1
|
Prašnikar M, Bjelošević Žiberna M, Kržišnik N, Roškar R, Grabnar I, Žula A, Ahlin Grabnar P. Additive effects of the new viscosity-reducing and stabilizing excipients for monoclonal antibody formulation. Int J Pharm 2025; 674:125451. [PMID: 40064383 DOI: 10.1016/j.ijpharm.2025.125451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/19/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
The subcutaneous administration of biopharmaceuticals is advantageous over intravenous administration, particularly with regard to improved patient compliance. However, in highly concentrated protein formulations lower viscosity of the formulation and stability of the protein is difficult to achieve. One approach involves using the viscosity-reducing excipients to diminish the interactions between protein molecules. In this context, the main objective of the study was to develop an optimal formulation for a model monoclonal antibody (mAb) and to evaluate new test compounds as viscosity-reducing agents. The test compounds were investigated both individually at increasing concentrations up to 200 mM and in combinations for their viscosity-reducing effect. Our results showed that all individual test compounds reduced the viscosity of the mAb formulation by more than 30 %, with reduction achieved by the six test compounds exceeding that achieved by proline (Pro). A reduction in the viscosity of the formulation below the 20 mPas threshold was achieved either by combining two test compounds or by increasing the concentration of a single compound above 25 mM. An accelerated stability study showed similar stabilization effects regardless of whether the test compounds were used alone or in combination. The percentage of aggregates was below 5 % in most formulations. These viscosity-reducing and stabilization effects corresponded to the dynamic light scattering results, which indicated that the test compounds reduced the attractive forces between the mAb molecules.
Collapse
Affiliation(s)
- Monika Prašnikar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | | | - Nika Kržišnik
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Robert Roškar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Iztok Grabnar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Aleš Žula
- Biologics Drug Product, Technical Research and Development, Global Drug Development, Novartis, Slovenia
| | - Pegi Ahlin Grabnar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
2
|
Sui J, Yue R, Bi H, Fu H, Yang A, Wang M, An C. Exploring the glycoprotein washing fluid-assisted cleanup for the restoration of oil-contaminated shorelines with environmental integrity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176165. [PMID: 39260515 DOI: 10.1016/j.scitotenv.2024.176165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/02/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Spilled oil in ocean can spread to the shoreline and cause long-term impacts on the shoreline's ecological environment. Therefore, removing oil accumulated on shorelines is crucial. This study proposed an innovative ovalbumin (OVA) fluid-assisted method for the cleanup of oiled shoreline substrates. The oil removal efficiency of OVA fluids was systematically investigated. Higher concentrations of OVA fluids effectively enveloped and immobilized the oil, aiding in its separation from the sand surface. The increased temperature reduced the viscosity of emulsions, facilitating improved flow and oil removal. High salinity promoted the creation of oil particle aggregates molecules and facilitated the release of oil from the sand surface. The factorial analysis demonstrated that a high salt environment significantly enhances the combined impact of temperature and pH on oil removal performance. Different methods for the responsive separation of washing effluents were studied, and the most effective separation method was adjusting the pH of effluents to 4.54 (the isoelectric point of OVA). Separated precipitates exhibited good decomposition efficiency through thermal decomposition and biodegradation. OVA fluids boast advantages, such as low cost, easy recyclability, and non-toxicity, while ensuring high oil removal efficiency and making them a promising eco-friendly technique for the cleanup of oiled shorelines.
Collapse
Affiliation(s)
- Jiyao Sui
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| | - Rengyu Yue
- Department of Civil and Resource Engineering, Faculty of Engineering, Dalhousie University, Halifax B3H 4R2, Canada
| | - Huifang Bi
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| | - Haiyan Fu
- College of Environmental Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Aili Yang
- College of Environmental Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Meng Wang
- Department of Energy and Mineral Engineering and EMS Energy Institute, Pennsylvania State University, University Park, 16802, USA
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada.
