1
|
Heo W, Lee C, Sohn SH, Joo T. Tracking nuclear wave packets in excited-state reactions via quantum mechanics/molecular dynamics simulations. J Chem Phys 2025; 162:154108. [PMID: 40237184 DOI: 10.1063/5.0256737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
Nuclear wave packets (NWPs) in electronically excited states generated by ultrashort laser pulses can persist through photochemical processes and be detected in the product state. The NWPs that are coupled with the reaction dynamics undergo changes during the process and provide crucial insights into potential energy surfaces and molecular reaction dynamics. We present a computational method to calculate NWPs in the products of ultrafast photochemical processes by projecting nuclear displacements, obtained via Born-Oppenheimer molecular dynamics simulations, onto the normal modes of the reaction product state. Applying this approach to the excited-state intramolecular proton transfer reaction of 10-hydroxybenzo[h]quinoline, we successfully reproduced the experimentally observed NWPs in the reaction product, which were measured by time-resolved fluorescence of the product state with high fidelity. This significant achievement enables the analysis of individual normal mode motions following photoexcitation in chemical and physical processes. By integrating highly time-resolved spectroscopy with computational modeling, this method provides an effective approach to investigate the excited-state potential energy surfaces and the associated nuclear dynamics.
Collapse
Affiliation(s)
- Wooseok Heo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Changmin Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
- Department of Chemistry, Incheon National University, Incheon 22012, South Korea
| | - So Hyeong Sohn
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Taiha Joo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| |
Collapse
|
2
|
Ghosh P. Investigation of the Nonradiative Photoprocesses of Unnatural DNA Base: 7-(2-Thienyl)-imidazo[4,5- b]pyridine (Ds)─A Computational Study. J Phys Chem A 2024; 128:8065-8071. [PMID: 39279655 PMCID: PMC11440586 DOI: 10.1021/acs.jpca.4c04070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
7-(2-Thienyl)-imidazo[4,5-b]pyridine (Ds) is an unnatural nucleic acid that forms a stable pair with pyrrole-2-carbaldehyde (Pa) in DNA. This Ds-Pa pair gets stabilized via van der Waals interaction and shape fitting. In our previous study [Ghosh, P. J. Phys. Chem. A 2021, 125, 5556-5561], we investigated the nonradiative photoprocesses of the unnatural DNA base Pa, and also there are some studies on its stability and reactivity in the ground state. But, to consider it as a good unnatural base pair, one has to understand its stability not only in the ground state but also in the excited states after absorbing ultraviolet (UV) radiation. Therefore, in this study, the excited-state photoprocesses of Ds on UV irradiation and its nonradiative decay channels have been investigated using state-of-the-art multireference methods, and this investigation finally leads the molecule to access the minimum energy crossing point (MECP) via a downhill pathway.
Collapse
Affiliation(s)
- Paulami Ghosh
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
3
|
Díaz Mirón G, Lien-Medrano CR, Banerjee D, Morzan UN, Sentef MA, Gebauer R, Hassanali A. Exploring the Mechanisms behind Non-aromatic Fluorescence with the Density Functional Tight Binding Method. J Chem Theory Comput 2024; 20:3864-3878. [PMID: 38634760 DOI: 10.1021/acs.jctc.4c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Recent experimental findings reveal nonconventional fluorescence emission in biological systems devoid of conjugated bonds or aromatic compounds, termed non-aromatic fluorescence (NAF). This phenomenon is exclusive to aggregated or solid states and remains absent in monomeric solutions. Previous studies focused on small model systems in vacuum show that the carbonyl stretching mode along with strong interaction of short hydrogen bonds (SHBs) remains the primary vibrational mode explaining NAF in these systems. In order to simulate larger model systems taking into account the effects of the surrounding environment, in this work we propose using the density functional tight-binding (DFTB) method in combination with non-adiabatic molecular dynamics (NAMD) and the mixed quantum/molecular mechanics (QM/MM) approach. We investigate the mechanism behind NAF in the crystal structure of l-pyroglutamine-ammonium, comparing it with the related nonfluorescent amino acid l-glutamine. Our results extend our previous findings to more realistic systems, demonstrating the efficiency and robustness of the proposed DFTB method in the context of NAMD in biological systems. Furthermore, due to its inherent low computational cost, this method allows for a better sampling of the nonradiative events at the conical intersection which is crucial for a complete understanding of this phenomenon. Beyond contributing to the ongoing exploration of NAF, this work paves the way for future application of this method in more complex biological systems such as amyloid aggregates, biomaterials, and non-aromatic proteins.
Collapse
Affiliation(s)
- Gonzalo Díaz Mirón
- Condensed Matter and Statistical Physics, The Abdus Salam International Centre for Theoretical Physics, 34151 Trieste, Italy
| | - Carlos R Lien-Medrano
- Institute for Theoretical Physics and Bremen Center for Computational Materials Science, University of Bremen, 28359 Bremen, Germany
| | - Debarshi Banerjee
- Condensed Matter and Statistical Physics, The Abdus Salam International Centre for Theoretical Physics, 34151 Trieste, Italy
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy
| | - Uriel N Morzan
- Instituto de Fisica de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
| | - Michael A Sentef
- Institute for Theoretical Physics and Bremen Center for Computational Materials Science, University of Bremen, 28359 Bremen, Germany
- Center for Free-Electron Laser Science (CFEL), Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
| | - Ralph Gebauer
- Condensed Matter and Statistical Physics, The Abdus Salam International Centre for Theoretical Physics, 34151 Trieste, Italy
| | - Ali Hassanali
- Condensed Matter and Statistical Physics, The Abdus Salam International Centre for Theoretical Physics, 34151 Trieste, Italy
| |
Collapse
|
4
|
Toldo JM, Mattos RS, Pinheiro M, Mukherjee S, Barbatti M. Recommendations for Velocity Adjustment in Surface Hopping. J Chem Theory Comput 2024; 20:614-624. [PMID: 38207213 DOI: 10.1021/acs.jctc.3c01159] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
This study investigates velocity adjustment directions after hopping in surface hopping dynamics. Using fulvene and a protonated Schiff base (PSB4) as case studies, we investigate the population decay and reaction yields of different sets of dynamics with the velocity adjusted in either the nonadiabatic coupling, gradient difference, or momentum directions. For the latter, in addition to the conventional algorithm, we investigated the performance of a reduced kinetic energy reservoir approach recently proposed. Our evaluation also considered velocity adjustment in the directions of approximate nonadiabatic coupling vectors. While results for fulvene are susceptible to the adjustment approach, PSB4 is not. We correlated this dependence to the topography near the conical intersections. When nonadiabatic coupling vectors are unavailable, the gradient difference direction is the best adjustment option. If the gradient difference is also unavailable, a semiempirical vector direction or the momentum direction with a reduced kinetic energy reservoir becomes an excellent option to prevent an artificial excess of back hoppings. The precise velocity adjustment direction is less crucial for describing the nonadiabatic dynamics than the kinetic energy reservoir's size.
Collapse
Affiliation(s)
- Josene M Toldo
- Aix-Marseille University, CNRS, ICR, Marseille 13397, France
| | - Rafael S Mattos
- Aix-Marseille University, CNRS, ICR, Marseille 13397, France
| | - Max Pinheiro
- Aix-Marseille University, CNRS, ICR, Marseille 13397, France
| | | | - Mario Barbatti
- Aix-Marseille University, CNRS, ICR, Marseille 13397, France
- Institut Universitaire de France, Paris 75231, France
| |
Collapse
|
5
|
Li Z, Mizuno M, Ejiri T, Hayashi S, Kandori H, Mizutani Y. Unique Vibrational Characteristics and Structures of the Photoexcited Retinal Chromophore in Ion-Pumping Rhodopsins. J Phys Chem B 2023; 127:9873-9886. [PMID: 37940604 DOI: 10.1021/acs.jpcb.3c02146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Photoisomerization of an all-trans-retinal chromophore triggers ion transport in microbial ion-pumping rhodopsins. Understanding chromophore structures in the electronically excited (S1) state provides insights into the structural evolution on the potential energy surface of the photoexcited state. In this study, we examined the structure of the S1-state chromophore in Natronomonas pharaonis halorhodopsin (NpHR), a chloride ion-pumping rhodopsin, using time-resolved resonance Raman spectroscopy. The spectral patterns of the S1-state chromophore were completely different from those of the ground-state chromophore, resulting from unique vibrational characteristics and the structure of the S1 state. Mode assignments were based on a combination of deuteration shifts of the Raman bands and hybrid quantum mechanics-molecular mechanics calculations. The present observations suggest a weakened bond alternation in the π conjugation system. A strong hydrogen-out-of-plane bending band was observed in the Raman spectra of the S1-state chromophore in NpHR, indicating a twisted polyene structure. Similar frequency shifts for the C═N/C═C and C-C stretching modes of the S1-state chromophore in NpHR were observed in the Raman spectra of sodium ion-pumping and proton-pumping rhodopsins, suggesting that these unique features are common to the S1 states of ion-pumping rhodopsins.
