1
|
Das A, Ghosh S, Sing S, Jana G, Basu A. Interaction, inhibition and disruption of lysozyme fibrillar aggregates by the plant alkaloid berberine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 335:125965. [PMID: 40058085 DOI: 10.1016/j.saa.2025.125965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/11/2025] [Accepted: 02/26/2025] [Indexed: 03/24/2025]
Abstract
This study investigated the interaction and impact of berberine, a pharmacologically important natural alkaloid, on lysozyme amyloidosis with the aim to develop effective anti-amyloidogenic agents. Interaction between berberine and lysozyme was analyzed using both theoretical and experimental tools to unleash its anti-amyloidogenic potency. The intrinsic fluorescence of lysozyme was quenched by berberine through static mechanism, indicating the presence of single binding site predominantly involving TRP residues. Complexation with berberine caused microenvironmental and conformational changes in lysozyme as shown by synchronous and 3D fluorescence spectroscopic analysis. Molecular docking and dynamic simulation study revealed the probable binding site and pharmacokinetics involved in lysozyme-berberine complexation. Berberine significantly inhibited lysozyme fibrillation which was confirmed by Thioflavin T, Congo red, Nile red and ANS assays. FTIR and circular dichroism studies revealed that berberine reduced β-sheet content of lysozyme fibrillar samples, indicating inhibition of fibril formation. Additionally, berberine can degrade pathogenic mature fibril as well. Amyloid inhibition and defibrillation was visualised by atomic force microscopy.
Collapse
Affiliation(s)
- Arindam Das
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore 721102, India
| | - Sougata Ghosh
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore 721102, India
| | - Shukdeb Sing
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore 721102, India
| | - Gouranga Jana
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore 721102, India
| | - Anirban Basu
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore 721102, India.
| |
Collapse
|
2
|
Zhou Y, Bai L, Geng S, Liu B. Interaction of camellianin A and lysozyme: Binding mechanism and its application in nanoemulsions. Food Chem 2025; 475:143265. [PMID: 39954643 DOI: 10.1016/j.foodchem.2025.143265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/15/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025]
Abstract
The interaction of camellianin A (CA) and lysozyme (LYS) was analyzed by spectrofluorimetry and molecular docking methods. The nanoemulsions stabilized by CA and LYS were ultrasound-assisted constructed, and characterized. The fluorescence result indicated that CA and LYS could spontaneously form supramolecular complexes driven by van der Waals forces and hydrogen bonds, which coincided with molecular docking analysis. CA and LYS could synergistically reduce the O/W interfacial tension, and stabilize nanoemulsions. The CA-LYS nanoemulsion with the average droplet size of 212.91 ± 1.21 nm could be obtained at the following ultrasonic homogenization conditions: CA/LYS ratio, 1:2; CA-LYS concentration, 0.426 %; ultrasonic time, 5 min; ultrasonic power, 660 W. The obtained nanoemulsion could effectively protect lutein against UV, and inhibit lipid oxidation. It demonstrated strong stability in acidic, neutral, and high-temperature environments; however, its stability was compromised under alkaline and high ionic strength conditions. Our results can prompt the development of new food-graded nanoemulsions.
Collapse
Affiliation(s)
- Yingxuan Zhou
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Lu Bai
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Sheng Geng
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Benguo Liu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China.
| |
Collapse
|
3
|
Roy S, Srinivasan VR, Arunagiri S, Mishra N, Bhatia A, Shejale KP, Prajapati KP, Kar K, Anand BG. Molecular insights into the phase transition of lysozyme into amyloid nanostructures: Implications of therapeutic strategies in diverse pathological conditions. Adv Colloid Interface Sci 2024; 331:103205. [PMID: 38875805 DOI: 10.1016/j.cis.2024.103205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 06/16/2024]
Abstract
Lysozyme, a well-known bacteriolytic enzyme, exhibits a fascinating yet complex behavior when it comes to protein aggregation. Under certain conditions, this enzyme undergoes flexible transformation, transitioning from partially unfolded intermediate units of native conformers into complex cross-β-rich nano fibrillar amyloid architectures. Formation of such lysozyme amyloids has been implicated in a multitude of pathological and medical severities, like hepatic dysfunction, hepatomegaly, splenic rupture as well as spleen dysfunction, nephropathy, sicca syndrome, renal dysfunction, renal amyloidosis, and systemic amyloidosis. In this comprehensive review, we have attempted to provide in-depth insights into the aggregating behavior of lysozyme across a spectrum of variables, including concentrations, temperatures, pH levels, and mutations. Our objective is to elucidate the underlying mechanisms that govern lysozyme's aggregation process and to unravel the complex interplay between its structural attributes. Moreover, this work has critically examined the latest advancements in the field, focusing specifically on novel strategies and systems, that have been implemented to delay or inhibit the lysozyme amyloidogenesis. Apart from this, we have tried to explore and advance our fundamental understanding of the complex processes involved in lysozyme aggregation. This will help the research community to lay a robust foundation for screening, designing, and formulating targeted anti-amyloid therapeutics offering improved treatment modalities and interventions not only for lysozyme-linked amyloidopathy but for a wide range of amyloid-related disorders.
Collapse
Affiliation(s)
- Sindhujit Roy
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Venkat Ramanan Srinivasan
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Subash Arunagiri
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Nishant Mishra
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Anubhuti Bhatia
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Kiran P Shejale
- Dept. of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, South Korea
| | - Kailash Prasad Prajapati
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Karunakar Kar
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India..
| | - Bibin Gnanadhason Anand
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India..
| |
Collapse
|
4
|
Das A, Jana G, Sing S, Basu A. Insights into the interaction and inhibitory action of palmatine on lysozyme fibrillogenesis: Spectroscopic and computational studies. Int J Biol Macromol 2024; 268:131703. [PMID: 38643915 DOI: 10.1016/j.ijbiomac.2024.131703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/02/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Interaction under amyloidogenic condition between naturally occurring protoberberine alkaloid palmatine and hen egg white lysozyme was executed by adopting spectrofluorometric and theoretical molecular docking and dynamic simulation analysis. In spetrofluorometric method, different types of experiments were performed to explore the overall mode and mechanism of interaction. Intrinsic fluorescence quenching of lysozyme (Trp residues) by palmatine showed effective binding interaction and also yielded different binding parameters like binding constant, quenching constant and number of binding sites. Synchronous fluorescence quenching and 3D fluorescence map revealed that palmatine was able to change the microenvironment of the interacting site. Fluorescence life time measurements strongly suggested that this interaction was basically static in nature. Molecular docking result matched with fluorimetric experimental data. Efficient drug like interaction of palmatine with lysozyme at low pH and high salt concentration prompted us to analyze its antifibrillation potential. Different assays and microscopic techniques were employed for detailed analysis of lysozyme amyloidosis.Thioflavin T(ThT) assay, Congo Red (CR) assay, 8-anilino-1-naphthalenesulfonic acid (ANS) assay, Nile Red (NR) assay, anisotropy and intrinsic fluorescence measurements confirmed that palmatine successfully retarded and reduced lysozyme fibrillation. Dynamic light scattering (DLS) and atomic force microscopy (AFM) further reiterated the excellent antiamyloidogenic potency of palmatine.
