- Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, 801 Newton Road, Iowa City, IA, 52242, United States
| | - Hongli Sun
- Department of Oral and Maxillofacial Surgery, University of Iowa College of Dentistry, 801 Newton Road, Iowa City, IA, 52242, United States
- Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, 801 Newton Road, Iowa City, IA, 52242, United States
| |
Collapse
|
14
|
Torres HM, Arnold KM, Oviedo M, Westendorf JJ, Weaver SR. Inflammatory Processes Affecting Bone Health and Repair. Curr Osteoporos Rep 2023; 21:842-853. [PMID: 37759135 PMCID: PMC10842967 DOI: 10.1007/s11914-023-00824-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
PURPOSE OF REVIEW The purpose of this article is to review the current understanding of inflammatory processes on bone, including direct impacts of inflammatory factors on bone cells, the effect of senescence on inflamed bone, and the critical role of inflammation in bone pain and healing. RECENT FINDINGS Advances in osteoimmunology have provided new perspectives on inflammatory bone loss in recent years. Characterization of so-called inflammatory osteoclasts has revealed insights into physiological and pathological bone loss. The identification of inflammation-associated senescent markers in bone cells indicates that therapies that reduce senescent cell burden may reverse bone loss caused by inflammatory processes. Finally, novel studies have refined the role of inflammation in bone healing, including cross talk between nerves and bone cells. Except for the initial stages of fracture healing, inflammation has predominately negative effects on bone and increases fracture risk. Eliminating senescent cells, priming the osteo-immune axis in bone cells, and alleviating pro-inflammatory cytokine burden may ameliorate the negative effects of inflammation on bone.
Collapse
Affiliation(s)
- Haydee M Torres
- Department of Orthopedic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Katherine M Arnold
- Department of Orthopedic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
- Biomedical Engineering and Physiology Track/Regenerative Sciences Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, 55905, USA
| | - Manuela Oviedo
- Department of Orthopedic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Jennifer J Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Samantha R Weaver
- Department of Orthopedic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA.
| |
Collapse
|
15
|
Kushioka J, Chow SKH, Toya M, Tsubosaka M, Shen H, Gao Q, Li X, Zhang N, Goodman SB. Bone regeneration in inflammation with aging and cell-based immunomodulatory therapy. Inflamm Regen 2023; 43:29. [PMID: 37231450 DOI: 10.1186/s41232-023-00279-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023] Open
Abstract
Aging of the global population increases the incidence of osteoporosis and associated fragility fractures, significantly impacting patient quality of life and healthcare costs. The acute inflammatory reaction is essential to initiate healing after injury. However, aging is associated with "inflammaging", referring to the presence of systemic low-level chronic inflammation. Chronic inflammation impairs the initiation of bone regeneration in elderly patients. This review examines current knowledge of the bone regeneration process and potential immunomodulatory therapies to facilitate bone healing in inflammaging.Aged macrophages show increased sensitivity and responsiveness to inflammatory signals. While M1 macrophages are activated during the acute inflammatory response, proper resolution of the inflammatory phase involves repolarizing pro-inflammatory M1 macrophages to an anti-inflammatory M2 phenotype associated with tissue regeneration. In aging, persistent chronic inflammation resulting from the failure of M1 to M2 repolarization leads to increased osteoclast activation and decreased osteoblast formation, thus increasing bone resorption and decreasing bone formation during healing.Inflammaging can impair the ability of stem cells to support bone regeneration and contributes to the decline in bone mass and strength that occurs with aging. Therefore, modulating inflammaging is a promising approach for improving bone health in the aging population. Mesenchymal stem cells (MSCs) possess immunomodulatory properties that may benefit bone regeneration in inflammation. Preconditioning MSCs with pro-inflammatory cytokines affects MSCs' secretory profile and osteogenic ability. MSCs cultured under hypoxic conditions show increased proliferation rates and secretion of growth factors. Resolution of inflammation via local delivery of anti-inflammatory cytokines is also a potential therapy for bone regeneration in inflammaging. Scaffolds containing anti-inflammatory cytokines, unaltered MSCs, and genetically modified MSCs can also have therapeutic potential. MSC exosomes can increase the migration of MSCs to the fracture site and enhance osteogenic differentiation and angiogenesis.In conclusion, inflammaging can impair the proper initiation of bone regeneration in the elderly. Modulating inflammaging is a promising approach for improving compromised bone healing in the aging population.