Collapse
Affiliation(s)
- Zixuan Li
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Osaka, Toyonaka 560-0043, Japan
| | - Misao Mizuno
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Osaka, Toyonaka 560-0043, Japan
| | - Tomo Ejiri
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Shigehiko Hayashi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Osaka, Toyonaka 560-0043, Japan
| |
Collapse
|
6
|
Ostrovsky MA, Smitienko OA, Bochenkova AV, Feldman TB. Similarities and Differences in Photochemistry of Type I and Type II Rhodopsins. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1528-1543. [PMID: 38105022 DOI: 10.1134/s0006297923100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/20/2023] [Accepted: 08/12/2023] [Indexed: 12/19/2023]
Abstract
The diversity of the retinal-containing proteins (rhodopsins) in nature is extremely large. Fundamental similarity of the structure and photochemical properties unites them into one family. However, there is still a debate about the origin of retinal-containing proteins: divergent or convergent evolution? In this review, based on the results of our own and literature data, a comparative analysis of the similarities and differences in the photoconversion of the rhodopsin of types I and II is carried out. The results of experimental studies of the forward and reverse photoreactions of the bacteriorhodopsin (type I) and visual rhodopsin (type II) rhodopsins in the femto- and picosecond time scale, photo-reversible reaction of the octopus rhodopsin (type II), photovoltaic reactions, as well as quantum chemical calculations of the forward photoreactions of bacteriorhodopsin and visual rhodopsin are presented. The issue of probable convergent evolution of type I and type II rhodopsins is discussed.
Collapse
Affiliation(s)
- Mikhail A Ostrovsky
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Emanuel Institute of Biochemical Physics, Moscow, 119334, Russia
| | - Olga A Smitienko
- Emanuel Institute of Biochemical Physics, Moscow, 119334, Russia
| | | | - Tatiana B Feldman
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Emanuel Institute of Biochemical Physics, Moscow, 119334, Russia
| |
Collapse
|
7
|
Min F, Zhang ZY, Qu Z, Gao J, Shi X, Long H, Li Y, Chen S, Dong D, Yi Y, Jiang L, Yang J, Li T, Qiao Y, Song Y. Humidity-Controlled Molecular Assembly and Photoisomerization Behavior with a Bubble-Assisted Patterning Approach. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301362. [PMID: 37170715 DOI: 10.1002/smll.202301362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/20/2023] [Indexed: 05/13/2023]
Abstract
Precise control of molecular assembly is of great significance in the application of functional molecules. This work has systematically investigated the humidity effect in bubble-assisted molecular assembly. This work finds humidity is critical in the evolution of the soft confined space, leading to the formation of microscale liquid confined space under high humidity, and nanoscale liquid confined space under low humidity. It is also revealed that the differences in surface wettability and adhesion play the key role. Consequently, a flat pattern with thermodynamically favorable ordered structure and a sharp pattern with dynamically favorable disordered structure are achieved, which show different solid-state photoisomerization behaviors and photoresponsiveness. Interestingly, conductivity of sharp pattern with disordered structure is higher than that of flat pattern with layered ordered structure due to electronic transport mechanism of different spatial dimensions. This work opens a new way for manipulating the molecular self-assembly to control the morphology and function of molecular patterns.
Collapse
Affiliation(s)
- Fanyi Min
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing National Laboratory for Molecular Sciences (BNLMS), University of the Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhao-Yang Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhiyuan Qu
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing National Laboratory for Molecular Sciences (BNLMS), University of the Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jie Gao
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing National Laboratory for Molecular Sciences (BNLMS), University of the Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiaosong Shi
- Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Haoran Long
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Yixin Li
- Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shengnan Chen
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing National Laboratory for Molecular Sciences (BNLMS), University of the Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Dongfang Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yuanping Yi
- Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lang Jiang
- Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Juehan Yang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Tao Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yali Qiao
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing National Laboratory for Molecular Sciences (BNLMS), University of the Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing National Laboratory for Molecular Sciences (BNLMS), University of the Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
8
|
Radzin S, Wiśniewska-Becker A, Markiewicz M, Bętkowski S, Furso J, Waresiak J, Grolik J, Sarna T, Pawlak AM. Structural Impact of Selected Retinoids on Model Photoreceptor Membranes. MEMBRANES 2023; 13:575. [PMID: 37367779 DOI: 10.3390/membranes13060575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/07/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023]
Abstract
Photoreceptor membranes have a unique lipid composition. They contain a high level of polyunsaturated fatty acids including the most unsaturated fatty acid in nature, docosahexaenoic acid (22:6), and are enriched in phosphatidylethanolamines. The phospholipid composition and cholesterol content of the subcellular components of photoreceptor outer segments enables to divide photoreceptor membranes into three types: plasma membranes, young disc membranes, and old disc membranes. A high degree of lipid unsaturation, extended exposure to intensive irradiation, and high respiratory demands make these membranes sensitive to oxidative stress and lipid peroxidation. Moreover, all-trans retinal (AtRAL), which is a photoreactive product of visual pigment bleaching, accumulates transiently inside these membranes, where its concentration may reach a phototoxic level. An elevated concentration of AtRAL leads to accelerated formation and accumulation of bisretinoid condensation products such as A2E or AtRAL dimers. However, a possible structural impact of these retinoids on the photoreceptor-membrane properties has not yet been studied. In this work we focused just on this aspect. The changes induced by retinoids, although noticeable, seem not to be significant enough to be physiologically relevant. This is, however, an positive conclusion because it can be assumed that accumulation of AtRAL in photoreceptor membranes will not affect the transduction of visual signals and will not disturb the interaction of proteins engaged in this process.
Collapse
Affiliation(s)
- Szymon Radzin
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Anna Wiśniewska-Becker
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Michał Markiewicz
- Department of Computational Biophysics and Bioinformatics, Faculty of Biochemistry, Biophysics, Jagiellonian University, 30-387 Krakow, Poland
| | - Sebastian Bętkowski
- Department of Computational Biophysics and Bioinformatics, Faculty of Biochemistry, Biophysics, Jagiellonian University, 30-387 Krakow, Poland
| | - Justyna Furso
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Joanna Waresiak
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Jarosław Grolik
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Anna M Pawlak
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| |
Collapse
|
9
|
Merritt ICD, Jacquemin D, Vacher M. Nonadiabatic Coupling in Trajectory Surface Hopping: How Approximations Impact Excited-State Reaction Dynamics. J Chem Theory Comput 2023; 19:1827-1842. [PMID: 36897995 DOI: 10.1021/acs.jctc.2c00968] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Photochemical reactions are widely modeled using the popular trajectory surface hopping (TSH) method, an affordable mixed quantum-classical approximation to the full quantum dynamics of the system. TSH is able to account for nonadiabatic effects using an ensemble of trajectories, which are propagated on a single potential energy surface at a time and which can hop from one electronic state to another. The occurrences and locations of these hops are typically determined using the nonadiabatic coupling between electronic states, which can be assessed in a number of ways. In this work, we benchmark the impact of some approximations to the coupling term on the TSH dynamics for several typical isomerization and ring-opening reactions. We have identified that two of the schemes tested, the popular local diabatization scheme and a scheme based on biorthonormal wave function overlap implemented in the OpenMOLCAS code as part of this work, reproduce at a much reduced cost the dynamics obtained using the explicitly calculated nonadiabatic coupling vectors. The other two schemes tested can give different results, and in some cases, even entirely incorrect dynamics. Of these two, the scheme based on configuration interaction vectors gives unpredictable failures, while the other scheme based on the Baeck-An approximation systematically overestimates hopping to the ground state as compared to the reference approaches.