Collapse
Affiliation(s)
- Arindam Das
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore 721 102, India
| | - Gouranga Jana
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore 721 102, India
| | - Shukdeb Sing
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore 721 102, India
| | - Anirban Basu
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore 721 102, India.
| |
Collapse
|
5
|
Warerkar OD, Mudliar NH, Momin MM, Singh PK. Targeting Amyloids with Coated Nanoparticles: A Review on Potential Combinations of Nanoparticles and Bio-Compatible Coatings. Crit Rev Ther Drug Carrier Syst 2024; 41:85-119. [PMID: 37938191 DOI: 10.1615/critrevtherdrugcarriersyst.2023046209] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Amyloidosis is the major cause of many neurodegenerative diseases, such as, Alzheimer's and Parkinson's where the misfolding and deposition of a previously functional protein make it inept for carrying out its function. The genesis of amyloid fibril formation and the strategies to inhibit it have been studied extensively, although some parts of this puzzle still remain unfathomable to date. Many classes of molecules have been explored as potential drugs in vitro, but their inability to work in vivo by crossing the blood-brain-barrier has made them an inadequate treatment option. In this regard, nanoparticles (NPs) have turned out to be an exciting alternative because they could overcome many drawbacks of previously studied molecules and provide advantages, such as, greater bioavailability of molecules and target-specific delivery of drugs. In this paper, we present an overview on several coated NPs which have shown promising efficiency in inhibiting fibril formation. A hundred and thirty papers published in the past two decades have been comprehensively reviewed, which majorly encompass NPs comprising different materials like gold, silver, iron-oxide, poly(lactic-co-glycolic acid), polymeric NP, etc., which are coated with various molecules of predominantly natural origin, such as different types of amino acids, peptides, curcumin, drugs, catechin, etc. We hope that this review will shed light on the advancement of symbiotic amalgamation of NPs with molecules from natural sources and will inspire further research on the tremendous therapeutic potential of these combinations for many amyloid-related diseases.
Collapse
Affiliation(s)
- Oshin D Warerkar
- SVKM's Shri C.B. Patel Research Centre, Vile Parle, Mumbai, Maharashtra 400056, India
| | - Niyati H Mudliar
- SVKM's Shri C.B. Patel Research Centre, Vile Parle, Mumbai, Maharashtra 400056, India
| | - Munira M Momin
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India; SVKM's Shri C.B. Patel Research Centre for Chemistry and Biological Sciences, Vile Parle (West), Mumbai, Maharashtra, 400056, India
| | - Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
6
|
Inhibition of lysozyme amyloid fibrillation by curcumin-conjugated silver nanoparticles: A multispectroscopic molecular level study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Akbarian M, Bahmani M, Chen SH, Yousefi R, Mohammadi-Samani S, Tayebi L, Panahi F, Farjadian F. Mechanisms behind the Fibrillation and Toxicity of Insulin Fibrils on Neuron Cells by Engineered Curcumin Analogs. ACS Chem Neurosci 2022; 13:2613-2631. [PMID: 35969719 DOI: 10.1021/acschemneuro.2c00209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Among foods, the use of plant derivatives as promising drugs and/or excipients has been considered from various perspectives. In the present study, curcumin, which is one of the most important plant derivatives for biological uses, and four curcumin-based pyrido[2,3-d]pyrimidine analogs (C2-C5) were used for investigating the mechanism of insulin fibrillation and evaluating the cytotoxicity of insulin fibrils. The synthesized analogs differed in terms of hydrophobicity and electrostatic charge. The analogs with more hydrophobicity (C1 and C4) in both acidic and neutral environments were able to reduce the rate of insulin fibrillation and the degree of cross-linking in the produced fibrils. Additionally, the toxicity of these fibrils for neural cells (N2a cell line) was very low. However, they did not show any significant effects on the toxicity of non-neural cells (HEK293 cell line), indicating the effect of the biochemical surface diversity on determining the vulnerability to fibrils and even the mechanism of action of additives on cell line survival. Although negatively charged analogs were able to reduce insulin fibrillation in the acidic environment, they indicated an opposite effect in the neutral environment. The resultant fibrils in the acidic medium appeared with a well-distinguished filament, but they were very close at neutral pH levels. Moreover, such fibrils indicated very poor toxicity against the N2a cell line and had no significant effects on HEK293 cells. Considering the docking studies, by creatively using the size exclusion chromatography, it was suggested that analogs C2 and C3 were capable of binding to the C-terminal end of the insulin B chain (low affinity) and HisB10 (high affinity). Hence, it was suggested that different compounds could play different protecting and/or destroying roles in cell toxicity by blocking some ligands at the surface of neuron cells.
Collapse
Affiliation(s)
- Mohsen Akbarian
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz7146864685, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz7146864685, Iran
- Department of Chemistry, National Cheng Kung University, Tainan701, Taiwan
| | - Marzieh Bahmani
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz7146864685, Iran
- Department of Science, Medicine and Health, School of Chemistry and Molecular Bioscience, University of Wollongong, NSW, Wollongong2522, Australia
| | - Shu-Hui Chen
- Department of Chemistry, National Cheng Kung University, Tainan701, Taiwan
| | - Reza Yousefi
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran1417466191, Iran
- Protein Chemistry Laboratory, Department of Biology, College of Sciences, Shiraz University, Shiraz7193371, Iran
| | - Soliman Mohammadi-Samani
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz7146864685, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz7146864685, Iran
| | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, Wisconsin53233-2186, United States
| | - Farhad Panahi
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg im Breisgau, Germany
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz7146864685, Iran
| |
Collapse
|
8
|
Zaidi FK, Bhat R. Two polyphenols with diverse mechanisms towards amyloidosis: differential modulation of the fibrillation pathway of human lysozyme by curcumin and EGCG. J Biomol Struct Dyn 2022; 40:4593-4611. [DOI: 10.1080/07391102.2020.1860824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Fatima Kamal Zaidi
- Biophysical Chemistry Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rajiv Bhat
- Biophysical Chemistry Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
9
|
Choudhary S, Lopus M, Hosur RV. Targeting disorders in unstructured and structured proteins in various diseases. Biophys Chem 2021; 281:106742. [PMID: 34922214 DOI: 10.1016/j.bpc.2021.106742] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 12/31/2022]
Abstract
Intrinsically disordered proteins (IDPs) and intrinsically disordered protein regions (IDPRs) are proteins and protein segments that usually do not acquire well-defined folded structures even under physiological conditions. They are abundantly present and challenge the "one sequence-one structure-one function" theory due to a lack of stable secondary and/or tertiary structure. Due to conformational flexibility, IDPs/IDPRs can bind with multiple interacting partners with high-specificity and low-affinity and perform essential biological functions associated with signalling, recognition and regulation. Mis-functioning and mis-regulation of IDPs and IDPRs causes disorder in disordered proteins and disordered protein segments which results in numerous human diseases, such as cancer, Parkinson's disease (PD), Alzheimer's disease (AD), diabetes, metabolic disorders, systemic disorders and so on. Due to the strong connection of IDPs/IDPRs with human diseases they are considered potentential targets for drug therapy. Since they disobey the "one sequence-one structure-one function" concept, IDPs/IDPRs are complex systems for drug targeting. This review summarises various protein disorder diseases and different methods for therapeutic targeting of disordered proteins/segments. Targeting IDPs/IDPRs for diseases will open up a new era of rational drug design and drug discovery.