| |
Collapse
|
3
|
Li J, Yang GZ, Li X, Tan HL, Wong ZW, Jiang S, Yang D. Nanoassembly of spider silk protein mediated by intrinsically disordered regions. Int J Biol Macromol 2024; 271:132438. [PMID: 38761906 DOI: 10.1016/j.ijbiomac.2024.132438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Spider silk is the self-assembling product of silk proteins each containing multiple repeating units. Each repeating unit is entirely intrinsically disordered or contains a small disordered domain. The role of the disordered domain/unit in conferring silk protein storage and self-assembly is not fully understood yet. Here, we used biophysical and biochemical techniques to investigate the self-assembly of a miniature version of a minor ampullate spidroin (denoted as miniMiSp). miniMiSp consists of two identical intrinsically disordered domains, one folded repetitive domain, and two folded terminal domains. Our data indicated that miniMiSp self-assembles into oligomers and further into liquid droplets. The oligomerization is attributed to the aggregation-prone property of both the disordered domains and the folded repetitive domain. Our results support the model of micellar structure for silk proteins at high protein concentrations. The disordered domain is indispensable for liquid droplet formation via liquid-liquid phase separation, and tyrosine residues located in the disordered domain make dominant contributions to stability of the liquid droplets. As the same tyrosine residues are also critical to fibrillation, the liquid droplets are likely an intermediate state between the solution state and the fiber state. Additionally, the terminal domains contribute to the pH- and salt-dependent self-assembly properties.
Collapse
Affiliation(s)
- Jiaxin Li
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Gabriel Z Yang
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Xue Li
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Hao Lei Tan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Zhi Wei Wong
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Shimin Jiang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Daiwen Yang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
4
|
Lampitella EA, Marone M, Achanta NSK, Porzio E, Trepiccione F, Manco G. The Human Paraoxonase 2: An Optimized Procedure for Refolding and Stabilization Facilitates Enzyme Analyses and a Proteomics Approach. Molecules 2024; 29:2434. [PMID: 38893310 PMCID: PMC11173892 DOI: 10.3390/molecules29112434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
The human paraoxonase 2 (PON2) is the oldest member of a small family of arylesterase and lactonase enzymes, representing the first line of defense against bacterial infections and having a major role in ROS-associated diseases such as cancer, cardiovascular diseases, neurodegeneration, and diabetes. Specific Post-Translational Modifications (PTMs) clustering nearby two residues corresponding to pon2 polymorphic sites and their impact on the catalytic activity are not yet fully understood. Thus, the goal of the present study was to develop an improved PON2 purification protocol to obtain a higher amount of protein suitable for in-depth biochemical studies and biotechnological applications. To this end, we also tested several compounds to stabilize the active monomeric form of the enzyme. Storing the enzyme at 4 °C with 30 mM Threalose had the best impact on the activity, which was preserved for at least 30 days. The catalytic parameters against the substrate 3-Oxo-dodecanoyl-Homoserine Lactone (3oxoC12-HSL) and the enzyme ability to interfere with the biofilm formation of Pseudomonas aeruginosa (PAO1) were determined, showing that the obtained enzyme is well suited for downstream applications. Finally, we used the purified rPON2 to detect, by the direct molecular fishing (DMF) method, new putative PON2 interactors from soluble extracts of HeLa cells.
Collapse
Affiliation(s)
- Eros A. Lampitella
- Institute of Biochemistry and Cell Biology-CNR, Via Pietro Castellino 111, 80131 Naples, Italy; (E.A.L.); (M.M.); (N.S.K.A.); (E.P.)
| | - Maria Marone
- Institute of Biochemistry and Cell Biology-CNR, Via Pietro Castellino 111, 80131 Naples, Italy; (E.A.L.); (M.M.); (N.S.K.A.); (E.P.)
| | - Nagendra S. K. Achanta
- Institute of Biochemistry and Cell Biology-CNR, Via Pietro Castellino 111, 80131 Naples, Italy; (E.A.L.); (M.M.); (N.S.K.A.); (E.P.)
| | - Elena Porzio
- Institute of Biochemistry and Cell Biology-CNR, Via Pietro Castellino 111, 80131 Naples, Italy; (E.A.L.); (M.M.); (N.S.K.A.); (E.P.)