Collapse
Affiliation(s)
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| | - Morgane Vacher
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| |
Collapse
|
10
|
Zhang F, Zhao J, Li C. Effect of benzene ring on the excited‐state intramolecular proton transfer mechanisms of hydroxyquinoline derivatives. J PHYS ORG CHEM 2021. [DOI: 10.1002/poc.4257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Feng Zhang
- School of Intelligent Systems Engineering Henan Institute of Technology Xinxiang China
| | - Jing Zhao
- School of Intelligent Systems Engineering Henan Institute of Technology Xinxiang China
| | - Chaozheng Li
- School of Mechanical and Electrical Engineering Henan Institute of Science and Technology Xinxiang China
| |
Collapse
|
11
|
Santoro F, Green JA, Martinez-Fernandez L, Cerezo J, Improta R. Quantum and semiclassical dynamical studies of nonadiabatic processes in solution: achievements and perspectives. Phys Chem Chem Phys 2021; 23:8181-8199. [PMID: 33875988 DOI: 10.1039/d0cp05907b] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We concisely review the main methodological approaches to model nonadiabatic dynamics in isotropic solutions and their applications. Three general classes of models are identified as the most used to include solvent effects in the simulations. The first model describes the solvent as a set of harmonic collective modes coupled to the solute degrees of freedom, and the second as a continuum, while the third explicitly includes solvent molecules in the calculations. The issues related to the use of these models in semiclassical and quantum dynamical simulations are discussed, as well as the main limitations and perspectives of each approach.
Collapse
Affiliation(s)
- Fabrizio Santoro
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), SS di Pisa, Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy.
| | - James A Green
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), via Mezzocannone 16, I-80136 Napoli, Italy.
| | - Lara Martinez-Fernandez
- Departamento de Química, Facultad de Ciencias and Institute for Advanced Research in Chemistry (IADCHEM), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, 28049 Madrid, Spain
| | - Javier Cerezo
- Departamento de Química, Facultad de Ciencias and Institute for Advanced Research in Chemistry (IADCHEM), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, 28049 Madrid, Spain
| | - Roberto Improta
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), via Mezzocannone 16, I-80136 Napoli, Italy.
| |
Collapse
|
12
|
Derr JB, Tamayo J, Clark JA, Morales M, Mayther MF, Espinoza EM, Rybicka-Jasińska K, Vullev VI. Multifaceted aspects of charge transfer. Phys Chem Chem Phys 2020; 22:21583-21629. [PMID: 32785306 PMCID: PMC7544685 DOI: 10.1039/d0cp01556c] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Charge transfer and charge transport are by far among the most important processes for sustaining life on Earth and for making our modern ways of living possible. Involving multiple electron-transfer steps, photosynthesis and cellular respiration have been principally responsible for managing the energy flow in the biosphere of our planet since the Great Oxygen Event. It is impossible to imagine living organisms without charge transport mediated by ion channels, or electron and proton transfer mediated by redox enzymes. Concurrently, transfer and transport of electrons and holes drive the functionalities of electronic and photonic devices that are intricate for our lives. While fueling advances in engineering, charge-transfer science has established itself as an important independent field, originating from physical chemistry and chemical physics, focusing on paradigms from biology, and gaining momentum from solar-energy research. Here, we review the fundamental concepts of charge transfer, and outline its core role in a broad range of unrelated fields, such as medicine, environmental science, catalysis, electronics and photonics. The ubiquitous nature of dipoles, for example, sets demands on deepening the understanding of how localized electric fields affect charge transfer. Charge-transfer electrets, thus, prove important for advancing the field and for interfacing fundamental science with engineering. Synergy between the vastly different aspects of charge-transfer science sets the stage for the broad global impacts that the advances in this field have.
Collapse
Affiliation(s)
- James B Derr
- Department of Biochemistry, University of California, Riverside, CA 92521, USA.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Farfan CA, Turner DB. A systematic model study quantifying how conical intersection topography modulates photochemical reactions. Phys Chem Chem Phys 2020; 22:20265-20283. [PMID: 32966428 DOI: 10.1039/d0cp03464a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite their important role in photochemistry and expected presence in most polyatomic molecules, conical intersections have been thoroughly characterized in a comparatively small number of systems. Conical intersections can confer molecular photoreactivity or photostability, often with remarkable efficacy, due to their unique structure: at a conical intersection, the adiabatic potential energy surfaces of two or more electronic states are degenerate, enabling ultrafast decay from an excited state without radiative emission, known as nonadiabatic transfer. Furthermore, the precise conical intersection topography determines fundamental properties of photochemical processes, including excited-state decay rate, efficacy, and molecular products that are formed. However, these relationships have yet to be defined comprehensively. In this article, we use an adaptable computational model to investigate a variety of conical intersection topographies, simulate resulting nonadiabatic dynamics, and calculate key photochemical observables. We varied the vibrational mode frequencies to modify conical intersection topography systematically in four primary classes of conical intersections and quantified the resulting rate, total yield, and product yield of nonadiabatic decay. The results reveal that higher vibrational mode frequencies reduce nonadiabatic transfer, but increase the transfer rate and resulting photoproduct formation. These trends can inform progress toward experimental control of photochemical reactions or tuning of molecules' photochemical properties based on conical intersections and their topography.
Collapse
Affiliation(s)
- Camille A Farfan
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Daniel B Turner
- Department of Chemistry, New York University, New York, NY 10003, USA
| |
Collapse
|
14
|
Muolo A, Baiardi A, Feldmann R, Reiher M. Nuclear-electronic all-particle density matrix renormalization group. J Chem Phys 2020; 152:204103. [PMID: 32486651 DOI: 10.1063/5.0007166] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We introduce the Nuclear-Electronic All-Particle Density Matrix Renormalization Group (NEAP-DMRG) method for solving the time-independent Schrödinger equation simultaneously for electrons and other quantum species. In contrast to the already existing multicomponent approaches, in this work, we construct from the outset a multi-reference trial wave function with stochastically optimized non-orthogonal Gaussian orbitals. By iterative refining of the Gaussians' positions and widths, we obtain a compact multi-reference expansion for the multicomponent wave function. We extend the DMRG algorithm to multicomponent wave functions to take into account inter- and intra-species correlation effects. The efficient parameterization of the total wave function as a matrix product state allows NEAP-DMRG to accurately approximate the full configuration interaction energies of molecular systems with more than three nuclei and 12 particles in total, which is currently a major challenge for other multicomponent approaches. We present the NEAP-DMRG results for two few-body systems, i.e., H2 and H3 +, and one larger system, namely, BH3.
Collapse
Affiliation(s)
- Andrea Muolo
- ETH Zürich, Laboratory of Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Alberto Baiardi
- ETH Zürich, Laboratory of Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Robin Feldmann
- ETH Zürich, Laboratory of Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Markus Reiher
- ETH Zürich, Laboratory of Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
15
|
Nakliang P, Lazim R, Chang H, Choi S. Multiscale Molecular Modeling in G Protein-Coupled Receptor (GPCR)-Ligand Studies. Biomolecules 2020; 10:E631. [PMID: 32325877 PMCID: PMC7226129 DOI: 10.3390/biom10040631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 12/17/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are major drug targets due to their ability to facilitate signal transduction across cell membranes, a process that is vital for many physiological functions to occur. The development of computational technology provides modern tools that permit accurate studies of the structures and properties of large chemical systems, such as enzymes and GPCRs, at the molecular level. The advent of multiscale molecular modeling permits the implementation of multiple levels of theories on a system of interest, for instance, assigning chemically relevant regions to high quantum mechanics (QM) level of theory while treating the rest of the system using classical force field (molecular mechanics (MM) potential). Multiscale QM/MM molecular modeling have far-reaching applications in the rational design of GPCR drugs/ligands by affording precise ligand binding configurations through the consideration of conformational plasticity. This enables the identification of key binding site residues that could be targeted to manipulate GPCR function. This review will focus on recent applications of multiscale QM/MM molecular simulations in GPCR studies that could boost the efficiency of future structure-based drug design (SBDD) strategies.
