1
|
Eftimov P, Yokoi N, Tonchev V, Nencheva Y, Georgiev GA. Surface properties and exponential stress relaxations of mammalian meibum films. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 46:129-140. [DOI: 10.1007/s00249-016-1146-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/25/2016] [Accepted: 06/01/2016] [Indexed: 02/06/2023]
|
2
|
Jurak M, Golabek M, Holysz L, Chibowski E. Properties of Langmuir and solid supported lipid films with sphingomyelin. Adv Colloid Interface Sci 2015; 222:385-97. [PMID: 24725646 DOI: 10.1016/j.cis.2014.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/19/2014] [Accepted: 03/20/2014] [Indexed: 12/11/2022]
Abstract
Biological cell membranes play a crucial role in various biological processes and their functionality to some extent is determined by the hydrophilic/hydrophobic balance. A significant progress in understanding the membrane structure was the discovery of laterally segregated lipid domains, called the lipid rafts. These raft domains are of ordered lamellar liquid-crystalline phase, while rest of the membrane exists in a relatively disordered lamellar liquid-crystalline phase. Moreover, the chemical constitution of the lipid rafts consists of a higher content (up to 50%) of cholesterol (Chol) and sphingomyelin (SM). Sphingomyelin also plays a significant role in the red cells of blood and nerves, in some diseases, as a precursor to ceramides, and other sphingolipid metabolites. In this paper properties of Langmuir and solid supported mixed lipid films of DPPC/SM, DOPC/SM, and Chol/SM are described. Special attention has been paid to wetting properties (hydrophobic/hydrophilic balance) of these films transferred onto a hydrophilic glass surface. To our knowledge such results have not yet been published in the literature. The properties were determined via contact angle measurements and then calculation of the films' apparent surface free energy. The films' wettability and their apparent surface free energy strongly depend on their composition. The energy is affected by both the structure of hydrocarbon chains of glycerophospholipids (DPPC and DOPC) and their interactions with SM. Properties of mixed Chol/SM monolayer depend also on the film stoichiometry. At a low Chol content (XChol=0.25) the interactions between SM and Chol are strong and hence the formation of binary complex is possible. This is accompanied by a decrease in the film surface free energy in comparison to that of pure SM monolayer, contrary to a higher Chol content where the monolayer energy increases. This suggests that cholesterol is excluded from the membrane thus increasing the film hydrophilicity. These results are consistent with the literature data and somehow confirm the hypothesis of lipid raft formation. The roughness of the investigated monolayer surfaces was also determined using optical profilometry. The roughness parameters of the DPPC, SM, and mixed DPPC/SM generally correlate with the changes of their apparent surface free energy, i.e. with the decreasing roughness the apparent surface free energy also decreases. However, this is not the case for mixed DOPC/SM monolayers. Although the roughness increases with SM content the apparent surface free energy decreases. Therefore some other factors, like the presence of unsaturated bonds in the DOPC molecule, influence the film phase state and the energy too. More experiments are needed to explain this hypothesis.
Collapse
|
3
|
Bischof AA, Mangiarotti A, Wilke N. Searching for line active molecules on biphasic lipid monolayers. SOFT MATTER 2015; 11:2147-2156. [PMID: 25633226 DOI: 10.1039/c5sm00022j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In membranes with phase coexistence, line tension appears as an important parameter for the determination of the amount of domains, as well as their size and their shape, thus defining the membrane texture. Different molecules have been proposed as "linactants" (i.e. molecules that reduce the line tension, thereby modulating the membrane texture). In this work, we explore the efficiency of different molecules as linactants in monolayers with two coexisting phases of different thicknesses. We tested the linactant ability of a molecule with chains of different saturation degrees, another molecule with different chain lengths and a bulky molecule. In this way, we show in the same system the effect of molecules with chains of different rigidities, with an intrinsic thickness mismatch and with a bulky moiety, thereby analyzing different hypotheses of how a molecule may change the line tension in a monolayer system. Both lipids with different hydrocarbon chains did not act as linactants, while only one of the bulky molecules tested decreased the line tension in the monolayer studied. We conclude that there are no universal rules for the structure of a molecule that enable us to predict that it will behave as a linactant and thus, designing linactants appears to be a difficult task and a challenge for future studies. Furthermore, in regard to the membrane texture, there was no direct influence of the line tension in the distribution of domain sizes.