| | - Francesco Trepiccione
- Department of Translational Medical Science, University of Campania “Luigi Vanvitelli”, Via Leonardo Bianchi c/o Ospedale Monaldi, 80131 Naples, Italy;
| | - Giuseppe Manco
- Institute of Biochemistry and Cell Biology-CNR, Via Pietro Castellino 111, 80131 Naples, Italy; (E.A.L.); (M.M.); (N.S.K.A.); (E.P.)
| |
Collapse
|
5
|
Sirison J, Ishii T, Matsumiya K, Higashino Y, Nambu Y, Samoto M, Sugiyama M, Matsumura Y. Tuning of rheological behavior of soybean lipophilic protein-stabilized emulsions. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
6
|
Interfacial Properties of Pea Protein Hydrolysate: The Effect of Ionic Strength. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6040076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The effect of a tryptic hydrolysis as well as the effect of ionic strength (0–0.4 M NaCl) was investigated on the oil/water interfacial properties of soluble pea protein hydrolysate (SPPH) at neutral pH and room temperature (20 ± 0.01 °C). SEC-MALS and SDS-Page analysis showed that tryptic hydrolysis created a lower molecular weight polypeptide mixture, whereas FTIR analysis and DSC thermograms demonstrated a more disordered and flexible structure. The bulk properties of SPPH were studied in terms of hydrodynamic diameter and turbidity, where higher particle size (+ ~13 nm) and turbidity were observed at 0.4 M NaCl. Regarding the interfacial properties, the surface activity of SPPH improved by increasing ionic strength, with maximum interfacial pressure (14.28 mN/m) at 0.4 M NaCl. Nevertheless, the addition of NaCl negatively affected the elasticity and strength of the interfacial film, where the sample without salt exhibited the highest dilatational and shear storage modulus in all the frequencies considered.
Collapse
|
7
|
Pu S, Hadinoto K. Salting-Out crystallization of glycopeptide Vancomycin: Phase behavior study to control the crystal habit. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Combining pressing and alkaline extraction to increase protein yield from Ulva fenestrata biomass. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Grasso N, Lynch NL, Arendt EK, O'Mahony JA. Chickpea protein ingredients: A review of composition, functionality, and applications. Compr Rev Food Sci Food Saf 2021; 21:435-452. [PMID: 34919328 DOI: 10.1111/1541-4337.12878] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 10/05/2021] [Accepted: 10/31/2021] [Indexed: 01/30/2023]
Abstract
Chickpea (Cicer arietinum L.) is a pulse consumed all over the world, representing a good source of protein, as well as fat, fiber, and other carbohydrates. As a result of the growing global population the demand for the protein component of this pulse is increasing and various approaches have been proposed and developed to extract same. In this review the composition, functionality, and applications of chickpea protein ingredients are described. Moreover, methods to enhance protein quality have been identified, as well as applications of the coproducts resulting from protein extraction and processing. The principal dry and wet protein enrichment approaches, resulting in protein concentrates and isolates, include air classification, alkaline/acid extraction, salt extraction, isoelectric precipitation, and membrane filtration. Chickpea proteins exhibit good functional properties such as solubility, water and oil absorption capacity, emulsifying, foaming, and gelling. During protein enrichment, the functionality of protein can be enhanced in addition to primary processing (e.g., germination and dehulling, fermentation, enzymatic treatments). Different applications of chickpea protein ingredients, and their coproducts, have been identified in research, highlighting the potential of these ingredients for novel product development and improvement of the nutritional profile of existing food products. Formulations to meet consumer needs in terms of healthy and sustainable foods have been investigated in the literature and can be further explored. Future research may be useful to improve applications of the specific coproducts that result from the extraction of chickpea proteins, thereby leading to more sustainable processes.