Collapse
Affiliation(s)
| | | | | | - Sun Choi
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea; (P.N.); (R.L.); (H.C.)
| |
Collapse
|
16
|
Groenhof G, Modi V, Morozov D. Observe while it happens: catching photoactive proteins in the act with non-adiabatic molecular dynamics simulations. Curr Opin Struct Biol 2020; 61:106-112. [PMID: 31927414 DOI: 10.1016/j.sbi.2019.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/14/2019] [Indexed: 01/24/2023]
Abstract
Organisms use photo-receptors to react to light. The first step is usually the absorption of a photon by a prosthetic group embedded inside the photo-receptor, often a conjugated chromophore. The electronic changes in the chromophore induced by photo-absorption can trigger a cascade of structural or chemical transformations that culminate into a response to light. Understanding how these proteins have evolved to mediate their activation process has remained challenging because the required time and spacial resolutions are notoriously difficult to achieve experimentally. Therefore, mechanistic insights into photoreceptor activation have been predominantly obtained with computer simulations. Here we briefly outline the challenges associated with such computations and review the progress made in this field.
Collapse
Affiliation(s)
- Gerrit Groenhof
- Nanoscience Center and Department of Chemistry, P.O. Box 35, 40014 University of Jyväskylä, Finland.
| | - Vaibhav Modi
- Nanoscience Center and Department of Chemistry, P.O. Box 35, 40014 University of Jyväskylä, Finland
| | - Dmitry Morozov
- Nanoscience Center and Department of Chemistry, P.O. Box 35, 40014 University of Jyväskylä, Finland
| |
Collapse
|
17
|
Heo W, Joo T. Molecular Dynamics of Excited State Intramolecular Charge Transfer in Solution by Coherent Nuclear Wave Packets. Chemphyschem 2019; 20:1448-1455. [PMID: 30974028 DOI: 10.1002/cphc.201801103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/11/2019] [Indexed: 11/09/2022]
Abstract
Revealing a proper reaction coordinate in a chemical reaction is the key step towards elucidation of the molecular reaction dynamics. In this report, we investigated the dynamics of intramolecular charge transfer (ICT) of 8-aminopyrene-1,3,6-trisulfonic acid (APTS) occurring in the excited state by time-resolved fluorescence (TF) and TF spectra. Accurate reaction rates and rate-dependent nuclear wave packets in the product state allow detailed investigation of the molecular reaction dynamics. The ICT rate is solvent dependent: (34 fs)-1 , (87 fs)-1 , and (∞)-1 in water, formamide, and dimethylformamide, respectively. By recording spectra of the nuclear wave packets for different reaction rates, chemical species responsible for the emission spectra can be positively identified. The origin of the wave packets can be deduced from the amplitude change of the wave packets at different reaction rates, and the vibrational modes that are associated with the reaction coordinate could be identified. Theoretical calculations of the vibrational reorganization energies reproduce the experimental spectrum of the nuclear wave packets and corroborate the conclusions.
Collapse
Affiliation(s)
- Wooseok Heo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Taiha Joo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| |
Collapse
|
18
|
Valentini A, Nucci M, Frutos LM, Marazzi M. Photosensitized Retinal Isomerization in Rhodopsin Mediated by a Triplet State. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Alessio Valentini
- Departamento de Química Analítica, Química Física e Ingeniería Química, Unidad de Química FísicaUniversidad de Alcalá Ctra. Madrid-Barcelona Km. 33,600 E-28871 Alcalá de Henares, Madrid Spain
- Department of Biotechnology, Chemistry and PharmacyUniversity of Siena via A. Moro 2 53100 Siena Italy
- Theoretical Physical Chemistry, Research Unit MolSysUniversité de Liège Allée du 6 Aôut, 11 4000 Liège Belgium
| | - Martina Nucci
- Departamento de Química Analítica, Química Física e Ingeniería Química, Unidad de Química FísicaUniversidad de Alcalá Ctra. Madrid-Barcelona Km. 33,600 E-28871 Alcalá de Henares, Madrid Spain
| | - Luis Manuel Frutos
- Departamento de Química Analítica, Química Física e Ingeniería Química, Unidad de Química FísicaUniversidad de Alcalá Ctra. Madrid-Barcelona Km. 33,600 E-28871 Alcalá de Henares, Madrid Spain
- Instituto de Investigación Química “Andrés M. del Río” (IQAR)Universidad de Alcalá E-28871 Alcalá de Henares, Madrid Spain
| | - Marco Marazzi
- Departamento de Química Analítica, Química Física e Ingeniería Química, Unidad de Química FísicaUniversidad de Alcalá Ctra. Madrid-Barcelona Km. 33,600 E-28871 Alcalá de Henares, Madrid Spain
- Instituto de Investigación Química “Andrés M. del Río” (IQAR)Universidad de Alcalá E-28871 Alcalá de Henares, Madrid Spain
| |
Collapse
|
19
|
Srinivasan S, Guixà-González R, Cordomí A, Garriga P. Ligand Binding Mechanisms in Human Cone Visual Pigments. Trends Biochem Sci 2019; 44:629-639. [PMID: 30853245 DOI: 10.1016/j.tibs.2019.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/04/2019] [Accepted: 02/07/2019] [Indexed: 12/13/2022]
Abstract
Vertebrate vision starts with light absorption by visual pigments in rod and cone photoreceptor cells of the retina. Rhodopsin, in rod cells, responds to dim light, whereas three types of cone opsins (red, green, and blue) function under bright light and mediate color vision. Cone opsins regenerate with retinal much faster than rhodopsin, but the molecular mechanism of regeneration is still unclear. Recent advances in the area pinpoint transient intermediate opsin conformations, and a possible secondary retinal-binding site, as determinant factors for regeneration. In this Review, we compile previous and recent findings to discuss possible mechanisms of ligand entry in cone opsins, involving a secondary binding site, which may have relevant functional and evolutionary implications.
Collapse
Affiliation(s)
- Sundaramoorthy Srinivasan
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya-Barcelona Tech, Rambla de Sant Nebridi 22, 08222 Terrassa, Spain
| | - Ramon Guixà-González
- Laboratori de Medicina Computational, Universitat Autonòma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Arnau Cordomí
- Laboratori de Medicina Computational, Universitat Autonòma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Pere Garriga
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya-Barcelona Tech, Rambla de Sant Nebridi 22, 08222 Terrassa, Spain.
| |
Collapse
|
20
|
COBRAMM 2.0 — A software interface for tailoring molecular electronic structure calculations and running nanoscale (QM/MM) simulations. J Mol Model 2018; 24:271. [DOI: 10.1007/s00894-018-3769-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/27/2018] [Indexed: 01/04/2023]
|
21
|
Cheng C, Kamiya M, Takemoto M, Ishitani R, Nureki O, Yoshida N, Hayashi S. An Atomistic Model of a Precursor State of Light-Induced Channel Opening of Channelrhodopsin. Biophys J 2018; 115:1281-1291. [PMID: 30236783 PMCID: PMC6170652 DOI: 10.1016/j.bpj.2018.08.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/11/2018] [Accepted: 08/13/2018] [Indexed: 01/01/2023] Open
Abstract
Channelrhodopsins (ChRs) are microbial light-gated ion channels with a retinal chromophore and are widely utilized in optogenetics to precisely control neuronal activity with light. Despite increasing understanding of their structures and photoactivation kinetics, the atomistic mechanism of light gating and ion conduction remains elusive. Here, we present an atomic structural model of a chimeric ChR in a precursor state of the channel opening determined by an accurate hybrid molecular simulation technique and a statistical theory of internal water distribution. The photoactivated structure features extensive tilt of the chromophore accompanied by redistribution of water molecules in its binding pocket, which is absent in previously known photoactivated structures of analogous photoreceptors, and widely agrees with structural and spectroscopic experimental evidence of ChRs. The atomistic model manifests a photoactivated ion-conduction pathway that is markedly different from a previously proposed one and successfully explains experimentally observed mutagenic effects on key channel properties.
