1
|
Zhou M, Shen Z. Advanced progress in the genetic modification of the oncolytic HSV-1 virus. Front Oncol 2025; 14:1525940. [PMID: 39906660 PMCID: PMC11790444 DOI: 10.3389/fonc.2024.1525940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 12/20/2024] [Indexed: 02/06/2025] Open
Abstract
The use of replication-competent viruses for selective tumor oncolysis while sparing normal cells marks a significant advancement in cancer treatment. HSV-1 presents several advantages that position it as a leading candidate for oncolytic virotherapies. Its large genome can accommodate insertions over 30 kb or deletions of multiple virulence genes without compromising lytic replication in tumor cells. Additionally, anti-herpes drugs can inhibit its replication during accidental infections. Importantly, HSV-1 does not integrate into the host genome and cause mutations. The HSV-1 genome can be modified through genetic engineering in two main ways: first, by reducing infectivity and toxicity to normal cells via limited replication and assembly, altered protein-virus receptor binding, and minimized immune evasion; second, by enhancing anticancer activity through disruption of tumor cell metabolism, induction of autophagy, improved immune recognition, and modification of the tumor microenvironment. In this mini-review, we systematically examine genetic modification strategies for oncolytic HSV-1 while highlighting advancements from these modifications. Certain genetic alterations have shown efficacy in improving clinical outcomes for HSV-1-based therapies. These modifications include silencing specific genes and inserting exogenous genes into the HSV-1 genome. The insertion of exogenous genes has increasingly been used to develop new oncolytic HSV-1 variants. Finally, we discuss limitations associated with oncolytic virotherapy at the conclusion of this review. As more clinical trials explore newly engineered therapies, they are likely to yield breakthroughs and promote broader adoption for cancer treatment.
Collapse
Affiliation(s)
- Mi Zhou
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenyu Shen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Wu E, Wu C, Jia K, Zhou S, Sun L. HSPA8 inhibitors augment cancer chemotherapeutic effectiveness via potentiating necroptosis. Mol Biol Cell 2024; 35:ar108. [PMID: 38959101 PMCID: PMC11321035 DOI: 10.1091/mbc.e24-04-0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024] Open
Abstract
Our recent work has uncovered a novel function of HSPA8 as an amyloidase, capable of dismantling the RHIM-containing protein fibrils to suppress necroptosis. However, the impact of HSPA8 inhibitors on cancer regression via necroptosis remains unexplored. In this study, we conducted a comprehensive investigation to assess the potential of HSPA8 inhibitors in enhancing necroptosis both in vitro and in vivo. Our findings indicate that pharmacologic inhibition of HSPA8, achieved either through VER (VER-155008) targeting the nucleotide binding domain or pifithrin-μ targeting the substrate binding domain of HSPA8, significantly potentiates necroptosis induced by diverse treatments in cellular assays. These inhibitors effectively disrupt the binding of HSPA8 to the RHIM protein, impeding its regulatory function on RHIM amyloid formation. Importantly, HSPA8 inhibitors significantly enhanced cancer cell sensitivity to microtubule-targeting agents (MTAs) in vitro, while reversing chemoresistance and facilitating tumor regression by augmenting necroptosis in vivo. Our findings suggest a promising therapeutic approach to cancer through necroptosis modulation via HSPA8 targeting, particularly in combination with MTA drugs for enhanced treatment efficacy.
Collapse
Affiliation(s)
- Erpeng Wu
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Chenlu Wu
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Kelong Jia
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Shen’ao Zhou
- Celliver Biotechnology Inc., Shanghai 200030, China
| | - Liming Sun
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
3
|
Xie F, Wu D, Huang J, Liu X, Shen Y, Huang J, Su Z, Li J. ZBP1 condensate formation synergizes Z-NAs recognition and signal transduction. Cell Death Dis 2024; 15:487. [PMID: 38982083 PMCID: PMC11233663 DOI: 10.1038/s41419-024-06889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
Z-DNA binding protein 1 (ZBP1) is a crucial player in the intracellular recognition of Z-form nucleic acids (Z-NAs) through its Zαβ domain, initiating downstream interactions with RIPK1 and RIPK3 via RHIM domains. This engagement leads to the assembly of PANoptosomes, ultimately inducing programmed cell death to curb pathogen dissemination. How Zαβ and RHIM domain cooperate to trigger Z-NAs recognition and signal transduction remains unclear. Here, we show that ZBP1 condensate formation facilitates Z-NAs binding and antiviral signal transduction. The ZBP1 Zαβ dimerizes in a concentration-dependent manner, forming characteristic condensates in solutions evidenced by DLS and SAXS methods. ZBP1 exhibits a binding preference for 10-bp length CG (10CG) DNA and Z-RNA ligand, which in turn enhanced Zαβ dimerization, expediting the formation of droplet condensates in vitro and amyloid-like puncta in cells. Subsequent investigations reveal that Zαβ could form condensates with liquid-liquid phase separation property upon HSV and IAV infections, while full-length ZBP1 forms amyloid-like puncta with or without infections. Furthermore, ZBP1 RHIM domains show typical amyloidal fibril characterizations and cross-polymerize with RIPK1 depending on the core motif of 206IQIG209, while mutated ZBP1 could impede necroptosis and antiviral immunity in HT-29 cells. Thus, ZBP1 condensate formation facilitates the recognition of viral Z-NAs and activation of downstream signal transduction via synergic action of different domains, revealing its elaborated mechanism in innate immunity.