Collapse
Affiliation(s)
- Andrea Alejandra Bischof
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Pabellón Argentina, Ciudad Universitaria, X5000HUA Córdoba, Argentina.
| | | | | |
Collapse
|
4
|
Georgiev GA, Yokoi N, Ivanova S, Tonchev V, Nencheva Y, Krastev R. Surface relaxations as a tool to distinguish the dynamic interfacial properties of films formed by normal and diseased meibomian lipids. SOFT MATTER 2014; 10:5579-88. [PMID: 24959988 DOI: 10.1039/c4sm00758a] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The surface properties of human meibomian lipids (MGS), the major constituent of the tear film (TF) lipid layer, are of key importance for TF stability. The dynamic interfacial properties of films by MGS from normal eyes (nMGS) and eyes with meibomian gland dysfunction (dMGS) were studied using a Langmuir surface balance. The behavior of the samples during dynamic area changes was evaluated by surface pressure-area isotherms and isocycles. The surface dilatational rheology of the films was examined in the frequency range 10(-5) to 1 Hz by the stress-relaxation method. A significant difference was found, with dMGS showing slow viscosity-dominated relaxation at 10(-4) to 10(-3) Hz, whereas nMGS remained predominantly elastic over the whole range. A Cole-Cole plot revealed two characteristic processes contributing to the relaxation, fast (on the scale of characteristic time τ < 5 s) and slow (τ > 100 s), the latter prevailing in dMGS films. Brewster angle microscopy revealed better spreading of nMGS at the air-water interface, whereas dMGS layers were non-uniform and patchy. The distinctions in the interfacial properties of the films in vitro correlated with the accelerated degradation of meibum layer pattern at the air-tear interface and with the decreased stability of TF in vivo. These results, and also recent findings on the modest capability of meibum to suppress the evaporation of the aqueous subphase, suggest the need for a re-evaluation of the role of MGS. The probable key function of meibomian lipids might be to form viscoelastic films capable of opposing dilation of the air-tear interface. The impact of temperature on the meibum surface properties is discussed in terms of its possible effect on the normal structure of the film.
Collapse
Affiliation(s)
- Georgi As Georgiev
- Department of Biochemistry, Faculty of Biology, University of Sofia, Sofia, Bulgaria.
| | | | | | | | | | | |
Collapse
|
5
|
Artsruni GG, Sahakyan GV, Poghosyan GA. The in vitro influence of the external electrostatic field on the physical parameters of erythrocyte membranes. Biophysics (Nagoya-shi) 2014. [DOI: 10.1134/s0006350913060031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
6
|
Castro BM, Prieto M, Silva LC. Ceramide: a simple sphingolipid with unique biophysical properties. Prog Lipid Res 2014; 54:53-67. [PMID: 24513486 DOI: 10.1016/j.plipres.2014.01.004] [Citation(s) in RCA: 277] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/29/2014] [Accepted: 01/29/2014] [Indexed: 02/06/2023]
Abstract
Ceramides are involved in a variety of cellular processes and in disease. Their biological functions are thought to depend on ceramides' unique biophysical properties, which promote strong alterations of cell membrane properties and consequent triggering of signaling events. Over the last decades, efforts were made to understand the impact of ceramide on membrane biophysical features. Several studies, performed in a multitude of membrane models, address ceramides' specific interactions, the effect of their acyl chain structure and the influence of membrane lipid composition and properties on ceramide biophysical outcome. In this review, a rationale for the multiple and complex changes promoted by ceramide is provided, highlighting, on a comprehensive and critical manner, the interactions between ceramides and specific lipids and/or lipid phases. Focus is also given to the interplay between ceramide and cholesterol, particularly in lipid raft-mimicking mixtures, an issue of intense debate due to the urgent need to understand the biophysical impact of ceramide formation in models resembling the cell membrane. The implications of ceramide-induced biophysical changes on lipid-protein interactions and cell signaling are also discussed, together with the emerging evidence for the existence of ceramide-gel like domains in cellular membranes.
Collapse
Affiliation(s)
- Bruno M Castro
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, Complexo I, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Manuel Prieto
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, Complexo I, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Liana C Silva
- iMed.UL - Research Institute for Medicines and Pharmaceutical Sciences, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
7
|
Caruso B, Villarreal M, Reinaudi L, Wilke N. Inter-Domain Interactions in Charged Lipid Monolayers. J Phys Chem B 2014; 118:519-29. [DOI: 10.1021/jp408053a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Benjamín Caruso
- Centro de Investigaciones en Química Biológica de Córdoba
(CIQUIBIC), Dpto. de Química Biológica, and ‡Instituto de Investigaciones
en Físico-Química de Córdoba (INFIQC), Dpto.
de Matemática y Física, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Pabellón Argentina, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Marcos Villarreal
- Centro de Investigaciones en Química Biológica de Córdoba
(CIQUIBIC), Dpto. de Química Biológica, and ‡Instituto de Investigaciones
en Físico-Química de Córdoba (INFIQC), Dpto.
de Matemática y Física, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Pabellón Argentina, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Luis Reinaudi
- Centro de Investigaciones en Química Biológica de Córdoba
(CIQUIBIC), Dpto. de Química Biológica, and ‡Instituto de Investigaciones
en Físico-Química de Córdoba (INFIQC), Dpto.
