1
|
Verdikt R, Bendoumou M, Bouchat S, Nestola L, Pasternak AO, Darcis G, Avettand-Fenoel V, Vanhulle C, Aït-Ammar A, Santangelo M, Plant E, Douce VL, Delacourt N, Cicilionytė A, Necsoi C, Corazza F, Passaes CPB, Schwartz C, Bizet M, Fuks F, Sáez-Cirión A, Rouzioux C, De Wit S, Berkhout B, Gautier V, Rohr O, Van Lint C. Novel role of UHRF1 in the epigenetic repression of the latent HIV-1. EBioMedicine 2022; 79:103985. [PMID: 35429693 PMCID: PMC9038550 DOI: 10.1016/j.ebiom.2022.103985] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The multiplicity, heterogeneity, and dynamic nature of human immunodeficiency virus type-1 (HIV-1) latency mechanisms are reflected in the current lack of functional cure for HIV-1. Accordingly, all classes of latency-reversing agents (LRAs) have been reported to present variable ex vivo potencies. Here, we investigated the molecular mechanisms underlying the potency variability of one LRA: the DNA methylation inhibitor 5-aza-2'-deoxycytidine (5-AzadC). METHODS We employed epigenetic interrogation methods (electrophoretic mobility shift assays, chromatin immunoprecipitation, Infinium array) in complementary HIV-1 infection models (latently-infected T-cell line models, primary CD4+ T-cell models and ex vivo cultures of PBMCs from HIV+ individuals). Extracellular staining of cell surface receptors and intracellular metabolic activity were measured in drug-treated cells. HIV-1 expression in reactivation studies was explored by combining the measures of capsid p24Gag protein, green fluorescence protein signal, intracellular and extracellular viral RNA and viral DNA. FINDINGS We uncovered specific demethylation CpG signatures induced by 5-AzadC in the HIV-1 promoter. By analyzing the binding modalities to these CpG, we revealed the recruitment of the epigenetic integrator Ubiquitin-like with PHD and RING finger domain 1 (UHRF1) to the HIV-1 promoter. We showed that UHRF1 redundantly binds to the HIV-1 promoter with different binding modalities where DNA methylation was either non-essential, essential or enhancing UHRF1 binding. We further demonstrated the role of UHRF1 in the epigenetic repression of the latent viral promoter by a concerted control of DNA and histone methylations. INTERPRETATION A better understanding of the molecular mechanisms of HIV-1 latency allows for the development of innovative antiviral strategies. As a proof-of-concept, we showed that pharmacological inhibition of UHRF1 in ex vivo HIV+ patient cell cultures resulted in potent viral reactivation from latency. Together, we identify UHRF1 as a novel actor in HIV-1 epigenetic silencing and highlight that it constitutes a new molecular target for HIV-1 cure strategies. FUNDING Funding was provided by the Belgian National Fund for Scientific Research (F.R.S.-FNRS, Belgium), the « Fondation Roi Baudouin », the NEAT (European AIDS Treatment Network) program, the Internationale Brachet Stiftung, ViiV Healthcare, the Télévie, the Walloon Region (« Fonds de Maturation »), « Les Amis des Instituts Pasteur à Bruxelles, asbl », the University of Brussels (Action de Recherche Concertée ULB grant), the Marie Skodowska Curie COFUND action, the European Union's Horizon 2020 research and innovation program under grant agreement No 691119-EU4HIVCURE-H2020-MSCA-RISE-2015, the French Agency for Research on AIDS and Viral Hepatitis (ANRS), the Sidaction and the "Alsace contre le Cancer" Foundation. This work is supported by 1UM1AI164562-01, co-funded by National Heart, Lung and Blood Institute, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Neurological Disorders and Stroke, National Institute on Drug Abuse and the National Institute of Allergy and Infectious Diseases.