Collapse
Affiliation(s)
- Feiyan Xie
- Department of Neurology, Huashan Hospital and School of Life Sciences, State Key Laboratory of Genetic Engineering, Fudan University, 200438, Shanghai, China
| | - Di Wu
- Department of Neurology, Huashan Hospital and School of Life Sciences, State Key Laboratory of Genetic Engineering, Fudan University, 200438, Shanghai, China
| | - Jing Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, 410083, Hunan, China
| | - Xuehe Liu
- Department of Neurology, Huashan Hospital and School of Life Sciences, State Key Laboratory of Genetic Engineering, Fudan University, 200438, Shanghai, China
| | - Yanfang Shen
- Department of Neurology, Huashan Hospital and School of Life Sciences, State Key Laboratory of Genetic Engineering, Fudan University, 200438, Shanghai, China
| | - Jinqing Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhipeng Su
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Jixi Li
- Department of Neurology, Huashan Hospital and School of Life Sciences, State Key Laboratory of Genetic Engineering, Fudan University, 200438, Shanghai, China.
| |
Collapse
|
4
|
Zhang Z, Yang N, Lu H, Chen Y, Xu L, Wang Z, Lu Q, Zhong K, Zhu Z, Wang G, Li H, Zheng M, Zhang W, Yang H, Peng X, Zhou L, Tong A. Improved antitumor effects elicited by an oncolytic HSV-1 expressing a novel B7H3nb/CD3 BsAb. Cancer Lett 2024; 588:216760. [PMID: 38428724 DOI: 10.1016/j.canlet.2024.216760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/06/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
Oncolytic viruses have emerged as a promising modality for cancer treatment due to their unique abilities to directly destroy tumor cells and modulate the tumor microenvironment. Bispecific T-cell engagers (BsAbs) have been developed to activate and redirect cytotoxic T lymphocytes, enhancing the antitumor response. To take advantage of the specific infection capacity and carrying ability of exogenous genes, we generated a recombinant herpes simplex virus type 1 (HSV-1), HSV-1dko-B7H3nb/CD3 or HSV-1dko-B7H3nb/mCD3, carrying a B7H3nb/CD3 or B7H3nb/mCD3 BsAb that replicates and expresses BsAb in tumor cells in vitro and in vivo. The new generation of oncolytic viruses has been genetically modified using CRISPR/Cas9 technology and the cre-loxp system to increase the efficiency of HSV genome editing. Additionally, we used two fully immunocompetent models (GL261 and MC38) to assess the antitumor effect of HSV-1dko-B7H3nb/mCD3. Compared with the HSV-1dko control virus, HSV-1dko-B7H3nb/mCD3 induced enhanced anti-tumor immune responses and T-cell infiltration in both GL261 and MC38 models, resulting in improved treatment efficacy in the latter. Furthermore, flow cytometry analysis of the tumor microenvironment confirmed an increase in NK cells and effector CD8+ T cells, and a decrease in immunosuppressive cells, including FOXP3+ regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), and CD206+ macrophages (M2). Overall, our study identified a novel camel B7H3 nanobody and described the genetic modification of the HSV-1 genome using CRISPR/Cas9 technology and the cre-loxp system. Our findings indicate that expressing B7H3nb/CD3 BsAb could improve the antitumor effects of HSV-1 based oncolytic virus.
Collapse
Affiliation(s)
- Zongliang Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu Sichuan Province, 610041, China
| | - Nian Yang
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu Sichuan Province, 610041, China
| | - Huaqing Lu
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu Sichuan Province, 610041, China
| | - Yongdong Chen
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu Sichuan Province, 610041, China
| | - Long Xu
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu Sichuan Province, 610041, China
| | - Zeng Wang
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu Sichuan Province, 610041, China
| | - Qizhong Lu
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu Sichuan Province, 610041, China
| | - Kunhong Zhong
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu Sichuan Province, 610041, China
| | - Zhixiong Zhu
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu Sichuan Province, 610041, China
| | - Guoqing Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, West China Medical School, Chengdu, Sichuan, 610041, China
| | - Hexian Li
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu Sichuan Province, 610041, China
| | - Meijun Zheng
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Weiwei Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu Sichuan Province, 610041, China
| | - Hui Yang
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xingchen Peng
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu Sichuan Province, 610041, China.
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Neurosurgery, Fifth People's Hospital of Ningxia Hui Autonomous Region, Shizuishan, Ningxia, 753000, China; Department of Neurosurgery, Mianyang Central Hospital, Mianyang, Sichuan, 621000, China.
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu Sichuan Province, 610041, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China.
| |
Collapse
|
5
|
Gondelaud F, Lozach PY, Longhi S. Viral amyloids: New opportunities for antiviral therapeutic strategies. Curr Opin Struct Biol 2023; 83:102706. [PMID: 37783197 DOI: 10.1016/j.sbi.2023.102706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 10/04/2023]
Abstract
Amyloidoses are an array of diseases associated with the aggregation of proteins into fibrils. While it was previously thought that amyloid fibril-forming proteins are exclusively host-cell encoded, recent studies have revealed that pathogenic viruses can form amyloid-like fibrils too. Intriguingly, viral amyloids are often composed of virulence factors, known for their contribution to cell death and disease progression. In this review, we survey the literature about viral proteins capable of forming amyloid-like fibrils. The molecular and cellular mechanisms underlying the formation of viral amyloid-like aggregates are explored. In addition, we discuss the functional implications for viral amplification and the complex interplay between viral amyloids, biological functions, virulence, and virus-induced pathologies.
Collapse
Affiliation(s)
- Frank Gondelaud
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Aix Marseille University and Centre National de la Recherche Scientifique (CNRS), 163 Avenue de Luminy, Case 932, 13288 Marseille, France
| | - Pierre-Yves Lozach
- Université Claude Bernard Lyon 1, INRAE, EPHE, IVPC UMR754, Team iWays, 69007, Lyon, France. https://twitter.com/pylozach
| | - Sonia Longhi
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Aix Marseille University and Centre National de la Recherche Scientifique (CNRS), 163 Avenue de Luminy, Case 932, 13288 Marseille, France.
