1
|
Ko FC, Fullam S, Lee H, Chan K, Ishihara S, Adamczyk NS, Obeidat AM, Soorya S, Miller RJ, Malfait AM, Miller RE. Clearing-enabled light sheet microscopy as a novel method for three-dimensional mapping of the sensory innervation of the mouse knee. J Orthop Res 2025; 43:632-639. [PMID: 39547819 PMCID: PMC11806991 DOI: 10.1002/jor.26016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024]
Abstract
A major barrier that hampers our understanding of the precise anatomic distribution of pain sensing nerves in and around the joint is the limited view obtained from traditional two dimensional (D) histological approaches. Therefore, our objective was to develop a workflow that allows examination of the innervation of the intact mouse knee joint in 3D by employing clearing-enabled light sheet microscopy. We first surveyed existing clearing protocols (SUMIC, PEGASOS, and DISCO) to determine their ability to clear the whole mouse knee joint, and discovered that a DISCO protocol provided the optimal transparency for light sheet microscopy imaging. We then modified the DISCO protocol to enhance binding and penetration of antibodies used for labeling nerves. Using the pan-neuronal PGP9.5 antibody, our protocol allowed 3D visualization of innervation in and around the mouse knee joint. We then implemented the workflow in mice intra-articularly injected with nerve growth factor (NGF) to determine whether changes in the nerve density can be observed. Both 3D and 2D analytical approaches of the light sheet microscopy images demonstrated quantifiable changes in midjoint nerve density following 4 weeks of NGF injection in the medial but not in the lateral joint compartment. We provide, for the first time, a comprehensive workflow that allows detailed and quantifiable examination of mouse knee joint innervation in 3D.
Collapse
Affiliation(s)
- Frank C. Ko
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
- Chicago Center on Musculoskeletal Pain, Chicago, IL, USA
| | - Spencer Fullam
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL 60612, USA
- Chicago Center on Musculoskeletal Pain, Chicago, IL, USA
| | - Hoomin Lee
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL 60612, USA
- Chicago Center on Musculoskeletal Pain, Chicago, IL, USA
| | - Kelly Chan
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL 60612, USA
- Chicago Center on Musculoskeletal Pain, Chicago, IL, USA
| | - Shingo Ishihara
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL 60612, USA
- Chicago Center on Musculoskeletal Pain, Chicago, IL, USA
| | - Natalie S. Adamczyk
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL 60612, USA
- Chicago Center on Musculoskeletal Pain, Chicago, IL, USA
| | - Alia M. Obeidat
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL 60612, USA
- Chicago Center on Musculoskeletal Pain, Chicago, IL, USA
| | - Sarah Soorya
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL 60612, USA
- Chicago Center on Musculoskeletal Pain, Chicago, IL, USA
| | - Richard J. Miller
- Department of Pharmacology, Northwestern University, Chicago, IL 60611, USA
- Chicago Center on Musculoskeletal Pain, Chicago, IL, USA
| | - Anne-Marie Malfait
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL 60612, USA
- Chicago Center on Musculoskeletal Pain, Chicago, IL, USA
| | - Rachel E. Miller
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL 60612, USA
- Chicago Center on Musculoskeletal Pain, Chicago, IL, USA
| |
Collapse
|
2
|
Ko FC, Fullam S, Lee H, Ishihara S, Adamczyk NS, Obeidat AM, Soorya S, Miller RJ, Malfait AM, Miller RE. Clearing-enabled light sheet microscopy as a novel method for three-dimensional mapping of the sensory innervation of the mouse knee. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596316. [PMID: 38853939 PMCID: PMC11160612 DOI: 10.1101/2024.05.28.596316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
A major barrier that hampers our understanding of the precise anatomic distribution of pain sensing nerves in and around the joint is the limited view obtained from traditional two dimensional (D) histological approaches. Therefore, our objective was to develop a workflow that allows examination of the innervation of the intact mouse knee joint in 3D by employing clearing-enabled light sheet microscopy. We first surveyed existing clearing protocols (SUMIC, PEGASOS, and DISCO) to determine their ability to clear the whole mouse knee joint, and discovered that a DISCO protocol provided the most optimal transparency for light sheet microscopy imaging. We then modified the DISCO protocol to enhance binding and penetration of antibodies used for labeling nerves. Using the pan-neuronal PGP9.5 antibody, our protocol allowed 3D visualization of innervation in and around the mouse knee joint. We then implemented the workflow in mice intra-articularly injected with nerve growth factor (NGF) to determine whether changes in the nerve density can be observed. Both 3D and 2D analytical approaches of the light sheet microscopy images demonstrated quantifiable changes in midjoint nerve density following 4 weeks of NGF injection in the medial but not in the lateral joint compartment. We provide, for the first time, a comprehensive workflow that allows detailed and quantifiable examination of mouse knee joint innervation in 3D.
Collapse
Affiliation(s)
- Frank C Ko
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Spencer Fullam
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Hoomin Lee
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Shingo Ishihara
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Natalie S. Adamczyk
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Alia M. Obeidat
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sarah Soorya
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Richard J. Miller
- Department of Pharmacology, Northwestern University, Chicago, IL 60611, USA
| | - Anne-Marie Malfait
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Rachel E. Miller
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
3
|
Yuan C, Li J. Research progress of periostin and osteoporosis. Front Endocrinol (Lausanne) 2024; 15:1356297. [PMID: 38487345 PMCID: PMC10938139 DOI: 10.3389/fendo.2024.1356297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/05/2024] [Indexed: 03/17/2024] Open
Abstract
Periostin, as a unique extracellular matrix, is mainly produced during ontogeny and in adult connective tissues that bear mechanical loads, such as heart valves, skin, periodontal ligaments, tendons, and bones. By binding to the integrin on the cell surface and activating Wnt/β-catenin, NF-κB, Fak and other signaling pathways, it regulates the tissues in vivo positively or negatively, and also has different effects on the occurrence and development of various diseases. Periostin is an important factor, which can promote cell proliferation, stimulate tissue repair and maintain the integrity of the structure and function of connective tissue. It also promotes the formation, regeneration and repairation of bone. Recent studies have shown that periostin is important in bone metabolic diseases. The increased expression of periostin can affect bone mineral density at different sites, and its relationship with traditional biochemical markers of bone turnover has not been conclusively established. This article reviews the research results and potential applications of periostin in osteoporosis.
Collapse
Affiliation(s)
| | - Junyan Li
- Department of Endocrinology and Metabolism, Heji Hospital Affiliated to Changzhi Medical College, Changzhi, China
| |
Collapse
|