1
|
Namireddy SR, Gill SS, Peerbhai A, Kamath AG, Ramsay DSC, Ponniah HS, Salih A, Jankovic D, Kalasauskas D, Neuhoff J, Kramer A, Russo S, Thavarajasingam SG. Artificial intelligence in risk prediction and diagnosis of vertebral fractures. Sci Rep 2024; 14:30560. [PMID: 39702597 DOI: 10.1038/s41598-024-75628-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/07/2024] [Indexed: 12/21/2024] Open
Abstract
With the increasing prevalence of vertebral fractures, accurate diagnosis and prognostication are essential. This study assesses the effectiveness of AI in diagnosing and predicting vertebral fractures through a systematic review and meta-analysis. A comprehensive search across major databases selected studies utilizing AI for vertebral fracture diagnosis or prognosis. Out of 14,161 studies initially identified, 79 were included, with 40 undergoing meta-analysis. Diagnostic models were stratified by pathology: non-pathological vertebral fractures, osteoporotic vertebral fractures, and vertebral compression fractures. The primary outcome measure was AUROC. AI showed high accuracy in diagnosing and predicting vertebral fractures: predictive AUROC = 0.82, osteoporotic vertebral fracture diagnosis AUROC = 0.92, non-pathological vertebral fracture diagnosis AUROC = 0.85, and vertebral compression fracture diagnosis AUROC = 0.87, all significant (p < 0.001). Traditional models had the highest median AUROC (0.90) for fracture prediction, while deep learning models excelled in diagnosing all fracture types. High heterogeneity (I² > 99%, p < 0.001) indicated significant variation in model design and performance. AI technologies show considerable promise in improving the diagnosis and prognostication of vertebral fractures, with high accuracy. However, observed heterogeneity and study biases necessitate further research. Future efforts should focus on standardizing AI models and validating them across diverse datasets to ensure clinical utility.
Collapse
Affiliation(s)
- Srikar R Namireddy
- Imperial Brain & Spine Initiative, Imperial College London, London, UK
- Faculty of Medicine, Imperial College London, London, UK
| | - Saran S Gill
- Imperial Brain & Spine Initiative, Imperial College London, London, UK
- Faculty of Medicine, Imperial College London, London, UK
| | - Amaan Peerbhai
- Imperial Brain & Spine Initiative, Imperial College London, London, UK
- Faculty of Medicine, Imperial College London, London, UK
| | - Abith G Kamath
- Imperial Brain & Spine Initiative, Imperial College London, London, UK
- Faculty of Medicine, Imperial College London, London, UK
| | - Daniele S C Ramsay
- Imperial Brain & Spine Initiative, Imperial College London, London, UK
- Faculty of Medicine, Imperial College London, London, UK
| | - Hariharan Subbiah Ponniah
- Imperial Brain & Spine Initiative, Imperial College London, London, UK
- Faculty of Medicine, Imperial College London, London, UK
| | - Ahmed Salih
- Imperial Brain & Spine Initiative, Imperial College London, London, UK
- Faculty of Medicine, Imperial College London, London, UK
| | - Dragan Jankovic
- Department of Neurosurgery, University Medical Center Mainz, Langenbeckstraße 1, Mainz, Germany
| | - Darius Kalasauskas
- Department of Neurosurgery, University Medical Center Mainz, Langenbeckstraße 1, Mainz, Germany
| | - Jonathan Neuhoff
- Center for Spinal Surgery and Neurotraumatology, Berufsgenossenschaftliche Unfallklinik Frankfurt am Main, Frankfurt, Germany
| | - Andreas Kramer
- Department of Neurosurgery, University Medical Center Mainz, Langenbeckstraße 1, Mainz, Germany
| | - Salvatore Russo
- Department of Neurosurgery, Imperial College Healthcare NHS Trust, London, UK
| | - Santhosh G Thavarajasingam
- Imperial Brain & Spine Initiative, Imperial College London, London, UK.
