1
|
Santos AM, Vieira EM, de Jesus JR, Santana Júnior CC, Nascimento Júnior JAC, Oliveira AMS, Araújo AADS, Picot L, Alves IA, Serafini MR. Development and characterization of farnesol complexed in β- and hydroxypropyl-β-cyclodextrin and their antibacterial activity. Carbohydr Res 2025; 550:109406. [PMID: 39864120 DOI: 10.1016/j.carres.2025.109406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/14/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
Farnesol (FAR) belongs to terpenes group and is a sesquiterpene alcohol and a hydrophobic compound, which can be extracted from natural sources or obtained by organic chemical or biological synthesis. Recent advances in the field of nanotechnology allow the drawbacks of low drug solubility, which can improve the drug therapeutic index. Therefore, this study aimed to prepare the FAR inclusion complexes with β-cyclodextrin (β-CD) and hydroxypropyl-β-cyclodextrin (HP-β-CD) through freeze-drying method, proposing their physicochemical characterization, comparing their toxicity, and evaluating their in vitro antibacterial activity. Initially, physical mixture and freeze-dried inclusion complexes of FAR/β-CD and FAR/HP-β-CD were obtained in the molar ratio (1:1). The samples were characterized by DSC, TG/DTG, FTIR, PXRD, SEM, pHPZC, and the complexation efficiency were performed by HPLC. In vivo toxicity assay was performed using Tenebrio molitor larvae to determine the LD50 and toxic dose of the samples. Also, it was proposed that the evaluation of the fluorescence suppression of Bovine Serum Albumin and the antibacterial activity. The complexation of FAR was evidenced with β-CD and HP-β-CD by the characterization techniques analyzed. The complexation efficiency of FAR/β-CD and FAR/HP-β-CD were 73,53 % and 74.12 %, respectively. The inclusion complexes demonstrated a reduction in toxicity, as evidenced by lower toxic and LD50 doses compared to the free FAR. The inclusion complexes induced conformational changes in BSA, suggesting that they reached the subdomains containing tryptophan residues. In terms of antibacterial activity, FAR/β-CD and FAR/HP-β-CD did not exhibit significant MIC results compared to free FAR, except for FAR/HP-β-CD against S. aureus ATCC 25923.
Collapse
Affiliation(s)
- Anamaria Mendonça Santos
- Postgraduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil.
| | - Edileuza Marcelo Vieira
- Research Laboratory in Biomaterials, LPBio, Department of Chemistry, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Jemmyson Romário de Jesus
- Research Laboratory in Biomaterials, LPBio, Department of Chemistry, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | - Ana Maria Santos Oliveira
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | - Laurent Picot
- La Rochelle Université, UMR CNRS 7266 LIENSs, La Rochelle, France
| | - Izabel Almeida Alves
- Postgraduate Program in Pharmaceutical Sciences, University of the State of Bahia and Faculty of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Mairim Russo Serafini
- Postgraduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil; Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil.
| |
Collapse
|
2
|
Morel L, Scindia Y. Functional consequence of Iron dyshomeostasis and ferroptosis in systemic lupus erythematosus and lupus nephritis. Clin Immunol 2024; 262:110181. [PMID: 38458303 PMCID: PMC11672638 DOI: 10.1016/j.clim.2024.110181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Systemic lupus erythematosus (SLE) and its renal manifestation Lupus nephritis (LN) are characterized by a dysregulated immune system, autoantibodies, and injury to the renal parenchyma. Iron accumulation and ferroptosis in the immune effectors and renal tubules are recently identified pathological features in SLE and LN. Ferroptosis is an iron dependent non-apoptotic form of regulated cell death and ferroptosis inhibitors have improved disease outcomes in murine models of SLE, identifying it as a novel druggable target. In this review, we discuss novel mechanisms by which iron accumulation and ferroptosis perpetuate immune cell mediated pathology in SLE/LN. We highlight intra-renal dysregulation of iron metabolism and ferroptosis as an underlying pathogenic mechanism of renal tubular injury. The basic concepts of iron biology and ferroptosis are also discussed to expose the links between iron, cell metabolism and ferroptosis, that identify intracellular pro-ferroptotic enzymes and their protein conjugates as potential targets to improve SLE/LN outcomes.