Collapse
Affiliation(s)
- Junichi Kushioka
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA.
| | - Simon Kwoon-Ho Chow
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Masakazu Toya
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Masanori Tsubosaka
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Huaishuang Shen
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Qi Gao
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Xueping Li
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Ning Zhang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
16
|
Menger MM, Manuschewski R, Ehnert S, Rollmann MF, Maisenbacher TC, Tobias AL, Menger MD, Laschke MW, Histing T. Radiographic, Biomechanical and Histological Characterization of Femoral Fracture Healing in Aged CD-1 Mice. Bioengineering (Basel) 2023; 10:bioengineering10020275. [PMID: 36829769 PMCID: PMC9952563 DOI: 10.3390/bioengineering10020275] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
With a gradually increasing elderly population, the treatment of geriatric patients represents a major challenge for trauma and reconstructive surgery. Although, it is well established that aging affects bone metabolism, it is still controversial if aging impairs bone healing. Accordingly, we investigated fracture healing in young adult (3-4 months) and aged (16-18 months) CD-1 mice using a stable closed femoral fracture model. Bone healing was analyzed by radiographic, biomechanical and histological analysis at 1, 2, 3, 4 and 5 weeks after fracture. Our results demonstrated an increased callus diameter to femoral diameter ratio in aged animals at later time points of fracture healing when compared to young adult mice. Moreover, our biomechanical analysis revealed a significantly decreased bending stiffness at 3 and 4 weeks after fracture in aged animals. In contrast, at 5 weeks after fracture, the analysis showed no significant difference in bending stiffness between the two study groups. Additional histological analysis showed a delayed endochondral ossification in aged animals as well as a higher amounts of fibrous tissue at early healing time points. These findings indicate a delayed process of callus remodeling in aged CD-1 mice, resulting in a delayed fracture healing when compared to young adult animals. However, the overall healing capacity of the fractured femora was not affected by aging.
Collapse
Affiliation(s)
- Maximilian M. Menger
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany
- Correspondence: ; Tel.: +49-7071-606-1001; Fax: +49-7071-606-1002
| | - Ruben Manuschewski
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Sabrina Ehnert
- Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, Eberhard Karls University of Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany
| | - Mika F. Rollmann
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany
| | - Tanja C. Maisenbacher
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany
| | - Anne L. Tobias
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Michael D. Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Matthias W. Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Tina Histing
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
17
|
Frade BB, Dias RB, Gemini Piperni S, Bonfim DC. The role of macrophages in fracture healing: a narrative review of the recent updates and therapeutic perspectives. Stem Cell Investig 2023; 10:4. [PMID: 36817259 PMCID: PMC9936163 DOI: 10.21037/sci-2022-038] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/10/2023] [Indexed: 02/10/2023]
Abstract
Objective This review addresses the latest advances in research on the role of macrophages in fracture healing, exploring their relationship with failures in bone consolidation and the perspectives for the development of advanced and innovative therapies to promote bone regeneration. Background The bone can fully restore its form and function after a fracture. However, the regenerative process of fracture healing is complex and is influenced by several factors, including macrophage activity. These cells have been found in the fracture site at all stages of bone regeneration, and their general depletion or the knockdown of receptors that mediate their differentiation, polarization, and/or function result in impaired fracture healing. Methods The literature search was carried out in the PubMed database, using combinations of the keywords "macrophage", "fracture healing, "bone regeneration", and "bone repair". Articles published within the last years (2017-2022) reporting evidence from in vivo long bone fracture healing experiments were included. Conclusions Studies published in the last five years on the role of macrophages in fracture healing strengthened the idea that what appears to be essential when it comes to a successful consolidation is the right balance between the M1/M2 populations, which have different but complementary roles in the process. These findings opened promising new avenues for the development of several macrophage-targeted therapies, including the administration of molecules and/or biomaterials intended to regulate macrophage differentiation and polarization, the local transplantation of macrophage precursors, and the use of exosomes to deliver signaling molecules that influence macrophage activities. However, more research is still warranted to better understand the diversity of macrophage phenotypes and their specific roles in each step of fracture healing and to decipher the key molecular mechanisms involved in the in vivo crosstalk between macrophages and other microenvironmental cell types, such as endothelial and skeletal stem/progenitor cells.
Collapse
Affiliation(s)
- Bianca Braga Frade
- Laboratory of Stem Cells and Bone Regeneration, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil;,Postgraduation Program in Biological Sciences-Biophysics, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rhayra Braga Dias
- Laboratory of Stem Cells and Bone Regeneration, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil;,Postgraduation Program in Morphological Sciences, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sara Gemini Piperni
- Laboratory of Biotechnology, Bioengineering and Nanostructured Biomaterials, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Danielle Cabral Bonfim
- Laboratory of Stem Cells and Bone Regeneration, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Goodnough LH, Goodman SB. Relationship of Aging, Inflammation, and Skeletal Stem Cells and Their Effects on Fracture Repair. Curr Osteoporos Rep 2022; 20:320-325. [PMID: 36129609 DOI: 10.1007/s11914-022-00742-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE OF REVIEW This review summarizes recent investigations into the cellular and molecular effects of skeletal aging on the inflammatory response and stem cell function after fracture. RECENT FINDINGS Proper regulation of the inflammatory phase of fracture healing is essential. Aging is associated with chronic inflammation, which inhibits bone formation and promotes bone resorption. Osteogenic differentiation and anti-senescence pathways in skeletal stem cells are impaired in geriatric fractures. As the population ages, fragility fractures will continue to represent a significant clinical problem, which will require innovative clinical solutions. Skeletal stem cells in geriatric individuals demonstrate defects in anti-senescence pathways that lead to impaired osteogenic differentiation in vitro in humans. Small molecule-based therapies can partially reverse the aging phenotype. In the future, molecular- or cell-based therapies modulating either inflammatory cells or skeletal stem cells represent potential therapeutic targets to augment contemporary fracture healing interventions in osteoporotic or aging individuals.