Collapse
Affiliation(s)
- Sinjan Choudhary
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidhyanagri Campus, Kalina, Mumbai 400098, India.
| | - Manu Lopus
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidhyanagri Campus, Kalina, Mumbai 400098, India.
| | - Ramakrishna V Hosur
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidhyanagri Campus, Kalina, Mumbai 400098, India.
| |
Collapse
|
10
|
Nikoo S, Maghari A, Habibi-Rezaei M, Moosavi-Movahedi AA. Mechanistic study of lysozyme glycation by fructose and modulation by curcumin derivatives. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Wang YC, Lai YR, Wu JW, Wang SSS, Lin KS. Using palladium nanoparticle-decorated lysozyme amyloid fibrils to catalyze the reduction of methylene blue. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2020.12.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Wang M, Wang S, Li B, Tian Y, Zhang H, Bai L, Ba X. Synthesis of linear polyglucoside and inhibition on the amyloid fibril formation of hen egg white lysozyme. Int J Biol Macromol 2020; 166:771-777. [PMID: 33157132 DOI: 10.1016/j.ijbiomac.2020.10.234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/18/2020] [Accepted: 10/29/2020] [Indexed: 12/29/2022]
Abstract
A novel polymer poly (6-O-MMAGlc) has been synthesized via free radical polymerization of monomer methyl 6-O-methacryloyl-α-D-glucoside (6-O-MMAGlc) and characterized. The influence of poly(6-O-MMAGlc) on the formation of hen egg white lysozyme (HEWL) amyloid fibril was detailly investigated, indicating that the polymer could effectively inhibit the formation of HEWL amyloid fibril. The formation kinetics of HEWL amyloid fibril with the presence of poly(6-O-MMAGlc) was measured by Thioflavin T (ThT) fluorescence method, demonstrating that poly(6-O-MMAGlc) could significantly inhibit the amyloid fibril formation of HEWL in a dose-dependent manner. The inhibitory result was furtherly illustrated by congo red (CR) binding assay, 8-anilino-1-naphthalenesulfonic acid (ANS) fluorescence assay, circular dichroism (CD) spectroscopy and transmission electron microscope (TEM).
Collapse
Affiliation(s)
- Mengna Wang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China
| | - Sujuan Wang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China.
| | - Benye Li
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China
| | - Yuelan Tian
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China
| | - Haisong Zhang
- No. 212 Yuhuadonglu, Department of Nephrology, Affiliated Hospital of Hebei University, Baoding 071002, PR China
| | - Libin Bai
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China
| | - Xinwu Ba
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China; Affiliated Hospital of Hebei University, Baoding 071000, PR China.
| |
Collapse
|
13
|
Jin L, Gao W, Liu C, Zhang N, Mukherjee S, Zhang R, Dong H, Bhunia A, Bednarikova Z, Gazova Z, Liu M, Han J, Siebert HC. Investigating the inhibitory effects of entacapone on amyloid fibril formation of human lysozyme. Int J Biol Macromol 2020; 161:1393-1404. [DOI: 10.1016/j.ijbiomac.2020.07.296] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/01/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022]
|
14
|
Al Adem K, Lukman S, Kim TY, Lee S. Inhibition of lysozyme aggregation and cellular toxicity by organic acids at acidic and physiological pH conditions. Int J Biol Macromol 2020; 149:921-930. [DOI: 10.1016/j.ijbiomac.2020.01.267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 12/16/2022]
|
15
|
Dehghani Z, Meratan AA, Saboury AA, Nemat-Gorgani M. α-Synuclein fibrillation products trigger the release of hexokinase I from mitochondria: Protection by curcumin, and possible role in pathogenesis of Parkinson's disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183251. [PMID: 32113849 DOI: 10.1016/j.bbamem.2020.183251] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/22/2020] [Accepted: 02/10/2020] [Indexed: 01/16/2023]
Abstract
Extensive research has shown that assembling of α-synuclein amyloid aggregates on mitochondria is an important mechanistic feature of Parkinson's disease (PD) and other Lewy body disorders. However, the molecular mechanism(s) of its neuronal toxicity remain unclear. Type 1 Hexokinase (HKI), a key enzyme in the control of brain glucose metabolism, plays an important role in protecting against mitochondrially-regulated apoptosis through reducing generation of reactive oxygen species (ROS). The release of mitochondrially-bound HKI causes a significant decrease in enzyme activity and triggers oxidative stress. Here, we have investigated the potency of amyloid fibrillation products arising from α-synuclein and hen egg white lysozyme (HEWL) for the release of HKI and ROS content enhancement in mitochondria isolated from rat brain. Results clearly indicate the capacity of the fibrillation products of α-synuclein, and not HEWL, to trigger release of HKI from the Type A binding site of mitochondria for the enzyme and to induce mitochondrial ROS enhancement in a dose-dependent manner. Moreover, we found that curcumin was very effective in preventing mitochondrial HKI release and ROS enhancement induced by α-synuclein fibrillation products. The pathophysiological significance of mitochondrial HKI activity and localization in pathogenesis of neurodegenerative disorders including PD are discussed. Taken together, these results may offer insight into a possible mechanism by which disease-related peptides and proteins may exert their neuronal toxicity.
Collapse
Affiliation(s)
- Ziba Dehghani
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 14176-14335, Iran; Center of Excellence in Biothermodynamics, University of Tehran, Tehran, Iran
| | - Ali Akbar Meratan
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 14176-14335, Iran; Center of Excellence in Biothermodynamics, University of Tehran, Tehran, Iran.
| | | |
Collapse
|
16
|
Akbarian M, Yousefi R, Farjadian F, Uversky VN. Insulin fibrillation: toward strategies for attenuating the process. Chem Commun (Camb) 2020; 56:11354-11373. [DOI: 10.1039/d0cc05171c] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The environmental factors affecting the rate of insulin fibrillation. The factors are representative.