- Department of Neurosurgery, University Medical Center Mainz, Langenbeckstraße 1, Mainz, Germany.
| |
Collapse
|
2
|
Li Y, Liang Z, Li Y, Cao Y, Zhang H, Dong B. Machine learning value in the diagnosis of vertebral fractures: A systematic review and meta-analysis. Eur J Radiol 2024; 181:111714. [PMID: 39241305 DOI: 10.1016/j.ejrad.2024.111714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/28/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
PURPOSE To evaluate the diagnostic accuracy of machine learning (ML) in detecting vertebral fractures, considering varying fracture classifications, patient populations, and imaging approaches. METHOD A systematic review and meta-analysis were conducted by searching PubMed, Embase, Cochrane Library, and Web of Science up to December 31, 2023, for studies using ML for vertebral fracture diagnosis. Bias risk was assessed using QUADAS-2. A bivariate mixed-effects model was used for the meta-analysis. Meta-analyses were performed according to five task types (vertebral fractures, osteoporotic vertebral fractures, differentiation of benign and malignant vertebral fractures, differentiation of acute and chronic vertebral fractures, and prediction of vertebral fractures). Subgroup analyses were conducted by different ML models (including ML and DL) and modeling methods (including CT, X-ray, MRI, and clinical features). RESULTS Eighty-one studies were included. ML demonstrated a diagnostic sensitivity of 0.91 and specificity of 0.95 for vertebral fractures. Subgroup analysis showed that DL (SROC 0.98) and CT (SROC 0.98) performed best overall. For osteoporotic fractures, ML showed a sensitivity of 0.93 and specificity of 0.96, with DL (SROC 0.99) and X-ray (SROC 0.99) performing better. For differentiating benign from malignant fractures, ML achieved a sensitivity of 0.92 and specificity of 0.93, with DL (SROC 0.96) and MRI (SROC 0.97) performing best. For differentiating acute from chronic vertebral fractures, ML showed a sensitivity of 0.92 and specificity of 0.93, with ML (SROC 0.96) and CT (SROC 0.97) performing best. For predicting vertebral fractures, ML had a sensitivity of 0.76 and specificity of 0.87, with ML (SROC 0.80) and clinical features (SROC 0.86) performing better. CONCLUSIONS ML, especially DL models applied to CT, MRI, and X-ray, shows high diagnostic accuracy for vertebral fractures. ML also effectively predicts osteoporotic vertebral fractures, aiding in tailored prevention strategies. Further research and validation are required to confirm ML's clinical efficacy.
Collapse
Affiliation(s)
- Yue Li
- Pain Ward of Rehabilitation Department, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, PR China
| | - Zhuang Liang
- Pain Ward of Rehabilitation Department, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, PR China
| | - Yingchun Li
- Pain Ward of Rehabilitation Department, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, PR China
| | - Yang Cao
- Pain Ward of Rehabilitation Department, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, PR China
| | - Hui Zhang
- Pain Ward of Rehabilitation Department, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, PR China
| | - Bo Dong
- Pain Ward of Rehabilitation Department, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, PR China.
| |
Collapse
|
3
|
Tian J, Wang K, Wu P, Li J, Zhang X, Wang X. Development of a deep learning model for detecting lumbar vertebral fractures on CT images: An external validation. Eur J Radiol 2024; 180:111685. [PMID: 39197270 DOI: 10.1016/j.ejrad.2024.111685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/31/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024]
Abstract
OBJECTIVE To develop and externally validate a binary classification model for lumbar vertebral body fractures based on CT images using deep learning methods. METHODS This study involved data collection from two hospitals for AI model training and external validation. In Cohort A from Hospital 1, CT images from 248 patients, comprising 1508 vertebrae, revealed that 20.9% had fractures (315 vertebrae) and 79.1% were non-fractured (1193 vertebrae). In Cohort B from Hospital 2, CT images from 148 patients, comprising 887 vertebrae, indicated that 14.8% had fractures (131 vertebrae) and 85.2% were non-fractured (756 vertebrae). The AI model for lumbar spine fractures underwent two stages: vertebral body segmentation and fracture classification. The first stage utilized a 3D V-Net convolutional deep neural network, which produced a 3D segmentation map. From this map, region of each vertebra body were extracted and then input into the second stage of the algorithm. The second stage employed a 3D ResNet convolutional deep neural network to classify each proposed region as positive (fractured) or negative (not fractured). RESULTS The AI model's accuracy for detecting vertebral fractures in Cohort A's training set (n = 1199), validation set (n = 157), and test set (n = 152) was 100.0 %, 96.2 %, and 97.4 %, respectively. For Cohort B (n = 148), the accuracy was 96.3 %. The area under the receiver operating characteristic curve (AUC-ROC) values for the training, validation, and test sets of Cohort A, as well as Cohort B, and their 95 % confidence intervals (CIs) were as follows: 1.000 (1.000, 1.000), 0.978 (0.944, 1.000), 0.986 (0.969, 1.000), and 0.981 (0.970, 0.992). The area under the precision-recall curve (AUC-PR) values were 1.000 (0.996, 1.000), 0.964 (0.927, 0.985), 0.907 (0.924, 0.984), and 0.890 (0.846, 0.971), respectively. According to the DeLong test, there was no significant difference in the AUC-ROC values between the test set of Cohort A and Cohort B, both for the overall data and for each specific vertebral location (all P>0.05). CONCLUSION The developed model demonstrates promising diagnostic accuracy and applicability for detecting lumbar vertebral fractures.