| |
Collapse
|
6
|
Fulop T, Ramassamy C, Lévesque S, Frost EH, Laurent B, Lacombe G, Khalil A, Larbi A, Hirokawa K, Desroches M, Rodrigues S, Bourgade K, Cohen AA, Witkowski JM. Viruses - a major cause of amyloid deposition in the brain. Expert Rev Neurother 2023; 23:775-790. [PMID: 37551672 DOI: 10.1080/14737175.2023.2244162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
INTRODUCTION Clinically, Alzheimer's disease (AD) is a syndrome with a spectrum of various cognitive disorders. There is a complete dissociation between the pathology and the clinical presentation. Therefore, we need a disruptive new approach to be able to prevent and treat AD. AREAS COVERED In this review, the authors extensively discuss the evidence why the amyloid beta is not the pathological cause of AD which makes therefore the amyloid hypothesis not sustainable anymore. They review the experimental evidence underlying the role of microbes, especially that of viruses, as a trigger/cause for the production of amyloid beta leading to the establishment of a chronic neuroinflammation as the mediator manifesting decades later by AD as a clinical spectrum. In this context, the emergence and consequences of the infection/antimicrobial protection hypothesis are described. The epidemiological and clinical data supporting this hypothesis are also analyzed. EXPERT OPINION For decades, we have known that viruses are involved in the pathogenesis of AD. This discovery was ignored and discarded for a long time. Now we should accept this fact, which is not a hypothesis anymore, and stimulate the research community to come up with new ideas, new treatments, and new concepts.
Collapse
Affiliation(s)
- Tamas Fulop
- Research Center on Aging, Centre Intégré Universitaire de Santé Et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
- Department of Medicine, Division of Geriatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Simon Lévesque
- CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada
- Département de Microbiologie Et Infectiologie, Faculté de Médecine Et des Sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Eric H Frost
- Département de Microbiologie Et Infectiologie, Faculté de Médecine Et des Sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Benoit Laurent
- Research Center on Aging, Centre Intégré Universitaire de Santé Et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Guy Lacombe
- Research Center on Aging, Centre Intégré Universitaire de Santé Et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
- Department of Medicine, Division of Geriatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Abedelouahed Khalil
- Research Center on Aging, Centre Intégré Universitaire de Santé Et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
- Department of Medicine, Division of Geriatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Anis Larbi
- Department of Medicine, Division of Geriatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Katsuiku Hirokawa
- Department of Pathology, Institute of Health and Life Science, Tokyo Medical Dental University, Tokyo and Nito-Memory Nakanosogo Hospital, Tokyo, Japan
| | - Mathieu Desroches
- MathNeuro Team, Inria Sophia Antipolis Méditerranée, Biot, France
- Université Côte d'Azur, Nice, France
| | - Serafim Rodrigues
- Ikerbasque, BCAM, the Basque Foundation for Science and BCAM - The Basque Center for Applied Mathematics, Bilbao, Spain
| | - Karine Bourgade
- Research Center on Aging, Centre Intégré Universitaire de Santé Et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Alan A Cohen
- Department of Environmental Health Sciences, Butler Columbia Aging Center, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
7
|
Buchanan JA, Varghese NR, Johnston CL, Sunde M. Functional Amyloids: Where Supramolecular Amyloid Assembly Controls Biological Activity or Generates New Functionality. J Mol Biol 2023; 435:167919. [PMID: 37330295 DOI: 10.1016/j.jmb.2022.167919] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 06/19/2023]
Abstract
Functional amyloids are a rapidly expanding class of fibrillar protein structures, with a core cross-β scaffold, where novel and advantageous biological function is generated by the assembly of the amyloid. The growing number of amyloid structures determined at high resolution reveal how this supramolecular template both accommodates a wide variety of amino acid sequences and also imposes selectivity on the assembly process. The amyloid fibril can no longer be considered a generic aggregate, even when associated with disease and loss of function. In functional amyloids the polymeric β-sheet rich structure provides multiple different examples of unique control mechanisms and structures that are finely tuned to deliver assembly or disassembly in response to physiological or environmental cues. Here we review the range of mechanisms at play in natural, functional amyloids, where tight control of amyloidogenicity is achieved by environmental triggers of conformational change, proteolytic generation of amyloidogenic fragments, or heteromeric seeding and amyloid fibril stability. In the amyloid fibril form, activity can be regulated by pH, ligand binding and higher order protofilament or fibril architectures that impact the arrangement of associated domains and amyloid stability. The growing understanding of the molecular basis for the control of structure and functionality delivered by natural amyloids in nearly all life forms should inform the development of therapies for amyloid-associated diseases and guide the design of innovative biomaterials.
Collapse
Affiliation(s)
- Jessica A Buchanan
- School of Medical Sciences and Sydney Nano, The University of Sydney, NSW 2006, Australia.
| | - Nikhil R Varghese
- School of Medical Sciences and Sydney Nano, The University of Sydney, NSW 2006, Australia.
| | - Caitlin L Johnston
- School of Medical Sciences and Sydney Nano, The University of Sydney, NSW 2006, Australia.
| | - Margaret Sunde
- School of Medical Sciences and Sydney Nano, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
8
|
Tayeb-Fligelman E, Bowler JT, Tai CE, Sawaya MR, Jiang YX, Garcia G, Griner SL, Cheng X, Salwinski L, Lutter L, Seidler PM, Lu J, Rosenberg GM, Hou K, Abskharon R, Pan H, Zee CT, Boyer DR, Li Y, Anderson DH, Murray KA, Falcon G, Cascio D, Saelices L, Damoiseaux R, Arumugaswami V, Guo F, Eisenberg DS. Low complexity domains of the nucleocapsid protein of SARS-CoV-2 form amyloid fibrils. Nat Commun 2023; 14:2379. [PMID: 37185252 PMCID: PMC10127185 DOI: 10.1038/s41467-023-37865-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
The self-assembly of the Nucleocapsid protein (NCAP) of SARS-CoV-2 is crucial for its function. Computational analysis of the amino acid sequence of NCAP reveals low-complexity domains (LCDs) akin to LCDs in other proteins known to self-assemble as phase separation droplets and amyloid fibrils. Previous reports have described NCAP's propensity to phase-separate. Here we show that the central LCD of NCAP is capable of both, phase separation and amyloid formation. Within this central LCD we identified three adhesive segments and determined the atomic structure of the fibrils formed by each. Those structures guided the design of G12, a peptide that interferes with the self-assembly of NCAP and demonstrates antiviral activity in SARS-CoV-2 infected cells. Our work, therefore, demonstrates the amyloid form of the central LCD of NCAP and suggests that amyloidogenic segments of NCAP could be targeted for drug development.