Collapse
Affiliation(s)
- Cheng Cheng
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Motoshi Kamiya
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Mizuki Takemoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Ryuichiro Ishitani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Norio Yoshida
- Department of Chemistry, Graduate School of Science, Kyushu University, Fukuoka, Japan.
| | - Shigehiko Hayashi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan.
| |
Collapse
|
22
|
Lischka H, Nachtigallová D, Aquino AJA, Szalay PG, Plasser F, Machado FBC, Barbatti M. Multireference Approaches for Excited States of Molecules. Chem Rev 2018; 118:7293-7361. [DOI: 10.1021/acs.chemrev.8b00244] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hans Lischka
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, P.R. China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Dana Nachtigallová
- Institute of Organic Chemistry and Biochemistry v.v.i., The Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Palacký University, 78371 Olomouc, Czech Republic
| | - Adélia J. A. Aquino
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, P.R. China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
- Institute for Soil Research, University of Natural Resources and Life Sciences Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna, Austria
| | - Péter G. Szalay
- ELTE Eötvös Loránd University, Laboratory of Theoretical Chemistry, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - Felix Plasser
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
- Department of Chemistry, Loughborough University, Leicestershire LE11 3TU, United Kingdom
| | - Francisco B. C. Machado
- Departamento de Química, Instituto Tecnológico de Aeronáutica, São José dos Campos 12228-900, São Paulo, Brazil
| | | |
Collapse
|
23
|
Dong SS, Gagliardi L, Truhlar DG. Excitation spectra of retinal by multiconfiguration pair-density functional theory. Phys Chem Chem Phys 2018; 20:7265-7276. [PMID: 29484326 DOI: 10.1039/c7cp07275a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Retinal is the chromophore in proteins responsible for vision. The absorption maximum of retinal is sensitive to mutations of the protein. However, it is not easy to predict the absorption spectrum of retinal accurately, and questions remain even after intensive investigation. Retinal poses a challenge for Kohn-Sham density functional theory (KS-DFT) because of the charge transfer character in its excitations, and it poses a challenge for wave function theory because the large size of the molecule makes multiconfigurational perturbation theory methods expensive. In this study, we demonstrate that multiconfiguration pair-density functional theory (MC-PDFT) provides an efficient way to predict the vertical excitation energies of 11-Z retinal, and it reproduces the experimentally determined absorption band widths and peak positions better than complete active space second-order perturbation theory (CASPT2). The consistency between complete active space self-consistent field (CASSCF) and KS-DFT dipole moments is demonstrated to be a useful criterion in selecting the active space. We also found that the nature of the terminal groups and the conformations of retinal play a significant role in the absorption spectrum. By considering a thermal distribution of conformations, we predict an absorption spectrum of retinal that is consistent with the experimental gas-phase spectrum. The location of the absorption peak and the spectral broadening based on MC-PDFT calculations agree better with experiments than those of CASPT2.
Collapse
Affiliation(s)
- Sijia S Dong
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
24
|
Gozem S, Luk HL, Schapiro I, Olivucci M. Theory and Simulation of the Ultrafast Double-Bond Isomerization of Biological Chromophores. Chem Rev 2017; 117:13502-13565. [DOI: 10.1021/acs.chemrev.7b00177] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Samer Gozem
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Hoi Ling Luk
- Chemistry
Department, Bowling Green State University, Overman Hall, Bowling Green, Ohio 43403, United States
| | - Igor Schapiro
- Fritz
Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Massimo Olivucci
- Chemistry
Department, Bowling Green State University, Overman Hall, Bowling Green, Ohio 43403, United States
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università di Siena, via A. Moro
2, 53100 Siena, Italy
| |
Collapse
|
25
|
Kamiya M, Hayashi S. Photoactivation Intermediates of a G-Protein Coupled Receptor Rhodopsin Investigated by a Hybrid Molecular Simulation. J Phys Chem B 2017; 121:3842-3852. [PMID: 28240904 DOI: 10.1021/acs.jpcb.6b13050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rhodopsin is a G-protein coupled receptor functioning as a photoreceptor for vision through photoactivation of a covalently bound ligand of a retinal protonated Schiff base chromophore. Despite the availability of structural information on the inactivated and activated forms of the receptor, the transition processes initiated by the photoabsorption have not been well understood. Here we theoretically examined the photoactivation processes by means of molecular dynamics (MD) simulations and ab initio quantum mechanical/molecular mechanical (QM/MM) free energy geometry optimizations which enabled accurate geometry determination of the ligand molecule in ample statistical conformational samples of the protein. Structures of the intermediate states of the activation process, blue-shifted intermediate and Lumi, as well as the dark state first generated by MD simulations and then refined by the QM/MM free energy geometry optimizations were characterized by large displacement of the β-ionone ring of retinal along with change in the hydrogen bond of the protonated Schiff base. The ab initio calculations of vibrational and electronic spectroscopic properties of those states well reproduced the experimental observations and successfully identified the molecular origins underlying the spectroscopic features. The structural evolution in the formation of the intermediates provides a molecular insight into the efficient activation processes of the receptor.
Collapse
Affiliation(s)
- Motoshi Kamiya
- Department of Chemistry, Graduate School of Science, Kyoto University , Kyoto 606-8502, Japan
| | - Shigehiko Hayashi
- Department of Chemistry, Graduate School of Science, Kyoto University , Kyoto 606-8502, Japan
| |
Collapse
|
26
|
Varsano D, Caprasecca S, Coccia E. Theoretical description of protein field effects on electronic excitations of biological chromophores. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:013002. [PMID: 27830666 DOI: 10.1088/0953-8984/29/1/013002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Photoinitiated phenomena play a crucial role in many living organisms. Plants, algae, and bacteria absorb sunlight to perform photosynthesis, and convert water and carbon dioxide into molecular oxygen and carbohydrates, thus forming the basis for life on Earth. The vision of vertebrates is accomplished in the eye by a protein called rhodopsin, which upon photon absorption performs an ultrafast isomerisation of the retinal chromophore, triggering the signal cascade. Many other biological functions start with the photoexcitation of a protein-embedded pigment, followed by complex processes comprising, for example, electron or excitation energy transfer in photosynthetic complexes. The optical properties of chromophores in living systems are strongly dependent on the interaction with the surrounding environment (nearby protein residues, membrane, water), and the complexity of such interplay is, in most cases, at the origin of the functional diversity of the photoactive proteins. The specific interactions with the environment often lead to a significant shift of the chromophore excitation energies, compared with their absorption in solution or gas phase. The investigation of the optical response of chromophores is generally not straightforward, from both experimental and theoretical standpoints; this is due to the difficulty in understanding diverse behaviours and effects, occurring at different scales, with a single technique. In particular, the role played by ab initio calculations in assisting and guiding experiments, as well as in understanding the physics of photoactive proteins, is fundamental. At the same time, owing to the large size of the systems, more approximate strategies which take into account the environmental effects on the absorption spectra are also of paramount importance. Here we review the recent advances in the first-principle description of electronic and optical properties of biological chromophores embedded in a protein environment. We show their applications on paradigmatic systems, such as the light-harvesting complexes, rhodopsin and green fluorescent protein, emphasising the theoretical frameworks which are of common use in solid state physics, and emerging as promising tools for biomolecular systems.
Collapse
Affiliation(s)
- Daniele Varsano
- S3 Center, CNR Institute of Nanoscience, Via Campi 213/A, 41125 Modena, Italy
| | | | | |
Collapse
|
27
|
Feldman TB, Smitienko OA, Shelaev IV, Gostev FE, Nekrasova OV, Dolgikh DA, Nadtochenko VA, Kirpichnikov MP, Ostrovsky MA. Femtosecond spectroscopic study of photochromic reactions of bacteriorhodopsin and visual rhodopsin. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2016; 164:296-305. [PMID: 27723489 DOI: 10.1016/j.jphotobiol.2016.09.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 11/16/2022]
Abstract
Photochromic ultrafast reactions of bacteriorhodopsin (H. salinarum) and bovine rhodopsin were conducted with a femtosecond two-pump probe pulse setup with the time resolution of 20-25fs. The dynamics of the forward and reverse photochemical reactions for both retinal-containing proteins was compared. It is demonstrated that when retinal-containing proteins are excited by femtosecond pulses, dynamics pattern of the vibrational coherent wave packets in the course of the reaction is different for bacteriorhodopsin and visual rhodopsin. As shown in these studies, the low-frequencies that form a wave packets experimentally observed in the dynamics of primary products formation as a result of retinal photoisomerization have different intensities and are clearer for bovine rhodopsin. Photo-reversible reactions for both retinal proteins were performed from the stage of the relatively stable photointermediates that appear within 3-5ps after the light pulse impact. It is demonstrated that the efficiency of the reverse phototransition K-form→bacteriorhodopsin is almost five-fold higher than that of the Batho-intermediate→visual rhodopsin phototransition. The results obtained indicate that in the course of evolution the intramolecular mechanism of the chromophore-protein interaction in visual rhodopsin becomes more perfect and specific. The decrease in the probability of the reverse chromophore photoisomerization (all-trans→11-cis retinal) in primary photo-induced rhodopsin products causes an increase in the efficiency of the photoreception process.