Collapse
Affiliation(s)
- Laurence Morel
- Department of Microbiology, Immunology, and Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA
| | - Yogesh Scindia
- Department of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
3
|
Yang YD, Lu N, Tian R. Serum albumin acted as an effective carrier to improve the stability of bioactive flavonoid. Amino Acids 2023; 55:1879-1890. [PMID: 37856004 DOI: 10.1007/s00726-023-03347-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/03/2023] [Indexed: 10/20/2023]
Abstract
The health-improving functions of bioactive flavonoids in vitro and in vivo are often limited by their low stability, which could be counteracted by the application of proteins as carriers of flavonoids. Clarification of the mechanism of protein-ligand interaction is crucial for the encapsulation of bioactive components. Herein, common plasma proteins [i.e., bovine serum albumin (BSA), human serum albumin (HSA), human immunoglobulin G (IgG) and fibrinogen (FG)] were compared for their binding characteristics to quercetin, the main component of flavonoids in human diet, in the absence and presence of free Cu2+ (an accelerator for flavonoids' instability) using multi-spectroscopic and computational methods. As a flexible open structure of proteins, both BSA and HSA were found to be the most promising carriers for quercetin and Cu2+ with an affinity on the order of 104 M-1. HSA-diligand complex (i.e., HSA-quercetin-Cu2+) was successfully generated when both quercetin and Cu2+ were added to the HSA solution. The stability and free radical scavenging activity of bioactive quercetin during incubation was promoted in the HSA-diligand complex relative to quercetin-Cu2+ complex. Quercetin/Cu2+ system could induce the formation of reactive oxygen species such as hydrogen peroxide (H2O2) and hydroxide radical (·OH), which were significantly suppressed upon HSA binding. Consistently, the cytotoxicity of the quercetin/Cu2+ system to endothelial cells was reduced in the HSA-diligand complex. These results demonstrate the possibility of developing serum albumin-based carriers for the protection of bioactive flavonoids in their nutritional application.
Collapse
Affiliation(s)
- Ya-Di Yang
- Jiangxi Key Laboratory of Green Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Naihao Lu
- Jiangxi Key Laboratory of Green Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Rong Tian
- Jiangxi Key Laboratory of Green Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China.
| |
Collapse
|
4
|
El-Hosari DG, Hussein WM, Elgendy MO, Elgendy SO, Ibrahim ARN, Fahmy AM, Hassan A, Mokhtar FA, Hussein MF, Abdelrahim MEA, Haggag EG. Galangal-Cinnamon Spice Mixture Blocks the Coronavirus Infection Pathway through Inhibition of SARS-CoV-2 M Pro, Three HCoV-229E Targets; Quantum-Chemical Calculations Support In Vitro Evaluation. Pharmaceuticals (Basel) 2023; 16:1378. [PMID: 37895849 PMCID: PMC10610207 DOI: 10.3390/ph16101378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Natural products such as domestic herbal drugs which are easily accessible and cost-effective can be used as a complementary treatment in mild and moderate COVID-19 cases. This study aimed to detect and describe the efficiency of phenolics detected in the galangal-cinnamon mixture in the inhibition of SARS-CoV-2's different protein targets. The potential antiviral effect of galangal-cinnamon aqueous extract (GCAE) against Low Pathogenic HCoV-229E was assessed using cytopathic effect inhibition assay and the crystal violet method. Low Pathogenic HCoV-229E was used as it is safer for in vitro laboratory experimentation and due to the conformation and the binding pockets similarity between HCoV-229E and SARS-CoV-2 MPro. The GCAE showed a significant antiviral effect against HCoV-229E (IC50 15.083 µg/mL). Twelve phenolic compounds were detected in the extract with ellagic, cinnamic, and gallic acids being the major identified phenolic acids, while rutin was the major identified flavonoid glycoside. Quantum-chemical calculations were made to find molecular properties using the DFT/B3LYP method with 6-311++G(2d,2p) basis set. Quantum-chemical values such as EHOMO, ELUMO, energy gap, ionization potential, chemical hardness, softness, and electronegativity values were calculated and discussed. Phenolic compounds detected by HPLC-DAD-UV in the GCAE were docked into the active site of 3 HCoV-229E targets (PDB IDs. 2ZU2, 6U7G, 7VN9, and 6WTT) to find the potential inhibitors that block the Coronavirus infection pathways from quantum and docking data for these compounds. There are good adaptations between the theoretical and experimental results showing that rutin has the highest activity against Low Pathogenic HCoV-229E in the GCAE extract.