Collapse
Affiliation(s)
- Jingyi Tian
- Department of Radiology, Peking University First Hospital, Beijing, China; Department of Radiology, Beijing Water Conservancy Hospital, Beijing, China
| | - Kexin Wang
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Pengsheng Wu
- Beijing Smart Tree Medical Technology Co. Ltd., Beijing, China
| | - Jialun Li
- Beijing Smart Tree Medical Technology Co. Ltd., Beijing, China
| | - Xiaodong Zhang
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Xiaoying Wang
- Department of Radiology, Peking University First Hospital, Beijing, China.
| |
Collapse
|
4
|
Gatineau G, Shevroja E, Vendrami C, Gonzalez-Rodriguez E, Leslie WD, Lamy O, Hans D. Development and reporting of artificial intelligence in osteoporosis management. J Bone Miner Res 2024; 39:1553-1573. [PMID: 39163489 PMCID: PMC11523092 DOI: 10.1093/jbmr/zjae131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 07/17/2024] [Accepted: 08/01/2024] [Indexed: 08/22/2024]
Abstract
An abundance of medical data and enhanced computational power have led to a surge in artificial intelligence (AI) applications. Published studies involving AI in bone and osteoporosis research have increased exponentially, raising the need for transparent model development and reporting strategies. This review offers a comprehensive overview and systematic quality assessment of AI articles in osteoporosis while highlighting recent advancements. A systematic search in the PubMed database, from December 17, 2020 to February 1, 2023 was conducted to identify AI articles that relate to osteoporosis. The quality assessment of the studies relied on the systematic evaluation of 12 quality items derived from the minimum information about clinical artificial intelligence modeling checklist. The systematic search yielded 97 articles that fell into 5 areas; bone properties assessment (11 articles), osteoporosis classification (26 articles), fracture detection/classification (25 articles), risk prediction (24 articles), and bone segmentation (11 articles). The average quality score for each study area was 8.9 (range: 7-11) for bone properties assessment, 7.8 (range: 5-11) for osteoporosis classification, 8.4 (range: 7-11) for fracture detection, 7.6 (range: 4-11) for risk prediction, and 9.0 (range: 6-11) for bone segmentation. A sixth area, AI-driven clinical decision support, identified the studies from the 5 preceding areas that aimed to improve clinician efficiency, diagnostic accuracy, and patient outcomes through AI-driven models and opportunistic screening by automating or assisting with specific clinical tasks in complex scenarios. The current work highlights disparities in study quality and a lack of standardized reporting practices. Despite these limitations, a wide range of models and examination strategies have shown promising outcomes to aid in the earlier diagnosis and improve clinical decision-making. Through careful consideration of sources of bias in model performance assessment, the field can build confidence in AI-based approaches, ultimately leading to improved clinical workflows and patient outcomes.