Collapse
Affiliation(s)
- Tatiana B Feldman
- Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin st.4, Moscow 119334, Russia.
| | - Olga A Smitienko
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin st.4, Moscow 119334, Russia
| | - Ivan V Shelaev
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygin st.4, Moscow 119991, Russia
| | - Fedor E Gostev
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygin st.4, Moscow 119991, Russia
| | - Oksana V Nekrasova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st. 16/10, Moscow 117997, Russia
| | - Dmitriy A Dolgikh
- Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st. 16/10, Moscow 117997, Russia
| | - Victor A Nadtochenko
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin st.4, Moscow 119334, Russia; Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygin st.4, Moscow 119991, Russia; Institute of Problems of Chemical Physics, Russian Academy of Sciences, Academician Semenov avenue 1, Chernogolovka, Moscow region 142432, Russia
| | - Mikhail P Kirpichnikov
- Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st. 16/10, Moscow 117997, Russia
| | - Mikhail A Ostrovsky
- Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin st.4, Moscow 119334, Russia
| |
Collapse
|
28
|
Schapiro I. The Origin of Bond Selectivity and Excited-State Reactivity in Retinal Analogues. J Phys Chem A 2016; 120:3353-65. [DOI: 10.1021/acs.jpca.6b00701] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Igor Schapiro
- Fritz Haber
Center for Molecular
Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
29
|
Agostini F, Min SK, Abedi A, Gross EKU. Quantum-Classical Nonadiabatic Dynamics: Coupled- vs Independent-Trajectory Methods. J Chem Theory Comput 2016; 12:2127-43. [PMID: 27030209 DOI: 10.1021/acs.jctc.5b01180] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Trajectory-based mixed quantum-classical approaches to coupled electron-nuclear dynamics suffer from well-studied problems such as the lack of (or incorrect account for) decoherence in the trajectory surface hopping method and the inability of reproducing the spatial splitting of a nuclear wave packet in Ehrenfest-like dynamics. In the context of electronic nonadiabatic processes, these problems can result in wrong predictions for quantum populations and in unphysical outcomes for the nuclear dynamics. In this paper, we propose a solution to these issues by approximating the coupled electronic and nuclear equations within the framework of the exact factorization of the electron-nuclear wave function. We present a simple quantum-classical scheme based on coupled classical trajectories and test it against the full quantum mechanical solution from wave packet dynamics for some model situations which represent particularly challenging problems for the above-mentioned traditional methods.
Collapse
Affiliation(s)
- Federica Agostini
- Max-Planck Institut für Mikrostrukturphysik , Weinberg 2, D-06120 Halle, Germany
| | - Seung Kyu Min
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST) , 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Ali Abedi
- Nano-Bio Spectroscopy group and European Theoretical Spectroscopy Facility (ETSF), Dpto. Física de Materiales, Universidad del País Vasco, Centro de Física de Materiales CSIC-UPV/EHU-MPC and DIPC , Av. Tolosa 72, E-20018 San Sebastián, Spain
| | - E K U Gross
- Max-Planck Institut für Mikrostrukturphysik , Weinberg 2, D-06120 Halle, Germany
| |
Collapse
|
30
|
Zhao J, Chen J, Liu J, Hoffmann MR. Competitive excited-state single or double proton transfer mechanisms for bis-2,5-(2-benzoxazolyl)-hydroquinone and its derivatives. Phys Chem Chem Phys 2016; 17:11990-9. [PMID: 25872615 DOI: 10.1039/c4cp05651e] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The excited state intramolecular proton transfer (ESIPT) mechanisms of 2-(2-hydroxyphenyl)benzoxazole (HBO), bis-2,5-(2-benzoxazolyl)-hydroquinone (BBHQ) and 2,5-bis(5'-tert-butyl-benzoxazol-2'-yl)hydroquinone (DHBO) have been investigated using time-dependent density functional theory (TDDFT). The calculated vertical excitation energies based on the TDDFT method reproduced the experimental absorption and emission spectra well. Three kinds of stable structures were found on the S1 state potential energy surface (PES). A new ESIPT mechanism that differs from the one proposed previously (Mordzinski et al., Chem. Phys. Lett., 1983, 101, 291. and Lim et al., J. Am. Chem. Soc., 2006, 128, 14542.) is proposed. The new mechanism includes the possibility of simultaneous double proton transfer, or successive single transfers, in addition to the accepted single proton transfer mechanism. Hydrogen bond strengthening in the excited state was based on primary bond lengths, angles, IR vibrational spectra and hydrogen bond energy. Intramolecular charge transfer based on the frontier molecular orbitals (MOs) also supports the proposed mechanism of the ESIPT reaction. To further elucidate the proposed mechanism, reduced dimensionality PESs of the S0 and S1 states were constructed by keeping the O-H distance fixed at a series of values. The potential barrier heights among the local minima on the S1 surface imply competitive single and double proton transfer branches in the mechanism. Based on the new ESIPT mechanism, the observed fluorescence quenching can be satisfactorily explained.
Collapse
Affiliation(s)
- Jinfeng Zhao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China.
| | | | | | | |
Collapse
|
31
|
Li C, Yang Y, Ma C, Liu Y. Effect of amino group on the excited-state intramolecular proton transfer (ESIPT) mechanisms of 2-(2′-hydroxyphenyl)benzoxazole and its amino derivatives. RSC Adv 2016. [DOI: 10.1039/c5ra23261a] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The electronic density redistributes and it migrates in opposite directions for HBO when compared to those of 5A-HBO and 6A-HBO. The amino group in the HBO framework can change the behavior of the intramolecular hydrogen bonds.
Collapse
Affiliation(s)
- Chaozheng Li
- College of Physics and Electronic Engineer
- Henan Normal University
- Xinxiang 453007
- China
| | - Yonggang Yang
- College of Physics and Electronic Engineer
- Henan Normal University
- Xinxiang 453007
- China
| | - Chi Ma
- College of Physics and Electronic Engineer
- Henan Normal University
- Xinxiang 453007
- China
| | - Yufang Liu
- College of Physics and Electronic Engineer
- Henan Normal University
- Xinxiang 453007
- China
| |
Collapse
|
32
|
Johnson PJM, Halpin A, Morizumi T, Prokhorenko VI, Ernst OP, Miller RJD. Local vibrational coherences drive the primary photochemistry of vision. Nat Chem 2015; 7:980-6. [DOI: 10.1038/nchem.2398] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 10/15/2015] [Indexed: 01/06/2023]
|
33
|
Min SK, Agostini F, Gross EKU. Coupled-Trajectory Quantum-Classical Approach to Electronic Decoherence in Nonadiabatic Processes. PHYSICAL REVIEW LETTERS 2015; 115:073001. [PMID: 26317716 DOI: 10.1103/physrevlett.115.073001] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Indexed: 06/04/2023]
Abstract
We present a novel quantum-classical approach to nonadiabatic dynamics, deduced from the coupled electronic and nuclear equations in the framework of the exact factorization of the electron-nuclear wave function. The method is based on the quasiclassical interpretation of the nuclear wave function, whose phase is related to the classical momentum and whose density is represented in terms of classical trajectories. In this approximation, electronic decoherence is naturally induced as an effect of the coupling to the nuclei and correctly reproduces the expected quantum behavior. Moreover, the splitting of the nuclear wave packet is captured as a consequence of the correct approximation of the time-dependent potential of the theory. This new approach offers a clear improvement over Ehrenfest-like dynamics. The theoretical derivation presented in this Letter is supported by numerical results that are compared to quantum mechanical calculations.
Collapse
Affiliation(s)
- Seung Kyu Min
- Max-Planck Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea
| | - Federica Agostini
- Max-Planck Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany
| | - E K U Gross
- Max-Planck Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany
| |
Collapse
|
34
|
Agostini F, Abedi A, Suzuki Y, Min SK, Maitra NT, Gross EKU. The exact forces on classical nuclei in non-adiabatic charge transfer. J Chem Phys 2015; 142:084303. [PMID: 25725727 DOI: 10.1063/1.4908133] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The decomposition of electronic and nuclear motion presented in Abedi et al. [Phys. Rev. Lett. 105, 123002 (2010)] yields a time-dependent potential that drives the nuclear motion and fully accounts for the coupling to the electronic subsystem. Here, we show that propagation of an ensemble of independent classical nuclear trajectories on this exact potential yields dynamics that are essentially indistinguishable from the exact quantum dynamics for a model non-adiabatic charge transfer problem. We point out the importance of step and bump features in the exact potential that are critical in obtaining the correct splitting of the quasiclassical nuclear wave packet in space after it passes through an avoided crossing between two Born-Oppenheimer surfaces and analyze their structure. Finally, an analysis of the exact potentials in the context of trajectory surface hopping is presented, including preliminary investigations of velocity-adjustment and the force-induced decoherence effect.