de Matemática y Física, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Pabellón Argentina, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Natalia Wilke
- Centro de Investigaciones en Química Biológica de Córdoba
(CIQUIBIC), Dpto. de Química Biológica, and ‡Instituto de Investigaciones
en Físico-Química de Córdoba (INFIQC), Dpto.
de Matemática y Física, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Pabellón Argentina, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| |
Collapse
|
8
|
Wilke N. Lipid Monolayers at the Air–Water Interface. ADVANCES IN PLANAR LIPID BILAYERS AND LIPOSOMES 2014. [DOI: 10.1016/b978-0-12-418698-9.00002-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Bischof AA, Wilke N. Molecular determinants for the line tension of coexisting liquid phases in monolayers. Chem Phys Lipids 2012; 165:737-44. [PMID: 22982729 DOI: 10.1016/j.chemphyslip.2012.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 08/27/2012] [Accepted: 08/28/2012] [Indexed: 02/01/2023]
Abstract
The line tension (λ) in biphasic membranes has been determined in monolayers and bilayers using a variety of techniques. In this work we present a novel approach to the determination of λ in monolayers with liquid/liquid phase coexistence, overcoming several of the drawbacks of current techniques. Using our method, we determined the line tension of liquid/liquid phases in binary mixtures of different lipids and a molecule similar to cholesterol but less oxidizable. We analyzed the effect of the hydrocarbon chain length and the polar head-group of the non-sterol lipid and found the latter to exert much more influence than the former. The presence of PE led to high λ values, PG to low values and PS and PC to intermediate values. The line tension showed a strong correlation with the critical packing parameter of the phospholipid. The spontaneous curvature displayed by the phases constituted by a particular lipid appears to be an important parameter for determining the line tension in mixed films.
Collapse
Affiliation(s)
- Andrea Alejandra Bischof
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Dpto. de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Pabellón Argentina, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | | |
Collapse
|
10
|
Vega Mercado F, Maggio B, Wilke N. Modulation of the domain topography of biphasic monolayers of stearic acid and dimyristoyl phosphatidylcholine. Chem Phys Lipids 2012; 165:232-7. [DOI: 10.1016/j.chemphyslip.2012.01.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 01/05/2012] [Accepted: 01/09/2012] [Indexed: 11/27/2022]
|
11
|
Wilke N, Maggio B. Electrostatic field effects on membrane domain segregation and on lateral diffusion. Biophys Rev 2011; 3:185-192. [PMID: 28510045 DOI: 10.1007/s12551-011-0057-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 08/20/2011] [Indexed: 12/17/2022] Open
Abstract
Natural membranes are organized structures of neutral and charged molecules bearing dipole moments which generate local non-homogeneous electric fields. When subjected to such fields, the molecules experience net forces that can modify the lipid and protein organization, thus modulating cell activities and influencing (or even dominating) the biological functions. The energetics of electrostatic interactions in membranes is a long-range effect which can vary over distance within r-1 to r-3. In the case of a dipole interacting with a plane of dipoles, e.g. a protein interacting with a lipid domain, the interaction is stronger than two punctual dipoles and depends on the size of the domain. In this article, we review several contributions on how electrostatic interactions in the membrane plane can modulate the phase behavior, surface topography and mechanical properties in monolayers and bilayers.
Collapse
Affiliation(s)
- Natalia Wilke
- Centro de Investigaciones de Química Bológica de Córdoba (CIQUIBIC-CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina. .,CIQUIBIC, Dpto. de Química Biológica, Fac. de Cs. Químicas, UNC, Pabellón Argentina, Ciudad Universitaria, X5000HUA, Córdoba, Argentina.
| | - Bruno Maggio
- Centro de Investigaciones de Química Bológica de Córdoba (CIQUIBIC-CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
12
|
Zendejas FJ, Meagher RJ, Stachowiak JC, Hayden CC, Sasaki DY. Orienting lipid domains in giant vesicles using an electric field. Chem Commun (Camb) 2011; 47:7320-2. [DOI: 10.1039/c1cc11440a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Wilke N, Vega Mercado F, Maggio B. Rheological properties of a two phase lipid monolayer at the air/water interface: effect of the composition of the mixture. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:11050-11059. [PMID: 20380451 DOI: 10.1021/la100552j] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Many biologically relevant monolayers show coexistence of discrete domains of a long-range ordered condensed phase dispersed in a continuous, disordered, liquid-expanded phase. In this work, we determined the viscous and elastic components of the compressibility modulus and the shear viscosity of monolayers exhibiting phase coexistence with the aim at elucidating the contribution of each phase to the observed monolayer mechanical properties. To this purpose, mixed monolayers with different proportions of distearoylphosphatidylcholine (DSPC) and dimyristoylphosphatidylcholine (DMPC) were prepared and their rheological properties were analyzed. The relationship between the phase diagram of the mixture at 10 mN m(-1) and the rheological properties was studied. We found that the monolayer shear viscosity is highly dependent on the presence of domains and on the domain density. In turn, the monolayer compressibility is only influenced by the presence of domains for high domain densities. For monolayers that look homogeneous on the micrometer scale (DSPC amount lower that 23 mol %), all the analyzed rheological properties remain similar to those observed for pure DMPC monolayers, indicating that in this proportion range the DSPC molecules contribute as DMPC to the surface rheology in spite of having hydrocarbon chains four carbons longer.