Collapse
Affiliation(s)
- Mohsen Akbarian
- Pharmaceutical Sciences Research Center
- Shiraz University of Medical Sciences
- Shiraz
- Iran
| | - Reza Yousefi
- Protein Chemistry Laboratory
- Department of Biology
- College of Sciences
- Shiraz University
- Shiraz
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center
- Shiraz University of Medical Sciences
- Shiraz
- Iran
| | - Vladimir N. Uversky
- Department of Molecular Medicine and Health Byrd Alzheimer's Institute
- Morsani College of Medicine
- University of South Florida
- Tampa
- USA
| |
Collapse
|
17
|
Barbituric Acid Based Fluorogens: Synthesis, Aggregation-Induced Emission, and Protein Fibril Detection. Molecules 2019; 25:molecules25010032. [PMID: 31861868 PMCID: PMC6982923 DOI: 10.3390/molecules25010032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 11/17/2022] Open
Abstract
Fluorescent dyes, especially those emitting in the long wavelength region, are excellent candidates in the area of bioassay and bioimaging. In this work, we report a series of simple organic fluorescent dyes consisting of electron-donating aniline groups and electron-withdrawing barbituric acid groups. These dyes are very easy to construct while emitting strongly in the red region in their solid state. The photophysical properties of these dyes, such as solvatochromism and aggregation-induced emission, are systematically characterized. Afterward, the structure-property relationships of these barbituric acid based fluorogens are discussed. Finally, we demonstrate their potential applications for protein amyloid fibril detection.
Collapse
|
18
|
Cui L, Wang S, Zhang J, Wang M, Gao Y, Bai L, Zhang H, Ma G, Ba X. Effect of curcumin derivatives on hen egg white lysozyme amyloid fibrillation and their interaction study by spectroscopic methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 223:117365. [PMID: 31323497 DOI: 10.1016/j.saa.2019.117365] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/15/2019] [Accepted: 07/07/2019] [Indexed: 06/10/2023]
Abstract
Two novel Boc-L-isoleucine-functionalized curcumin derivatives have been synthesized and characterized, which exhibited enhanced solubility in water compared with the natural curcumin. The solubility could reach 2.12mg/mL for the monosubstituted compound and 3.05mg/mL for the disubstituted compound, respectively. Their anti-amyloidogenic capacity on the model protein, hen egg white lysozyme (HEWL), was examined in aqueous solution. ThT fluorescence assay showed that the operation concentration was only 0.5mM when the inhibition ratio was above 70%. Meanwhile, the inhibitory capacity of monosubstituted curcumin derivative on the formation of HEWL amyloid fibrils was found to be superior to that of disubstituted derivative, suggesting that the phenolic hydroxyl group might contribute to the anti-amyloidogenic activity. Interaction study showed that both curcumin derivatives could bind with HEWL near tryptophan residues and form new ground-state complex before HEWL self-assemblies into amyloid fibrils and thus inhibits the formation of amyloid fibrils. Both of the two cucumin derivatives have displayed low cytotoxicity with HeLa cell.
Collapse
Affiliation(s)
- Liangliang Cui
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China
| | - Sujuan Wang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China.
| | - Jian Zhang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China
| | - Mengna Wang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China
| | - Yan Gao
- Affiliated Hospital of Hebei University, Baoding 071000, PR China
| | - Libin Bai
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China
| | - Hailei Zhang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China
| | - Gang Ma
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, PR China.
| | - Xinwu Ba
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China; Affiliated Hospital of Hebei University, Baoding 071000, PR China.
| |
Collapse
|
19
|
Design, synthesis and preliminary in-vitro studies of novel boronated monocarbonyl analogues of Curcumin (BMAC) for antitumor and β-amiloyd disaggregation activity. Bioorg Chem 2019; 93:103324. [DOI: 10.1016/j.bioorg.2019.103324] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 12/20/2022]
|
20
|
Fan W, Xing L, Chen N, Zhou X, Yu Y, Liu S. Promotion Effect of Succinimide on Amyloid Fibrillation of Hen Egg-White Lysozyme. J Phys Chem B 2019; 123:8057-8064. [DOI: 10.1021/acs.jpcb.9b06958] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Wei Fan
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lei Xing
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ning Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaoguo Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yuanqin Yu
- Department of Physics, Anhui University, Hefei, Anhui 230601, China
| | - Shilin Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
21
|
How SC, Hsin A, Chen GY, Hsu WT, Yang SM, Chou WL, Chou SH, Wang SSS. Exploring the influence of brilliant blue G on amyloid fibril formation of lysozyme. Int J Biol Macromol 2019; 138:37-48. [PMID: 31295491 DOI: 10.1016/j.ijbiomac.2019.07.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/28/2019] [Accepted: 07/07/2019] [Indexed: 12/19/2022]
Abstract
Evidence suggests that amyloid fibril mitigation/inhibition is considered a promising approach toward treating amyloid diseases. In this work, we first examined how amyloid fibrillogenesis of lysozyme was affected by BBG, a safe triphenylmethane compound with nice blood-brain-barrier-permeability, and found that shorter fibrillar species were formed in the lysozyme samples treated with BBG. Next, alterations in the features including the secondary as well as tertiary structure, extent of aggregation, and molecular distribution of lysozyme triggered by the addition of BBG were examined by various spectroscopic techniques, right-angle light scattering, dynamic light scattering, and SDS-PAGE. In addition, we have investigated how BBG affected the lysozyme fibril-induced cytotoxicity in SH-SY5Y cells. We found that a large quantity of shorter fibrillar species and more lysozyme monomers were present in the samples treated with BBG. Also, the addition of BBG rescued SH-SY5Y cells from cell death induced by amyloid fibrils of lysozyme. Finally, information about the binding sites and interacting forces involved in the BBG-lysozyme interaction was further explored using synchronous fluorescence and molecular docking approaches. Molecular docking results revealed that, apart from the hydrophobic interaction(s), hydrogen bonding, electrostatic interactions, and van der Waal forces may also be involved in the binding interaction.