Collapse
Affiliation(s)
- Guillaume Gatineau
- Interdisciplinary Center of Bone Diseases, Rheumatology Unit, Bone and Joint Department, Lausanne University Hospital and University of Lausanne, Av. Pierre-Decker 4, 1011 Lausanne, Switzerland
| | - Enisa Shevroja
- Interdisciplinary Center of Bone Diseases, Rheumatology Unit, Bone and Joint Department, Lausanne University Hospital and University of Lausanne, Av. Pierre-Decker 4, 1011 Lausanne, Switzerland
| | - Colin Vendrami
- Interdisciplinary Center of Bone Diseases, Rheumatology Unit, Bone and Joint Department, Lausanne University Hospital and University of Lausanne, Av. Pierre-Decker 4, 1011 Lausanne, Switzerland
| | - Elena Gonzalez-Rodriguez
- Interdisciplinary Center of Bone Diseases, Rheumatology Unit, Bone and Joint Department, Lausanne University Hospital and University of Lausanne, Av. Pierre-Decker 4, 1011 Lausanne, Switzerland
| | - William D Leslie
- Department of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Olivier Lamy
- Internal Medicine Unit, Internal Medicine Department, Lausanne University Hospital and University of Lausanne, 1005 Lausanne, Switzerland
| | - Didier Hans
- Interdisciplinary Center of Bone Diseases, Rheumatology Unit, Bone and Joint Department, Lausanne University Hospital and University of Lausanne, Av. Pierre-Decker 4, 1011 Lausanne, Switzerland
| |
Collapse
|
5
|
Schousboe JT, Lewis JR, Monchka BA, Reid SB, Davidson MJ, Kimelman D, Jozani MJ, Smith C, Sim M, Gilani SZ, Suter D, Leslie WD. Simultaneous automated ascertainment of prevalent vertebral fracture and abdominal aortic calcification in clinical practice: role in fracture risk assessment. J Bone Miner Res 2024; 39:898-905. [PMID: 38699950 DOI: 10.1093/jbmr/zjae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/08/2024] [Accepted: 05/01/2024] [Indexed: 05/05/2024]
Abstract
Whether simultaneous automated ascertainments of prevalent vertebral fracture (auto-PVFx) and abdominal aortic calcification (auto-AAC) on vertebral fracture assessment (VFA) lateral spine bone density (BMD) images jointly predict incident fractures in routine clinical practice is unclear. We estimated the independent associations of auto-PVFx and auto-AAC primarily with incident major osteoporotic and secondarily with incident hip and any clinical fractures in 11 013 individuals (mean [SD] age 75.8 [6.8] years, 93.3% female) who had a BMD test combined with VFA between March 2010 and December 2017. Auto-PVFx and auto-AAC were ascertained using convolutional neural networks (CNNs). Proportional hazards models were used to estimate the associations of auto-PVFx and auto-AAC with incident fractures over a mean (SD) follow-up of 3.7 (2.2) years, adjusted for each other and other risk factors. At baseline, 17% (n = 1881) had auto-PVFx and 27% (n = 2974) had a high level of auto-AAC (≥ 6 on scale of 0 to 24). Multivariable-adjusted hazard ratios (HR) for incident major osteoporotic fracture (95% CI) were 1.85 (1.59, 2.15) for those with compared with those without auto-PVFx, and 1.36 (1.14, 1.62) for those with high compared with low auto-AAC. The multivariable-adjusted HRs for incident hip fracture were 1.62 (95% CI, 1.26 to 2.07) for those with compared to those without auto-PVFx, and 1.55 (95% CI, 1.15 to 2.09) for those high auto-AAC compared with low auto-AAC. The 5-year cumulative incidence of major osteoporotic fracture was 7.1% in those with no auto-PVFx and low auto-AAC, 10.1% in those with no auto-PVFx and high auto-AAC, 13.4% in those with auto-PVFx and low auto-AAC, and 18.0% in those with auto-PVFx and high auto-AAC. While physician manual review of images in clinical practice will still be needed to confirm image quality and provide clinical context for interpretation, simultaneous automated ascertainment of auto-PVFx and auto-AAC can aid fracture risk assessment.