Collapse
Affiliation(s)
- Roxane Verdikt
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Maryam Bendoumou
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Sophie Bouchat
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Lorena Nestola
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Alexander O Pasternak
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Laboratory of Experimental Virology, Amsterdam 1105 AZ, the Netherland
| | - Gilles Darcis
- Infectious Diseases Department, Liège University Hospital, Liège 4000, Belgium
| | - Véronique Avettand-Fenoel
- AP-HP, Hôpital Necker-Enfants-Malades, Service de Microbiologie clinique, Paris 75015, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75006, France; INSERM, U1016, Institut Cochin, Paris, 75014, France; CNRS, UMR8104, Paris 75014, France
| | - Caroline Vanhulle
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Amina Aït-Ammar
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Marion Santangelo
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Estelle Plant
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Valentin Le Douce
- Centre for Research in Infectious Diseases, University College Dublin, Dublin 4, Ireland
| | - Nadège Delacourt
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Aurelija Cicilionytė
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Laboratory of Experimental Virology, Amsterdam 1105 AZ, the Netherland
| | - Coca Necsoi
- Service des Maladies Infectieuses, CHU St-Pierre, Université Libre de Bruxelles (ULB), Brussels 1000, Belgium
| | - Francis Corazza
- Laboratory of Immunology, IRISLab, CHU Brugmann, Université Libre de Bruxelles (ULB), Brussels 1020, Belgium
| | | | - Christian Schwartz
- Laboratoire DHPI EA7292, Université de Strasbourg, Schiltigheim, 67300, France; IUT Louis Pasteur, Université de Strasbourg, Schiltigheim, 67300, France
| | - Martin Bizet
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels 1070, Belgium
| | - François Fuks
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels 1070, Belgium
| | - Asier Sáez-Cirión
- Départements de Virologie et Immunologie, Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris 75015, France
| | - Christine Rouzioux
- AP-HP, Hôpital Necker-Enfants-Malades, Service de Microbiologie clinique, Paris 75015, France
| | - Stéphane De Wit
- Service des Maladies Infectieuses, CHU St-Pierre, Université Libre de Bruxelles (ULB), Brussels 1000, Belgium
| | - Ben Berkhout
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Laboratory of Experimental Virology, Amsterdam 1105 AZ, the Netherland
| | - Virginie Gautier
- Centre for Research in Infectious Diseases, University College Dublin, Dublin 4, Ireland
| | - Olivier Rohr
- Laboratoire DHPI EA7292, Université de Strasbourg, Schiltigheim, 67300, France; IUT Louis Pasteur, Université de Strasbourg, Schiltigheim, 67300, France
| | - Carine Van Lint
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium.
| |
Collapse
|
2
|
Mancini M, Magnani E, Macchi F, Bonapace IM. The multi-functionality of UHRF1: epigenome maintenance and preservation of genome integrity. Nucleic Acids Res 2021; 49:6053-6068. [PMID: 33939809 PMCID: PMC8216287 DOI: 10.1093/nar/gkab293] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 04/02/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022] Open
Abstract
During S phase, the cooperation between the macromolecular complexes regulating DNA synthesis, epigenetic information maintenance and DNA repair is advantageous for cells, as they can rapidly detect DNA damage and initiate the DNA damage response (DDR). UHRF1 is a fundamental epigenetic regulator; its ability to coordinate DNA methylation and histone code is unique across proteomes of different species. Recently, UHRF1’s role in DNA damage repair has been explored and recognized to be as important as its role in maintaining the epigenome. UHRF1 is a sensor for interstrand crosslinks and a determinant for the switch towards homologous recombination in the repair of double-strand breaks; its loss results in enhanced sensitivity to DNA damage. These functions are finely regulated by specific post-translational modifications and are mediated by the SRA domain, which binds to damaged DNA, and the RING domain. Here, we review recent studies on the role of UHRF1 in DDR focusing on how it recognizes DNA damage and cooperates with other proteins in its repair. We then discuss how UHRF1’s epigenetic abilities in reading and writing histone modifications, or its interactions with ncRNAs, could interlace with its role in DDR.
Collapse
Affiliation(s)
- Monica Mancini
- Department of Biotechnology and Life Sciences, University of Insubria, Busto Arsizio, VA 21052, Italy
| | - Elena Magnani
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, United Arab Emirates
| | - Filippo Macchi
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, United Arab Emirates
| | - Ian Marc Bonapace
- Department of Biotechnology and Life Sciences, University of Insubria, Busto Arsizio, VA 21052, Italy
| |
Collapse
|
3
|
Schneider M, Trummer C, Stengl A, Zhang P, Szwagierczak A, Cardoso MC, Leonhardt H, Bauer C, Antes I. Systematic analysis of the binding behaviour of UHRF1 towards different methyl- and carboxylcytosine modification patterns at CpG dyads. PLoS One 2020; 15:e0229144. [PMID: 32084194 PMCID: PMC7034832 DOI: 10.1371/journal.pone.0229144] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/30/2020] [Indexed: 01/24/2023] Open
Abstract
The multi-domain protein UHRF1 is essential for DNA methylation maintenance and binds DNA via a base-flipping mechanism with a preference for hemi-methylated CpG sites. We investigated its binding to hemi- and symmetrically modified DNA containing either 5-methylcytosine (mC), 5-hydroxymethylcytosine (hmC), 5-formylcytosine (fC), or 5-carboxylcytosine (caC). Our experimental results indicate that UHRF1 binds symmetrically carboxylated and hybrid methylated/carboxylated CpG dyads in addition to its previously reported substrates. Complementary molecular dynamics simulations provide a possible mechanistic explanation of how the protein could differentiate between modification patterns. First, we observe different local binding modes in the nucleotide binding pocket as well as the protein's NKR finger. Second, both DNA modification sites are coupled through key residues within the NKR finger, suggesting a communication pathway affecting protein-DNA binding for carboxylcytosine modifications. Our results suggest a possible additional function of the hemi-methylation reader UHRF1 through binding of carboxylated CpG sites. This opens the possibility of new biological roles of UHRF1 beyond DNA methylation maintenance and of oxidised methylcytosine derivates in epigenetic regulation.