Collapse
Affiliation(s)
- Doaa G. El-Hosari
- Pharmacognosy Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt; (W.M.H.); (E.G.H.)
| | - Wesam M. Hussein
- Pharmacognosy Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt; (W.M.H.); (E.G.H.)
| | - Marwa O. Elgendy
- Department of Clinical Pharmacy, Beni-Suef University Hospitals, Faculty of Medicine, Beni-Suef University, Beni-Suef 62521, Egypt
- Department of Clinical Pharmacy, Faculty of Pharmacy, Nahda University (NUB), Beni-Suef 62513, Egypt
| | - Sara O. Elgendy
- Clinical and Chemical Pathology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef 62521, Egypt;
| | - Ahmed R. N. Ibrahim
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Alzhraa M. Fahmy
- Tropical Medicine and Infectious Diseases Department, Faculty of Medicine, Beni-Suef University, Beni-Suef 62521, Egypt;
| | - Afnan Hassan
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Cairo 12578, Egypt;
| | - Fatma Alzahraa Mokhtar
- Department of Pharmacognosy, Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida 44813, Egypt;
| | - Modather F. Hussein
- Chemistry Department, Collage of Science, Jouf University, P.O. Box 2014, Sakaka 72388, Saudi Arabia;
- Chemistry Department, Faculty of Science, Al-Azhar University, Asyut Branch, Assiut 71524, Egypt
| | - Mohamed E. A. Abdelrahim
- Clinical Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62521, Egypt;
| | - Eman G. Haggag
- Pharmacognosy Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt; (W.M.H.); (E.G.H.)
| |
Collapse
|
5
|
Yuandani, Jantan I, Haque MA, Rohani AS, Nugraha SE, Salim E, Septama AW, Juwita NA, Khairunnisa NA, Nasution HR, Utami DS, Ibrahim S. Immunomodulatory effects and mechanisms of the extracts and secondary compounds of Zingiber and Alpinia species: a review. Front Pharmacol 2023; 14:1222195. [PMID: 37533631 PMCID: PMC10391552 DOI: 10.3389/fphar.2023.1222195] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 06/26/2023] [Indexed: 08/04/2023] Open
Abstract
Zingiber and Alpinia species (family: Zingiberaceae) are popularly used in food as spices and flavoring agents and in ethnomedicine to heal numerous diseases, including immune-related disorders. However, their ethnomedicinal uses have not been sufficiently supported by scientific investigations. Numerous studies on the modulating effects of plants and their bioactive compounds on the different steps of the immune system have been documented. This review aimed to highlight up-to-date research findings and critically analyze the modulatory effects and mechanisms of the extracts and secondary compounds of several Zingiber and Alpinia species, namely, Zingiber officinale Roscoe, Z. cassumunar Roxb., Z. zerumbet (L.) Roscoe ex Sm., Alpinia galanga Linn., A. conchigera Griff, A. katsumadai Hayata, A. oxyphylla Miq., A. officinarum Hance, A. zerumbet (Pers.) Burtt. et Smith, and A. purpurata (Viell.) K. Schum. on the immune system, particularly via the inflammation-related signaling pathways. The immunomodulating activities of the crude extracts of the plants have been reported, but the constituents contributing to the activities have mostly not been identified. Among the extracts, Z. officinale extracts were the most investigated for their in vitro, in vivo, and clinical effects on the immune system. Among the bioactive metabolites, 6-, 8-, and 10-gingerols, 6-shogaol, and zerumbone from Zingiber species and cardamomin, 1'-acetoxychavicol acetate, yakuchinone, rutin, 1,8-cineole, and lectin from Alpinia species have demonstrated strong immunomodulating effects. More experimental studies using cell and animal models of immune-related disorders are necessary to further understand the underlying mechanisms, together with elaborate preclinical pharmacokinetics, pharmacodynamics, bioavailability, and toxicity studies. Many of these extracts and secondary metabolites are potential candidates for clinical development in immunomodulating agents or functional foods to prevent and treat chronic inflammatory disorders.