Collapse
Affiliation(s)
- Einav Tayeb-Fligelman
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
- Howard Hughes Medical Institute, Los Angeles, CA, 90095, USA
| | - Jeannette T Bowler
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
- Howard Hughes Medical Institute, Los Angeles, CA, 90095, USA
| | - Christen E Tai
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
| | - Michael R Sawaya
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
- Howard Hughes Medical Institute, Los Angeles, CA, 90095, USA
- UCLA-DOE Institute of Genomics and Proteomics, UCLA, Los Angeles, CA, 90095, USA
| | - Yi Xiao Jiang
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
- Howard Hughes Medical Institute, Los Angeles, CA, 90095, USA
| | - Gustavo Garcia
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, 90095, USA
| | - Sarah L Griner
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
- Howard Hughes Medical Institute, Los Angeles, CA, 90095, USA
| | - Xinyi Cheng
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
- Howard Hughes Medical Institute, Los Angeles, CA, 90095, USA
| | - Lukasz Salwinski
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- UCLA-DOE Institute of Genomics and Proteomics, UCLA, Los Angeles, CA, 90095, USA
| | - Liisa Lutter
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
- Howard Hughes Medical Institute, Los Angeles, CA, 90095, USA
| | - Paul M Seidler
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California School of Pharmacy, Los Angeles, CA, 90089-9121, USA
| | - Jiahui Lu
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
- Howard Hughes Medical Institute, Los Angeles, CA, 90095, USA
| | - Gregory M Rosenberg
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
- Howard Hughes Medical Institute, Los Angeles, CA, 90095, USA
| | - Ke Hou
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
- Howard Hughes Medical Institute, Los Angeles, CA, 90095, USA
| | - Romany Abskharon
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
- Howard Hughes Medical Institute, Los Angeles, CA, 90095, USA
| | - Hope Pan
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
- Howard Hughes Medical Institute, Los Angeles, CA, 90095, USA
| | - Chih-Te Zee
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
| | - David R Boyer
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
- Howard Hughes Medical Institute, Los Angeles, CA, 90095, USA
| | - Yan Li
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
| | - Daniel H Anderson
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
- Howard Hughes Medical Institute, Los Angeles, CA, 90095, USA
| | - Kevin A Murray
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
- Howard Hughes Medical Institute, Los Angeles, CA, 90095, USA
| | - Genesis Falcon
- UCLA-DOE Institute of Genomics and Proteomics, UCLA, Los Angeles, CA, 90095, USA
| | - Duilio Cascio
- UCLA-DOE Institute of Genomics and Proteomics, UCLA, Los Angeles, CA, 90095, USA
| | - Lorena Saelices
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- Center for Alzheimer's and Neurodegenerative Diseases, Department of Biophysics, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Robert Damoiseaux
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, 90095, USA
- Department of Bioengineering, UCLA, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, 90095, USA
| | - Vaithilingaraja Arumugaswami
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, 90095, USA
| | - Feng Guo
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, 90095, USA
| | - David S Eisenberg
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA.
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA.
- Howard Hughes Medical Institute, Los Angeles, CA, 90095, USA.
- UCLA-DOE Institute of Genomics and Proteomics, UCLA, Los Angeles, CA, 90095, USA.
- California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
9
|
Pham CLL, Titaux-Delgado GA, Varghese NR, Polonio P, Wilde KL, Sunde M, Mompeán M. NMR characterization of an assembling RHIM (RIP homotypic interaction motif) amyloid reveals a cryptic region for self-recognition. J Biol Chem 2023; 299:104568. [PMID: 36870681 PMCID: PMC10070927 DOI: 10.1016/j.jbc.2023.104568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The RIP homotypic interaction motif (RHIM) is an essential protein motif in inflammatory signaling and certain cell death pathways. RHIM signaling occurs following the assembly of functional amyloids, and while the structural biology of such higher-order RHIM complexes has started to emerge, the conformations and dynamics of nonassembled RHIMs remain unknown. Here, using solution NMR spectroscopy, we report the characterization of the monomeric form of the RHIM in receptor-interacting protein kinase 3 (RIPK3), a fundamental protein in human immunity. Our results establish that the RHIM of RIPK3 is an intrinsically disordered protein motif, contrary to prediction, and that exchange dynamics between free monomers and amyloid-bound RIPK3 monomers involve a 20-residue stretch outside the RHIM that is not incorporated within the structured cores of the RIPK3 assemblies determined by cryo-EM or solid-state NMR. Thus, our findings expand on the structural characterization of RHIM-containing proteins, specifically highlighting conformational dynamics involved in assembly processes.
