1
|
Luo T, He Y, Jiang L, Yang L, Hou X, Shen G, Cui Q, Yu J, Ke J, Chen S, Zhang Z. Flavor perception and biological activities of bitter compounds in food. Food Chem 2025; 477:143532. [PMID: 40057996 DOI: 10.1016/j.foodchem.2025.143532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 03/27/2025]
Abstract
Bitter compounds in food produce a distinct bitter taste that significantly influences overall flavor and quality, while also possessing valuable biological activities. Therefore, a systematic review summarizing recent research advances on bitter compounds is necessary for a better understanding of them. This review discusses the sources of bitter substances in food, the mechanism of bitterness perception, their biological activities and key issues for future research. Bitter compounds in food mainly include polyphenols, alkaloids, terpenoids, bitter peptides and Maillard reaction products. Bitter substances bind to specific sites on bitter taste receptors (TAS2Rs), activating G protein-mediated downstream signaling pathways that lead to the perception of bitterness. Additionally, many bitter compounds possess biological activities, such as regulating food intake and exhibiting anti-cancer, anti-inflammatory and antioxidant activities. This review highlights the potential to exploit the bioactivity of bitter compounds to enhance the nutritional value and functionality of food.
Collapse
Affiliation(s)
- Tingting Luo
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Yanni He
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Lanxin Jiang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Li Yang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Xiaoyan Hou
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Guanghui Shen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Qiang Cui
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Jie Yu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Jingxuan Ke
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan 473004, China.
| | - Shanbo Chen
- Sichuan Academy of Forestry, Chengdu, Sichuan 610081, China
| | - Zhiqing Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China.
| |
Collapse
|
2
|
Bhujle RR, Nayak N, Gowda NAN, Pandiselvam R, Sunil CK. A comprehensive review on influence of millet processing on carbohydrate-digesting enzyme inhibitors and implications for diabetes management. Crit Rev Biotechnol 2025; 45:743-765. [PMID: 39610061 DOI: 10.1080/07388551.2024.2423153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 11/30/2024]
Abstract
Millets, often overlooked as food crops, have regained potential as promising stable food sources of bioactive compounds to regulate blood sugar levels in the diabetic populace. This comprehensive review delves into various millet varieties, processing methods, and extraction techniques aimed at isolating bioactive compounds. The review elucidates the inhibitory effects of millet-derived bioactive compounds on key enzymes involved in carbohydrate metabolism, such as α-amylase and α-glucosidase. It further explores the relationship between the antibacterial activity of phenols, flavonoids, and anthocyanins in millets and their role in amylase inhibition. In particular, phenols, flavonoids, and proteins found in millets play pivotal roles in inhibiting enzymes responsible for glucose digestion and absorption. However, processing methods can either enhance or reduce the bioactive compounds, thereby influencing enzyme inhibition capacity. Studies underscore the presence of phenolic compounds with notable inhibitory activity in: foxtail, finger, barnyard, and pearl millet varieties. Furthermore, extraction techniques, such as Soxhlet and ultrasonic-assisted extraction, emerge as efficient methods for isolating bioactive compounds, thus enhancing their therapeutic efficacy. This review highlights the challenges in preserving the inhibitory activity of millets during processing and optimizing processing methods to ensure better retention of bioactive compounds. It also emphasizes the utilization of millet as a natural dietary supplement or functional food to manage diabetes and promote overall well-being.
Collapse
Affiliation(s)
- Rohan R Bhujle
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Guwahati, India
| | - Nidhi Nayak
- Department of Food Technology, Jain Deemed-to-be University, Bangalore, Karnataka, India
| | - N A Nanje Gowda
- Department of Food Science, University of Arkansas Division of Agriculture, Fayetteville, AR, USA
| | - Ravi Pandiselvam
- ICAR-Central Plantation Crops Research Institute, Kasaragod, Kerala, India
| | - Chikkaballapura Krishnappa Sunil
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management-Thanjavur (NIFTEM-T), Thanjavur, India
| |
Collapse
|
3
|
Bakry SM, Emam M, A Radwan R, Hussein SA, Saad H, M Hegazi N. Molecular networking guided metabolomics for mapping the secondary metabolome of six Melaleuca species and their digestive enzymes' inhibitory potential. Fitoterapia 2025; 182:106457. [PMID: 40015378 DOI: 10.1016/j.fitote.2025.106457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 02/18/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
Melaleuca, a member of the Myrtaceae family, comprises around 300 species that are originally endemic to Australia and Southeast Asia and are cultivated as ornamental plants in Egypt. Melaleuca species are recognized as profound producers of a wide array of secondary metabolites and are valued for their essential oils which are widely used in the pharmaceutical and cosmetic industries. Yet their secondary metabolome is not fully explored. A metabolomics approach compromising UPLC-HRMS/MS coupled with feature-based molecular networking (FBMN) was employed to glean a holistic overview of the secondary metabolome of six Melaleuca species cultivated in Egypt. Additionally, the extracts were screened for the in vitro inhibition of the digestive enzymes (i.e., α-amylase and pancreatic lipase). The FBMNs allowed for the annotation of 195 metabolites, belonging to diverse chemical classes, such as phenolics and phenyl propanoids (i.e., hydrolysable tannins, phenolic acids, chromones, flavonoids, stilbenes, and lignans), terpenoids (i.e., megastigmanes, monoterpenes, and triterpenes), and other miscellaneous compounds. Among the annotated features only 15 % were previously reported to occur in the genus Melaleuca, and 11 metabolites were proposed as potentially new natural products. The adopted protocol highlighted the profound capability of Melaleuca plants to produce secondary metabolites of various chemical classes holding the potential to exhibit beneficial biological activities. For instance, the studied extracts diminished the activity of both the α-amylase and pancreatic lipase enzymes. Such findings propose the Melaleuca species as potential candidates for the development of plant-derived products for obesity management.
Collapse
Affiliation(s)
- Sherien M Bakry
- Phytochemistry and Plant Systematics Department, Pharmaceutical Industries Institute, National Research Centre, Dokki, Cairo 12622, Egypt.
| | - Mahmoud Emam
- Phytochemistry and Plant Systematics Department, Pharmaceutical Industries Institute, National Research Centre, Dokki, Cairo 12622, Egypt.
| | - Rasha A Radwan
- Biochemistry Department, Faculty of Biotechnology, German International University(GIU), Regional Ring Rd, East Cairo, New Administrative Capital, 11586, Egypt.
| | - Sahar A Hussein
- Phytochemistry and Plant Systematics Department, Pharmaceutical Industries Institute, National Research Centre, Dokki, Cairo 12622, Egypt.
| | - Hamada Saad
- Phytochemistry and Plant Systematics Department, Pharmaceutical Industries Institute, National Research Centre, Dokki, Cairo 12622, Egypt; Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| | - Nesrine M Hegazi
- Phytochemistry and Plant Systematics Department, Pharmaceutical Industries Institute, National Research Centre, Dokki, Cairo 12622, Egypt.
