1
|
Loison L, Huré M, Lefranc B, Leprince J, Bôle-Feysot C, Coëffier M, Ribet D. Staphylococcus warneri dampens SUMOylation and promotes intestinal inflammation. Gut Microbes 2025; 17:2446392. [PMID: 39819277 DOI: 10.1080/19490976.2024.2446392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 11/28/2024] [Accepted: 12/18/2024] [Indexed: 01/19/2025] Open
Abstract
Gut bacteria play key roles in intestinal physiology, via the secretion of diversified bacterial effectors. Many of these effectors remodel the host proteome, either by altering transcription or by regulating protein post-translational modifications. SUMOylation, a ubiquitin-like post-translational modification playing key roles in intestinal physiology, is a target of gut bacteria. Mutualistic gut bacteria can promote SUMOylation, via the production of short- or branched-chain fatty acids (SCFA/BCFA). In contrast, several pathogenic bacteria were shown to dampen SUMOylation in order to promote infection. Here, we demonstrate that Staphylococcus warneri, a natural member of the human gut microbiota, decreases SUMOylation in intestinal cells. We identify that Warnericin RK, a hemolytic toxin secreted by S. warneri, targets key components of the host SUMOylation machinery, leading to the loss of SUMO-conjugated proteins. We further demonstrate that Warnericin RK promotes inflammation in intestinal and immune cells using both SUMO-dependent and SUMO-independent mechanisms. We finally show that Warnericin RK regulates the expression of genes involved in intestinal tight junctions. Together, these results highlight the diversity of mechanisms used by bacteria from the gut microbiota to manipulate host SUMOylation. They further highlight that changes in gut microbiota composition may impact intestinal inflammation, by altering the equilibrium between bacterial effectors promoting or dampening SUMOylation.
Collapse
Affiliation(s)
- Léa Loison
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN, UMR 1073 Nutrition, Inflammation and Microbiota-Gut-Brain axis, Rouen, France
| | - Marion Huré
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN, UMR 1073 Nutrition, Inflammation and Microbiota-Gut-Brain axis, Rouen, France
| | - Benjamin Lefranc
- Univ Rouen Normandie, INSERM, Normandie Univ, NorDiC, UMR 1239, PRIMACEN, Rouen, France
| | - Jérôme Leprince
- Univ Rouen Normandie, INSERM, Normandie Univ, NorDiC, UMR 1239, PRIMACEN, Rouen, France
| | - Christine Bôle-Feysot
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN, UMR 1073 Nutrition, Inflammation and Microbiota-Gut-Brain axis, Rouen, France
| | - Moïse Coëffier
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN, UMR 1073 Nutrition, Inflammation and Microbiota-Gut-Brain axis, CHU Rouen, Department of Nutrition, CIC-CRB1404, Rouen, France
| | - David Ribet
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN, UMR 1073 Nutrition, Inflammation and Microbiota-Gut-Brain axis, Rouen, France
| |
Collapse
|
2
|
Jiang W, Luo W, Zhang Z, He L, Qian Y, Zhou T. Hla protein expression and artesunate prevented mice from further damage caused by Staphylococcus aureus pneumonia. Int J Biol Macromol 2024; 277:134099. [PMID: 39048008 DOI: 10.1016/j.ijbiomac.2024.134099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/16/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
The laboratory standard MRSA strain WHO-2 and clinical isolate S1 were used to establish a pneumonia infection model. The results showed that methicillin increased the expression of Hla and PVL protein at subminimum inhibitory concentration, while artesunate decreased the secretion of Hla and PVL protein. Artesunate alone reduced hemolysin expression and reversed methicillin-induced increases in Hla and PVL proteins. In addition, the study found that the combination of artesunate and methicillin had the best therapeutic effect, with survival rates of 70 % and 40 % at seven days, respectively (corresponding to the WHO-2 and S1 strains). The combination treatment was able to reduce cell mortality, showing a 65 % and 46 % reduction in cell mortality, respectively. The study also found that the combination therapy decreased the expression of alpha-hemolysin and pantone valentin leukin in the culture medium and significantly reduced the activation of NF-kB. This is caused by a significant decrease in the expression of inflammatory factors.