Collapse
Affiliation(s)
- Chi L L Pham
- School of Medical Sciences, Sydney Nano and Sydney Infectious Diseases, University of Sydney, Sydney, New South Wales, Australia
| | | | - Nikhil R Varghese
- School of Medical Sciences, Sydney Nano and Sydney Infectious Diseases, University of Sydney, Sydney, New South Wales, Australia
| | - Paula Polonio
- "Rocasolano" Institute of Physical Chemistry, Spanish National Research Council, Madrid, Spain
| | - Karyn L Wilde
- National Deuteration Facility Australian Nuclear Science and Technology Organization (ANSTO), Sydney, New South Wales, Australia
| | - Margaret Sunde
- School of Medical Sciences, Sydney Nano and Sydney Infectious Diseases, University of Sydney, Sydney, New South Wales, Australia
| | - Miguel Mompeán
- "Rocasolano" Institute of Physical Chemistry, Spanish National Research Council, Madrid, Spain.
| |
Collapse
|
10
|
Hao Y, Yang B, Yang J, Shi X, Yang X, Zhang D, Zhao D, Yan W, Chen L, Zheng H, Zhang K, Liu X. ZBP1: A Powerful Innate Immune Sensor and Double-Edged Sword in Host Immunity. Int J Mol Sci 2022; 23:ijms231810224. [PMID: 36142136 PMCID: PMC9499459 DOI: 10.3390/ijms231810224] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Z-conformation nucleic acid binding protein 1 (ZBP1), a powerful innate immune sensor, has been identified as the important signaling initiation factor in innate immune response and the multiple inflammatory cell death known as PANoptosis. The initiation of ZBP1 signaling requires recognition of left-handed double-helix Z-nucleic acid (includes Z-DNA and Z-RNA) and subsequent signaling transduction depends on the interaction between ZBP1 and its adapter proteins, such as TANK-binding kinase 1 (TBK1), interferon regulatory factor 3 (IRF3), receptor-interacting serine/threonine-protein kinase 1 (RIPK1), and RIPK3. ZBP1 activated innate immunity, including type-I interferon (IFN-I) response and NF-κB signaling, constitutes an important line of defense against pathogenic infection. In addition, ZBP1-mediated PANoptosis is a double-edged sword in anti-infection, auto-inflammatory diseases, and tumor immunity. ZBP1-mediated PANoptosis is beneficial for eliminating infected cells and tumor cells, but abnormal or excessive PANoptosis can lead to a strong inflammatory response that is harmful to the host. Thus, pathogens and host have each developed multiplex tactics targeting ZBP1 signaling to maintain strong virulence or immune homeostasis. In this paper, we reviewed the mechanisms of ZBP1 signaling, the effects of ZBP1 signaling on host immunity and pathogen infection, and various antagonistic strategies of host and pathogen against ZBP1. We also discuss existent gaps regarding ZBP1 signaling and forecast potential directions for future research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Haixue Zheng
- Correspondence: (H.Z.); (K.Z.); Tel.: +86-15214078335 (K.Z.)
| | - Keshan Zhang
- Correspondence: (H.Z.); (K.Z.); Tel.: +86-15214078335 (K.Z.)
| | | |
Collapse
|
11
|
The role of RHIM in necroptosis. Biochem Soc Trans 2022; 50:1197-1205. [PMID: 36040212 PMCID: PMC9444067 DOI: 10.1042/bst20220535] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022]
Abstract
The RIP homotypic interaction motif (RHIM) is a conserved protein domain that is approximately 18–22 amino acids in length. In humans, four proteins carrying RHIM domains have been identified: receptor-interacting serine/threonine protein kinase (RIPK) 1, RIPK3, Z-DNA-binding protein 1 (ZBP1), and TIR domain-containing adapter-inducing IFN-β (TRIF), which are all major players in necroptosis, a distinct form of regulated cell death. Necroptosis is mostly presumed to be a fail-safe form of cell death, occurring in cells in which apoptosis is compromised. Upon activation, RIPK1, ZBP1, and TRIF each hetero-oligomerize with RIPK3 and induce the assembly of an amyloid-like structure of RIPK3 homo-oligomers. These act as docking stations for the recruitment of the pseudokinase mixed-lineage kinase domain like (MLKL), the pore-forming executioner of necroptosis. As RHIM domain interactions are a vital component of the signaling cascade and can also be involved in apoptosis and pyroptosis activation, it is unsurprising that viral and bacterial pathogens have developed means of disrupting RHIM-mediated signaling to ensure survival. Moreover, as these mechanisms play an essential part of regulated cell death signaling, they have received much attention in recent years. Herein, we present the latest insights into the supramolecular structure of interacting RHIM proteins and their distinct signaling cascades in inflammation and infection. Their uncovering will ultimately contribute to the development of new therapeutic strategies in the regulation of lytic cell death.
Collapse
|
12
|
Verburg SG, Lelievre RM, Westerveld MJ, Inkol JM, Sun YL, Workenhe ST. Viral-mediated activation and inhibition of programmed cell death. PLoS Pathog 2022; 18:e1010718. [PMID: 35951530 PMCID: PMC9371342 DOI: 10.1371/journal.ppat.1010718] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Viruses are ubiquitous intracellular genetic parasites that heavily rely on the infected cell to complete their replication life cycle. This dependency on the host machinery forces viruses to modulate a variety of cellular processes including cell survival and cell death. Viruses are known to activate and block almost all types of programmed cell death (PCD) known so far. Modulating PCD in infected hosts has a variety of direct and indirect effects on viral pathogenesis and antiviral immunity. The mechanisms leading to apoptosis following virus infection is widely studied, but several modalities of PCD, including necroptosis, pyroptosis, ferroptosis, and paraptosis, are relatively understudied. In this review, we cover the mechanisms by which viruses activate and inhibit PCDs and suggest perspectives on how these affect viral pathogenesis and immunity.