| |
Collapse
|
4
|
Souza GH, Paes Silva B, Neto GAV, Finimundy TC, Santos TFD, Bueno PSA, Souza FDO, Pilau EJ, Barros L, Comar JF, Bracht L, Peralta RM, Bracht A, Sá-Nakanishi AB. Tamarindus indica sub-products as potential tools for simultaneous management of diabetes and obesity. Food Funct 2025; 16:1969-1991. [PMID: 39957683 DOI: 10.1039/d4fo04536j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Aiming at valorizing industrial wastes of tamarind, the present work evaluated the actions of seed, leaf and peel extracts on starch and fat absorption through starch and triglyceride tolerance tests in mice. The actions of all extracts on the α-amylase and lipase were also characterized using classical kinetic assays. All extracts inhibited starch digestion in vivo, but the seed extract was the most effective one with an ID50 of 151.4 mg kg-1. The mechanism behind this inhibition probably involves the pancreatic α-amylase, which was strongly inhibited by the seed extract under in vitro conditions (IC50 = 13.3 μg mL-1) and much less strongly by the leaf and peel extracts (IC50 values in the vicinity of 400 μg mL-1). The pancreatic lipase, conversely, was inhibited solely by the seed extract, with an IC50 of 31.5 μg mL-1. As a consequence of this property, the seed extract also inhibited triglyceride absorption, as indicated by olive oil tolerance tests, which revealed an ID50 of 214.9 mg kg-1. The seed extract also possessed the strongest antioxidant capacity and the highest content in phenolic groups. Chemical analyses revealed that all extracts present a great variety of phenolic compounds and that the seed extract possesses at least 5 unique compounds (ursodiol, masoprocol, lenticin, chenodeoxycolic acid and 13-keto-9Z,11E-octadecadienoic acid), which, according to docking studies, could be involved in the inhibition of both α-amylase and lipase. The overall conclusion is that the tamarind seed extract displays great potential for being used in the management of obesity and diabetes.
Collapse
Affiliation(s)
- Gustavo Henrique Souza
- Hepatic Metabolism Lab, Department of Biochemistry, State University of Maringá, Maringá, PR, Brazil.
| | - Beatriz Paes Silva
- Hepatic Metabolism Lab, Department of Biochemistry, State University of Maringá, Maringá, PR, Brazil.
| | | | - Tiane C Finimundy
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | | | - Paulo Sergio Alves Bueno
- Hepatic Metabolism Lab, Department of Biochemistry, State University of Maringá, Maringá, PR, Brazil.
| | | | - Eduardo J Pilau
- Department of Chemistry, State University of Maringá, Maringá, PR, Brazil.
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Jurandir F Comar
- Hepatic Metabolism Lab, Department of Biochemistry, State University of Maringá, Maringá, PR, Brazil.
| | - Livia Bracht
- Hepatic Metabolism Lab, Department of Biochemistry, State University of Maringá, Maringá, PR, Brazil.
| | - Rosane M Peralta
- Hepatic Metabolism Lab, Department of Biochemistry, State University of Maringá, Maringá, PR, Brazil.
| | - Adelar Bracht
- Hepatic Metabolism Lab, Department of Biochemistry, State University of Maringá, Maringá, PR, Brazil.
| | - Anacharis B Sá-Nakanishi
- Hepatic Metabolism Lab, Department of Biochemistry, State University of Maringá, Maringá, PR, Brazil.
| |
Collapse
|
5
|
Li X, Wu W, Liu Y, Zhao J, Gui Y, Wang H, Wang L, Luo Y, Zhou G, He Y, Yuan C. Mechanistic Studies on the Antidiabetic Properties of Gallotannins. Curr Pharm Des 2025; 31:575-584. [PMID: 39501945 DOI: 10.2174/0113816128338114241021110221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/24/2024] [Indexed: 04/05/2025]
Abstract
The escalating prevalence of type 2 diabetes (T2DM) has emerged as a global public health dilemma. This ailment is associated with insulin resistance and heightened blood glucose concentrations. Despite the rapid advancements in modern medicine, where a regimen of medications is employed to manage blood glucose effectively, certain treatments manifest significant adverse reactions. Recent studies have elucidated the pivotal role of gallotannins in mitigating inflammation and obesity, potentially reducing the prevalence of obesity-linked T2DM. Gallotannins, defined by their glycosidic cores and galloyl groups, are ubiquitously present in plants, playing diverse biological functions and constituting a significant segment of water-soluble polyphenolic compounds within the heterogeneous tannins group. The structural attributes of gallotannins are instrumental in dictating their myriad biological activities. Owing to their abundance of hydroxyl groups (-OH) and complex macromolecular structure, gallotannins exhibit an array of pro-physiological properties, including antioxidant, anti-inflammatory, antidiabetic, protein-precipitating, and antibacterial effects. Extensive research demonstrates that gallotannins specifically obstruct α-amylase and pancreatic lipase, enhance insulin sensitivity, modulate short-chain fatty acid production, alleviate oxidative stress, exhibit anti-inflammatory properties, and influence the gut microbiota, collectively contributing to their antidiabetic efficacy. This review aims to consolidate and scrutinize the extant literature on gallotannins to furnish essential insights for their potential application in diabetes management.
Collapse
Affiliation(s)
- Xueqing Li
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
| | - Wei Wu
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
| | - Yuting Liu
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
| | - Jiale Zhao
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
| | - Yibei Gui
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
- Department of Biochemistry, College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
| | - Hailin Wang
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
| | - Lijun Wang
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
- Department of Biochemistry, College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
| | - Yiyang Luo
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
| | - Gang Zhou
- College of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
- Yichang Hospital of Traditional Chinese Medicine, Yichang 443002, China
| | - Yumin He
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
| | - Chengfu Yuan
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
- Department of Biochemistry, College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
| |
Collapse
|
6
|
Ullah A, Bano A, Khan N. Antinutrients in Halophyte-Based Crops. FRONT BIOSCI-LANDMRK 2024; 29:323. [PMID: 39344318 DOI: 10.31083/j.fbl2909323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 10/01/2024]
Abstract
The cultivation of halophytes is an alternative approach to sustain agricultural productivity under changing climate. They are densely equipped with a diverse group of metabolites that serve multiple functions, such as providing tolerance to plants against extreme conditions, being used as a food source by humans and ruminants and containing bioactive compounds of medicinal importance. However, some metabolites, when synthesized in greater concentration above their threshold level, are considered antinutrients. Widely reported antinutrients include terpenes, saponins, phytate, alkaloids, cyanides, tannins, lectins, protease inhibitors, calcium oxalate, etc. They reduce the body's ability to absorb essential nutrients from the diet and also cause serious health problems. This review focuses on antinutrients found both in wild and edible halophytes and their beneficial as well as adverse effects on human health. Efforts were made to highlight such antinutrients with scientific evidence and describe some processing methods that might help in reducing antinutrients while using halophytes as a food crop in future biosaline agriculture.