Collapse
Affiliation(s)
- Weiwei Jiang
- Department of Pharmacy, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Wen Luo
- Department of Pharmacy, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Zimin Zhang
- Department of Pharmacy, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China; College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Lu He
- Department of Pharmacy, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Yan Qian
- Department of Pharmacy, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China.
| | - Ting Zhou
- Department of Pharmacy, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
3
|
Wang Y, Yang L, Ma J, Tang J, Chen M. Unraveling the antibiotic resistome in backwater zones of large cascade reservoirs: Co-occurrence patterns, horizontal transfer directions and health risks. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119144. [PMID: 37776796 DOI: 10.1016/j.jenvman.2023.119144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023]
Abstract
The widespread occurrence of antibiotic resistant genes (ARGs) throughout aquatic environments has raised global concerns for public health. However, the profiles and patterns of antibiotic resistome in backwater zone of cascade reservoirs, where water flow is slowed down, are still poorly understood. Here, we proposed a metagenomic analysis framework to comprehensively reveal the diversity, abundance, co-occurrence patterns and transfer direction of ARGs in cascade reservoirs system and evaluated their health risks through a procedure based on contigs. A total of 364 ARGs subtypes conferring resistance to different antibiotics classes were detected in our water samples, and the dominant ARGs (macB, bacA, vanRA, bcrA) were similar in different reservoirs. Meanwhile, the distribution of ARGs was influenced by the presence of biotic factors such as metal resistant genes (MRGs) and mobile genetic elements (MGEs), as well as abiotic factors such as dissolved oxygen (DO) and pH. Remarkably, ARGs (vanR, rosB, MexT) co-occurred with plasmids and virulence factor genes (VFGs), which can lead to the emergence and spread of highly virulent and antibiotic resistant bacteria in microbial communities. Overall, this study helps administrators to better understand the complex patterns of ARGs in backwater zones of large cascade reservoirs and provides a proper procedure for detecting the presence of high-risk of ARGs.
Collapse
Affiliation(s)
- Yujie Wang
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Liu Yang
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Jun Ma
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Jian Tang
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Ming Chen
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
| |
Collapse
|
4
|
Hsiao YC, Hung YH, Horng YJ, Chang CW. Antimicrobial effects of automobile screenwashes against Legionella pneumophila. J Appl Microbiol 2022; 133:3596-3604. [PMID: 36000381 DOI: 10.1111/jam.15793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 11/27/2022]
Abstract
AIMS Legionella pneumophila (Lp), a human pathogen, has been detected in windscreen wiper fluid reservoirs (WWFRs) where commercial screenwashes (CSWs) are commonly added. Limited information is available on CSWs against planktonic Lp; however, responses of sessile Lp and planktonic Lp pre-acclimated in nutrient-limited water to CSWs remain unknown. This study thus investigates the antibacterial effects of CSWs on sessile and starved planktonic Lp, in comparison with unstarved Lp. METHODS AND RESULTS Lp biofilms were produced on glass and WWFR materials of high-density polyethylene (HDPE) and polypropylene (PP). Planktonic Lp with and without acclimation in tap water were prepared. Log reductions in cell counts averaged 0.4-5.0 for ten brands of CSWs against sessile Lp and 1.0-3.9 and 0.9-4.9, respectively, against starved and unstarved planktonic Lp for five CSWs. Both biofilm formation and acclimation in tap water enhanced Lp resistance to CSWs. Significantly different log-reduction values among CSW brands were observed for sessile Lp on HDPE and planktonic Lp regardless of acclimation (p<0.05). CONCLUSIONS Biofilm formation, starvation acclimation, and CSW brand are crucial factors influencing Lp response to CSWs. SIGNIFICANCE AND IMPACT OF STUDY This study advances the knowledge of Lp reaction in anthropogenic water systems with CSWs.