Collapse
Affiliation(s)
- Shayla Grace Verburg
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | | | | | - Jordon Marcus Inkol
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Yi Lin Sun
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Samuel Tekeste Workenhe
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| |
Collapse
|
13
|
Herbert A, Poptsova M. Z-RNA and the Flipside of the SARS Nsp13 Helicase: Is There a Role for Flipons in Coronavirus-Induced Pathology? Front Immunol 2022; 13:912717. [PMID: 35784331 PMCID: PMC9247175 DOI: 10.3389/fimmu.2022.912717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
We present evidence suggesting that the severe acute respiratory syndrome (SARS) coronavirus non-structural protein 13 (Nsp13) modulates the Z-RNA dependent regulated cell death pathways . We show that Z-prone sequences [called flipons] exist in coronavirus and provide a signature (Z-sig) that enables identification of the animal viruses from which the human pathogens arose. We also identify a potential RIP Homology Interaction Motif (RHIM) in the helicase Nsp13 that resembles those present in proteins that initiate Z-RNA-dependent cell death through interactions with the Z-RNA sensor protein ZBP1. These two observations allow us to suggest a model in which Nsp13 down regulates Z-RNA activated innate immunity by two distinct mechanisms. The first involves a novel ATP-independent Z-flipon helicase (flipase) activity in Nsp13 that differs from that of canonical A-RNA helicases. This flipase prevents formation of Z-RNAs that would otherwise activate cell death pathways. The second mechanism likely inhibits the interactions between ZBP1 and the Receptor Interacting Proteins Kinases RIPK1 and RIPK3 by targeting their RHIM domains. Together the described Nsp13 RHIM and flipase activities have the potential to alter the host response to coronaviruses and impact the design of drugs targeting the Nsp13 protein. The Z-sig and RHIM domains may provide a way of identifying previously uncharacterized viruses that are potentially pathogenic for humans.
Collapse
Affiliation(s)
- Alan Herbert
- InsideOutBio, Discovery, Charlestown, MA, United States
- Laboratory of Bioinformatics, Faculty of Computer Science, National Research University Higher School of Economics, Moscow, Russia
- *Correspondence: Alan Herbert,
| | - Maria Poptsova
- Laboratory of Bioinformatics, Faculty of Computer Science, National Research University Higher School of Economics, Moscow, Russia
| |
Collapse
|
14
|
The RHIM of the Immune Adaptor Protein TRIF Forms Hybrid Amyloids with Other Necroptosis-Associated Proteins. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113382. [PMID: 35684320 PMCID: PMC9182532 DOI: 10.3390/molecules27113382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 12/19/2022]
Abstract
TIR-domain-containing adapter-inducing interferon-β (TRIF) is an innate immune protein that serves as an adaptor for multiple cellular signalling outcomes in the context of infection. TRIF is activated via ligation of Toll-like receptors 3 and 4. One outcome of TRIF-directed signalling is the activation of the programmed cell death pathway necroptosis, which is governed by interactions between proteins that contain a RIP Homotypic Interaction Motif (RHIM). TRIF contains a RHIM sequence and can interact with receptor interacting protein kinases 1 (RIPK1) and 3 (RIPK3) to initiate necroptosis. Here, we demonstrate that the RHIM of TRIF is amyloidogenic and supports the formation of homomeric TRIF-containing fibrils. We show that the core tetrad sequence within the RHIM governs the supramolecular organisation of TRIF amyloid assemblies, although the stable amyloid core of TRIF amyloid fibrils comprises a much larger region than the conserved RHIM only. We provide evidence that RHIMs of TRIF, RIPK1 and RIPK3 interact directly to form heteromeric structures and that these TRIF-containing hetero-assemblies display altered and emergent properties that likely underlie necroptosis signalling in response to Toll-like receptor activation.
Collapse
|
15
|
Pesce G, Gondelaud F, Ptchelkine D, Nilsson JF, Bignon C, Cartalas J, Fourquet P, Longhi S. Experimental Evidence of Intrinsic Disorder and Amyloid Formation by the Henipavirus W Proteins. Int J Mol Sci 2022; 23:ijms23020923. [PMID: 35055108 PMCID: PMC8780864 DOI: 10.3390/ijms23020923] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
Henipaviruses are severe human pathogens within the Paramyxoviridae family. Beyond the P protein, the Henipavirus P gene also encodes the V and W proteins which share with P their N-terminal, intrinsically disordered domain (NTD) and possess a unique C-terminal domain. Henipavirus W proteins antagonize interferon (IFN) signaling through NTD-mediated binding to STAT1 and STAT4, and prevent type I IFN expression and production of chemokines. Structural and molecular information on Henipavirus W proteins is lacking. By combining various bioinformatic approaches, we herein show that the Henipaviruses W proteins are predicted to be prevalently disordered and yet to contain short order-prone segments. Using limited proteolysis, differential scanning fluorimetry, analytical size exclusion chromatography, far-UV circular dichroism and small-angle X-ray scattering, we experimentally confirmed their overall disordered nature. In addition, using Congo red and Thioflavin T binding assays and negative-staining transmission electron microscopy, we show that the W proteins phase separate to form amyloid-like fibrils. The present study provides an additional example, among the few reported so far, of a viral protein forming amyloid-like fibrils, therefore significantly contributing to enlarge our currently limited knowledge of viral amyloids. In light of the critical role of the Henipavirus W proteins in evading the host innate immune response and of the functional role of phase separation in biology, these studies provide a conceptual asset to further investigate the functional impact of the phase separation abilities of the W proteins.
Collapse
Affiliation(s)
- Giulia Pesce
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Aix Marseille University and Centre National de la Recherche Scientifique (CNRS), 163 Avenue de Luminy, Case 932, 13288 Marseille, France; (G.P.); (F.G.); (D.P.); (J.F.N.); (C.B.); (J.C.)
| | - Frank Gondelaud
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Aix Marseille University and Centre National de la Recherche Scientifique (CNRS), 163 Avenue de Luminy, Case 932, 13288 Marseille, France; (G.P.); (F.G.); (D.P.); (J.F.N.); (C.B.); (J.C.)
| | - Denis Ptchelkine
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Aix Marseille University and Centre National de la Recherche Scientifique (CNRS), 163 Avenue de Luminy, Case 932, 13288 Marseille, France; (G.P.); (F.G.); (D.P.); (J.F.N.); (C.B.); (J.C.)
| | - Juliet F. Nilsson
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Aix Marseille University and Centre National de la Recherche Scientifique (CNRS), 163 Avenue de Luminy, Case 932, 13288 Marseille, France; (G.P.); (F.G.); (D.P.); (J.F.N.); (C.B.); (J.C.)
| | - Christophe Bignon
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Aix Marseille University and Centre National de la Recherche Scientifique (CNRS), 163 Avenue de Luminy, Case 932, 13288 Marseille, France; (G.P.); (F.G.); (D.P.); (J.F.N.); (C.B.); (J.C.)