Collapse
Affiliation(s)
- Su-Chun How
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Ai Hsin
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Guan-Yu Chen
- Department of Life Science, Fu-Jen Catholic University, Xinzhuang Dist., New Taipei City, Taiwan
| | - Wei-Tse Hsu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Szu-Ming Yang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Lung Chou
- Department of Safety, Health and Environmental Engineering, Hungkuang University, Sha Lu, Taichung City 433, Taiwan.
| | - Shiu-Huey Chou
- Department of Life Science, Fu-Jen Catholic University, Xinzhuang Dist., New Taipei City, Taiwan.
| | - Steven S-S Wang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
22
|
Jansens KJA, Lambrecht MA, Rombouts I, Monge Morera M, Brijs K, Rousseau F, Schymkowitz J, Delcour JA. Conditions Governing Food Protein Amyloid Fibril Formation-Part I: Egg and Cereal Proteins. Compr Rev Food Sci Food Saf 2019; 18:1256-1276. [PMID: 33336994 DOI: 10.1111/1541-4337.12462] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/26/2019] [Accepted: 05/13/2019] [Indexed: 12/18/2022]
Abstract
Conditions including heating mode, time, temperature, pH, moisture and protein concentration, shear, and the presence of alcohols, chaotropic/reducing agents, enzymes, and/or salt influence amyloid fibril (AF) formation as they can affect the accessibility of amino acid sequences prone to aggregate. As some conditions applied on model protein resemble conditions in food processing unit operations, we here hypothesize that food processing can lead to formation of protein AFs with a compact cross β-sheet structure. This paper reviews conditions and food constituents that affect amyloid fibrillation of egg and cereal proteins. While egg and cereal proteins often coexist in food products, their impact on each other's fibrillation remains unknown. Hen egg ovalbumin and lysozyme form AFs when subjected to moderate heating at acidic pH separately. AFs can also be formed at higher pH, especially in the presence of alcohols or chaotropic/reducing agents. Tryptic wheat gluten digests can form fibrillar structures at neutral pH and maize and rice proteins do so in aqueous ethanol or at acidic pH, respectively.
Collapse
Affiliation(s)
- Koen J A Jansens
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium.,Nutrex NV, Achterstenhoek 5, B-2275, Lille, Belgium
| | - Marlies A Lambrecht
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Ine Rombouts
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium.,KU Leuven, ECOVO, Kasteelpark Arenberg 21, B-3001, Leuven, Belgium
| | - Margarita Monge Morera
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Kristof Brijs
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB, and Dept. of Cellular and Molecular Medicine, KU Leuven, B-3000, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB, and Dept. of Cellular and Molecular Medicine, KU Leuven, B-3000, Leuven, Belgium
| | - Jan A Delcour
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| |
Collapse
|
23
|
Siposova K, Kozar T, Huntosova V, Tomkova S, Musatov A. Inhibition of amyloid fibril formation and disassembly of pre-formed fibrils by natural polyphenol rottlerin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:259-274. [DOI: 10.1016/j.bbapap.2018.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/18/2018] [Accepted: 10/08/2018] [Indexed: 12/15/2022]
|
24
|
Wu B, Liu X, Shi X, Han W, Wang C, Jiang L. Highly photoluminescent and temperature-sensitive P, N, B-co-doped carbon quantum dots and their highly sensitive recognition for curcumin. RSC Adv 2019; 9:8340-8349. [PMID: 35518689 PMCID: PMC9061703 DOI: 10.1039/c9ra00183b] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/06/2019] [Indexed: 11/21/2022] Open
Abstract
Temperature-sensitive P, N, B-co-doped carbon quantum dots (PNBCDs) synthesized using one-pot method exhibit many excellent features, such as strong fluorescence, good stability and sensitive detection for curcumin.
Collapse
Affiliation(s)
- Bin Wu
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences (CAS)
- Beijing 100190
| | - Xiaolong Liu
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences (CAS)
- Beijing 100190
| | - Xiaofeng Shi
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences (CAS)
- Beijing 100190
| | - Wei Han
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences (CAS)
- Beijing 100190
| | - Chunru Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences (CAS)
- Beijing 100190
| | - Li Jiang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences (CAS)
- Beijing 100190
| |
Collapse
|
25
|
Kotormán M, Varga A, Kasi PB, Nemcsók J. Inhibition of the formation of amyloid-like fibrils with spices, especially cloves. ACTA BIOLOGICA HUNGARICA 2018; 69:385-394. [PMID: 30587021 DOI: 10.1556/018.69.2018.4.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During the study of inhibition of amyloid fibril formation, α-chymotrypsin protein was developed in 55% ethanol at pH 7.0. We investigated the inhibitory effect of different spices on amyloid fibril formation using turbidity measurements and Congo red binding assays. We found that all spices except the black pepper and caraway seed prevented fibril formation. The highest inhibition was measured with the clove, which reduced the amount of aggregates by 90%. We studied the inhibitory effect of the cloves at different concentrations on aggregation, it was found that the inhibitory activity of clove is dependent on concentration. We have measured the total phenolic content of the spice extracts too. Based on all these findings we have come to the following conclusion: Our results indicate that spices can contain other compounds too - not only phenolic compounds - which influence the formation of amyloid fibrils, and the effectiveness of various phenolic compounds are different.
Collapse
Affiliation(s)
- Márta Kotormán
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Középfasor 52, H-6726 Szeged, Hungary
| | - Alexandra Varga
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Középfasor 52, H-6726 Szeged, Hungary
| | - Phanindra Babu Kasi
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Középfasor 52, H-6726 Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - János Nemcsók
- Department of Biology, Pedagogical Faculty, Selye János University, Bratislavská cesta 3322, SK-94501 Komarno, Slovak Republic
| |
Collapse
|
26
|
Exploring the effects of methylene blue on amyloid fibrillogenesis of lysozyme. Int J Biol Macromol 2018; 119:1059-1067. [DOI: 10.1016/j.ijbiomac.2018.08.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 12/28/2022]
|
27
|
Mahdavimehr M, Katebi B, Meratan AA. Effect of fibrillation conditions on the anti-amyloidogenic properties of polyphenols and their involved mechanisms. Int J Biol Macromol 2018; 118:552-560. [DOI: 10.1016/j.ijbiomac.2018.06.109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/12/2018] [Accepted: 06/22/2018] [Indexed: 12/28/2022]
|
28
|
Nedaei H, Saboury AA, Meratan AA, Karami L, Sawyer L, Kaboudin B, Jooyan N, Ghasemi A. Polyphenolic self-association accounts for redirecting a high-yielding amyloid aggregation. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.06.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
29
|
Rutin attenuates negatively charged surfactant (SDS)-induced lysozyme aggregation/amyloid formation and its cytotoxicity. Int J Biol Macromol 2018; 120:45-58. [PMID: 30081131 DOI: 10.1016/j.ijbiomac.2018.07.112] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/11/2018] [Accepted: 07/17/2018] [Indexed: 10/28/2022]
Abstract
Amyloid fibrils are highly ordered protein assemblies known to contribute to the pathology of a variety of genetic and aging-associated diseases. Here, we have investigated the aggregation propensity of lysozyme in the presence of a negatively charged surfactant (SDS) and evaluated the anti-aggregation activity of rutin. Multiple approaches such as turbidity measurements, dye binding assays, intrinsic fluorescence, circular dichroism (CD), transmission electron microscopy (TEM), MTT and comet assays have been used for this purpose. We inferred that SDS induces aggregation of lysozyme in 0.2-0.6 mM concentration range while at higher concentration range (0.8-1.0 mM), it leads to solubilization/stabilization of protein. Intrinsic/extrinsic fluorescence and CD analysis confirmed significant conformational changes in lysozyme at 0.2 mM SDS. Thioflavin T (ThT), congo red binding and TEM analysis further reaffirmed the formation of lysozyme fibrils. Moreover, MTT assay demonstrated cytotoxicity of these fibrils towards neuroblastoma cell lines (SH-SY5Y) and their attenuation by rutin. Comet assay supported the cytotoxicity mechanism via DNA damage. Molecular docking results also advocate a strong interaction between lysozyme and rutin. The current study indicates a mechanistic approach assuming structural constraints and specific aromatic interactions of rutin with HEWL aggregates.