Collapse
Affiliation(s)
- Yun-Chung Hsiao
- Department of Public Health, National Taiwan University, Taiwan
| | - Yu-Hsin Hung
- Department of Public Health, National Taiwan University, Taiwan
| | - Yu-Ju Horng
- Institute of Environmental and Occupational Health Sciences, National Taiwan University, Taiwan
| | - Ching-Wen Chang
- Department of Public Health, National Taiwan University, Taiwan.,Institute of Environmental and Occupational Health Sciences, National Taiwan University, Taiwan
| |
Collapse
|
5
|
Islam MA, Hassen WM, Tayabali AF, Dubowski JJ. Antimicrobial warnericin RK peptide functionalized GaAs/AlGaAs biosensor for highly sensitive and selective detection of Legionella pneumophila. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2019.107435] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
6
|
Tran RJ, Lalonde MS, Sly KL, Conboy JC. Mechanistic Investigation of HIV-1 Gag Association with Lipid Membranes. J Phys Chem B 2019; 123:4673-4687. [PMID: 31084006 DOI: 10.1021/acs.jpcb.9b02655] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An extensive investigation into the initial association of HIV-1 Gag with lipid membranes was conducted with second harmonic generation. The roles of the lipid phase, phospholipid 1,2-dioleoyl- sn-glycero-3-phospho-(1-myo-inositol-4,5-bisphosphate) [PI(4,5)P2], the presence of the myristoyl group on Gag, the C-terminus of Gag, and the presence of transfer ribonucleic acid (tRNA) in Gag-membrane association were examined using the physiologically most relevant full-length Gag protein studied thus far. The tighter packing of a bilayer composed of gel-phase lipids was found to have a lower relative amount of membrane-bound Gag in comparison to its fluid-phase counterpart. Rather than driving membrane association of Gag, the presence of PI(4,5)P2 and the myristoyl group were found to anchor Gag at the membrane by decreasing the rate of desorption. Specifically, the interaction with PI(4,5)P2 allows Gag to overcome electrostatic repulsion with negatively charged lipids at the membrane surface. This behavior was verified by measuring the binding properties of Gag mutants in the matrix domain of Gag, which prevented anchoring to the membrane either by blocking interaction with PI(4,5)P2 or by preventing exposure of the myristoyl group. The presence of tRNA was found to inhibit Gag association with the membrane by specifically blocking the PI(4,5)P2 binding region, thereby preventing exposure of the myristoyl group and precluding subsequent anchoring of Gag to the membrane. While Gag likely samples all membranes, only the anchoring provided by the myristoyl group and PI(4,5)P2 allows Gag to accumulate at the membrane. These quantitative results on the kinetics and thermodynamics of Gag association with lipid membranes provide important new information about the mechanism of Gag-membrane association.
Collapse
Affiliation(s)
- Renee J Tran
- Department of Chemistry , University of Utah , 315 South 1400 East, Room 2020 , Salt Lake City , Utah 84112 , United States
| | - Matthew S Lalonde
- Department of Biochemistry , University of Utah , 15 North Medical Drive East, Room 4100 , Salt Lake City , Utah 84112 , United States
| | - Krystal L Sly
- Department of Chemistry , University of Utah , 315 South 1400 East, Room 2020 , Salt Lake City , Utah 84112 , United States
| | - John C Conboy
- Department of Chemistry , University of Utah , 315 South 1400 East, Room 2020 , Salt Lake City , Utah 84112 , United States
| |
Collapse
|
7
|
Corre MH, Delafont V, Legrand A, Berjeaud JM, Verdon J. Exploiting the Richness of Environmental Waterborne Bacterial Species to Find Natural Legionella pneumophila Competitors. Front Microbiol 2019; 9:3360. [PMID: 30697209 PMCID: PMC6340971 DOI: 10.3389/fmicb.2018.03360] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/31/2018] [Indexed: 11/17/2022] Open
Abstract
Legionella pneumophila is one of the most tracked waterborne pathogens and remains an important threat to human health. Despite the use of biocides, L. pneumophila is able to persist in engineered water systems with the help of multispecies biofilms and phagocytic protists. For few years now, high-throughput sequencing methods have enabled a better understanding of microbial communities in freshwater environments. Those unexplored and complex communities compete for nutrients using antagonistic molecules as war weapons. Up to now, few of these molecules were characterized in regards of L. pneumophila sensitivity. In this context, we established, from five freshwater environments, a vast collection of culturable bacteria and investigated their ability to inhibit the growth of L. pneumophila. All bacterial isolates were classified within 4 phyla, namely Proteobacteria (179/273), Bacteroidetes (48/273), Firmicutes (43/273), and Actinobacteria (3/273) according to 16S rRNA coding sequences. Aeromonas, Bacillus, Flavobacterium, and Pseudomonas were the most abundant genera (154/273). Among the 273 isolates, 178 (65.2%) were shown to be active against L. pneumophila including 137 isolates of the four previously cited main genera. Additionally, other less represented genera depicted anti-Legionella activity such as Acinetobacter, Kluyvera, Rahnella, or Sphingobacterium. Furthermore, various inhibition diameters were observed among active isolates, ranging from 0.4 to 9 cm. Such variability suggests the presence of numerous and diverse natural compounds in the microenvironment of L. pneumophila. These molecules include both diffusible secreted compounds and volatile organic compounds, the latter being mainly produced by Pseudomonas strains. Altogether, this work sheds light on unexplored freshwater bacterial communities that could be relevant for the biological control of L. pneumophila in manmade water systems.