Collapse
Affiliation(s)
- Federica Agostini
- Max-Planck-Institut of Microstructure Physics, Weinberg 2, D-06120 Halle, Germany
| | - Ali Abedi
- Max-Planck-Institut of Microstructure Physics, Weinberg 2, D-06120 Halle, Germany
| | - Yasumitsu Suzuki
- Max-Planck-Institut of Microstructure Physics, Weinberg 2, D-06120 Halle, Germany
| | - Seung Kyu Min
- Max-Planck-Institut of Microstructure Physics, Weinberg 2, D-06120 Halle, Germany
| | - Neepa T Maitra
- Department of Physics and Astronomy, Hunter College and the Graduate Center of the City University of New York, 695 Park Avenue, New York, New York 10065, USA
| | - E K U Gross
- Max-Planck-Institut of Microstructure Physics, Weinberg 2, D-06120 Halle, Germany
| |
Collapse
|
35
|
|
36
|
Brunk E, Rothlisberger U. Mixed Quantum Mechanical/Molecular Mechanical Molecular Dynamics Simulations of Biological Systems in Ground and Electronically Excited States. Chem Rev 2015; 115:6217-63. [PMID: 25880693 DOI: 10.1021/cr500628b] [Citation(s) in RCA: 327] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Elizabeth Brunk
- †Laboratory of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.,‡Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94618, United States
| | - Ursula Rothlisberger
- †Laboratory of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.,§National Competence Center of Research (NCCR) MARVEL-Materials' Revolution: Computational Design and Discovery of Novel Materials, 1015 Lausanne, Switzerland
| |
Collapse
|
37
|
Chung LW, Sameera WMC, Ramozzi R, Page AJ, Hatanaka M, Petrova GP, Harris TV, Li X, Ke Z, Liu F, Li HB, Ding L, Morokuma K. The ONIOM Method and Its Applications. Chem Rev 2015; 115:5678-796. [PMID: 25853797 DOI: 10.1021/cr5004419] [Citation(s) in RCA: 819] [Impact Index Per Article: 81.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Lung Wa Chung
- †Department of Chemistry, South University of Science and Technology of China, Shenzhen 518055, China
| | - W M C Sameera
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| | - Romain Ramozzi
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| | - Alister J Page
- §Newcastle Institute for Energy and Resources, The University of Newcastle, Callaghan 2308, Australia
| | - Miho Hatanaka
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| | - Galina P Petrova
- ∥Faculty of Chemistry and Pharmacy, University of Sofia, Bulgaria Boulevard James Bourchier 1, 1164 Sofia, Bulgaria
| | - Travis V Harris
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan.,⊥Department of Chemistry, State University of New York at Oswego, Oswego, New York 13126, United States
| | - Xin Li
- #State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhuofeng Ke
- ∇School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Fengyi Liu
- ○Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Hai-Bei Li
- ■School of Ocean, Shandong University, Weihai 264209, China
| | - Lina Ding
- ▲School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Keiji Morokuma
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| |
Collapse
|
38
|
Zhao J, Yao H, Liu J, Hoffmann MR. New excited-state proton transfer mechanisms for 1,8-dihydroxydibenzo[a,h]phenazine. J Phys Chem A 2015; 119:681-8. [PMID: 25555144 DOI: 10.1021/jp5120459] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The excited state intramolecular proton transfer (ESIPT) mechanisms of 1,8-dihydroxydibenzo[a,h]phenazine (DHBP) in toluene solvent have been investigated based on time-dependent density functional theory (TD-DFT). The results suggest that both a single and double proton transfer mechanisms are relevant, in constrast to the prediction of a single one proposed previously (Piechowska et al. J. Phys. Chem. A 2014, 118, 144-151). The calculated results show that the intramolecular hydrogen bonds were formed in the S0 state, and upon excitation, the intramolecular hydrogen bonds between -OH group and pyridine-type nitrogen atom would be strengthened in the S1 state, which can facilitate the proton transfer process effectively. The calculated vertical excitation energies in the S0 and S1 states reproduce the experimental UV-vis absorption and fluorescence spectra well. The constructed potential energy surfaces of the S0 and S1 states have been used to explain the proton transfer process. Four minima have been found on the S1 state surface, with potential barriers between these excited-state minima of less than 10 kcal/mol, which supports concomitant single and double proton transfer mechanisms. In addition, the fluorescence quenching can be explained reasonably based on the proton transfer process.
Collapse
Affiliation(s)
- Jinfeng Zhao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road, Dalian, Liaoning 116023, China
| | | | | | | |
Collapse
|
39
|
Agostini F, Abedi A, Gross EKU. Classical nuclear motion coupled to electronic non-adiabatic transitions. J Chem Phys 2014; 141:214101. [DOI: 10.1063/1.4902225] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Federica Agostini
- Max-Planck Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany
| | - Ali Abedi
- Max-Planck Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany
| | - E. K. U. Gross
- Max-Planck Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany
| |
Collapse
|
40
|
Sia PI, Luiten AN, Stace TM, Wood JPM, Casson RJ. Quantum biology of the retina. Clin Exp Ophthalmol 2014; 42:582-9. [DOI: 10.1111/ceo.12373] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/10/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Paul Ikgan Sia
- South Australian Institute of Ophthalmology; Hanson Institute; University of Adelaide; Adelaide South Australia Australia
| | - André N Luiten
- Institute for Photonics and Advanced Sensing (IPAS); School of Chemistry and Physics; University of Adelaide; Adelaide South Australia Australia
| | - Thomas M Stace
- School of Mathematics and Physics; University of Queensland; Brisbane Queensland Australia
| | - John PM Wood
- South Australian Institute of Ophthalmology; Hanson Institute; University of Adelaide; Adelaide South Australia Australia
| | - Robert J Casson
- South Australian Institute of Ophthalmology; Hanson Institute; University of Adelaide; Adelaide South Australia Australia
| |
Collapse
|
41
|
|
42
|
Gozem S, Melaccio F, Valentini A, Filatov M, Huix-Rotllant M, Ferré N, Frutos LM, Angeli C, Krylov AI, Granovsky AA, Lindh R, Olivucci M. Shape of Multireference, Equation-of-Motion Coupled-Cluster, and Density Functional Theory Potential Energy Surfaces at a Conical Intersection. J Chem Theory Comput 2014; 10:3074-84. [PMID: 26588278 DOI: 10.1021/ct500154k] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We report and characterize ground-state and excited-state potential energy profiles using a variety of electronic structure methods along a loop lying on the branching plane associated with a conical intersection (CI) of a reduced retinal model, the penta-2,4-dieniminium cation (PSB3). Whereas the performance of the equation-of-motion coupled-cluster, density functional theory, and multireference methods had been tested along the excited- and ground-state paths of PSB3 in our earlier work, the ability of these methods to correctly describe the potential energy surface shape along a CI branching plane has not yet been investigated. This is the focus of the present contribution. We find, in agreement with earlier studies by others, that standard time-dependent DFT (TDDFT) does not yield the correct two-dimensional (i.e., conical) crossing along the branching plane but rather a one-dimensional (i.e., linear) crossing along the same plane. The same type of behavior is found for SS-CASPT2(IPEA=0), SS-CASPT2(IPEA=0.25), spin-projected SF-TDDFT, EOM-SF-CCSD, and, finally, for the reference MRCISD+Q method. In contrast, we found that MRCISD, CASSCF, MS-CASPT2(IPEA=0), MS-CASPT2(IPEA=0.25), XMCQDPT2, QD-NEVPT2, non-spin-projected SF-TDDFT, and SI-SA-REKS yield the expected conical crossing. To assess the effect of the different crossing topologies (i.e., linear or conical) on the PSB3 photoisomerization efficiency, we discuss the results of 100 semiclassical trajectories computed by CASSCF and SS-CASPT2(IPEA=0.25) for a PSB3 derivative. We show that for the same initial conditions, the two methods yield similar dynamics leading to isomerization quantum yields that differ by only a few percent.