Collapse
Affiliation(s)
- Yuandani
- Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
- Centre of Excellence for Chitosan and Advanced Materials, Universitas Sumatera Utara, Medan, Indonesia
| | - Ibrahim Jantan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Md. Areeful Haque
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ade Sri Rohani
- Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Sony Eka Nugraha
- Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Emil Salim
- Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Abdi Wira Septama
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Kawasan PUSPIPTEK Serpong, Tangerang Selatan, Bogor, Indonesia
| | - Nur Aira Juwita
- Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | | | | | - Dinda Sari Utami
- Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Sarah Ibrahim
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
6
|
Zhou L, Lu N, Pi X, Jin Z, Tian R. Bovine Serum Albumin as a Potential Carrier for the Protection of Bioactive Quercetin and Inhibition of Cu(II) Toxicity. Chem Res Toxicol 2022; 35:529-537. [PMID: 35175047 DOI: 10.1021/acs.chemrestox.2c00001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Considering the protective ability of proteins and the potential toxicity of free Cu(II), it was proposed herein that the co-presence of protein could play an important role in suppressing the toxicity of free Cu(II) to the stability of bioactive quercetin if a flavonoid-protein-Cu(II) complex could be formed. In this study, the interaction between quercetin (a major flavonoid in the human diet) and bovine serum albumin (BSA) was investigated in the absence and presence of free Cu(II). The results demonstrated that both quercetin and free Cu(II) had a strong ability to quench the intrinsic fluorescence of BSA through a static procedure (i.e., formation of a BSA-monoligand complex). Site marker competitive experiments illustrated that the binding of both quercetin and Cu(II) to BSA mainly took place in subdomain IIA. The quenching process of free Cu(II) with BSA was easily affected by quercetin, and the increased binding capacity possibly resulted from the generation of a ternary quercetin-BSA-Cu(II) complex. The stability and free radical scavenging activity of bioactive quercetin during incubation was promoted in the BSA-diligand complex relative to a quercetin-Cu(II) complex. A quercetin-Cu(II) system could generate reactive oxygen species such as hydrogen peroxide (H2O2) and hydroxyl radicals (•OH), which were significantly inhibited upon BSA binding. Consistently, the cytotoxicity of the quercetin-Cu(II) system to endothelial cells was decreased in the BSA-diligand complex, where the co-presence of BSA played an important role. These results suggest the possibility and advantage of developing albumin-based carriers for the protection of bioactive components and suppression of Cu(II) toxicity in their biomedical and nutritional applications.
Collapse
Affiliation(s)
- Lan Zhou
- Jiangxi Key Laboratory of Green Chemistry, MOE Key Laboratory of Functional Small Organic Molecule, and College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Naihao Lu
- Jiangxi Key Laboratory of Green Chemistry, MOE Key Laboratory of Functional Small Organic Molecule, and College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Xuefen Pi
- Yangxin No. 1 Middle School in Hubei Province, Huangshi, Hubei 435200, China
| | - Zelong Jin
- Jiangxi Key Laboratory of Green Chemistry, MOE Key Laboratory of Functional Small Organic Molecule, and College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Rong Tian
- Jiangxi Key Laboratory of Green Chemistry, MOE Key Laboratory of Functional Small Organic Molecule, and College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| |
Collapse
|
7
|
Shafreen RMB, Lakshmi SA, Pandian SK, Kim YM, Deutsch J, Katrich E, Gorinstein S. In Vitro and In Silico Interaction Studies with Red Wine Polyphenols against Different Proteins from Human Serum. Molecules 2021; 26:molecules26216686. [PMID: 34771095 PMCID: PMC8587719 DOI: 10.3390/molecules26216686] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/23/2022] Open
Abstract
Previous reports have shown that consumption of wine has several health benefits; however, there are different types of wine. In the present study, red wines were investigated for their compositions of active ingredients. The interaction of each component in terms of its binding mode with different serum proteins was unraveled, and the components were implicated as drug candidates in clinical settings. Overall, the study indicates that red wines have a composition of flavonoids, non-flavonoids, and phenolic acids that can interact with the key regions of proteins to enhance their biological activity. Among them, rutin, resveratrol, and tannic acid have shown good binding affinity and possess beneficial properties that can enhance their role in clinical applications.
Collapse
Affiliation(s)
- Raja Mohamed Beema Shafreen
- Department of Biotechnology, Dr. Umayal Ramanathan College for Women, Algappapuram, Karaikudi 630003, India;
| | - Selvaraj Alagu Lakshmi
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630003, India; (S.A.L.); (S.K.P.)
| | - Shunmugiah Karutha Pandian
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630003, India; (S.A.L.); (S.K.P.)
| | - Young-Mo Kim
- Industry Academic Collaboration Foundation, Kwangju Women’s University, Gwangju 62396, Korea;
| | - Joseph Deutsch
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (J.D.); (E.K.)
| | - Elena Katrich
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (J.D.); (E.K.)
| | - Shela Gorinstein
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (J.D.); (E.K.)