Collapse
Affiliation(s)
- L Henry Goodnough
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Avenue, M/C 6342, Redwood City, CA, 94063, USA.
| | - Stuart B Goodman
- Surgery, Stanford University Medical Center Outpatient Center, 450 Broadway St., M/C 6342, Redwood City, CA, 94063, USA
- Department of Orthopaedic Surgery, Stanford University Medical Center Outpatient Center, 450 Broadway St., M/C 6342, Redwood City, CA, 94063, USA
- Bioengineering, Stanford University Medical Center Outpatient Center, 450 Broadway St., M/C 6342, Redwood City, CA, 94063, USA
- Stanford University Medical Center, Redwood City, CA, USA
- Department of Orthopaedic Surgery, Stanford University, Redwood City, CA, USA
- Lucile Salter Packard Children's Hospital at Stanford, Palo Alto, CA, USA
- Institute of Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University, Redwood City, CA, USA
- Department of Biomechanical Engineering, Stanford University, Redwood City, CA, USA
| |
Collapse
|
19
|
Khokhani P, Belluomo R, Croes M, Gawlitta D, Kruyt MC, Weinans H. An in-vitro model to test the influence of immune cell secretome on MSC osteogenic differentiation. Tissue Eng Part C Methods 2022; 28:420-430. [PMID: 35770885 DOI: 10.1089/ten.tec.2022.0086] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Immune cells and their soluble factors have an important role in the bone healing process. Modulation of the immune response, therefore, offers a potential strategy to enhance bone formation. To investigate the influence of the immune system on osteogenesis, we developed and applied an in-vitro model that incorporates both innate and adaptive immune cells. Human peripheral blood mononuclear cells (PBMCs) were isolated and cultured for 24 hours and subsequently stimulated with immune-modulatory agents; C-class CpG oligodeoxynucleotide (CpG ODN C), Polyinosinic acid-polycytidylic acid Poly(I:C), and lipopolysaccharide (LPS); all pathogen recognition receptor agonists, and that target Toll-like receptors TLR9, -3, and -4, respectively. The conditioned medium obtained from PBMCs after 24 hours was used to investigate its effects on the metabolic activity and osteogenic differentiation capacity of human bone marrow-derived mesenchymal stromal cells (MSCs). Conditioned media from unstimulated PBMCs did not affect the metabolic activity and osteogenic differentiation capacity of MSCs. The conditioned medium from CpG ODN C and LPS stimulated PBMCs increased alkaline phosphatase activity of MSCs by approximately 3-fold as compared to the unstimulated control, whereas Poly(I:C) conditioned medium did not enhance ALP activity of MSCs. Moreover, direct stimulation of MSCs with the immune-modulatory stimuli did not result in increased alkaline phosphatase activity. These results demonstrate that soluble factors present in conditioned medium from PBMCs stimulated with immune-modulatory factors enhance osteogenesis of MSCs. This in-vitro model can serve as a tool in screening immune-modulatory stimulants from a broad variety of immune cells for (indirect) effects on osteogenesis and also to identify soluble factors from multiple immune cell types that may modulate bone healing.
Collapse
Affiliation(s)
- Paree Khokhani
- University Medical Centre Utrecht, 8124, Orthopedics , UMC Utrecht, dept. Orthopedics, G5.203, Heidelberglaan 100, Utrecht, Utrecht, Drenthe, Netherlands, 3584CX.,University Medical Centre, Utrecht (UMCU), UMC Utrecht, dept. Orthopedics, G5.203, Heidelberglaan 100, Netherlands;
| | - Ruggero Belluomo
- University Medical Centre Utrecht, 8124, Orthopedics , Utrecht, Utrecht, Netherlands;
| | - Michiel Croes
- University Medical Centre Utrecht, 8124, Orthopedics , Utrecht, Utrecht, Netherlands;
| | - Debby Gawlitta
- University Medical Center Utrecht, Oral and Maxillofacial Surgery, Prosthodontics & Special Dental Care, Heidelberglaan 100, G05.129, PO Box 85500, Utrecht, Netherlands, 3508 GA;
| | - Moyo C Kruyt
- University medical center Utrecht, Orthopedics, HP G 05.228, PO Box 85500, Utrecht, Netherlands, 3508 GA;
| | - Harrie Weinans
- University Medical Centre Utrecht, 8124, Orthopedics, Utrecht, Utrecht, Netherlands;
| |
Collapse
|