Collapse
Affiliation(s)
- Markus Schneider
- Center for Integrated Protein Science Munich at the TUM School of Life Sciences, Technische Universität München, Freising, Germany
| | - Carina Trummer
- Center for Integrated Protein Science Munich at the Department of Biology II, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
| | - Andreas Stengl
- Center for Integrated Protein Science Munich at the Department of Biology II, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
| | - Peng Zhang
- Center for Integrated Protein Science Munich at the Department of Biology II, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
- Cell Biology and Epigenetics at the Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Aleksandra Szwagierczak
- Center for Integrated Protein Science Munich at the Department of Biology II, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
| | - M. Cristina Cardoso
- Cell Biology and Epigenetics at the Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Heinrich Leonhardt
- Center for Integrated Protein Science Munich at the Department of Biology II, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
| | - Christina Bauer
- Center for Integrated Protein Science Munich at the Department of Biology II, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
| | - Iris Antes
- Center for Integrated Protein Science Munich at the TUM School of Life Sciences, Technische Universität München, Freising, Germany
- * E-mail:
| |
Collapse
|
4
|
Vaughan RM, Rothbart SB, Dickson BM. The finger loop of the SRA domain in the E3 ligase UHRF1 is a regulator of ubiquitin targeting and is required for the maintenance of DNA methylation. J Biol Chem 2019; 294:15724-15732. [PMID: 31481468 PMCID: PMC6816099 DOI: 10.1074/jbc.ra119.010160] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/29/2019] [Indexed: 01/06/2023] Open
Abstract
The Su(var)3–9, enhancer of zeste, and trithorax (SET) and really interesting new gene (RING) finger–associated (SRA) protein domain is conserved across bacteria and eukaryota and coordinates extrahelical or “flipped” DNA bases. A functional SRA domain is required for ubiquitin-like with PHD and RING finger domains 1 (UHRF1) E3 ubiquitin ligase activity toward histone H3, a mechanism for recruiting the DNA methylation maintenance enzyme DNA methyltransferase 1 (DNMT1). The SRA domain supports UHRF1 oncogenic activity in colon cancer cells, highlighting that UHRF1 SRA antagonism could be a cancer therapeutic strategy. Here we used molecular dynamics simulations, DNA binding assays, in vitro ubiquitination reactions, and DNA methylation analysis to identify the SRA finger loop as a regulator of UHRF1 ubiquitin targeting and DNA methylation maintenance. A chimeric UHRF1 (finger swap) with diminished E3 ligase activity toward nucleosomal histones, despite tighter binding to unmodified or asymmetric or symmetrically methylated DNA, uncouples DNA affinity from regulation of E3 ligase activity. Our model suggests that SRA domains sample DNA bases through flipping in the presence or absence of a cytosine modification and that specific interactions of the SRA finger loop with DNA are required for downstream host protein function. Our findings provide insight into allosteric regulation of UHRF1 E3 ligase activity, suggesting that UHRF1's SRA finger loop regulates its conformation and function.