Collapse
Affiliation(s)
- Asad Ullah
- Department of Biology, The Peace College, 24420 Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - Asghari Bano
- Department of Biosciences, University of Wah, 47000 Wah Cantt, Punjab, Pakistan
| | - Naeem Khan
- Agronomy Department, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
7
|
Kusumawardani S, Luangsakul N. Assessment of polyphenols in purple and red rice bran: Phenolic profiles, antioxidant activities, and mechanism of inhibition against amylolytic enzymes. Curr Res Food Sci 2024; 9:100828. [PMID: 39286431 PMCID: PMC11403441 DOI: 10.1016/j.crfs.2024.100828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/22/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Pigmented Thai rice varieties, including purple (Riceberry) and red (Hommali), are gaining popularity due to their health benefits as a source of polyphenols that may exert a hypoglycemic effect through specific inhibition of amylolytic enzymes. This study determined the free phenolic extract from purple rice bran (PFE) to exhibit notably greater content of phytochemical compounds than did phenolic extracts from red rice bran, whether free (RFE) or bound fractions. This phytochemical content correlated with increased antioxidant activity and strong inhibition capacity against amylolytic enzymes, suppressing the conversion of carbohydrates into glucose. Several polyphenol compounds were identified in pigmented rice bran extracts, including benzoic acid, chlorogenic acid, ferulic acid, apigenin, and rutin; among these, flavonoids exhibited greater effect on inhibition capacity. Mechanistically, PFE was found to act as a competitive and uncompetitive inhibitor of α-amylase and α-glucosidase respectively, while RFE showed respective uncompetitive and competitive inhibitory modes.
Collapse
Affiliation(s)
- Sandra Kusumawardani
- School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Naphatrapi Luangsakul
- School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| |
Collapse
|
8
|
Tatulian SA. Analysis of protein-protein and protein-membrane interactions by isotope-edited infrared spectroscopy. Phys Chem Chem Phys 2024; 26:21930-21953. [PMID: 39108200 DOI: 10.1039/d4cp01136h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The objective of this work is to highlight the power of isotope-edited Fourier transform infrared (FTIR) spectroscopy in resolving important problems encountered in biochemistry, biophysics, and biomedical research, focusing on protein-protein and protein membrane interactions that play key roles in practically all life processes. An overview of the effects of isotope substitutions in (bio)molecules on spectral frequencies and intensities is given. Data are presented demonstrating how isotope-labeled proteins and/or lipids can be used to elucidate enzymatic mechanisms, the mode of membrane binding of peripheral proteins, regulation of membrane protein function, protein aggregation, and local and global structural changes in proteins during functional transitions. The use of polarized attenuated total reflection FTIR spectroscopy to identify the spatial orientation and the secondary structure of a membrane-bound interfacial enzyme and the mode of lipid hydrolysis is described. Methods of production of site-directed, segmental, and domain-specific labeling of proteins by the synthetic, semisynthetic, and recombinant strategies, including advanced protein engineering technologies such as nonsense suppression and frameshift quadruplet codons are overviewed.
Collapse
Affiliation(s)
- Suren A Tatulian
- Department of Physics, University of Central Florida, Orlando, FL 32816, USA.
| |
Collapse
|
9
|
Kassem AF, Omar MA, Temirak A, El-Shiekh RA, Srour AM. Barbiturate-sulfonate hybrids as potent cholinesterase inhibitors: design, synthesis and molecular modeling studies. Future Med Chem 2024; 16:1615-1631. [PMID: 39011621 PMCID: PMC11370902 DOI: 10.1080/17568919.2024.2366158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/31/2024] [Indexed: 07/17/2024] Open
Abstract
Aim: Design and synthesis of a series of 5-benzylidene(thio)barbiturates 3a-r.Methodology: Evaluation of the inhibitory activity of the new chemical entities on acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) using Donepezil as the standard reference.Results & Conclusion: Compound 3r emerged as the most potent AChE inhibitor (IC50 = 9.12 μM), while compound 3q exhibited the highest inhibitory activity against BChE (IC50 = 19.43 μM). Toxicological bioassays confirmed the absence of cytotoxicity for the most potent compounds at the tested doses. Molecular docking analysis demonstrated that the tested derivatives effectively bind to the active sites of both enzymes. Overall, this study sheds light on the potential of barbiturate-sulfonate conjugates as promising drug candidates.
Collapse
Affiliation(s)
- Asmaa F Kassem
- Department of Chemistry, College of Science & Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj11942, Saudi Arabia
- Chemistry of Natural & Microbial Products Department, Pharmaceutical & Drug Industries Research Institute, National Research Centre, Dokki, Giza12622, Egypt
| | - Mohamed A Omar
- Chemistry of Natural & Microbial Products Department, Pharmaceutical & Drug Industries Research Institute, National Research Centre, Dokki, Giza12622, Egypt
| | - Ahmed Temirak
- Chemistry of Natural & Microbial Products Department, Pharmaceutical & Drug Industries Research Institute, National Research Centre, Dokki, Giza12622, Egypt
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr el Aini St., 11562, Cairo, Egypt
| | - Aladdin M Srour
- Department of Therapeutic Chemistry, Pharmaceutical & Drug Industries Research Institute, National Research Centre, Dokki, Giza12622, Egypt
| |
Collapse
|
10
|
Kuptawach K, Noitung S, Buakeaw A, Puthong S, Sawangkeaw R, Sangtanoo P, Srimongkol P, Reamtong O, Choowongkomon K, Karnchanatat A. Lemon basil seed-derived peptide: Hydrolysis, purification, and its role as a pancreatic lipase inhibitor that reduces adipogenesis by downregulating SREBP-1c and PPAR-γ in 3T3-L1 adipocytes. PLoS One 2024; 19:e0301966. [PMID: 38776280 PMCID: PMC11111035 DOI: 10.1371/journal.pone.0301966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/26/2024] [Indexed: 05/24/2024] Open
Abstract
The purpose of this study is to assess the bioactive peptides derived from the defatted lemon basil seeds hydrolysate (DLSH) for their ability to inhibit pancreatic lipase, decrease intracellular lipid accumulation, and reduce adipogenesis. Response surface methodology (RSM) was employed to optimize trypsin hydrolysis conditions for maximizing lipase inhibitory activity (LI). A hydrolysis time of 387.06 min, a temperature of 49.03°C, and an enzyme concentration of 1.61% w/v, resulted in the highest LI with an IC50 of 368.07 μg/mL. The ultrafiltration of the protein hydrolysate revealed that the fraction below 0.65kDa exhibited the greatest LI potential. Further purification via RP-HPLC identified the Gly-Arg-Ser-Pro-Asp-Thr-His-Ser-Gly (GRSPDTHSG) peptide in the HPLC fraction F1 using mass spectrometry. The peptide was synthesized and demonstrated LI with an IC50 of 0.255 mM through a non-competitive mechanism, with a constant (Ki) of 0.61 mM. Docking studies revealed its binding site with the pancreatic lipase-colipase complex. Additionally, GRSPDTHSG inhibited lipid accumulation in 3T3-L1 cells in a dose-dependent manner without cytotoxic effects. Western blot analysis indicated downregulation of PPAR-γ and SREBP-1c levels under GRSPDTHSG treatment, while an increase in AMPK-α phosphorylation was observed, suggesting a role in regulating cellular lipid metabolism. Overall, GRSPDTHSG demonstrates potential in attenuating lipid absorption and adipogenesis, suggesting a prospective application in functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Kittisak Kuptawach
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Sajee Noitung
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Anumart Buakeaw
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Songchan Puthong
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Ruengwit Sawangkeaw
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Papassara Sangtanoo
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Piroonporn Srimongkol
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Aphichart Karnchanatat
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
11
|
Sokolova E, Krol T, Adamov G, Minyazeva Y, Baleev D, Sidelnikov N. Total Content and Composition of Phenolic Compounds from Filipendula Genus Plants and Their Potential Health-Promoting Properties. Molecules 2024; 29:2013. [PMID: 38731503 PMCID: PMC11085259 DOI: 10.3390/molecules29092013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
This current article was dedicated to the determination of the composition of phenolic compounds in extracts of four species of the genus Filipendula in order to establish a connection between the composition of polyphenols and biological effects. A chemical analysis revealed that the composition of the extracts studied depended both on the plant species and its part (leaf or flower) and on the extractant used. All four species of Filipendula were rich sources of phenolic compounds and contained hydrolyzable tannins, condensed tannins, phenolic acids and their derivatives, and flavonoids. The activities included data on those that are most important for creating functional foods with Filipendula plant components: the influence on blood coagulation measured by prothrombin and activated partial thromboplastin time, and on the activity of the digestive enzymes (pancreatic amylase and lipase). It was established that plant species, their parts, and extraction methods contribute meaningfully to biological activity. The most prominent result is as follows: the plant organ determines the selective inhibition of either amylase or lipase; thus, the anticoagulant activities of F. camtschatica and F. stepposa hold promise for health-promoting food formulations associated with general metabolic disorders.