Collapse
Affiliation(s)
- John T Schousboe
- Department of Rheumatology, Park Nicollet Clinic and HealthPartners Institute, Minneapolis MN 55416, United States
- Division of Health Policy and Management, University of Minnesota, Minneapolis, MN 55455, United States
| | - Joshua R Lewis
- Nutrition & Health Innovation Research Institute, Edith Cowan University, Joondalup 6027, Australia
- Medical School, University of Western Australia, Perth 6009, Australia
- Centre for Kidney Research, School of Public Health, The University of Sydney, Sydney 2006, Australia
| | - Barret A Monchka
- George & Fay Yee Centre for Healthcare Innovation, University of Manitoba, Winnipeg R3T 2N2, Canada
| | - Siobhan B Reid
- Department of Computer Science, Concordia University, Montreal H4B 1R6, Canada
| | - Michael J Davidson
- Department of Medicine, University of Manitoba, Winnipeg R3T 2N2, Canada
| | - Douglas Kimelman
- Department of Medicine, University of Manitoba, Winnipeg R3T 2N2, Canada
| | | | - Cassandra Smith
- Nutrition & Health Innovation Research Institute, Edith Cowan University, Joondalup 6027, Australia
- Medical School, University of Western Australia, Perth 6009, Australia
| | - Marc Sim
- Nutrition & Health Innovation Research Institute, Edith Cowan University, Joondalup 6027, Australia
- Medical School, University of Western Australia, Perth 6009, Australia
| | - Syed Zulqarnain Gilani
- Nutrition & Health Innovation Research Institute, Edith Cowan University, Joondalup 6027, Australia
- Centre for AI & ML, School of Science, Edith Cowan University, Joondalup 6027, Australia
- Department of Computer Science and Software Engineering, University of Western Australia, Perth 6009, Australia
| | - David Suter
- Nutrition & Health Innovation Research Institute, Edith Cowan University, Joondalup 6027, Australia
| | - William D Leslie
- Department of Medicine, University of Manitoba, Winnipeg R3T 2N2, Canada
| |
Collapse
|
6
|
Tang C, Liu F. Effectiveness of bone-filled mesh bag technology and angle vertebroplasty in the treatment of osteoporotic thoracic vertebral compression fractures in the elderly. Am J Transl Res 2024; 16:3289-3297. [PMID: 39114704 PMCID: PMC11301485 DOI: 10.62347/ghnq5649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/09/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVE To evaluate the effectiveness, pain level, and lung function in elderly patients with osteoporotic thoracic vertebral compression fractures using bone filling mesh bag technology compared to curved vertebroplasty. METHODS This retrospective analysis reviewed 72 elderly patients with osteoporotic thoracic vertebral compression fractures treated at Xindu District People's Hospital of Chengdu between February 2021 and January 2022. The patients were separated into two groups according to surgery approach: an observation group using bone filling mesh bag technology and a control group using curved vertebroplasty. The overall response rate, pain degree, pulmonary function, life quality grades, surgical indicators, and bone cement leakage rates of the two groups were evaluated. RESULTS The variation in overall response rate (P=0.420), pain degree (P=0.270), pulmonary function (peak expiratory flow: P=0.660, forced expiratory volume in the first second: P=0.775, forced vital capacity: 0.062), and life quality grades (physical health: P=0.949, social function: P=0.935, physiological function: P=0.970, vitality: P=0.778) between the observation group and the control group after treatment was not statistically meaningful. The Cobb angle (P<0.001) and vertebral height (P<0.001) of patients in the observation group were significantly higher than those in the control group after therapy. The leakage rates of bone cement (intervertebral disc leakage, paravertebral vein leakage, paravertebral soft tissue leakage) of patients in the observation group were notably lower than those in the control group after therapy (P=0.029). CONCLUSION Bone filling mesh bag technology offers significant improvements in Cobb angle and vertebral height for treating elderly patients with osteoporotic thoracic vertebral compression fractures, and reduced the leakage rate of bone cement. This technique achieves comparable therapeutic outcomes to curved vertebroplasty.