Collapse
|
30
|
Patel P, Parmar K, Patel D, Kumar S, Trivedi M, Das M. Inhibition of amyloid fibril formation of lysozyme by ascorbic acid and a probable mechanism of action. Int J Biol Macromol 2018; 114:666-678. [DOI: 10.1016/j.ijbiomac.2018.03.152] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 03/23/2018] [Accepted: 03/25/2018] [Indexed: 12/20/2022]
|
31
|
Inhibition of amyloid fibrillation of lysozyme by bisdemethoxycurcumin and diacetylbisdemethoxycurcumin. Biophys Chem 2018; 235:56-65. [DOI: 10.1016/j.bpc.2018.02.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 02/07/2018] [Accepted: 02/09/2018] [Indexed: 11/19/2022]
|
32
|
Wang S, Peng X, Cui L, Li T, Yu B, Ma G, Ba X. Synthesis of water-soluble curcumin derivatives and their inhibition on lysozyme amyloid fibrillation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 190:89-95. [PMID: 28915469 DOI: 10.1016/j.saa.2017.09.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/14/2017] [Accepted: 09/07/2017] [Indexed: 06/07/2023]
Abstract
The potential application of curcumin was heavily limited in biomedicine because of its poor solubility in pure water. To circumvent the detracting feature, two novel water-soluble amino acid modified curcumin derivatives (MLC and DLC) have been synthesized through the condensation reaction between curcumin and Nα-Fmoc-Nε-Boc-l-lysine. Benefiting from the enhanced solubility of 3.32×10-2g/mL for MLC and 4.66×10-2g/mL for DLC, the inhibition effects of the as-prepared derivatives on the amyloid fibrillation of lysozyme (HEWL) were investigated detaily in water solution. The obtained results showed that the amyloid fibrillation of HEWL was inhibited to a great extent when the concentrations of MLC and DLC reach to 20.139mM and 49.622mM, respectively. The fluorescence quenching upon the addition of curcumin to HEWL provide a support for static and dynamic recombination quenching process. The binding driving force was assigned to classical hydrophobic interaction between curcumin derivatives and HEWL. In addition, UV-Vis absorption and circular dichroism (CD) spectra confirmed the change of the conformation of HEWL.
Collapse
Affiliation(s)
- Sujuan Wang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Xixi Peng
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Liangliang Cui
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Tongtong Li
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Bei Yu
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Gang Ma
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China.
| | - Xinwu Ba
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
33
|
Basu A, Bhattacharya SC, Kumar GS. Influence of the ionic liquid 1-butyl-3-methylimidazolium bromide on amyloid fibrillogenesis in lysozyme: Evidence from photophysical and imaging studies. Int J Biol Macromol 2018; 107:2643-2649. [DOI: 10.1016/j.ijbiomac.2017.10.152] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 01/23/2023]
|
34
|
Seraj Z, Seyedarabi A, Saboury AA, Habibi-Rezaei M, Ahmadian S, Ghasemi A. Unraveling the novel effects of aroma from small molecules in preventing hen egg white lysozyme amyloid fibril formation. PLoS One 2018; 13:e0189754. [PMID: 29357364 PMCID: PMC5777642 DOI: 10.1371/journal.pone.0189754] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/03/2017] [Indexed: 11/19/2022] Open
Abstract
This study investigated for the first time the molecular effectiveness of 'aroma' from three small molecules including a phenol (phenyl ethyl alcohol; PEA) and an aldehyde (cinnamaldehyde; Cin) both containing an aromatic ring, and a diamine (N,N,N,N'- Tetramethylethylenediamine; TEMED) at two different amounts (small; S and large; L) in preventing hen egg white lysozyme (HEWL) amyloid fibril formation using Thioflavin T and Nile red fluorescence assays, circular dichroism spectroscopy, SDS-polyacrylamide gel electrophoresis, atomic force microscopy, dynamic light scattering and HEWL activity test. Interestingly, the results revealed that (1) the aroma of PEA, identified as an active constituent of Rosa damascena, prevented fibril formation since PEA-L was able to trap the oligomeric form of HEWL in contrast to PEA-S where protofibrils but not mature fibrils were formed; (2) Cin, previously shown to prevent fibril formation in the liquid form, was also shown to do so in the aroma form by producing protofibrils and not mature fibrils in both Cin- L and Cin-S aroma forms and (3) the aroma of TEMED-L was able to retain HEWL's native structure completely and prevented both aggregation and fibril formation, while TEMED-S prevented HEWL fibril formation and instead directed the pathway towards amorphous aggregate formation. Furthermore, the ability to trap oligomeric species (by PEA-L aroma) is of great importance for further research as it provides routes for preventing the formation of toxic oligomeric intermediates along the fibrillation pathway. Last but not least, the novelty of this in vitro study on the effect of aroma at the molecular level with a unique experimental set-up using HEWL as a model protein in assessing amyloid fibril formation paves the way for more and detailed studies on the importance of aroma producing molecules and their effects.