Collapse
|
12
|
Nguyen MK, Nguyen VP, Yang SY, Min BS, Kim JA. Astraoleanosides E-P, oleanane-type triterpenoid saponins from the aerial parts of Astragalus membranaceus Bunge and their β-glucuronidase inhibitory activity. Bioorg Chem 2024; 145:107230. [PMID: 38387397 DOI: 10.1016/j.bioorg.2024.107230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/24/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
Historically, Astragalus membranaceus Bunge has been used as a beneficial medicinal plant, particularly in the Asian traditional medical systems, for the treatment of various human diseases such as stomach ulcers, diarrhea, and respiratory issues associated with phlegm. In this study, a phytochemical characterization of the aerial parts of A. membranaceusled to the isolation of 29 oleanane-type triterpenoid saponins, including 11 new compounds named astraoleanosides E-P (6-9, 13, 14, 18-22), as well as 18 known ones. The structures of these compounds were elucidated using nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry. Among them, astraoleanoside H (9) and cloversaponin III (15) demonstrated the most potent β-glucuronidase inhibitory activities, with IC50 values of 21.20 ± 0.75 and 9.05 ± 0.47 µM, respectively, compared to the positive control d-saccharic acid 1,4-lactone (IC50 = 20.62 ± 1.61 µM). Enzyme kinetics studies were then conducted to investigate the type of inhibition exhibited by these active compounds. In addition, the binding mechanism, key interactions, binding stability, and dynamic behavior of protein-ligand complexes were investigated through in silico approaches, such as molecular docking and molecular dynamics simulations. These findings highlight the promising potential of triterpenoid saponins from A. membranaceus as lead compounds for β-glucuronidase inhibitors, offering new possibilities for the development of therapeutic agents targeting various diseases where β-glucuronidase plays a crucial role.
Collapse
Affiliation(s)
- Manh Khoa Nguyen
- Vessel-Organ Interaction Research Center, VOICE (MRC), College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea; BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; National Institute of Medicinal Materials (NIMM), Hanoi 100000, Vietnam
| | - Viet Phong Nguyen
- Vessel-Organ Interaction Research Center, VOICE (MRC), College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seo Young Yang
- Department of Biology Education, Teachers College and Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Byung Sun Min
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University, Gyeongbuk 38430, Republic of Korea.
| | - Jeong Ah Kim
- Vessel-Organ Interaction Research Center, VOICE (MRC), College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea; BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
13
|
Šola I, Gmižić D, Pinterić M, Tot A, Ludwig-Müller J. Adjustments of the Phytochemical Profile of Broccoli to Low and High Growing Temperatures: Implications for the Bioactivity of Its Extracts. Int J Mol Sci 2024; 25:3677. [PMID: 38612494 PMCID: PMC11011926 DOI: 10.3390/ijms25073677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
Climate change causes shifts in temperature patterns, and plants adapt their chemical content in order to survive. We compared the effect of low (LT) and high (HT) growing temperatures on the phytochemical content of broccoli (Brassica oleracea L. convar. botrytis (L.) Alef. var. cymosa Duch.) microgreens and the bioactivity of their extracts. Using different spectrophotometric, LC-MS/MS, GC-MS, and statistical methods, we found that LT increased the total phenolics and tannins in broccoli. The total glucosinolates were also increased by LT; however, they were decreased by HT. Soluble sugars, known osmoprotectants, were increased by both types of stress, considerably more by HT than LT, suggesting that HT causes a more intense osmotic imbalance. Both temperatures were detrimental for chlorophyll, with HT being more impactful than LT. HT increased hormone indole-3-acetic acid, implying an important role in broccoli's defense. Ferulic and sinapic acid showed a trade-off scheme: HT increased ferulic while LT increased sinapic acid. Both stresses decreased the potential of broccoli to act against H2O2 damage in mouse embryonal fibroblasts (MEF), human keratinocytes, and liver cancer cells. Among the tested cell types treated by H2O2, the most significant reduction in ROS (36.61%) was recorded in MEF cells treated with RT extracts. The potential of broccoli extracts to inhibit α-amylase increased following both temperature stresses; however, the inhibition of pancreatic lipase was increased by LT only. From the perspective of nutritional value, and based on the obtained results, we conclude that LT conditions result in more nutritious broccoli microgreens than HT.