Collapse
Affiliation(s)
- Chenping Tang
- Xindu District People's Hospital of Chengdu Chengdu 610500, Sichuan, China
| | - Feiwen Liu
- Xindu District People's Hospital of Chengdu Chengdu 610500, Sichuan, China
| |
Collapse
|
7
|
Khan AA, Slart RHJA, Ali DS, Bock O, Carey JJ, Camacho P, Engelke K, Erba PA, Harvey NC, Lems WF, Morgan S, Moseley KF, O'Brien C, Probyn L, Punda M, Richmond B, Schousboe JT, Shuhart C, Ward KA, Lewiecki EM. Osteoporotic Fractures: Diagnosis, Evaluation, and Significance From the International Working Group on DXA Best Practices. Mayo Clin Proc 2024; 99:1127-1141. [PMID: 38960497 DOI: 10.1016/j.mayocp.2024.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 07/05/2024]
Abstract
Osteoporotic fractures, also known as fragility fractures, are reflective of compromised bone strength and are associated with significant morbidity and mortality. Such fractures may be clinically silent, and others may present clinically with pain and deformity at the time of the injury. Unfortunately, and even at the time of detection, most individuals sustaining fragility fractures are not identified as having underlying metabolic bone disease and are not evaluated or treated to reduce the incidence of future fractures. A multidisciplinary international working group with representation from international societies dedicated to advancing the care of patients with metabolic bone disease has developed best practice recommendations for the diagnosis and evaluation of individuals with fragility fractures. A comprehensive narrative review was conducted to identify key articles on fragility fractures and their impact on the incidence of further fractures, morbidity, and mortality. This document represents consensus among the supporting societies and harmonizes best practice recommendations consistent with advances in research. A fragility fracture in an adult is an important predictor of future fractures and requires further evaluation and treatment of the underlying osteoporosis. It is important to recognize that most fragility fractures occur in patients with bone mineral density T scores higher than -2.5, and these fractures confirm the presence of skeletal fragility even in the presence of a well-maintained bone mineral density. Fragility fractures require further evaluation with exclusion of contributing factors for osteoporosis and assessment of clinical risk factors for fracture followed by appropriate pharmacological intervention designed to reduce the risk of future fracture. Because most low-trauma vertebral fractures do not present with pain, dedicated vertebral imaging and review of past imaging is useful in identifying fractures in patients at high risk for vertebral fractures. Given the importance of fractures in confirming skeletal fragility and predicting future events, it is recommended that an established classification system be used for fracture identification and reporting.
Collapse
Affiliation(s)
- Aliya A Khan
- Division of Endocrinology and Metabolism, McMaster University, Hamilton, Ontario, Canada.
| | - Riemer H J A Slart
- University Medical Center Groningen, Medical Imaging Centre, Department of Nuclear Medicine and Molecular Imaging, Groningen, The Netherlands
| | - Dalal S Ali
- Division of Endocrinology and Metabolism, McMaster University, Hamilton, Ontario, Canada
| | - Oliver Bock
- Department of Osteoporosis, Inselspital, Bern University Hospital, Switzerland, IG Osteoporose, Bern, Switzerland
| | - John J Carey
- Department of Rheumatology, University of Galway, Galway, Ireland
| | | | - Klaus Engelke
- Department of Medicine 3 and Institute of Medical Physics, FAU University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Germany
| | - Paola A Erba
- Department of Medicine and Surgery, Nuclear Medicine UnitASST, Ospedale Papa Giovanni, University of Milan-Bicocca, Piazza, Bergamo, Italy
| | - Nicholas C Harvey
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton General Hospital and NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital NHS Foundation Trust, Southampton, UK
| | - Willem F Lems
- Department of Rheumatology, Amsterdam University Medical Center, The Netherlands
| | - Sarah Morgan
- Osteoporosis Prevention and Treatment Center and DXA Facility, University of Alabama at Birmingham, Birmingham, AL
| | | | | | - Linda Probyn
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Marija Punda
- Department of Oncology and Nuclear Medicine, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | | | - John T Schousboe
- Division of Health Policy and Management, University of Minnesota, Minneapolis, MN
| | | | - Kate A Ward
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton General Hospital and NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital NHS Foundation Trust, Southampton, UK
| | | |
Collapse
|
8
|
Maki S, Furuya T, Inoue M, Shiga Y, Inage K, Eguchi Y, Orita S, Ohtori S. Machine Learning and Deep Learning in Spinal Injury: A Narrative Review of Algorithms in Diagnosis and Prognosis. J Clin Med 2024; 13:705. [PMID: 38337399 PMCID: PMC10856760 DOI: 10.3390/jcm13030705] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
Spinal injuries, including cervical and thoracolumbar fractures, continue to be a major public health concern. Recent advancements in machine learning and deep learning technologies offer exciting prospects for improving both diagnostic and prognostic approaches in spinal injury care. This narrative review systematically explores the practical utility of these computational methods, with a focus on their application in imaging techniques such as computed tomography (CT) and magnetic resonance imaging (MRI), as well as in structured clinical data. Of the 39 studies included, 34 were focused on diagnostic applications, chiefly using deep learning to carry out tasks like vertebral fracture identification, differentiation between benign and malignant fractures, and AO fracture classification. The remaining five were prognostic, using machine learning to analyze parameters for predicting outcomes such as vertebral collapse and future fracture risk. This review highlights the potential benefit of machine learning and deep learning in spinal injury care, especially their roles in enhancing diagnostic capabilities, detailed fracture characterization, risk assessments, and individualized treatment planning.