Collapse
Affiliation(s)
- Robert M Vaughan
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - Scott B Rothbart
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - Bradley M Dickson
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan 49503
| |
Collapse
|
5
|
Gene Ontology and Expression Studies of Strigolactone Analogues on a Hepatocellular Carcinoma Cell Line. Anal Cell Pathol (Amst) 2019; 2019:1598182. [PMID: 31482051 PMCID: PMC6701435 DOI: 10.1155/2019/1598182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 05/08/2019] [Indexed: 12/11/2022] Open
Abstract
Human hepatocellular carcinoma (HCC) is the most common and recurrent type of primary adult liver cancer without any effective therapy. Plant-derived compounds acting as anticancer agents can induce apoptosis by targeting several signaling pathways. Strigolactone (SL) is a novel class of phytohormone, whose analogues have been reported to possess anticancer properties on a panel of human cancer cell lines through inducing cell cycle arrest, destabilizing microtubular integrity, reducing damaged in the DNA repair machinery, and inducing apoptosis. In our previous study, we reported that a novel SL analogue, TIT3, reduces HepG2 cell proliferation, inhibits cell migration, and induces apoptosis. To decipher the mechanisms of TIT3-induced anticancer activity in HepG2, we performed RNA sequencing and the differential expression of genes was analyzed using different tools. RNA-Seq data showed that the genes responsible for microtubule organization such as TUBB, BUB1B, TUBG2, TUBGCP6, TPX2, and MAP7 were significantly downregulated. Several epigenetic modulators such as UHRF1, HDAC7, and DNMT1 were also considerably downregulated, and this effect was associated with significant upregulation of various proapoptotic genes including CASP3, TNF-α, CASP7, and CDKN1A (p21). Likewise, damaged DNA repair genes such as RAD51, RAD52, and DDB2 were also significantly downregulated. This study indicates that TIT3-induced antiproliferative and proapoptotic activities on HCC cells could involve several signaling pathways. Our results suggest that TIT3 might be a promising drug to treat HCC.
Collapse
|
6
|
Patnaik D, Estève PO, Pradhan S. Targeting the SET and RING-associated (SRA) domain of ubiquitin-like, PHD and ring finger-containing 1 (UHRF1) for anti-cancer drug development. Oncotarget 2018; 9:26243-26258. [PMID: 29899856 PMCID: PMC5995235 DOI: 10.18632/oncotarget.25425] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/02/2018] [Indexed: 12/19/2022] Open
Abstract
Ubiquitin-like containing PHD Ring Finger 1 (UHRF1) is a multi-domain protein with a methyl-DNA binding SRA (SET and RING-associated) domain, required for maintenance DNA methylation mediated by DNMT1. Primarily expressed in proliferating cells, UHRF1 is a cell-cycle regulated protein that is required for S phase entry. Furthermore, UHRF1 participates in transcriptional gene regulation by connecting DNA methylation to histone modifications. Upregulation of UHRF1 may serve as a biomarker for a variety of cancers; including breast, gastric, prostate, lung and colorectal carcinoma. To this end, overexpression of UHRF1 promotes cancer metastasis by triggering aberrant patterns of DNA methylation, and subsequently, silencing tumor suppressor genes. Various small molecule effectors of UHRF1 have been reported in the literature, although the mechanism of action may not be fully characterized. Small molecules that potentially bind to the SRA domain may affect the ability of UHRF1 to bind hemimethylated DNA; thereby reducing aberrant DNA methylation. Therefore, in a subset of cancers, small molecule UHRF1 inhibitors may restore normal gene expression and serve as useful anti-cancer therapeutics.
Collapse
|
7
|
Tandem virtual screening targeting the SRA domain of UHRF1 identifies a novel chemical tool modulating DNA methylation. Eur J Med Chem 2016; 114:390-6. [PMID: 27049577 DOI: 10.1016/j.ejmech.2016.02.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/15/2016] [Accepted: 02/17/2016] [Indexed: 12/29/2022]
Abstract
Ubiquitin-like protein UHRF1 that contains PHD and RING finger domain 1 is a key epigenetic protein enabling maintenance of the DNA methylation status through replication. A tandem virtual screening approach was implemented for identifying small molecules able to bind the 5-methylcytosine pocket of UHRF1 and inhibit its functionality. The NCI/DTP small molecules Repository was screened in silico by a combined protocol implementing structure-based and ligand-based methodologies. Consensus ranking was utilized to select a set of 27 top-ranked compounds that were subsequently evaluated experimentally in a stepwise manner for their ability to demethylate DNA in cellulo using PCR-MS and HPLC-MS/MS. The most active molecules were further assessed in a cell-based setting by the Proximity Ligation In Situ Assay and the ApoTome technology. Both evaluations confirmed that the DNMT1/UHRF1 interactions were significantly reduced after 4 h of incubation of U251 glioma cells with the most potent compound NSC232003, showing a 50% interaction inhibition at 15 μM as well as induction of global DNA cytosine demethylation as measured by ELISA. This is the first report of a chemical tool that targets UHRF1 and modulates DNA methylation in a cell context by potentially disrupting DNMT1/UHRF1 interactions. Compound NSC232003, a uracil derivative freely available by the NCI/DTP Repository, provides a versatile lead for developing highly potent and cell-permeable UHRF1 inhibitors that will enable dissection of DNA methylation inheritance.