Collapse
Affiliation(s)
- Samer Gozem
- Department of Chemistry, Bowling Green State University , Bowling Green, Ohio 43403, United States
| | - Federico Melaccio
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena , via A. Moro 2, I-53100 Siena, Italy
| | - Alessio Valentini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena , via A. Moro 2, I-53100 Siena, Italy.,Departamento de Química Física, Universidad de Alcalá , E-28871 Alcalá de Henares, Madrid, Spain
| | - Michael Filatov
- Institut für Physikalische und Theoretische Chemie, Universität Bonn , Beringstrasse 4, 53115 Bonn, Germany
| | - Miquel Huix-Rotllant
- Aix-Marseille Université, CNRS, Institut de Chimie Radicalaire , Marseille, France
| | - Nicolas Ferré
- Aix-Marseille Université, CNRS, Institut de Chimie Radicalaire , Marseille, France
| | - Luis Manuel Frutos
- Departamento de Química Física, Universidad de Alcalá , E-28871 Alcalá de Henares, Madrid, Spain
| | - Celestino Angeli
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara , via Fossato di Mortara 17, I-44121 Ferrara, Italy
| | - Anna I Krylov
- Department of Chemistry, University of Southern California , Los Angeles, California 90089-0482, United States
| | | | - Roland Lindh
- Department of Chemistry - Ångström, the Theoretical Chemistry Programme, POB 518, SE-751 20 Uppsala, Sweden
| | - Massimo Olivucci
- Department of Chemistry, Bowling Green State University , Bowling Green, Ohio 43403, United States.,Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena , via A. Moro 2, I-53100 Siena, Italy
| |
Collapse
|
43
|
Caprasecca S, Jurinovich S, Viani L, Curutchet C, Mennucci B. Geometry Optimization in Polarizable QM/MM Models: The Induced Dipole Formulation. J Chem Theory Comput 2014; 10:1588-98. [DOI: 10.1021/ct500021d] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Stefano Caprasecca
- Dipartimento
di Chimica e Chimica Industriale, University of Pisa, Via Risorgimento
35, 56126 Pisa, Italy
| | - Sandro Jurinovich
- Dipartimento
di Chimica e Chimica Industriale, University of Pisa, Via Risorgimento
35, 56126 Pisa, Italy
| | - Lucas Viani
- Dipartimento
di Chimica e Chimica Industriale, University of Pisa, Via Risorgimento
35, 56126 Pisa, Italy
| | - Carles Curutchet
- Departament
de Fisicoquímica Facultat de Farmàcia, Universitat de Barcelona Av. Joan XXIII s/n, 08028 Barcelona, Spain
| | - Benedetta Mennucci
- Dipartimento
di Chimica e Chimica Industriale, University of Pisa, Via Risorgimento
35, 56126 Pisa, Italy
| |
Collapse
|
44
|
Polli D, Weingart O, Brida D, Poli E, Maiuri M, Spillane KM, Bottoni A, Kukura P, Mathies RA, Cerullo G, Garavelli M. Wavepacket Splitting and Two-Pathway Deactivation in the Photoexcited Visual Pigment Isorhodopsin. Angew Chem Int Ed Engl 2014; 53:2504-7. [DOI: 10.1002/anie.201309867] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Indexed: 11/10/2022]
|
45
|
Polli D, Weingart O, Brida D, Poli E, Maiuri M, Spillane KM, Bottoni A, Kukura P, Mathies RA, Cerullo G, Garavelli M. Aufspaltung des Wellenpakets und Doppelpfad-Desaktivierung im photoangeregten Sehpigment Isorhodopsin. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201309867] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
46
|
Leioatts N, Mertz B, Martínez-Mayorga K, Romo TD, Pitman MC, Feller SE, Grossfield A, Brown MF. Retinal ligand mobility explains internal hydration and reconciles active rhodopsin structures. Biochemistry 2014; 53:376-85. [PMID: 24328554 DOI: 10.1021/bi4013947] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rhodopsin, the mammalian dim-light receptor, is one of the best-characterized G-protein-coupled receptors, a pharmaceutically important class of membrane proteins that has garnered a great deal of attention because of the recent availability of structural information. Yet the mechanism of rhodopsin activation is not fully understood. Here, we use microsecond-scale all-atom molecular dynamics simulations, validated by solid-state (2)H nuclear magnetic resonance spectroscopy, to understand the transition between the dark and metarhodopsin I (Meta I) states. Our analysis of these simulations reveals striking differences in ligand flexibility between the two states. Retinal is much more dynamic in Meta I, adopting an elongated conformation similar to that seen in the recent activelike crystal structures. Surprisingly, this elongation corresponds to both a dramatic influx of bulk water into the hydrophobic core of the protein and a concerted transition in the highly conserved Trp265(6.48) residue. In addition, enhanced ligand flexibility upon light activation provides an explanation for the different retinal orientations observed in X-ray crystal structures of active rhodopsin.
Collapse
Affiliation(s)
- Nicholas Leioatts
- Department of Biochemistry and Biophysics, University of Rochester Medical Center , Rochester, New York 14642, United States
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Ernst OP, Lodowski DT, Elstner M, Hegemann P, Brown L, Kandori H. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem Rev 2014; 114:126-63. [PMID: 24364740 PMCID: PMC3979449 DOI: 10.1021/cr4003769] [Citation(s) in RCA: 836] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Oliver P. Ernst
- Departments
of Biochemistry and Molecular Genetics, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Toronto, Ontario M5S 1A8, Canada
| | - David T. Lodowski
- Center
for Proteomics and Bioinformatics, Case
Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Marcus Elstner
- Institute
for Physical Chemistry, Karlsruhe Institute
of Technology, Kaiserstrasse
12, 76131 Karlsruhe, Germany
| | - Peter Hegemann
- Institute
of Biology, Experimental Biophysics, Humboldt-Universität
zu Berlin, Invalidenstrasse
42, 10115 Berlin, Germany
| | - Leonid
S. Brown
- Department
of Physics and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Hideki Kandori
- Department
of Frontier Materials, Nagoya Institute
of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
48
|
Schmidt TC, Paasche A, Grebner C, Ansorg K, Becker J, Lee W, Engels B. QM/MM investigations of organic chemistry oriented questions. Top Curr Chem (Cham) 2014; 351:25-101. [PMID: 22392477 DOI: 10.1007/128_2011_309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
About 35 years after its first suggestion, QM/MM became the standard theoretical approach to investigate enzymatic structures and processes. The success is due to the ability of QM/MM to provide an accurate atomistic picture of enzymes and related processes. This picture can even be turned into a movie if nuclei-dynamics is taken into account to describe enzymatic processes. In the field of organic chemistry, QM/MM methods are used to a much lesser extent although almost all relevant processes happen in condensed matter or are influenced by complicated interactions between substrate and catalyst. There is less importance for theoretical organic chemistry since the influence of nonpolar solvents is rather weak and the effect of polar solvents can often be accurately described by continuum approaches. Catalytic processes (homogeneous and heterogeneous) can often be reduced to truncated model systems, which are so small that pure quantum-mechanical approaches can be employed. However, since QM/MM becomes more and more efficient due to the success in software and hardware developments, it is more and more used in theoretical organic chemistry to study effects which result from the molecular nature of the environment. It is shown by many examples discussed in this review that the influence can be tremendous, even for nonpolar reactions. The importance of environmental effects in theoretical spectroscopy was already known. Due to its benefits, QM/MM can be expected to experience ongoing growth for the next decade.In the present chapter we give an overview of QM/MM developments and their importance in theoretical organic chemistry, and review applications which give impressions of the possibilities and the importance of the relevant effects. Since there is already a bunch of excellent reviews dealing with QM/MM, we will discuss fundamental ingredients and developments of QM/MM very briefly with a focus on very recent progress. For the applications we follow a similar strategy.
Collapse
Affiliation(s)
- Thomas C Schmidt
- Institut für Phys. und Theor. Chemie, Emil-Fischer-Strasse 42, Campus Hubland Nord, 97074, Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
49
|
Li Y, Hartke B. Approximate photochemical dynamics of azobenzene with reactive force fields. J Chem Phys 2013; 139:224303. [DOI: 10.1063/1.4837237] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
50
|
Agostini F, Abedi A, Suzuki Y, Gross E. Mixed quantum-classical dynamics on the exact time-dependent potential energy surface: a fresh look at non-adiabatic processes. Mol Phys 2013. [DOI: 10.1080/00268976.2013.843731] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|