Collapse
Affiliation(s)
- Marie-Hélène Corre
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Vincent Delafont
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Anasthasia Legrand
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Jean-Marc Berjeaud
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Julien Verdon
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers, France
| |
Collapse
|
8
|
Oh R, Lee MJ, Kim YO, Nam BH, Kong HJ, Kim JW, Park JY, Seo JK, Kim DG. Purification and characterization of an antimicrobial peptide mytichitin-chitin binding domain from the hard-shelled mussel, Mytilus coruscus. FISH & SHELLFISH IMMUNOLOGY 2018; 83:425-435. [PMID: 30195913 DOI: 10.1016/j.fsi.2018.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/23/2018] [Accepted: 09/05/2018] [Indexed: 06/08/2023]
Abstract
An antimicrobial peptide with 55 amino acid residues was purified by C18 reversed-phase high-performance liquid chromatography (HPLC) from foot extract of the hard-shelled mussel, Mytilus coruscus. This peptide showed strong antimicrobial activity against Gram-positive and Gram-negative bacteria, as well as fungi. The purified peptide was determined to have a molecular mass of 6202 Da by matrix-assisted laser desorption/ionization time-of-flight mass spectrophotometry (MALDI-TOF/MS). The identified 20-amino acid sequence of the purified peak by Edman degradation shared 100% identity with the N-terminal regions of mytichitin-1, mytichitin-2, mytichitin-3, mytichitin-4, mytichitin-5, and chitinase-like protein-1, and so was named mytichitin-CBD. The cDNA of mytichitin-CBD was cloned and sequenced by rapid amplification of cDNA ends (RACE). The mRNA transcripts were mainly detected in foot tissue, and they were up-regulated and peaked at 4 h after bacterial infection. We constructed and expressed recombinant mytichitin-CBD protein which displayed antimicrobial activity against Gram-negative bacteria Gram-positive bacteria and the fungus as well as anti-parasitic activity against scuticociliates. The results of this study demonstrate that the peptide isolated from M. coruscus is related to the innate immune system of this marine invertebrate and is a possible alternative to antibiotics.
Collapse
Affiliation(s)
- Ryunkyoung Oh
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Min Jeong Lee
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Young-Ok Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Bo-Hye Nam
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Hee Jeong Kong
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Ju-Won Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Jung Youn Park
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Jung-Kil Seo
- Department of Food Science and Biotechnology, Kunsan National University, Kunsan, 54150, Republic of Korea.
| | - Dong-Gyun Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea.
| |
Collapse
|
9
|
Highlighting the Potency of Biosurfactants Produced by Pseudomonas Strains as Anti- Legionella Agents. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8194368. [PMID: 30426015 PMCID: PMC6217892 DOI: 10.1155/2018/8194368] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/12/2018] [Accepted: 09/27/2018] [Indexed: 12/18/2022]
Abstract
Legionella pneumophila, the causative agent of Legionnaires' disease, is a waterborne bacterium mainly found in man-made water systems in close association with free-living amoebae and multispecies biofilms. Pseudomonas strains, originating from various environments including freshwater systems or isolated from hospitalized patients, were tested for their antagonistic activity towards L. pneumophila. A high amount of tested strains was thus found to be active. This antibacterial activity was correlated to the presence of tensioactive agents in culture supernatants. As Pseudomonas strains were known to produce biosurfactants, these compounds were specifically extracted and purified from active strains and further characterized using reverse-phase HPLC and mass spectrometry methods. Finally, all biosurfactants tested (lipopeptides and rhamnolipids) were found active and this activity was shown to be higher towards Legionella strains compared to various other bacteria. Therefore, described biosurfactants are potent anti-Legionella agents that could be used in the water treatment industry although tests are needed to evaluate how effective they would be under field conditions.