Collapse
Affiliation(s)
- Satoshi Maki
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Center for Frontier Medical Engineering, Chiba University, Chiba 263-8522, Japan
| | - Takeo Furuya
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Masahiro Inoue
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Yasuhiro Shiga
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Kazuhide Inage
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Yawara Eguchi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Sumihisa Orita
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Center for Frontier Medical Engineering, Chiba University, Chiba 263-8522, Japan
| | - Seiji Ohtori
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| |
Collapse
|
9
|
Jung J, Dai J, Liu B, Wu Q. Artificial intelligence in fracture detection with different image modalities and data types: A systematic review and meta-analysis. PLOS DIGITAL HEALTH 2024; 3:e0000438. [PMID: 38289965 PMCID: PMC10826962 DOI: 10.1371/journal.pdig.0000438] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 12/25/2023] [Indexed: 02/01/2024]
Abstract
Artificial Intelligence (AI), encompassing Machine Learning and Deep Learning, has increasingly been applied to fracture detection using diverse imaging modalities and data types. This systematic review and meta-analysis aimed to assess the efficacy of AI in detecting fractures through various imaging modalities and data types (image, tabular, or both) and to synthesize the existing evidence related to AI-based fracture detection. Peer-reviewed studies developing and validating AI for fracture detection were identified through searches in multiple electronic databases without time limitations. A hierarchical meta-analysis model was used to calculate pooled sensitivity and specificity. A diagnostic accuracy quality assessment was performed to evaluate bias and applicability. Of the 66 eligible studies, 54 identified fractures using imaging-related data, nine using tabular data, and three using both. Vertebral fractures were the most common outcome (n = 20), followed by hip fractures (n = 18). Hip fractures exhibited the highest pooled sensitivity (92%; 95% CI: 87-96, p< 0.01) and specificity (90%; 95% CI: 85-93, p< 0.01). Pooled sensitivity and specificity using image data (92%; 95% CI: 90-94, p< 0.01; and 91%; 95% CI: 88-93, p < 0.01) were higher than those using tabular data (81%; 95% CI: 77-85, p< 0.01; and 83%; 95% CI: 76-88, p < 0.01), respectively. Radiographs demonstrated the highest pooled sensitivity (94%; 95% CI: 90-96, p < 0.01) and specificity (92%; 95% CI: 89-94, p< 0.01). Patient selection and reference standards were major concerns in assessing diagnostic accuracy for bias and applicability. AI displays high diagnostic accuracy for various fracture outcomes, indicating potential utility in healthcare systems for fracture diagnosis. However, enhanced transparency in reporting and adherence to standardized guidelines are necessary to improve the clinical applicability of AI. Review Registration: PROSPERO (CRD42021240359).