Collapse
Affiliation(s)
- Ivana Šola
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Daria Gmižić
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Marija Pinterić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Ana Tot
- Andrija Štampar Teaching Institute of Public Health, Mirogojska 16, 10000 Zagreb, Croatia
| | - Jutta Ludwig-Müller
- Faculty of Biology, Technische Universität Dresden, Zellescher Weg 20b, 01217 Dresden, Germany
| |
Collapse
|
14
|
Dawood DH, Srour AM, Omar MA, Farghaly TA, El-Shiekh RA. Synthesis and molecular docking simulation of new benzimidazole-thiazole hybrids as cholinesterase inhibitors. Arch Pharm (Weinheim) 2024; 357:e2300201. [PMID: 37937360 DOI: 10.1002/ardp.202300201] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 10/10/2023] [Accepted: 10/15/2023] [Indexed: 11/09/2023]
Abstract
Dementia is a cognitive disturbance that is generally correlated with central nervous system diseases, especially Alzheimer's disease. The limited number of medications available is insufficient to improve the lifestyle of the patients suffering from this disease. Thus, new benzimidazole-thiazole hybrids (3-10) were designed and synthesized as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory agents. The in vitro evaluation displayed that the derivatives 4b, 4d, 5b, 6a, 7a, and 8b demonstrated dual inhibitory efficiency against both AChE with IC50 ranging from 4.55 to 8.62 µM and BChE with IC50 ranging from 3.50 to 8.32 µM. By analyzing the Lineweaver-Burk plot, an uncompetitive form of inhibition was determined for the highly active compound 4d, revealing its inhibition type. The human telomerase reverse transcriptase-immortalized retinal pigment epithelial cell line was used to ensure the safety of the most potent cholinesterase inhibitors. Furthermore, compounds 4b, 4d, 5b, 6a, 7a, and 8b were evaluated for their neuroprotective and antioxidant properties, as well as their ability to suppress COX-2. The results demonstrated that compounds 4d, 5b, and 8b presented significant neuroprotection efficiency against H2 O2 -induced damage in SH-SY5Y cells with % cell viability of 67.42 ± 7.90%, 62.51 ± 6.71%, and 72.61 ± 8.10%, respectively, while the tested candidates did not reveal significant antioxidant activity. Otherwise, compounds 4b, 6a, 7a, and 8b displayed outstanding COX-2 inhibition effects with IC50 ranging from 0.050 to 0.080 μM relative to celecoxib (IC50 = 0.050 µM). In addition, molecular docking was carried out for the potent benzimidazole-thiazole hybrids with the active sites of both AChE (PDB ID: 4EY7) and BChE (PDB code: 1P0P). The tested candidates fit well in the active sites of both portions, with docking scores ranging from -8.65 to -6.64 kcal/mol (for AChE) and -8.71 to -7.73 kcal/mol (for BChE). In silico results show that the synthesized benzimidazole-thiazole hybrids have good physicochemical and pharmacokinetic properties with no Lipinski rule violations. The preceding results exhibited that compound 4d could be used as a new template for developing more significant cholinesterase inhibitors in the future.
Collapse
Affiliation(s)
- Dina H Dawood
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza, Egypt
| | - Aladdin M Srour
- Department of Therapeutic Chemistry, National Research Centre, Giza, Egypt
| | - Mohamed A Omar
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza, Egypt
| | - Thoraya A Farghaly
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
15
|
Rocha S, Rufino AT, Freitas M, Silva AMS, Carvalho F, Fernandes E. Methodologies for Assessing Pancreatic Lipase Catalytic Activity: A Review. Crit Rev Anal Chem 2023; 54:3038-3065. [PMID: 37335098 DOI: 10.1080/10408347.2023.2221731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Obesity is a disease of epidemic proportions with a concerning increasing trend. Regarded as one of the main sources of energy, lipids can also represent a big part of an unnecessary intake of calories and be, therefore, directly related to the problem of obesity. Pancreatic lipase is an enzyme that is essential in the absorption and digestion of dietary fats and has been explored as an alternative for the reduction of fat absorption and consequent weigh loss. Literature describes a great variability of methodologies and experimental conditions used in research to evaluate the in vitro inhibitory activity of compounds against pancreatic lipase. However, in an attempt to choose the best approach, it is necessary to know all the reaction conditions and understand how these can affect the enzymatic assay. The objective of this review is to understand and summarize the methodologies and respective experimental conditions that are mainly used to evaluate pancreatic lipase catalytic activity. 156 studies were included in this work and a detailed description of the most commonly used UV/Vis spectrophotometric and fluorimetric instrumental techniques are presented, including a discussion regarding the differences found in the parameters used in both techniques, namely enzyme, substrate, buffer solutions, kinetics conditions, temperature and pH. This works shows that both UV/Vis spectrophotometry and fluorimetry are useful instrumental techniques for the evaluation of pancreatic lipase catalytic activity, presenting several advantages and limitations, which make the choice of parameters and experimental conditions a crucial decision to obtain the most reliable results.
Collapse
Affiliation(s)
- Sílvia Rocha
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Ana T Rufino
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Artur M S Silva
- LAQV, REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Félix Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
16
|
Rippin, Beniwal V, Sharma A, Singh BJ, Ramniwas S, Sak K, Kumar S, Sharma AK. Ginnalin A and hamamelitannin: the unique gallotannins with promising anti-carcinogenic potential. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:208-216. [PMID: 37205316 PMCID: PMC10185439 DOI: 10.37349/etat.2023.00129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/16/2023] [Indexed: 08/27/2023] Open
Abstract
Tannins are secondary metabolites that belong to the family of polyphenolic compounds and have gained a huge interest among researchers due to their versatile therapeutic potential. After lignin, these are the second most abundant polyphenols found in almost every plant part like stem, bark, fruit, seed, leaves, etc. Depending upon their structural composition, these polyphenols can be divided into two distinct groups, namely condensed tannins and hydrolysable tannins. Hydrolysable tannins can be further divided into two types: gallotannins and ellagitannins. Gallotannins are formed by the esterification of D-glucose hydroxyl groups with gallic acid. The gallolyl moieties are bound by a depside bond. The current review focuses mainly on the anti-carcinogenic potential of recently discovered gallotannins, ginnalin A, and hamamelitannin (HAM). Both of these gallotannins possess two galloyl moieties linked to a core monosaccharide having anti-oxidant, anti-inflammatory, and anti-carcinogenic abilities. Ginnalin A is found in plants of the genus Acer whereas HAM is present in witch hazel plants. The biosynthetic pathway of ginnalin A along with the mechanism of the anti-cancer therapeutic potential of ginnalin A and HAM has been discussed. This review will certainly help researchers to work further on the chemo-therapeutic abilities of these two unique gallotannins.