Collapse
Affiliation(s)
- Nadia Grasso
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Nicola L Lynch
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Elke K Arendt
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - James A O'Mahony
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| |
Collapse
|
10
|
Martin EW, Thomasen FE, Milkovic NM, Cuneo MJ, Grace C, Nourse A, Lindorff-Larsen K, Mittag T. Interplay of folded domains and the disordered low-complexity domain in mediating hnRNPA1 phase separation. Nucleic Acids Res 2021; 49:2931-2945. [PMID: 33577679 PMCID: PMC7969017 DOI: 10.1093/nar/gkab063] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 12/29/2020] [Accepted: 01/29/2021] [Indexed: 01/24/2023] Open
Abstract
Liquid-liquid phase separation underlies the membrane-less compartmentalization of cells. Intrinsically disordered low-complexity domains (LCDs) often mediate phase separation, but how their phase behavior is modulated by folded domains is incompletely understood. Here, we interrogate the interplay between folded and disordered domains of the RNA-binding protein hnRNPA1. The LCD of hnRNPA1 is sufficient for mediating phase separation in vitro. However, we show that the folded RRM domains and a folded solubility-tag modify the phase behavior, even in the absence of RNA. Notably, the presence of the folded domains reverses the salt dependence of the driving force for phase separation relative to the LCD alone. Small-angle X-ray scattering experiments and coarse-grained MD simulations show that the LCD interacts transiently with the RRMs and/or the solubility-tag in a salt-sensitive manner, providing a mechanistic explanation for the observed salt-dependent phase separation. These data point to two effects from the folded domains: (i) electrostatically-mediated interactions that compact hnRNPA1 and contribute to phase separation and (ii) increased solubility at higher ionic strengths mediated by the folded domains. The interplay between disordered and folded domains can modify the dependence of phase behavior on solution conditions and can obscure signatures of physicochemical interactions underlying phase separation.
Collapse
Affiliation(s)
- Erik W Martin
- Department of Structural Biology, St. Jude Children's Research Hospital, TN 38105, USA
| | - F Emil Thomasen
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen N, 2200, Denmark
| | - Nicole M Milkovic
- Department of Structural Biology, St. Jude Children's Research Hospital, TN 38105, USA
| | - Matthew J Cuneo
- Department of Structural Biology, St. Jude Children's Research Hospital, TN 38105, USA
| | - Christy R Grace
- Department of Structural Biology, St. Jude Children's Research Hospital, TN 38105, USA
| | - Amanda Nourse
- Protein Technologies Center, Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen N, 2200, Denmark
| | - Tanja Mittag
- Department of Structural Biology, St. Jude Children's Research Hospital, TN 38105, USA
| |
Collapse
|
11
|
Combinational effects of acid and salt addition on colloidal, interfacial, and emulsifying properties of purified soybean oil bodies. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Bertsch P, Böcker L, Mathys A, Fischer P. Proteins from microalgae for the stabilization of fluid interfaces, emulsions, and foams. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.12.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Luo S, McSweeney KM, Wang T, Bacot SM, Feldman GM, Zhang B. Defining the right diluent for intravenous infusion of therapeutic antibodies. MAbs 2021; 12:1685814. [PMID: 31774346 PMCID: PMC6927757 DOI: 10.1080/19420862.2019.1685814] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) are commonly administered to patients through intravenous (IV) infusion, which involves diluting the medication into an infusion solution (e.g., saline and 5% dextrose). Using the wrong diluent can cause product aggregation, which may compromise patient safety. We and others have shown that Herceptin® (trastuzumab) and Avastin® (bevacizumab) undergo rapid aggregation upon mixing with dextrose and human plasma in vitro. In this study, we evaluated the compatibility of a panel of 11 therapeutic mAbs with dextrose or saline and human serum. These mAbs were randomly selected for their distinct formulations and IgG isotypes (IgG1, IgG2, IgG4, and Fc-fusion protein). All the mAbs appeared to be compatible with saline and human serum. However, mAbs that were formulated at acidic pH (≤ 6.5) exclusively formed insoluble aggregates upon mixing with dextrose and serum. Such aggregation was not detected for the mAbs that are at neutral pH (7.2–7.5) or in buffers containing sodium chloride. Mass spectrometric analysis revealed that the insoluble aggregates were composed of mAb molecules and several serum proteins (e.g., complement proteins, apolipoprotein, fibronectin) that are characterized by an isoelectric point of pH 5.4–6.7. At proximate pH to the isoelectric point values, those abundant serum proteins appeared to undergo isoelectric precipitation with mAb molecules. Our observations highlight a potential risk of protein aggregation at the blood-IV interface if a diluent is incompatible with a specific mAb formulation. This information has implications in guiding the design of product formulations and the selection of the right diluent for intravenous infusion of therapeutic mAbs. Abbreviations: ADC: antibody-drug conjugate; D5W: 5% dextrose in water; IM: intramuscular; IV: intravenous; LC-MS/MS: liquid chromatography-tandem mass spectrometry; mAb: monoclonal antibody; SC: subcutaneous; pI: isoelectric point