| | - Jérémy Cartalas
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Aix Marseille University and Centre National de la Recherche Scientifique (CNRS), 163 Avenue de Luminy, Case 932, 13288 Marseille, France; (G.P.); (F.G.); (D.P.); (J.F.N.); (C.B.); (J.C.)
| | - Patrick Fourquet
- INSERM, Centre de Recherche en Cancérologie de Marseille (CRCM), Centre National de la Recherche Scientifique (CNRS), Marseille Protéomique, Institut Paoli-Calmettes, Aix Marseille University, 27 Bvd Leï Roure, CS 30059, 13273 Marseille, France;
| | - Sonia Longhi
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Aix Marseille University and Centre National de la Recherche Scientifique (CNRS), 163 Avenue de Luminy, Case 932, 13288 Marseille, France; (G.P.); (F.G.); (D.P.); (J.F.N.); (C.B.); (J.C.)
- Correspondence:
| |
Collapse
|
16
|
TAT-RHIM: a more complex issue than expected. Biochem J 2022; 479:259-272. [PMID: 35015082 PMCID: PMC8883498 DOI: 10.1042/bcj20210677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 11/17/2022]
Abstract
Murine cytomegalovirus protein M45 contains a RIP homotypic interaction motif (RHIM) that is sufficient to confer protection of infected cells against necroptotic cell death. Mechanistically, the N-terminal region of M45 drives rapid self-assembly into homo-oligomeric amyloid fibrils, and interacts with the endogenous RHIM domains of receptor-interacting protein kinases (RIPK) 1, RIPK3, Z-DNA binding protein 1, and TIR domain-containing adaptor-inducing interferon-β. Remarkably, all four mammalian proteins harbouring such a RHIM domain are key components of inflammatory signalling and regulated cell death processes. Immunogenic cell death by regulated necrosis causes extensive tissue damage in a wide range of diseases, including ischemia reperfusion injury, myocardial infarction, sepsis, stroke and organ transplantation. To harness the cell death suppression properties of M45 protein in a therapeutically usable manner, we developed a synthetic peptide encompassing only the RHIM domain of M45. To trigger delivery of RHIM into target cells, we fused the transactivator protein transduction domain of human immunodeficiency virus 1 to the N-terminus of the peptide. The fused peptide could efficiently penetrate eukaryotic cells, but unexpectedly it killed all tested cancer cell lines and primary cells irrespective of species without further stimulus through a necrosis-like cell death. Typical inhibitors of different forms of regulated cell death cannot impede this process, which appears to involve a direct disruption of biomembranes. Nevertheless, our finding has potential clinical relevance; reliable induction of a necrotic form of cell death distinct from all known forms of regulated cell death may offer a novel therapeutic approach to combat resistant tumour cells.
Collapse
|
17
|
Viral manipulation of host cell necroptosis and pyroptosis. Trends Microbiol 2021; 30:593-605. [PMID: 34933805 DOI: 10.1016/j.tim.2021.11.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/16/2021] [Accepted: 11/22/2021] [Indexed: 12/27/2022]
Abstract
Cell death forms an essential component of the antiviral immune response. Viral infection elicits different forms of host cell death, including the lytic and inflammatory cell death modes necroptosis or pyroptosis. The induction of both types of cell death not only eliminates virus-infected cells but also contributes to the development of innate and adaptive immunity through the release of inflammatory mediators. The importance of necroptosis and pyroptosis in host defence is evident from the numerous viral evasion mechanisms that suppress these cell death pathways. Here, we review the emerging principles by which viruses antagonise host cell necroptosis and pyroptosis to promote their spread and block host immunity.
Collapse
|
18
|
Peng K, Lozach PY. Rift Valley fever virus: a new avenue of research on the biological functions of amyloids? Future Virol 2021. [DOI: 10.2217/fvl-2021-0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rift Valley fever is a mosquito-borne viral zoonosis that was first discovered in the Great Rift Valley, Kenya, in 1930. Rift Valley fever virus (RVFV) primarily infects domestic animals and humans, with clinical outcomes ranging from self-limiting febrile illness to acute hepatitis and encephalitis. The virus left Africa a few decades ago, and there is a risk of introduction into southern Europe and Asia. From this perspective, we introduce RVFV and focus on the capacity of its virulence factor, the nonstructural protein NSs, to form amyloid-like fibrils. Here, we discuss the implications for the NSs biological function, the ability of RVFV to evade innate immunity, and RVFV virulence and neurotoxicity.
Collapse
Affiliation(s)
- Ke Peng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, PR China
- University of the Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Pierre-Yves Lozach
- Cell Networks, CIID (Cluster of Excellence & Center for Integrative Infectious Disease Research), Virology, University Hospital Heidelberg, 69120, Heidelberg, Germany
- University of Lyon, INRAE, EPHE, IVPC (Infections Virales et Pathologie Comparée), 69007, Lyon, France
| |
Collapse
|
19
|
Salladini E, Gondelaud F, Nilsson JF, Pesce G, Bignon C, Murrali MG, Fabre R, Pierattelli R, Kajava AV, Horvat B, Gerlier D, Mathieu C, Longhi S. Identification of a Region in the Common Amino-terminal Domain of Hendra Virus P, V, and W Proteins Responsible for Phase Transition and Amyloid Formation. Biomolecules 2021; 11:1324. [PMID: 34572537 PMCID: PMC8471210 DOI: 10.3390/biom11091324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022] Open
Abstract
Henipaviruses are BSL-4 zoonotic pathogens responsible in humans for severe encephalitis. Their V protein is a key player in the evasion of the host innate immune response. We previously showed that the Henipavirus V proteins consist of a long intrinsically disordered N-terminal domain (NTD) and a β-enriched C-terminal domain (CTD). These terminals are critical for V binding to DDB1, which is a cellular protein that is a component of the ubiquitin ligase E3 complex, as well as binding to MDA5 and LGP2, which are two host sensors of viral RNA. Here, we serendipitously discovered that the Hendra virus V protein undergoes a liquid-to-hydrogel phase transition and identified the V region responsible for this phenomenon. This region, referred to as PNT3 and encompassing residues 200-310, was further investigated using a combination of biophysical and structural approaches. Congo red binding assays, together with negative-staining transmisison electron microscopy (TEM) studies, show that PNT3 forms amyloid-like fibrils. Fibrillation abilities are dramatically reduced in a rationally designed PNT3 variant in which a stretch of three contiguous tyrosines, falling within an amyloidogenic motif, were replaced by three alanines. Worthy to note, Congo red staining experiments provided hints that these amyloid-like fibrils form not only in vitro but also in cellula after transfection or infection. The present results set the stage for further investigations aimed at assessing the functional role of phase separation and fibrillation by the Henipavirus V proteins.