- Correspondence: ; Tel.: +972-2-6758690
| |
Collapse
|
8
|
Singh IR, Yesylevskyy SO, Mitra S. Dietary polyphenols inhibit plasma protein arabinosylation: Biomolecular interaction of genistein and ellagic acid with serum albumins. Biophys Chem 2021; 277:106651. [PMID: 34217110 DOI: 10.1016/j.bpc.2021.106651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 01/08/2023]
Abstract
The mode of interaction of polyphenolic compounds like genistein (GTN) and ellagic acid (EGA) with human and bovine serum albumin (HSA and BSA, respectively) was found to differ significantly. Stern-Volmer (SV) analysis of the fluorescence quenching data revealed that the binding strength of EGA (1.9 ± 0.09 × 105 M-1) to HSA is about one order of magnitude higher than GTN (2.24 ± 0.06 × 104 M-1). While the static quenching of HSA fluorescence was found to proceed through simple Stern-Volmer (SV) mechanism, a quenching sphere-of-action model was indispensable for BSA. Temperature dependent fluorescence along with a series of other biophysical experiments and ensemble docking calculation revealed that EGA and GTN bind to the serum proteins primarily through the entropy driven process. The α-helical content and the microenvironment near Trp residue of HSA and BSA did not show any appreciable change due to the binding of either GTN or EGA. Interestingly, both GTN and EGA were found to inhibit the formation of advanced glycated end (AGE) product of serum proteins up to the extent of 70-90% within 12-24 h. Relatively moderate binding propensity along with the anti-glycation ability of the polyphenols confirmed that GTN and EGA can be used either as an alternative or towards development of suitable drugs in the prevention of many diabetic-related complications.
Collapse
Affiliation(s)
| | - Semen O Yesylevskyy
- Department of Physics of Biological Systems, Institute of Physics of the National Academy of Sciences of Ukraine, Prospect Nauky 46, 03028 Kyiv, Ukraine
| | - Sivaprasad Mitra
- Department of Chemistry, North-Eastern Hill University, Shillong 793 022, India.
| |
Collapse
|
9
|
Zhang J, Lin L, Tao N, Zhu Z, Wang X, Wang M. Effect of big eye tuna ( Thunnus obesus) head soup with different colloidal particle size on TG and TC deposition in FFA-exposed HepG2 cells. Food Sci Nutr 2021; 9:1143-1151. [PMID: 33598198 PMCID: PMC7866563 DOI: 10.1002/fsn3.2092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/02/2020] [Accepted: 12/14/2020] [Indexed: 01/05/2023] Open
Abstract
Micro/nanocolloidal is confirmed as a self-assembly structure in big eye tuna (Thunnus obesus) head soup, and lipids enriched with docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are the major component. In this study, the effect of big eye tuna head soup (BETHS) with different particle size micro/nanocolloidal on lipid accumulation was initially evaluated. The original soup and microfiltration soup (with or without ginger; OGS/OGSG and MFS/MFSG) were prepared firstly. A free fatty acid-exposed (FFA-exposed) HepG2 cell model was built using sodium oleic acid (OA) and sodium palmitic acid (PA) (2:1). The triglyceride (TG) and total cholesterol (TC) in the FFA-exposed HepG2 cells were 8.6 ng/104 cells and 0.6 nM/104 cells, respectively, which were significantly different with control (p < .05). Both OGS and OGSG could significantly decline the TG deposition of FFA-exposed HepG2 cells with 31% and 40% (p < .05), and in MFS and MFSG were 23% and 26% (p ≥ .05). Meanwhile, OGS inhibited the deposition of TG mainly in 18-24 hr, and OGSG mainly in 12-18 hr. All the BETHS samples showed no inhibition effect on TC deposition (p ≥ .05). This research might help to understand the improving activity of natural or traditional food products on metabolic syndrome.