Collapse
|
8
|
Greiner VJ, Kovalenko L, Humbert N, Richert L, Birck C, Ruff M, Zaporozhets OA, Dhe-Paganon S, Bronner C, Mély Y. Site-Selective Monitoring of the Interaction of the SRA Domain of UHRF1 with Target DNA Sequences Labeled with 2-Aminopurine. Biochemistry 2015; 54:6012-20. [PMID: 26368281 DOI: 10.1021/acs.biochem.5b00419] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
UHRF1 plays a central role in the maintenance and transmission of epigenetic modifications by recruiting DNMT1 to hemimethylated CpG sites via its SET and RING-associated (SRA) domain, ensuring error-free duplication of methylation profiles. To characterize SRA-induced changes in the conformation and dynamics of a target 12 bp DNA duplex as a function of the methylation status, we labeled duplexes by the environment-sensitive probe 2-aminopurine (2-Ap) at various positions near or far from the central CpG recognition site containing either a nonmodified cytosine (NM duplex), a methylated cytosine (HM duplex), or methylated cytosines on both strands (BM duplex). Steady-state and time-resolved fluorescence indicated that binding of SRA induced modest conformational and dynamical changes in NM, HM, and BM duplexes, with only slight destabilization of base pairs, restriction of global duplex flexibility, and diminution of local nucleobase mobility. Moreover, significant restriction of the local motion of residues flanking the methylcytosine in the HM duplex suggested that these residues are more rigidly bound to SRA, in line with a slightly higher affinity of the HM duplex as compared to that of the NM or BM duplex. Our results are consistent with a "reader" role, in which the SRA domain scans DNA sequences for hemimethylated CpG sites without perturbation of the structure of contacted nucleotides.
Collapse
Affiliation(s)
- Vanille J Greiner
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de pharmacie , 74 route du Rhin, 67401 Illkirch, France
| | - Lesia Kovalenko
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de pharmacie , 74 route du Rhin, 67401 Illkirch, France.,Analytical Chemistry Department, Taras Shevchenko National University of Kyiv , 64 Volodymyrska Street, 01033 Kyiv, Ukraine
| | - Nicolas Humbert
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de pharmacie , 74 route du Rhin, 67401 Illkirch, France
| | - Ludovic Richert
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de pharmacie , 74 route du Rhin, 67401 Illkirch, France
| | - Catherine Birck
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964 CNRS UMR 7104, Université de Strasbourg , 1 rue Laurent Fries, Illkirch, France
| | - Marc Ruff
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964 CNRS UMR 7104, Université de Strasbourg , 1 rue Laurent Fries, Illkirch, France
| | - Olga A Zaporozhets
- Analytical Chemistry Department, Taras Shevchenko National University of Kyiv , 64 Volodymyrska Street, 01033 Kyiv, Ukraine
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School , 360 Brookline Avenue, Boston, Massachusetts 02215, United States
| | - Christian Bronner
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de pharmacie , 74 route du Rhin, 67401 Illkirch, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964 CNRS UMR 7104, Université de Strasbourg , 1 rue Laurent Fries, Illkirch, France
| | - Yves Mély
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de pharmacie , 74 route du Rhin, 67401 Illkirch, France
| |
Collapse
|
9
|
WANG CONGREN, WANG XUEJIN, SU ZIJIAN, FEI HONGJIANG, LIU XIAOYU, PAN QUNXIONG. The novel mTOR inhibitor Torin-2 induces autophagy and downregulates the expression of UHRF1 to suppress hepatocarcinoma cell growth. Oncol Rep 2015; 34:1708-16. [DOI: 10.3892/or.2015.4146] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/29/2015] [Indexed: 11/06/2022] Open
|
10
|
Bianchi C, Zangi R. Molecular dynamics study of the recognition of dimethylated CpG sites by MBD1 protein. J Chem Inf Model 2015; 55:636-44. [PMID: 25658035 DOI: 10.1021/ci500657d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cell is able to regulate which genes to express via chemical marks on the DNA and on the histone proteins. In all vertebrates, the modification on the DNA is methylation at position 5 of the two cytosines present in the dinucleotide sequence CpG. The information encoded by these chemical marks on the DNA is processed by a family of protein factors containing a conserved methyl-CpG binding domain (MBD). Essential to their function, the MBD proteins are able to bind DNA containing dimethylated CpG sites, whereas binding to unmethylated sites is not observed. In this paper, we perform molecular dynamics simulations to investigate the mechanism by which the mCpG binding domain