Collapse
Affiliation(s)
- Zahra Seraj
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Arefeh Seyedarabi
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ali Akbar Saboury
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mehran Habibi-Rezaei
- School of Biology, University College of Science, University of Tehran, Tehran, Iran
| | - Shahin Ahmadian
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Atiyeh Ghasemi
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
35
|
Iannuzzi C, Borriello M, Irace G, Cammarota M, Di Maro A, Sirangelo I. Vanillin Affects Amyloid Aggregation and Non-Enzymatic Glycation in Human Insulin. Sci Rep 2017; 7:15086. [PMID: 29118444 PMCID: PMC5678370 DOI: 10.1038/s41598-017-15503-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/27/2017] [Indexed: 01/04/2023] Open
Abstract
Curcumin is known for its anti-inflammatory, antioxidant and anticancer activity, as well as for its ability to interfere with amyloid aggregation and non-enzymatic glycation reaction, that makes it an attractive potential drug. However, curcumin therapeutic use is limited because of its low systemic bioavailability and chemical stability as it undergoes rapid hydrolysis in physiological conditions. Recently, much attention has been paid to the biological properties of curcumin degradation products as potential bioactive molecules. Between them, vanillin, a natural vanilla extract, is a stable degradation product of curcumin that could be responsible for mediating its beneficial effects. We have analyzed the effect of vanillin, in comparison with curcumin, in the amyloid aggregation process of insulin as well as its ability to prevent the formation of the advanced glycation end products (AGEs). Employing biophysical, biochemical and cell based assays, we show that vanillin and curcumin similarly affect insulin amyloid aggregation promoting the formation of harmless fibrils. Moreover, vanillin restrains AGE formation and protects from AGE-induced cytotoxicity. Our novel findings not only suggest that the main health benefits observed for curcumin can be ascribed to its degradation product vanillin, but also open new avenues for developing therapeutic applications of curcumin degradation products.
Collapse
Affiliation(s)
- Clara Iannuzzi
- Department of Biochemistry, Biophysics and General Pathology, Università degli Studi della Campania "Luigi Vanvitelli", Naples, 80138, Italy
| | - Margherita Borriello
- Department of Biochemistry, Biophysics and General Pathology, Università degli Studi della Campania "Luigi Vanvitelli", Naples, 80138, Italy
| | - Gaetano Irace
- Department of Biochemistry, Biophysics and General Pathology, Università degli Studi della Campania "Luigi Vanvitelli", Naples, 80138, Italy
| | - Marcella Cammarota
- Department of Experimental Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, 80138, Italy
| | - Antimo Di Maro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania "Luigi Vanvitelli", Caserta, 81100, Italy
| | - Ivana Sirangelo
- Department of Biochemistry, Biophysics and General Pathology, Università degli Studi della Campania "Luigi Vanvitelli", Naples, 80138, Italy.
| |
Collapse
|
36
|
How SC, Hsu WT, Tseng CP, Lo CH, Chou WL, Wang SSS. Brilliant blue R dye is capable of suppressing amyloid fibril formation of lysozyme. J Biomol Struct Dyn 2017; 36:3420-3433. [DOI: 10.1080/07391102.2017.1388848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Su-Chun How
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan
| | - Wei-Tse Hsu
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan
| | - Chia-Ping Tseng
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan
| | - Chun-Hsien Lo
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan
| | - Wei-Lung Chou
- Department of Safety, Health and Environmental Engineering, Hungkuang University, Sha Lu, Taichung City 433, Taiwan
| | - Steven S.-S. Wang
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan
| |
Collapse
|
37
|
Kumar M, Hong Y, Thorn DC, Ecroyd H, Carver JA. Monitoring Early-Stage Protein Aggregation by an Aggregation-Induced Emission Fluorogen. Anal Chem 2017; 89:9322-9329. [DOI: 10.1021/acs.analchem.7b02090] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Manjeet Kumar
- Research
School of Chemistry, The Australian National University, Acton, ACT 2601 Australia
| | - Yuning Hong
- Department
of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086 Australia
- School of
Chemistry, The University of Melbourne, Parkville, VIC 3010 Australia
| | - David C. Thorn
- Research
School of Chemistry, The Australian National University, Acton, ACT 2601 Australia
| | - Heath Ecroyd
- School
of Biological Sciences and the Illawarra Health and Medical Research
Institute, University of Wollongong, Wollongong NSW 2522 Australia
| | - John A. Carver
- Research
School of Chemistry, The Australian National University, Acton, ACT 2601 Australia
| |
Collapse
|
38
|
Nie RZ, Zhu W, Peng JM, Ge ZZ, Li CM. Comparison of disaggregative effect of A-type EGCG dimer and EGCG monomer on the preformed bovine insulin amyloid fibrils. Biophys Chem 2017; 230:1-9. [PMID: 28818314 DOI: 10.1016/j.bpc.2017.07.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/26/2017] [Accepted: 07/29/2017] [Indexed: 12/14/2022]
Abstract
In the present study, the disruptive effects of epigallocatechin-3-gallate (EGCG) and A-type dimeric epigallocatechin-3-gallate (A-type EGCG dimer) on the preformed bovine insulin amyloid fibrils were studied by several biophysical methods including thioflavin-T (ThT) fluorescence assay, 1-anilinonaphthalene-8-sulfonic (ANS) fluorescence assay, Congo red (CR) binding assay, dynamic light scattering (DLS), transmission electron microscopy (TEM), Gel electrophoresis (SDS-PAGE) and Bradford assay. Our results demonstrated that A-type EGCG dimer showed significantly more potential disaggregative effects on the bovine insulin amyloid fibrils than EGCG. A-type EGCG dimer could not only dramatically promote the disaggregation of the preformed bovine insulin amyloid fibrils, but also restructure the amyloid fibrils into amorphous aggregates. While, EGCG could only shorten and thin the fibrils, but induce no small amorphous aggregates. Our present results provided additional evidence for the more potent disaggregation effects of dimeric polyphenols than monomeric polyphenols and suggested that A-type EGCG dimer seems to have potential application as an excellent anti-amyloidogenic agent.
Collapse
Affiliation(s)
- Rong-Zu Nie
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Zhu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jin-Ming Peng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhen-Zhen Ge
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chun-Mei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Food Science, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China.