Collapse
Affiliation(s)
- Jongyun Jung
- Department of Biomedical Informatics (Dr. Qing Wu, Jongyun Jung, and Jingyuan Dai), College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Jingyuan Dai
- Department of Biomedical Informatics (Dr. Qing Wu, Jongyun Jung, and Jingyuan Dai), College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Bowen Liu
- Department of Mathematics and Statistics, Division of Computing, Analytics, and Mathematics, School of Science and Engineering (Bowen Liu), University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Qing Wu
- Department of Biomedical Informatics (Dr. Qing Wu, Jongyun Jung, and Jingyuan Dai), College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Opportunistic screening is a combination of techniques to identify subjects of high risk for osteoporotic fracture using routine clinical CT scans prescribed for diagnoses unrelated to osteoporosis. The two main components are automated detection of vertebral fractures and measurement of bone mineral density (BMD) in CT scans, in which a phantom for calibration of CT to BMD values is not used. This review describes the particular challenges of opportunistic screening and provides an overview and comparison of current techniques used for opportunistic screening. The review further outlines the performance of opportunistic screening. RECENT FINDINGS A wide range of technologies for the automatic detection of vertebral fractures have been developed and successfully validated. Most of them are based on artificial intelligence algorithms. The automated differentiation of osteoporotic from traumatic fractures and vertebral deformities unrelated to osteoporosis, the grading of vertebral fracture severity, and the detection of mild vertebral fractures is still problematic. The accuracy of automated fracture detection compared to classical radiological semi-quantitative Genant scoring is about 80%. Accuracy errors of alternative BMD calibration methods compared to simultaneous phantom-based calibration used in standard quantitative CT (QCT) range from below 5% to about 10%. The impact of contrast agents, frequently administered in clinical CT on the determination of BMD and on fracture risk determination is still controversial. Opportunistic screening, the identification of vertebral fracture and the measurement of BMD using clinical routine CT scans, is feasible but corresponding techniques still need to be integrated into the clinical workflow and further validated with respect to the prediction of fracture risk.
Collapse
Affiliation(s)
- Klaus Engelke
- Department of Medicine III, Friedrich-Alexander University of Erlangen-Nürnberg, University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany.
- Institute of Medical Physics (IMP), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Henkestr. 91, 91052, Erlangen, Germany.
| | - Oliver Chaudry
- Department of Medicine III, Friedrich-Alexander University of Erlangen-Nürnberg, University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
- Institute of Medical Physics (IMP), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Henkestr. 91, 91052, Erlangen, Germany
| | - Stefan Bartenschlager
- Department of Medicine III, Friedrich-Alexander University of Erlangen-Nürnberg, University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
- Institute of Medical Physics (IMP), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Henkestr. 91, 91052, Erlangen, Germany
| |
Collapse
|
11
|
Sapounidou M, Norinder U, Andersson PL. Predicting Endocrine Disruption Using Conformal Prediction - A Prioritization Strategy to Identify Hazardous Chemicals with Confidence. Chem Res Toxicol 2022; 36:53-65. [PMID: 36534483 PMCID: PMC9846826 DOI: 10.1021/acs.chemrestox.2c00267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Receptor-mediated molecular initiating events (MIEs) and their relevance in endocrine activity (EA) have been highlighted in literature. More than 15 receptors have been associated with neurodevelopmental adversity and metabolic disruption. MIEs describe chemical interactions with defined biological outcomes, a relationship that could be described with quantitative structure-activity relationship (QSAR) models. QSAR uncertainty can be assessed using the conformal prediction (CP) framework, which provides similarity (i.e., nonconformity) scores relative to the defined classes per prediction. CP calibration can indirectly mitigate data imbalance during model development, and the nonconformity scores serve as intrinsic measures of chemical applicability domain assessment during screening. The focus of this work was to propose an in silico predictive strategy for EA. First, 23 QSAR models for MIEs associated with EA were developed using high-throughput data for 14 receptors. To handle the data imbalance, five protocols were compared, and CP provided the most balanced class definition. Second, the developed QSAR models were applied to a large data set (∼55,000 chemicals), comprising chemicals representative of potential risk for human exposure. Using CP, it was possible to assess the uncertainty of the screening results and identify model strengths and out of domain chemicals. Last, two clustering methods, t-distributed stochastic neighbor embedding and Tanimoto similarity, were used to identify compounds with potential EA using known endocrine disruptors as reference. The cluster overlap between methods produced 23 chemicals with suspected or demonstrated EA potential. The presented models could be utilized for first-tier screening and identification of compounds with potential biological activity across the studied MIEs.
Collapse
Affiliation(s)
| | - Ulf Norinder
- Department
of Computer and Systems Sciences, Stockholm
University, Box 7003, 164
07 Kista, Sweden,MTM
Research
Centre, School of Science and Technology, Örebro University, 701 82 Örebro, Sweden,Department
of Pharmaceutical Biosciences, Uppsala University, Box 591, 75 124 Uppsala, Sweden
| | | |
Collapse
|