Collapse
|
10
|
Exploring the metabolic heterogeneity of coagulase-negative staphylococci to improve the quality and safety of fermented meats: a review. Int J Food Microbiol 2017; 247:24-37. [DOI: 10.1016/j.ijfoodmicro.2016.05.021] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 03/15/2016] [Accepted: 05/15/2016] [Indexed: 12/16/2022]
|
11
|
Specific Anti-Leukemic Activity of the Peptide Warnericin RK and Analogues and Visualization of Their Effect on Cancer Cells by Chemical Raman Imaging. PLoS One 2016; 11:e0162007. [PMID: 27598770 PMCID: PMC5012605 DOI: 10.1371/journal.pone.0162007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/16/2016] [Indexed: 11/19/2022] Open
Abstract
Antimicrobial peptides can be used as therapeutic agents against cancer cells. Warnericin RK and derivatives (WarnG20D and WarnF14V) were tested on various, solid tumor or leukemia, cancer cells. These peptides appeared to be cytotoxic on all the cell types tested, cancerous as well healthy, but very interestingly displayed no deleterious effect on healthy mononuclear cells. The mode of action of the peptide was proposed to be membranolytic, using chemical Raman imaging. Addition of peptide induced a large disorganization of the membrane leading to the loss of the content of inner compartments of Jurkat cell, whereas no effect was observed on the healthy mononuclear cells. The less hemolytic peptides WarnG20D and WarnF14V could be good candidates for the leukemia treatment.
Collapse
|
12
|
Berjeaud JM, Chevalier S, Schlusselhuber M, Portier E, Loiseau C, Aucher W, Lesouhaitier O, Verdon J. Legionella pneumophila: The Paradox of a Highly Sensitive Opportunistic Waterborne Pathogen Able to Persist in the Environment. Front Microbiol 2016; 7:486. [PMID: 27092135 PMCID: PMC4824771 DOI: 10.3389/fmicb.2016.00486] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/23/2016] [Indexed: 01/28/2023] Open
Abstract
Legionella pneumophila, the major causative agent of Legionnaires’ disease, is found in freshwater environments in close association with free-living amoebae and multispecies biofilms, leading to persistence, spread, biocide resistance, and elevated virulence of the bacterium. Indeed, legionellosis outbreaks are mainly due to the ability of this bacterium to colonize and persist in water facilities, despite harsh physical and chemical treatments. However, these treatments are not totally efficient and, after a lag period, L. pneumophila may be able to quickly re-colonize these systems. Several natural compounds (biosurfactants, antimicrobial peptides…) with anti-Legionella properties have recently been described in the literature, highlighting their specific activities against this pathogen. In this review, we first consider this hallmark of Legionella to resist killing, in regard to its biofilm or host-associated life style. Then, we focus more accurately on natural anti-Legionella molecules described so far, which could provide new eco-friendly and alternative ways to struggle against this important pathogen in plumbing.
Collapse
Affiliation(s)
- Jean-Marc Berjeaud
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers Poitiers, France
| | - Sylvie Chevalier
- Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Université de Rouen Evreux, France
| | - Margot Schlusselhuber
- Laboratoire Aliments Bioprocédés Toxicologie Environnements, EA 4651, Université de Caen Caen, France
| | - Emilie Portier
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers Poitiers, France
| | - Clémence Loiseau
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers Poitiers, France
| | - Willy Aucher
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers Poitiers, France
| | - Olivier Lesouhaitier
- Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Université de Rouen Evreux, France
| | - Julien Verdon
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers Poitiers, France
| |
Collapse
|
13
|
Effect of amino acid substitution in the staphylococcal peptides warnericin RK and PSMα on their anti-Legionella and hemolytic activities. Mol Cell Biochem 2015; 405:159-67. [PMID: 25869678 DOI: 10.1007/s11010-015-2407-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 04/09/2015] [Indexed: 10/23/2022]
|
14
|
Nablo BJ, Panchal RG, Bavari S, Nguyen TL, Gussio R, Ribot W, Friedlander A, Chabot D, Reiner JE, Robertson JWF, Balijepalli A, Halverson KM, Kasianowicz JJ. Anthrax toxin-induced rupture of artificial lipid bilayer membranes. J Chem Phys 2014; 139:065101. [PMID: 23947891 DOI: 10.1063/1.4816467] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We demonstrate experimentally that anthrax toxin complexes rupture artificial lipid bilayer membranes when isolated from the blood of infected animals. When the solution pH is temporally acidified to mimic that process in endosomes, recombinant anthrax toxin forms an irreversibly bound complex, which also destabilizes membranes. The results suggest an alternative mechanism for the translocation of anthrax toxin into the cytoplasm.