Collapse
Affiliation(s)
- Shen Luo
- Office of Biotechnology Products; Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Keisha Melodi McSweeney
- Office of Biotechnology Products; Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Tao Wang
- Office of Biotechnology Products; Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Silvia M Bacot
- Office of Biotechnology Products; Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Gerald M Feldman
- Office of Biotechnology Products; Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Baolin Zhang
- Office of Biotechnology Products; Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
14
|
Dahal YR, Schmit JD. Ion Specificity and Nonmonotonic Protein Solubility from Salt Entropy. Biophys J 2019; 114:76-87. [PMID: 29320698 DOI: 10.1016/j.bpj.2017.10.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/16/2017] [Accepted: 10/26/2017] [Indexed: 10/18/2022] Open
Abstract
The addition of salt to protein solutions can either increase or decrease the protein solubility, and the magnitude of this effect depends on the salt used. We show that these effects can be captured using a theory that includes attractive and repulsive electrostatic interactions, nonelectrostatic protein-ion interactions, and ion-solvent interactions via an effective solvated ion radius. We find that the ion radius has significant effects on the translational entropy of the salt, which leads to salt specificity in the protein solubility. At low salt, the dominant effect comes from the entropic cost of confining ions within the aggregate, whereas at high concentrations, the salt drives a depletion attraction that favors aggregation. Our theory explains the reversal in the Hofmeister series observed in lysozyme cloud point measurements and semi-quantitatively describes the solubility of lysozyme and chymosin crystals. We present a comparison of the contributions to the free energy and give guidelines for when salting in or salting out should be expected.
Collapse
Affiliation(s)
- Yuba Raj Dahal
- Department of Physics, Kansas State University, Manhattan, Kansas
| | - Jeremy D Schmit
- Department of Physics, Kansas State University, Manhattan, Kansas.
| |
Collapse
|
15
|
Liu W, Zhou D, Sun Y, Yu J, Chen Q, Bao Z, Fan X, Liang Y, Peng X, Xian M, Nian R. Reduction of chromatin heteroaggregates by acid precipitation of mammalian cell culture and ramification in protein A chromatography for recombinant immunoglobulin G purification. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Allahdad Z, Varidi M, Zadmard R, Saboury AA, Haertlé T. Binding of β-carotene to whey proteins: Multi-spectroscopic techniques and docking studies. Food Chem 2019; 277:96-106. [DOI: 10.1016/j.foodchem.2018.10.057] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/10/2018] [Accepted: 10/10/2018] [Indexed: 01/22/2023]
|
17
|
Xu Y, Wang D, Mason B, Rossomando T, Li N, Liu D, Cheung JK, Xu W, Raghava S, Katiyar A, Nowak C, Xiang T, Dong DD, Sun J, Beck A, Liu H. Structure, heterogeneity and developability assessment of therapeutic antibodies. MAbs 2018; 11:239-264. [PMID: 30543482 DOI: 10.1080/19420862.2018.1553476] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Increasing attention has been paid to developability assessment with the understanding that thorough evaluation of monoclonal antibody lead candidates at an early stage can avoid delays during late-stage development. The concept of developability is based on the knowledge gained from the successful development of approximately 80 marketed antibody and Fc-fusion protein drug products and from the lessons learned from many failed development programs over the last three decades. Here, we reviewed antibody quality attributes that are critical to development and traditional and state-of-the-art analytical methods to monitor those attributes. Based on our collective experiences, a practical workflow is proposed as a best practice for developability assessment including in silico evaluation, extended characterization and forced degradation using appropriate analytical methods that allow characterization with limited material consumption and fast turnaround time.