Collapse
Affiliation(s)
- Jing Zhang
- College of Food Science and TechnologyShanghai Ocean UniversityShanghaiP. R. China
- School of Perfume and Aroma TechnologyShanghai Institute of TechnologyShanghaiP. R. China
| | - Liu Lin
- College of Food Science and TechnologyShanghai Ocean UniversityShanghaiP. R. China
| | - Ningping Tao
- College of Food Science and TechnologyShanghai Ocean UniversityShanghaiP. R. China
- Shanghai Engineering Research Center of Aquatic‐Product Processing & PreservationShanghaiChina
| | - Zheqing Zhu
- College of Food Science and TechnologyShanghai Ocean UniversityShanghaiP. R. China
| | - Xichang Wang
- College of Food Science and TechnologyShanghai Ocean UniversityShanghaiP. R. China
- Shanghai Engineering Research Center of Aquatic‐Product Processing & PreservationShanghaiChina
| | - Mingfu Wang
- College of Food Science and TechnologyShanghai Ocean UniversityShanghaiP. R. China
- Food and Nutritional Science ProgramSchool of Biological SciencesThe University of Hong KongHong KongP. R. China
| |
Collapse
|
10
|
Zhou L, Luo M, Tian R, Zeng XP, Peng YY, Lu N. Generation of a Bovine Serum Albumin-Diligand Complex for the Protection of Bioactive Quercetin and Suppression of Heme Toxicity. Chem Res Toxicol 2021; 34:920-928. [PMID: 33464047 DOI: 10.1021/acs.chemrestox.0c00537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As an abundant protein in milk and blood serum, bovine serum albumin (BSA) contains various sites to bind a lot of bioactive components, generating BSA-monoligand complex. Demonstration of the interaction between BSA and bioactive components (such as heme, flavonoids) is important to develop effective carrier for the protection of bioactive ligands and to reduce cytotoxicity of heme. Herein, the bindings of BSA to quercetin and/or heme were investigated by multispectroscopic and molecular docking methods. The fluorescence of protein was significantly quenched by both quercetin and heme in a static mode (i.e., generation of BSA-ligand complex). Although quercetin had lower affinity to protein than heme, the interactions of both compounds with protein did locate in site I (i.e., subdomain IIA). BSA-diligand complex was successfully generated after the coaddition of quercetin and heme. The cytotoxicity of free heme to endothelial cells was reduced in the BSA-diligand complex relative to that of heme or BSA-monoligand complex, while the stability of bioactive quercetin was promoted in the complex relative to free flavonoid. The complex provided a better inhibition on the cytotoxicity of heme than BSA-monoligand complex, in which the copresence of quercetin played a vital role.
Collapse
Affiliation(s)
- Lan Zhou
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education; College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi China
| | - Mengjuan Luo
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education; College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi China
| | - Rong Tian
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education; College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi China
| | - Xing-Ping Zeng
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education; College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi China
| | - Yi-Yuan Peng
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education; College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi China
| | - Naihao Lu
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education; College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi China
| |
Collapse
|
11
|
Zhu C, Liu F, Wei Y, Zhang F, Pan T, Ye Y, Shen Y. Evaluating the potential risk by probing the site-selective binding of rutin-Pr(III) complex to human serum albumin. Food Chem Toxicol 2020; 148:111927. [PMID: 33340613 DOI: 10.1016/j.fct.2020.111927] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/26/2020] [Accepted: 12/13/2020] [Indexed: 02/08/2023]
Abstract
Having reported that rare earth elements displayed potential toxicity in vivo, often be found in soil, plants and etc., which might be easily chelated with the natural functional molecule rutin to form rutin metal complexes, ultimately entering the human body by means of food chain. However, few reports paid the attention on the toxicology of the complexes consisting of rutin with rare earth ions. Here, we focused on the potential toxicity by probing the site-selective binding of the rutin-rare earth ions complexes to human serum albumin (HSA). As a proof-of-concept, we selected Pr3+ as the representative to conjugate with rutin to form rutin-Pr(III) complex, which was further applied to interact with HSA in aqueous solution. The results exhibited that the rutin-Pr(III) complex primary bound to the hydrophobic cavity at site II (subdomain IIIA) of HSA through hydrogen bonding and van der Waals force. Through the thermomechanical analysis, we found this binding process was spontaneous because of the negative ΔG. We believe that this work may offer a new insight into understanding the physiological effects (e.g. toxicology) of rutin and rare earth ions, which could be helpful to guide their rational use in the agriculture and environment-related industries.
Collapse
Affiliation(s)
- Chunlei Zhu
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230009, China
| | - Fengru Liu
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230009, China
| | - Yunlong Wei
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230009, China
| | - Fan Zhang
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230009, China
| | - Ting Pan
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230009, China
| | - Yingwang Ye
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230009, China.
| | - Yizhong Shen
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|