Collapse
Affiliation(s)
- N Wilke
- CIQUIBIC, Dpto. de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Pabellón Argentina, Ciudad Universitaria, X5000HUA Córdoba.
| | | | | |
Collapse
|
14
|
Fanani ML, Hartel S, Maggio B, De Tullio L, Jara J, Olmos F, Oliveira RG. The action of sphingomyelinase in lipid monolayers as revealed by microscopic image analysis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1309-23. [DOI: 10.1016/j.bbamem.2010.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 12/16/2009] [Accepted: 01/04/2010] [Indexed: 11/26/2022]
|
15
|
Wilke N, Maggio B. The Influence of Domain Crowding on the Lateral Diffusion of Ceramide-Enriched Domains in a Sphingomyelin Monolayer. J Phys Chem B 2009; 113:12844-51. [DOI: 10.1021/jp904378y] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- N. Wilke
- CIQUIBIC, Dpto. de Química Biológica, Fac. de Cs. Químicas, UNC. Pabellón Argentina, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - B. Maggio
- CIQUIBIC, Dpto. de Química Biológica, Fac. de Cs. Químicas, UNC. Pabellón Argentina, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| |
Collapse
|
16
|
Maggio B, Borioli GA, Del Boca M, De Tullio L, Fanani ML, Oliveira RG, Rosetti CM, Wilke N. Composition-driven surface domain structuring mediated by sphingolipids and membrane-active proteins. Above the nano- but under the micro-scale: mesoscopic biochemical/structural cross-talk in biomembranes. Cell Biochem Biophys 2007; 50:79-109. [PMID: 17968678 DOI: 10.1007/s12013-007-9004-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2007] [Indexed: 10/22/2022]
Abstract
Biomembranes contain a wide variety of lipids and proteins within an essentially two-dimensional structure. The coexistence of such a large number of molecular species causes local tensions that frequently relax into a phase or compositional immiscibility along the lateral and transverse planes of the interface. As a consequence, a substantial microheterogeneity of the surface topography develops and that depends not only on the lipid-protein composition, but also on the lateral and transverse tensions generated as a consequence of molecular interactions. The presence of proteins, and immiscibility among lipids, constitute major perturbing factors for the membrane sculpturing both in terms of its surface topography and dynamics. In this work, we will summarize some recent evidences for the involvement of membrane-associated, both extrinsic and amphitropic, proteins as well as membrane-active phosphohydrolytic enzymes and sphingolipids in driving lateral segregation of phase domains thus determining long-range surface topography.
Collapse
Affiliation(s)
- Bruno Maggio
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Centro de Investigaciones en Química Biológica de Córdoba, Universidad Nacional de Córdoba - CONICET, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Wilke N, Dassie SA, Leiva EPM, Maggio B. Externally applied electric fields on immiscible lipid monolayers: repulsion between condensed domains precludes domain migration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:9664-70. [PMID: 17073494 DOI: 10.1021/la0614076] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Lipid and protein molecules anisotropically oriented at a hydrocarbon-aqueous interface configure a dynamic array of self-organized molecular dipoles. Electrostatic fields applied to lipid monolayers have been shown to induce in-plane migration of domains or phase separation in a homogeneous system. In this work, we have investigated the effect of externally applied electrostatic fields on different lipid monolayers exhibiting surface immiscibility. In the monolayers studied, lipids in the condensed state segregate in discontinuous round-shaped domains, with the lipid in the liquid-expanded state forming the continuous phase. The use of fluorescent probes with selective phase partitioning allows analyzing by epifluorescence microscopy the migrations of the domains under the influence of inhomogeneous electric fields applied to the surface. Our observations indicate that a positive potential applied to an electrode placed over the monolayer promotes a repulsion of the domains until a steady state is reached, indicating the presence of a force opposed to the externally applied electric force. The experimental results were modeled by considering that the opposing force is generated by the dipole-dipole repulsion between the domains.
Collapse
Affiliation(s)
- N Wilke
- Departamento de Química Biológica-CIQUIBIC, Departamento de Fisicoquímica-INFIQC, Universidad Nacional de Córdoba, Ciudad Universitaria X5000HUA Córdoba, Argentina.
| | | | | | | |
Collapse
|