Collapse
Affiliation(s)
- Rippin
- Department of Biotechnology, Maharishi Markandeshar Engineering College, Maharishi Markandeshwar (Deemed to be University), Haryana 133207, India
| | - Vikas Beniwal
- Department of Microbiology, Central University of Haryana, Haryana 123029, India
| | - Ajay Sharma
- Department of Chemistry, Career Point University, Hamirpur 176041, Himachal Pradesh, India
| | - Bikram Jit Singh
- Department of Mechanical Engineering, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Haryana 133207, India
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Biotechnology Chandigarh University, Mohali 140413, India
| | - Katrin Sak
- Non-government Organization, Praeventio, Tartu 50407, Estonia
| | - Satish Kumar
- College of Horticulture and Forestry, Thunag, Dr. Y. S. Parmar University of Horticulture and Forestry, Solan 173230, India
| | - Anil K. Sharma
- Department of Biotechnology, Maharishi Markandeshar Engineering College, Maharishi Markandeshwar (Deemed to be University), Haryana 133207, India
| |
Collapse
|
17
|
Gamboa-Gómez CI, Denise-Herrera M, Simental-Mendía LE, Zamilpa-Alvarez A, González-Cortazar M, Martínez-Aguilar G, Alvarado-Aguilar P, Morales-Castro EP, Ávila-Soto JA, Amador-Herrera JA, Guerrero-Romero F. Inhibitory effect of Mexican oregano (Lippia graveolens Kunth) extracts on digestive enzymes in vitro, and beneficial impact on carbohydrates and lipids absorption in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115527. [PMID: 35817248 DOI: 10.1016/j.jep.2022.115527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/15/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Although Mexican oregano inhibits digestive enzymes in vitro its effect on the absorption of carbohydrates and lipids in vivo has not been addressed. AIM OF THE STUDY Assess the effect of Mexican oregano (Lippia graveolens Kunth) on carbohydrates and lipids absorption in vivo. The antioxidant activity also was investigated. MATERIALS AND METHODS Enzymatic inhibitory action of lipase, α-amylase, and α-glucosidase was evaluated in vitro. Oral lipid (OLTT) and starch tolerance tests (OSTT) were conducted with L. graveolens acetone (O-A) and ethanol (O-E) extracts (at 102 mg/kg body weight equivalent to a 1 g human doses) in male Wistar rats. The antioxidant activity was evaluated through inhibition of lipid peroxidation and scavenging radical. RESULTS Both extracts exhibited higher inhibitory median concentration (IC50) of lipase activity (1.9 μg/μL for O-E and 1.8 μg/μL for O-A) than the positive control (Orlistat) (0.07 μg/μL). The IC50 of α-amylase was higher (41.8 μg/μL for O-E and 25.2 μg/μL for O-A) than the Acarbose (2.5 μg/μL); while α-glucosidase results showed not statistically differences between groups (∼1.7 μg/μL). The OLTT results showed that both extracts significantly reduced serum triglycerides (∼147 mg/dL for O-E and ∼155 mg/dL for O-A) as compared with negative control group (only lipid load). In the OSTT, glucose levels showed a significant decrease (∼31 mg/dL for O-E and ∼17 mg/dL for O-A) than the negative control group (only starch load). About in vitro antioxidant evaluation, not statistically differences between extracts and positive control (Trolox) were observed for scavenged free radicals (∼2.0 μg/μL); whereas O-A inhibited lipid peroxidation similar to the Trolox (∼0.8 μg/μL IC50). The main chemical composition of both extracts was coumaric acid, luteolin, rutinoside, naringenin, and carvacrol. CONCLUSIONS Both extracts reduce lipid absorption; whereas O-E decreases carbohydrate absorption in vivo. Both extracts inhibit lipid peroxidation and scavenging free radicals in vitro.
Collapse
Affiliation(s)
- Claudia I Gamboa-Gómez
- Unidad de Investigación Biomédica del Instituto Mexicano del Seguro Social, Canoas 100, 34067, Durango, Mexico
| | - Mayra Denise-Herrera
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP) Campo Experimental Zacatecas, Km 24.5 Carretera Zacatecas-Fresnillo, 98500, Calera de V.R., Zacatecas, Mexico
| | - Luis E Simental-Mendía
- Unidad de Investigación Biomédica del Instituto Mexicano del Seguro Social, Canoas 100, 34067, Durango, Mexico
| | | | | | - Gerardo Martínez-Aguilar
- Unidad de Investigación Biomédica del Instituto Mexicano del Seguro Social, Canoas 100, 34067, Durango, Mexico
| | - Pablo Alvarado-Aguilar
- Unidad de Investigación Biomédica del Instituto Mexicano del Seguro Social, Canoas 100, 34067, Durango, Mexico
| | - Elisa P Morales-Castro
- Unidad de Investigación Biomédica del Instituto Mexicano del Seguro Social, Canoas 100, 34067, Durango, Mexico
| | - José A Ávila-Soto
- Unidad de Investigación Biomédica del Instituto Mexicano del Seguro Social, Canoas 100, 34067, Durango, Mexico
| | - Juan A Amador-Herrera
- Unidad de Investigación Biomédica del Instituto Mexicano del Seguro Social, Canoas 100, 34067, Durango, Mexico
| | - Fernando Guerrero-Romero
- Unidad de Investigación Biomédica del Instituto Mexicano del Seguro Social, Canoas 100, 34067, Durango, Mexico.
| |
Collapse
|
18
|
Choi J, Yadav S, Wang J, Lorentz BJ, Lourenco JM, Callaway TR, Kim WK. Effects of supplemental tannic acid on growth performance, gut health, microbiota, and fat accumulation and optimal dosages of tannic acid in broilers. Front Physiol 2022; 13:912797. [PMID: 36117708 PMCID: PMC9478478 DOI: 10.3389/fphys.2022.912797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/27/2022] [Indexed: 01/18/2023] Open
Abstract
This study was conducted to investigate the effects of different dosages of tannic acid (TA) on growth performance, nutrient digestibility, gut health, immune system, oxidative status, microbial composition, volatile fatty acids (VFA), bone mineral density, and fat digestion and accumulation in broilers and to find optimal dosages of TA for efficient growth and gut health in broilers. A total of 320 male Cobb500 broilers were randomly distributed to 4 treatments with 8 replicates including 1) tannic acid 0 (TA0): basal diet without TA; 2) tannic acid 0.5 (TA0.5): basal diet with 0.5 g/kg TA; 3) tannic acid 1.5 (TA1.5); and 4) tannic acid 2.5 (TA2.5). Supplemental TA at levels greater than 972 mg/kg tended to reduce BW on D 21 (p = 0.05). The TA2.5 had significantly lower apparent ileal digestibility (AID) of crude protein compared to the TA0 group. The AID of ether extract tended to be reduced by TA at levels greater than 525 mg/kg (p = 0.08). The jejunal lipase activities tended to be reduced by TA at levels less than 595.3 mg/kg (p = 0.09). TA linearly decreased goblet cell density in the crypts of the jejunum (p < 0.05) and reduced mRNA expression of mucin two at levels less than 784.9 mg/kg and zonula occludens two at levels less than 892.6 mg/kg (p < 0.05). The TA0.5 group had higher activities of liver superoxide dismutase compared to the TA0 group (p < 0.05). Bone mineral density and contents tended to be linearly decreased by TA (p = 0.05), and the ratio of lean to fat was linearly decreased (p < 0.01). Total cecal VFA production tended to be linearly reduced by TA at levels greater than 850.9 mg/kg (p = 0.07). Supplemental TA tended to increase the relative abundance of the phylum Bacteroidetes (p = 0.1) and decrease the relative abundance of the phylum Proteobacteria (p = 0.1). The relative abundance of the family Rikenellaceae was the lowest at 500 mg/kg TA, and the relative abundance of the family Bacillaceae was the highest at 1,045 mg/kg TA. Collectively, these results indicate that the optimum level of supplemental TA would range between 500 and 900 mg/kg; this range of TA supplementation would improve gut health without negatively affecting growth performance in broilers under antibiotic-free conditions.