of MBD1 is able to bind specifically dimethylated CpG sites. We find that the binding affinity of MBD1 to a DNA containing dimethylated CpG site is stronger by 26.4 kJ/mol relative to binding the same DNA but with an unmethylated CpG site. The contribution of each of the methyl groups to the change in free energy is very similar and additive. Therefore, this binding affinity (to a dimethylated DNA) is halved when considered relative to binding a hemimethylated DNA, a result that is also supported by experimental observations. Despite their equal contributions, the two methyl groups are recognized differently by MBD1. In one case, demethylation induces conformational changes in which the hydrophobic patch formed by the conserved residues Val20, Arg22, and Tyr34 moves away from the (methyl)cytosine, weakening the DNA-protein interactions. This is accompanied by an intrusion of a bulk water into the binding site at the protein-DNA interface. As a consequence, there is a reduction and rearrangements of the protein-DNA hydrogen bonds including a loss of a crucial hydrogen bond between Tyr34 and the (methyl)cytosine. The methylcytosine on the opposite strand is recognized by conformational changes of the surrounding conserved hydrophobic residues, Arg44 and Ser45, in which Arg44 participate in the 5mC-Arg-G triad. More specifically, the hydrogens of the methyl group form weak hydrogen bonds with the guanidino group and backbone carbonyl of the conserved Arg44, interactions that are absent when the cytosine is unmethylated. The results presented in this paper contribute to our knowledge of the different ways the chemical mark on the DNA is recognized by the epigenetic machinery.
Collapse
Affiliation(s)
- Caterina Bianchi
- †Department of Organic Chemistry I, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 San Sebastian, Guipúzcoa, Spain
| | - Ronen Zangi
- †Department of Organic Chemistry I, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 San Sebastian, Guipúzcoa, Spain.,‡IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Bizkaia, Spain
| |
Collapse
|
11
|
Bianchi C, Zangi R. Dual base-flipping of cytosines in a CpG dinucleotide sequence. Biophys Chem 2013; 187-188:14-22. [PMID: 24469333 DOI: 10.1016/j.bpc.2013.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 12/18/2013] [Accepted: 12/18/2013] [Indexed: 12/30/2022]
Abstract
Simultaneous flipped-out conformation of two neighboring bases on opposite strands of DNAs has been observed in several X-ray structures. It has also been detected for two cytosines on opposite strands in different contexts of CpG sites. In this paper, we study by MD simulations the dual base flipping of the two cytosines in hemi-methylated CpG site. We calculate the potential of mean force of flipping-out the unmethylated cytosine in three model systems. The first is for DNA bound to the regulatory protein UHRF1. In this case, the methyl-cytosine on the complementary strand is flipped-out into the binding pocket of the SRA domain of the protein. The other two systems are for unbound DNAs in which the methyl-cytosine is either intra-helical or extra-helical. We find that when the methyl-cytosine is flipped-out it is easier to flip-out the other (unmethylated) cytosine on the opposite strand by about 14-16kJ/mol. This lower penalty for dual-base flipping is observed for both the bound and unbound states of the DNA. Analyses of the hydrogen bond network and stacking interactions within the CpG site indicate that the lower penalty is due to stabilization of the dual-base flipped-out conformation via interactions involving the orphan guanines. The results presented in this paper suggest that the extra-helical conformation of the methyl-cytosine recognized by UHRF1 can facilitate the base-flipping process of the target cytosine to be methylated by Dnmt1.
Collapse
Affiliation(s)
- Caterina Bianchi
- Department of Organic Chemistry I, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 San Sebastian, Spain
| | - Ronen Zangi
- Department of Organic Chemistry I, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 San Sebastian, Spain; IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain.
| |
Collapse
|
12
|
Bianchi C, Zangi R. Base-Flipping Propensities of Unmethylated, Hemimethylated, and Fully Methylated CpG Sites. J Phys Chem B 2013; 117:2348-58. [DOI: 10.1021/jp312145b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Caterina Bianchi
- Department of Organic
Chemistry
I, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018, San Sebastian, Spain
| | - Ronen Zangi
- Department of Organic
Chemistry
I, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018, San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain
| |
Collapse
|