| |
Collapse
|
39
|
Kuo CT, Chen YL, Hsu WT, How SC, Cheng YH, Hsueh SS, Liu HS, Lin TH, Wu JW, Wang SSS. Investigating the effects of erythrosine B on amyloid fibril formation derived from lysozyme. Int J Biol Macromol 2017; 98:159-168. [DOI: 10.1016/j.ijbiomac.2017.01.110] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/11/2017] [Accepted: 01/25/2017] [Indexed: 10/20/2022]
|
40
|
Trehalose and Magnesium Chloride Exert a Common Anti-amyloidogenic Effect Towards Hen Egg White Lysozyme. Protein J 2017; 36:138-146. [DOI: 10.1007/s10930-017-9705-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
41
|
Basu A, Suresh Kumar G. Binding and Inhibitory Effect of the Dyes Amaranth and Tartrazine on Amyloid Fibrillation in Lysozyme. J Phys Chem B 2017; 121:1222-1239. [DOI: 10.1021/acs.jpcb.6b10465] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Anirban Basu
- Biophysical Chemistry Laboratory Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| |
Collapse
|
42
|
Zeng HJ, Miao M, Liu Z, Yang R, Qu LB. Effect of nitrogen-doped graphene quantum dots on the fibrillation of hen egg-white lysozyme. Int J Biol Macromol 2017; 95:856-861. [DOI: 10.1016/j.ijbiomac.2016.10.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/14/2016] [Accepted: 10/10/2016] [Indexed: 01/27/2023]
|
43
|
ASAMOTO H, NAGASHIMA K, NAKAGAMA T, SAITOH K, MINAMISAWA H. Separation Analysis of Amyloid Fibrils Utilizing a PTFE Tube as a Separation Field. BUNSEKI KAGAKU 2017. [DOI: 10.2116/bunsekikagaku.66.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Hiromichi ASAMOTO
- Department of Liberal Arts and Basic Science, College of Industrial Technology, Nihon University
| | - Kyosuke NAGASHIMA
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University
| | - Tatsuro NAKAGAMA
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University
| | - Kazunori SAITOH
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University
| | - Hiroaki MINAMISAWA
- Department of Liberal Arts and Basic Science, College of Industrial Technology, Nihon University
| |
Collapse
|
44
|
Basu A, Suresh Kumar G. Interaction and inhibitory influence of the azo dye carmoisine on lysozyme amyloid fibrillogenesis. MOLECULAR BIOSYSTEMS 2017. [DOI: 10.1039/c7mb00207f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The azo dye carmoisine has a significant inhibitory effect on fibrillogenesis in lysozyme.
Collapse
Affiliation(s)
- Anirban Basu
- Biophysical Chemistry Laboratory
- Organic & Medicinal Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700 032
- India
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory
- Organic & Medicinal Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700 032
- India
| |
Collapse
|
45
|
Zeng HJ, Miao M, Yang R, Qu LB. Effect of silybin on the fibrillation of hen egg-white lysozyme. J Mol Recognit 2016; 30. [DOI: 10.1002/jmr.2566] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/26/2016] [Accepted: 08/21/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Hua-jin Zeng
- School of Pharmaceutical Sciences; Zhengzhou University; Zhengzhou 450001 China
| | - Min Miao
- College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou 450001 China
| | - Ran Yang
- College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou 450001 China
| | - Ling-bo Qu
- College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou 450001 China
| |
Collapse
|
46
|
Understanding curcumin-induced modulation of protein aggregation. Int J Biol Macromol 2016; 100:89-96. [PMID: 27327907 DOI: 10.1016/j.ijbiomac.2016.06.053] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 06/15/2016] [Accepted: 06/16/2016] [Indexed: 11/22/2022]
Abstract
Curcumin, a diarylheptanoid compound, found in spice turmeric is known to alter the aggregation of proteins and reduce the toxicity of the aggregates. This review looks at the molecular basis of modulating protein aggregation and toxicity of the aggregates. Foremost, we identify the interaction of curcumin and its derivatives with proteins/peptides and the effect of their interaction on the conformational stability and unfolding/folding pathway(s). The unfolding/folding processes generate partially folded/unfolded intermediate, which serve as aggregation precursor state. Secondly, we discuss the effect of curcumin binding on the kinetics parameters of the aggregation process, which give information about the mechanism of the aggregation inhibition. We describe, in addition, that curcumin can accelerate/promote fibril formation by binding to oligomeric intermediate(s) accumulated in the aggregation pathway. Finally, we discuss the correlation of curcumin-induced monomeric and/or oligomeric precursor states with aggregate structure and toxicity. On the basis of these discussions, we propose a model describing curcumin-induced inhibition/promotion of formation of amyloid-like fibrils.
Collapse
|
47
|
Chen YH, Tseng CP, How SC, Lo CH, Chou WL, Wang SSS. Amyloid fibrillogenesis of lysozyme is suppressed by a food additive brilliant blue FCF. Colloids Surf B Biointerfaces 2016; 142:351-359. [DOI: 10.1016/j.colsurfb.2016.02.064] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/26/2016] [Accepted: 02/29/2016] [Indexed: 12/30/2022]
|
48
|
Kheirbakhsh R, Chinisaz M, Amanpour S, Amini S, Khodayari S, Khodayari H, Dilmaghanian A, Haddadi M, Ebrahim-Habibi A. Turmeric effect on subcutaneous insulin-induced amyloid mass: anin vivostudy. Drug Chem Toxicol 2016; 40:1-6. [DOI: 10.3109/01480545.2016.1163575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
49
|
Nie RZ, Zhu W, Peng JM, Ge ZZ, Li CM. A-type dimeric epigallocatechin-3-gallate (EGCG) is a more potent inhibitor against the formation of insulin amyloid fibril than EGCG monomer. Biochimie 2016; 125:204-12. [PMID: 27079519 DOI: 10.1016/j.biochi.2016.03.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/25/2016] [Indexed: 12/21/2022]
Abstract
Because fibrillary protein aggregates is regarded to be closely associated with many diseases such as Alzheimer's disease, diabetes, and Parkinson's disease, growing interest and researches have been focused on finding potential fibrillation inhibitors. In the present study, the inhibitory effects of epigallocatechin-3-gallate (EGCG) and A-type dimeric epigallocatechin-3-gallate (A-type EGCG dimer) on the formation of insulin fibrillation were compared by multi-dimensional approaches including thioflavin-T (ThT) fluorescence assay, 1-anilinonaphthalene-8-sulfonic (ANS) fluorescence assay, dynamic light scattering (DLS), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and circular dichroism (CD) spectroscopy. Our results confirmed that A-type EGCG dimer is a more potent inhibitor against the formation of bovine insulin amyloid fibril than EGCG. In addition, A-type EGCG dimer could not only inhibit insulin amyloid fibril formation, but also change the aggregation pathway and induce bovine insulin into amorphous aggregates. The results of the present study may provide a new guide on finding novel anti-amyloidogenic agents.
Collapse
Affiliation(s)
- Rong-Zu Nie
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei Zhu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jin-Ming Peng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhen-Zhen Ge
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chun-Mei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Environment Correlative Food Science, Huazhong Agricultural University, Ministry of Education, Wuhan, 430070, China.
| |
Collapse
|
50
|
Fazili NA, Bhat IA, Bhat WF, Naeem A. Anti-fibrillation propensity of a flavonoid baicalein against the fibrils of hen egg white lysozyme: potential therapeutics for lysozyme amyloidosis. J Biomol Struct Dyn 2016; 34:2102-14. [DOI: 10.1080/07391102.2015.1108232] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Naveed Ahmad Fazili
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, , India
| | - Imtiyaz Ahmad Bhat
- Department of Chemistry, Faculty of Sciences, Aligarh Muslim University, Aligarh, , India
| | - Waseem Feeroze Bhat
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, , India
| | - Aabgeena Naeem
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, , India
| |
Collapse
|