Collapse
Affiliation(s)
- Yingda Xu
- a Protein Analytics , Adimab , Lebanon , NH , USA
| | - Dongdong Wang
- b Analytical Department , Bioanalytix, Inc ., Cambridge , MA , USA
| | - Bruce Mason
- c Product Characterization , Alexion Pharmaceuticals, Inc ., New Haven , CT , USA
| | - Tony Rossomando
- c Product Characterization , Alexion Pharmaceuticals, Inc ., New Haven , CT , USA
| | - Ning Li
- d Analytical Chemistry , Regeneron Pharmaceuticals, Inc ., Tarrytown , NY , USA
| | - Dingjiang Liu
- e Formulation Development , Regeneron Pharmaceuticals, Inc ., Tarrytown , NY , USA
| | - Jason K Cheung
- f Pharmaceutical Sciences , MRL, Merck & Co., Inc ., Kenilworth , NJ , USA
| | - Wei Xu
- g Analytical Method Development , MRL, Merck & Co., Inc ., Kenilworth , NJ , USA
| | - Smita Raghava
- h Sterile Formulation Sciences , MRL, Merck & Co., Inc ., Kenilworth , NJ , USA
| | - Amit Katiyar
- i Analytical Development , Bristol-Myers Squibb , Pennington , NJ , USA
| | - Christine Nowak
- c Product Characterization , Alexion Pharmaceuticals, Inc ., New Haven , CT , USA
| | - Tao Xiang
- j Manufacturing Sciences , Abbvie Bioresearch Center , Worcester , MA , USA
| | - Diane D Dong
- j Manufacturing Sciences , Abbvie Bioresearch Center , Worcester , MA , USA
| | - Joanne Sun
- k Product development , Innovent Biologics , Suzhou Industrial Park , China
| | - Alain Beck
- l Analytical chemistry , NBEs, Center d'immunologie Pierre Fabre , St Julien-en-Genevois Cedex , France
| | - Hongcheng Liu
- c Product Characterization , Alexion Pharmaceuticals, Inc ., New Haven , CT , USA
| |
Collapse
|
18
|
Shi G, Dang Y, Pan T, Liu X, Liu H, Li S, Zhang L, Zhao H, Li S, Han J, Tai R, Zhu Y, Li J, Ji Q, Mole RA, Yu D, Fang H. Unexpectedly Enhanced Solubility of Aromatic Amino Acids and Peptides in an Aqueous Solution of Divalent Transition-Metal Cations. PHYSICAL REVIEW LETTERS 2016; 117:238102. [PMID: 27982649 DOI: 10.1103/physrevlett.117.238102] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Indexed: 06/06/2023]
Abstract
We experimentally observed considerable solubility of tryptophan (Trp) in a CuCl_{2} aqueous solution, which could reach 2-5 times the solubility of Trp in pure water. Theoretical studies show that the strong cation-π interaction between Cu^{2+} and the aromatic ring in Trp modifies the electronic distribution of the aromatic ring to enhance significantly the water affinity of Trp. Similar solubility enhancement has also been observed for other divalent transition-metal cations (e.g., Zn^{2+} and Ni^{2+}), another aromatic amino acid (phenylalanine), and three aromatic peptides (Trp-Phe, Phe-Phe, and Trp-Ala-Phe).