Collapse
Affiliation(s)
- Edoardo Salladini
- Laboratory Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Centre National de la Recherche Scientifique (CNRS), Aix Marseille University, CEDEX 9, 13288 Marseille, France; (E.S.); (F.G.); (J.F.N.); (G.P.); (C.B.)
| | - Frank Gondelaud
- Laboratory Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Centre National de la Recherche Scientifique (CNRS), Aix Marseille University, CEDEX 9, 13288 Marseille, France; (E.S.); (F.G.); (J.F.N.); (G.P.); (C.B.)
| | - Juliet F. Nilsson
- Laboratory Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Centre National de la Recherche Scientifique (CNRS), Aix Marseille University, CEDEX 9, 13288 Marseille, France; (E.S.); (F.G.); (J.F.N.); (G.P.); (C.B.)
| | - Giulia Pesce
- Laboratory Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Centre National de la Recherche Scientifique (CNRS), Aix Marseille University, CEDEX 9, 13288 Marseille, France; (E.S.); (F.G.); (J.F.N.); (G.P.); (C.B.)
| | - Christophe Bignon
- Laboratory Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Centre National de la Recherche Scientifique (CNRS), Aix Marseille University, CEDEX 9, 13288 Marseille, France; (E.S.); (F.G.); (J.F.N.); (G.P.); (C.B.)
| | - Maria Grazia Murrali
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy; (M.G.M.); (R.P.)
| | - Roxane Fabre
- Centre d’Immunologie de Marseille-Luminy (CIML), CNRS, Institut National de la Santé et de la Recherche Médicale (INSERM), Aix Marseille University, CEDEX 9, 13288 Marseille, France;
| | - Roberta Pierattelli
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy; (M.G.M.); (R.P.)
| | - Andrey V. Kajava
- Centre de Recherche en Biologie Cellulaire de Montpellier, UMR 5237, CNRS, Université Montpellier, 34293 Montpellier, France;
| | - Branka Horvat
- Team Immunobiology of the Viral Infections, Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM, U1111, CNRS, UMR 5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007 Lyon, France; (B.H.); (D.G.); (C.M.)
| | - Denis Gerlier
- Team Immunobiology of the Viral Infections, Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM, U1111, CNRS, UMR 5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007 Lyon, France; (B.H.); (D.G.); (C.M.)
| | - Cyrille Mathieu
- Team Immunobiology of the Viral Infections, Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM, U1111, CNRS, UMR 5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007 Lyon, France; (B.H.); (D.G.); (C.M.)
| | - Sonia Longhi
- Laboratory Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Centre National de la Recherche Scientifique (CNRS), Aix Marseille University, CEDEX 9, 13288 Marseille, France; (E.S.); (F.G.); (J.F.N.); (G.P.); (C.B.)
| |
Collapse
|
20
|
Palmer S, Chappidi S, Pinkham C, Hancks DC. Evolutionary profile for (host and viral) MLKL indicates its activities as a battlefront for extensive counteradaptation. Mol Biol Evol 2021; 38:5405-5422. [PMID: 34436583 PMCID: PMC8662602 DOI: 10.1093/molbev/msab256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Pathogen infection triggers host innate defenses which may result in the activation of regulated cell death (RCD) pathways such as apoptosis. Given a vital role in immunity, apoptotic effectors are often counteracted by pathogen-encoded antagonists. Mounting evidence indicates that programmed necrosis, which is mediated by the RIPK3/MLKL axis and termed necroptosis, evolved as a countermeasure to pathogen-mediated inhibition of apoptosis. Yet, it is unclear whether components of this emerging RCD pathway display signatures associated with pathogen conflict that are rare in combination but common to key host defense factors, namely, rapid evolution, viral homolog (virolog), and cytokine induction. We leveraged evolutionary sequence analysis that examines rates of amino acid replacement, which revealed: 1) strong and recurrent signatures of positive selection for primate and bat RIPK3 and MLKL, and 2) elevated rates of amino acid substitution on multiple RIPK3/MLKL surfaces suggestive of past antagonism with multiple, distinct pathogen-encoded inhibitors. Furthermore, our phylogenomics analysis across poxvirus genomes illuminated volatile patterns of evolution for a recently described MLKL viral homolog. Specifically, poxviral MLKLs have undergone numerous gene replacements mediated by duplication and deletion events. In addition, MLKL protein expression is stimulated by interferons in human and mouse cells. Thus, MLKL displays all three hallmarks of pivotal immune factors of which only a handful of factors like OAS1 exhibit. These data support the hypothesis that over evolutionary time MLKL functions—which may include execution of necroptosis—have served as a major determinant of infection outcomes despite gene loss in some host genomes.
Collapse
Affiliation(s)
- Suzette Palmer
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Sruthi Chappidi
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Chelsea Pinkham
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Dustin C Hancks
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
21
|
Modulation of Apoptosis and Cell Death Pathways by Varicella-Zoster Virus. Curr Top Microbiol Immunol 2021; 438:59-73. [DOI: 10.1007/82_2021_249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|