Collapse
Affiliation(s)
- Janghan Choi
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Sudhir Yadav
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Jinquan Wang
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Benjamin J. Lorentz
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Jeferson M. Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| | - Todd R. Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA, United States
- *Correspondence: Woo Kyun Kim,
| |
Collapse
|
19
|
Korkmaz A, Bursal E. Benzothiazole sulfonate derivatives bearing azomethine: Synthesis, characterization, enzyme inhibition, and molecular docking study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132641] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
He HF. Recognition of Gallotannins and the Physiological Activities: From Chemical View. Front Nutr 2022; 9:888892. [PMID: 35719149 PMCID: PMC9198600 DOI: 10.3389/fnut.2022.888892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/15/2022] [Indexed: 11/26/2022] Open
Abstract
Gallotannins, characterized with the glycosidic core and galloyl unit, are seemed as vital components of hydrolyzable tannins. Benefit from the more and more discoveries of their bioactivities and edibility, application of gallotannins in food industry, pharmacy industry, and other fields is increasing. Inheriting previous study achievements, chemical structure of gallotannins was illustrated and degradation as well as synthetic routes to gallotannins were summarized. On this basis, distribution in the nature also including the distinction of gallotannins was discussed. More than that, activities involving in antioxidant, anti-inflammatory, enzyme inhibitions, protein binding, and so on, as well as applications in the field of food industry, biopharmaceutical science, agricultural production, etc., were combed. Finally, improvement of bioavailability, chemical modification of the structure, and accurate determination of new gallotannins were pointed out to be the orientation in the future.
Collapse
Affiliation(s)
- Hua-Feng He
- College of Pharmacy, Jining Medical University, Jining, China
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
21
|
Urbizo-Reyes U, Liceaga AM, Reddivari L, Kim KH, Anderson JM. Enzyme kinetics, molecular docking, and in silico characterization of canary seed (Phalaris canariensis L.) peptides with ACE and pancreatic lipase inhibitory activity. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104892] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
22
|
Zuñiga-Martínez BS, Domínguez-Avila JA, Wall-Medrano A, Ayala-Zavala JF, Hernández-Paredes J, Salazar-López NJ, Villegas-Ochoa MA, González-Aguilar GA. Avocado paste from industrial byproducts as an unconventional source of bioactive compounds: characterization, in vitro digestion and in silico interactions of its main phenolics with cholesterol. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01117-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Wang Y, Wang J, Wang S, Cao Z, Gu D, Wang Y, Tian J, Yang Y. An efficient method based on an inhibitor-enzyme complex to screen an active compound against lipase from Toona sinensis. Food Funct 2021; 12:10806-10812. [PMID: 34617090 DOI: 10.1039/d1fo01542g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As a popular vegetable, Toona sinensis has a wide range of bioactivities including lipase inhibitory activity. In the present study, an efficient and rapid method using a ligand-enzyme complex was established for screening of an active compound against lipase from Toona sinensis. The ethyl acetate extract of Toona sinensis showed good lipase inhibitory activity. After incubation with lipase, one of the compounds in the extract decreased significantly while comparing the HPLC chromatograms before and after incubation, which indicated that it may be the active compound bound to lipase. Then, the compound was isolated using a Sephadex LH-20 column and identified as 1,2,3,4,6-penta-O-galloyl-β-D-glucose. The in vitro activity test showed that the compound had good inhibitory activity against lipase, and its IC50 value was 118.8 ± 1.53 μg mL-1. The kinetic experiments indicated that 1,2,3,4,6-penta-O-galloyl-β-D-glucose inhibited lipase through mixed competitive and non-competitive inhibitions. Further docking results showed that the target compound could bind to the active site of lipase stably through seven hydrogen bonds, resulting in a docking energy of -8.31 kcal mol-1. The proposed method can not only screen the lipase inhibitors from Toona sinensis quickly and effectively, but also provide an effective way for the rapid screening of active substances in natural food and plants.
Collapse
Affiliation(s)
- Yunxiao Wang
- School of Biological Engineering, Dalian Polytechnic University, 1 Qinggongyuan, Dalian 116034, China.
| | - Jifeng Wang
- School of Biological Engineering, Dalian Polytechnic University, 1 Qinggongyuan, Dalian 116034, China.
| | - Shunxin Wang
- School of Biological Engineering, Dalian Polytechnic University, 1 Qinggongyuan, Dalian 116034, China.
| | - Zengyuan Cao
- College of Marine Science and Environment, Dalian Ocean University, 52 Heishijiao Street, Dalian 116023, China.
| | - Dongyu Gu
- College of Marine Science and Environment, Dalian Ocean University, 52 Heishijiao Street, Dalian 116023, China.
| | - Yi Wang
- School of Biological Engineering, Dalian Polytechnic University, 1 Qinggongyuan, Dalian 116034, China.
| | - Jing Tian
- School of Biological Engineering, Dalian Polytechnic University, 1 Qinggongyuan, Dalian 116034, China.
| | - Yi Yang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, 1 Qinggongyuan, Dalian 116034, China.
| |
Collapse
|
24
|
Corella-Salazar DA, Domínguez-Avila JA, Montiel-Herrera M, Astiazaran-Garcia H, Salazar-López NJ, Serafín-García MS, Olivas-Orozco GI, Molina-Corral FJ, González-Aguilar GA. Sub-chronic consumption of a phenolic-rich avocado paste extract induces GLP-1-, leptin-, and adiponectin-mediated satiety in Wistar rats. J Food Biochem 2021; 45:e13957. [PMID: 34605050 DOI: 10.1111/jfbc.13957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/13/2021] [Accepted: 09/22/2021] [Indexed: 11/28/2022]
Abstract
Avocado paste (AP) is a phenolic-rich byproduct of avocado oil extraction. The effects of sub-chronic consumption of diets supplemented with an AP phenolic extract (PE) were analyzed. A standard diet (SD), high-fat diet (HFD), and these supplemented with PE (SD + PE and HFD + PE) were used. Significantly increased satiety was observed in PE-supplemented groups, according to less food consumption (-15% in SD + PE vs. SD, and -11% in HFD + PE vs. HFD), without changes in weight gain or percentage of adipose tissue. PE-supplemented groups had an increased plasma concentration ( + 16% in SD + PE vs. SD, and +26% in HFD + PE vs. HFD) and relative mRNA expression (+74% in SD + PE vs. SD, and +46% in HFD + PE vs. HFD) of GLP-1; an increase in plasma leptin and adiponectin was independent of their mRNA expression. Our results suggest that AP-derived PE exerts a satiety effect in vivo, possibly mediated by GLP-1, leptin, and adiponectin. PRACTICAL APPLICATIONS: Minimizing food waste is a top priority in most of the world, thus, researchers seek methods to reintroduce industrial fruit and vegetable byproducts into the food processing chain. The present work highlights the potential of avocado byproducts as sources of bioactive phenolic compounds, whose sub-chronic consumption (8 weeks) exerts a satiety action in vivo. Avocado farming is resource-intensive, making it of relevance to producers and processing industries to avoid discarding its byproducts as much as possible.