Collapse
Affiliation(s)
- Guosheng Shi
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Yaru Dang
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tingting Pan
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xing Liu
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Hui Liu
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shaoxian Li
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Lijuan Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Hongwei Zhao
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Shaoping Li
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaguang Han
- Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Renzhong Tai
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Yiming Zhu
- Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, No. 516, Jungong Road, 200093, Shanghai, China
| | - Jichen Li
- School of Physics and Astronomy, the University of Manchester, Manchester M13 9PL, United Kingdom
| | - Qing Ji
- Institute of Biophysics, Hebei University of Technology, Tianjin 300401, China
| | - R A Mole
- Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales 2234, Australia
| | - Dehong Yu
- Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales 2234, Australia
| | - Haiping Fang
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
19
|
Nishizawa K, Arii Y. Reversible changes of canavalin solubility controlled by divalent cation concentration in crude sword bean extract. Biosci Biotechnol Biochem 2016; 80:2459-2466. [PMID: 27562119 DOI: 10.1080/09168451.2016.1224642] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Canavalin is a vicilin-class (7S) storage protein found in sword bean (Canavalia gladiata). Our previous report indicated that canavalin is precipitated by the addition of 20 mM MgCl2 to crude sword bean extract. Here, we examined the solubility changes induced by the addition of Mg2+ and Ca2+ at various concentrations. Canavalin tended to be insolubilized at relatively low concentrations of MgCl2 (< 20 mM) and solubilized at relatively high concentrations (> 20 mM). In addition, canavalin was slightly insolubilized in the presence of NaCl. Overall, the results revealed that solubility changes are reversible and depend on the concentration of divalent cations. Therefore, we suggested a reaction scheme that describes the effects of divalent cations on the solubility of canavalin, which would facilitate the study of its physiological function and the application of canavalin in the food processing industry.
Collapse
Affiliation(s)
- Kaho Nishizawa
- a Department of Food Science and Nutrition , School of Human Environmental Sciences, Mukogawa Women's University , Nishinomiya , Japan
| | - Yasuhiro Arii
- a Department of Food Science and Nutrition , School of Human Environmental Sciences, Mukogawa Women's University , Nishinomiya , Japan.,b Research Institute for Nutrition Sciences , Mukogawa Women's University , Nishinomiya , Japan
| |
Collapse
|
20
|
Bučko S, Katona J, Popović L, Vaštag Ž, Petrović L, Vučinić–Vasić M. Investigation on solubility, interfacial and emulsifying properties of pumpkin (Cucurbita pepo) seed protein isolate. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2015.06.054] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Lane JS, Richens JL, Vere KA, O'Shea P. Rational targeting of subclasses of intermolecular interactions: elimination of nonspecific binding for analyte sensing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:9457-9465. [PMID: 25046104 DOI: 10.1021/la5016548] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The ability to target and control intermolecular interactions is crucial in the development of several different technologies. Here we offer a tool to rationally design liquid media systems that can modulate specific intermolecular interactions. This has broad implications in deciphering the nature of intermolecular forces in complex solutions and offers insight into the forces that govern both specific and nonspecific binding in a given system. Nonspecific binding still continues to be a problem when dealing with analyte detection across a range of different detection technologies. Here, we exemplify the problem of nonspecific binding on model membrane systems and when dealing with low-abundance protein detection on commercially available SPR technology. A range of different soluble reagents that target specific subclasses of intermolecular interactions have been tested and optimized to virtually eliminate nonspecific binding while leaving specific interactions unperturbed. Thiocyanate ions are used to target nonpolar interactions, and small reagents such as glycylglycylglycine are used to modulate the dielectric constant, which targets charge-charge and dipole interactions. We show that with rational design and careful modulation these reagents offer a step forward in dissecting the intermolecular forces that govern binding, alongside offering nonspecific binding elimination in detection systems.
Collapse
Affiliation(s)
- Jordan S Lane
- Cell Biophysics Group, Institute of Biophysics, Imaging & Optical Science, School of Life Sciences, University of Nottingham , Nottingham, NG7 2RD United Kingdom
| | | | | | | |
Collapse
|
22
|
Quang LJ, Sandler SI, Lenhoff AM. Anisotropic Contributions to Protein–Protein Interactions. J Chem Theory Comput 2014; 10:835-45. [DOI: 10.1021/ct4006695] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Leigh J. Quang
- Department of Chemical and
Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States of America
| | - Stanley I. Sandler
- Department of Chemical and
Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States of America
| | - Abraham M. Lenhoff
- Department of Chemical and
Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States of America
| |
Collapse
|