Collapse
Affiliation(s)
| | - J Abraham Domínguez-Avila
- Cátedras CONACYT-Centro de Investigación en Alimentación y Desarrollo A. C., Hermosillo, Sonora, Mexico
| | | | | | - Norma J Salazar-López
- Centro de Investigación en Alimentación y Desarrollo A. C., Hermosillo, Sonora, Mexico.,Facultad de Medicina de Mexicali, Universidad Autónoma de Baja California, Mexicali, Baja California, Mexico
| | | | - Guadalupe Isela Olivas-Orozco
- Coordinación de Tecnología de Alimentos de la Zona Templada, Centro de Investigación en Alimentación y Desarrollo A. C., Cd. Cuauhtémoc, Chihuahua, Mexico
| | - Francisco Javier Molina-Corral
- Coordinación de Tecnología de Alimentos de la Zona Templada, Centro de Investigación en Alimentación y Desarrollo A. C., Cd. Cuauhtémoc, Chihuahua, Mexico
| | | |
Collapse
|
25
|
Brito J, Hlushko H, Abbott A, Aliakseyeu A, Hlushko R, Sukhishvili SA. Integrating Antioxidant Functionality into Polymer Materials: Fundamentals, Strategies, and Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41372-41395. [PMID: 34448558 DOI: 10.1021/acsami.1c08061] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
While antioxidants are widely known as natural components of healthy food and drinks or as additives to commercial polymer materials to prevent their degradation, recent years have seen increasing interest in enhancing the antioxidant functionality of newly developed polymer materials and coatings. This paper provides a critical overview and comparative analysis of multiple ways of integrating antioxidants within diverse polymer materials, including bulk films, electrospun fibers, and self-assembled coatings. Polyphenolic antioxidant moieties with varied molecular architecture are in the focus of this Review, because of their abundance, nontoxic nature, and potent antioxidant activity. Polymer materials with integrated polyphenolic functionality offer opportunities and challenges that span from the fundamentals to their applications. In addition to the traditional blending of antioxidants with polymer materials, developments in surface grafting and assembly via noncovalent interaction for controlling localization versus migration of antioxidant molecules are discussed. The versatile chemistry of polyphenolic antioxidants offers numerous possibilities for programmed inclusion of these molecules in polymer materials using not only van der Waals interactions or covalent tethering to polymers, but also via their hydrogen-bonding assembly with neutral molecules. An understanding and rational use of interactions of polyphenol moieties with surrounding molecules can enable precise control of concentration and retention versus delivery rate of antioxidants in polymer materials that are critical in food packaging, biomedical, and environmental applications.
Collapse
Affiliation(s)
- Jordan Brito
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Hanna Hlushko
- Notre Dame Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Ashleigh Abbott
- Department of Materials Science & Engineering, Missouri University of Science & Technology, Rolla, Missouri 65409, United States
| | - Aliaksei Aliakseyeu
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Raman Hlushko
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Svetlana A Sukhishvili
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
26
|
Anti-obesity, antioxidant and in silico evaluation of Justicia carnea bioactive compounds as potential inhibitors of an enzyme linked with obesity: Insights from kinetics, semi-empirical quantum mechanics and molecular docking analysis. Biophys Chem 2021; 274:106607. [PMID: 33957576 DOI: 10.1016/j.bpc.2021.106607] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/18/2021] [Accepted: 04/25/2021] [Indexed: 11/23/2022]
Abstract
Obesity is a global health problem characterized by excessive fat deposition in adipose tissues and can be managed by targeting pancreatic lipase (PL) activity. In the present study, we investigated the in vitro antioxidant and anti-obesity potentials of methanolic leaf extract of Justicia carnea(MEJC) using lipase inhibition kinetics model. In silico evaluations of MEJC bioactive compounds as potential drug-like agents and inhibitors of PL were also investigated using SwissADME prediction tool, semi-empirical quantum mechanics(SQM), molecular electrostatic potential(MEP) and molecular docking analysis. Gas chromatography-mass spectrometry(GC-MS) revealed presence of campesterol, stigmasterol, beta-amyrin etc. MEJC scavenged reactive species and inhibited PL activity via a mixed inhibition pattern (Ki = 107.69 μg/mL; Kii = 398.00 μg/mL) with IC50 > orlistat's IC50. Molecular docking of GC-MS identified compounds with porcine PL showed compounds 8,10,12 and 14 having high PL-binding affinity and similar binding pose with orlistat. Hydrophobic interactions and van der Waals forces were predominantly involved in the ligands' interactions with some key catalytic site amino acid residues (Ser-153,His-264). Compounds 10,12,13 and 14 indicated high drug-likeness, bioavailability, electronegativity, ELUMO-EHOMO energy gaps and MEP. Our findings show that MEJC is a rich natural source of antioxidant and anti-obesity agents which could be optimized for development of new anti-obesity drugs.
Collapse
|
27
|
Alves Castilho P, Bracht L, Barros L, Albuquerque BR, Dias MI, Ferreira ICFR, Comar JF, Barlati Vieira da Silva T, Peralta RM, Sá-Nakanishi ABD, Bracht A. Effects of a Myrciaria jaboticaba peel extract on starch and triglyceride absorption and the role of cyanidin-3-O-glucoside. Food Funct 2021; 12:2644-2659. [PMID: 33645616 DOI: 10.1039/d0fo02927k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The purpose of this study was to perform a parallel and comparative investigation of the effects of a Myrciaria jaboticaba (common name jabuticaba) peel extract and of its constituent cyanidin-3-O-glucoside on the overall process of starch and triglyceride intestinal absorption. The peel extract inhibited both the porcine pancreactic α-amylase and the pancreatic lipase but was 13.6 times more potent on the latter (IC50 values of 1963 and 143.9 μg mL-1, respectively). Cyanidin-3-O-glucoside did not contribute significantly to these inhibitions. The jabuticaba peel extract inhibited starch absorption in mice at doses that were compatible with its inhibitory action on the α-amylase. No inhibition of starch absorption was found with cyanidin-3-O-glucoside doses compatible with its content in the extract. The extract also inhibited triglyceride absorption, but at doses that were considerably smaller than those predicted by its strength in inhibiting the pancreatic lipase (ID50 = 3.65 mg kg-1). In this case, cyanidin-3-O-glucoside was also strongly inhibitory, with 72% inhibition at the dose of 2 mg kg-1. When oleate + glycerol were given to mice, both the peel extract and cyanidin-3-O-glucoside strongly inhibited the appearance of triglycerides in the plasma. The main mechanism seems, thus, not to be the lipase inhibition but rather the inhibition of one or more steps (e.g., transport) in the events that lead to the transformation of free fatty acids in the intestinal tract into triglycerides. Due to the low active doses, the jabuticaba peel extract presents many favourable perspectives as an inhibitor of fat absorption and cyanidin-3-O-glucoside seems to play a decisive role.
Collapse
Affiliation(s)
- Pamela Alves Castilho
- Post-Graduate Program in Food Sciences, State University of Maringa, 87020-900 Maringá, Paraná, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Phenolic compounds from ‘Hass’ avocado peel are retained in the indigestible fraction after an in vitro gastrointestinal digestion. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-020-00794-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|