Collapse
Affiliation(s)
- Brian J Nablo
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8120, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Vonnemann J, Beziere N, Böttcher C, Riese SB, Kuehne C, Dernedde J, Licha K, von Schacky C, Kosanke Y, Kimm M, Meier R, Ntziachristos V, Haag R. Polyglycerolsulfate functionalized gold nanorods as optoacoustic signal nanoamplifiers for in vivo bioimaging of rheumatoid arthritis. Theranostics 2014; 4:629-41. [PMID: 24723984 PMCID: PMC3982133 DOI: 10.7150/thno.8518] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 02/02/2014] [Indexed: 01/05/2023] Open
Abstract
We have synthesized a targeted imaging agent for rheumatoid arthritis based on polysulfated gold nanorods. The CTAB layer on gold nanorods was first replaced with PEG-thiol and then with dendritic polyglycerolsulfate at elevated temperature, which resulted in significantly reduced cytotoxicity compared to polyanionic gold nanorods functionalized by non-covalent approaches. In addition to classical characterization methods, we have established a facile UV-VIS based BaCl2 agglomeration assay to confirm a quantitative removal of unbound ligand. With the help of a competitive surface plasmon resonance-based L-selectin binding assay and a leukocyte adhesion-based flow cell assay, we have demonstrated the high inflammation targeting potential of the synthesized gold nanorods in vitro. In combination with the surface plasmon resonance band of AuNRs at 780 nm, these findings permitted the imaging of inflammation in an in vivo mouse model for rheumatoid arthritis with high contrast using multispectral optoacoustic tomography. The study offers a robust method for otherwise difficult to obtain covalently functionalized polyanionic gold nanorods, which are suitable for biological applications as well as a low-cost, actively targeted, and high contrast imaging agent for the diagnosis of rheumatoid arthritis. This paves the way for further research in other inflammation associated pathologies, in particular, when photothermal therapy can be applied.
Collapse
|
16
|
Lalgee LJ, Grierson L, Fairman RA, Jaggernauth GE, Schulte A, Benz R, Winterhalter M. Synthetic ion transporters: pore formation in bilayers via coupled activity of non-spanning cobalt-cage amphiphiles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1247-54. [PMID: 24508756 DOI: 10.1016/j.bbamem.2014.01.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 01/07/2014] [Accepted: 01/27/2014] [Indexed: 11/16/2022]
Abstract
Three amphiphilic cobalt-cage congeners bearing a diaza-crown bridge and varying alkyl chains (1:2:3; n = 12, 16, 18) have been assessed for their ion transport across planar lipid bilayer membranes. In symmetrical electrolyte solutions, a range of ion transport activity is provoked: 1 disrupts painted (fluid) bilayers in a detergent-like mode of action; 2 forms conducting "pores" in folded (rigid) membranes with long open lifetimes (>2 min) while 3 requires the larger auxiliary solvent volume and lower lateral stress of painted membranes to effect ion transport via long-lived pores. Hill analysis of the conductance variation with monomer concentration yields coefficients (2:3; n = 2.3, 1.9) in support of dimeric (n = 2) membrane-active structures, for which the derived "pore" radii are correlated with charge-density of the transported cations and their affinity for the crown moiety. A toroidal-pore model is invoked to account for the flux of guest ions through planar bilayer membranes without a fast-diffusing intermediary or direct membrane-spanning structure.
Collapse
Affiliation(s)
- Lorale J Lalgee
- The Department of Chemistry, The University of the West Indies, St. Augustine, Trinidad and Tobago.
| | - Lebert Grierson
- The Department of Chemistry, The University of the West Indies, St. Augustine, Trinidad and Tobago.
| | - Richard A Fairman
- The Department of Chemistry, The University of the West Indies, St. Augustine, Trinidad and Tobago.
| | - Gina E Jaggernauth
- The Department of Chemistry, The University of the West Indies, St. Augustine, Trinidad and Tobago.
| | - Albert Schulte
- The Department of Chemistry, The University of the West Indies, St. Augustine, Trinidad and Tobago.
| | - Roland Benz
- School of Engineering and Science, Jacobs University Bremen, Germany.
| | | |
Collapse
|
17
|
Verdon J, Girardin N, Marchand A, Héchard Y, Berjeaud JM. Purification and antibacterial activity of recombinant warnericin RK expressed in Escherichia coli. Appl Microbiol Biotechnol 2012; 97:5401-12. [DOI: 10.1007/s00253-012-4417-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 08/24/2012] [Accepted: 09/05/2012] [Indexed: 11/27/2022]
|
18
|
Marchand A, Verdon J, Lacombe C, Crapart S, Héchard Y, Berjeaud JM. Anti-Legionella activity of staphylococcal hemolytic peptides. Peptides 2011; 32:845-51. [PMID: 21291938 DOI: 10.1016/j.peptides.2011.01.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 01/19/2011] [Accepted: 01/19/2011] [Indexed: 10/18/2022]
Abstract
A collection of various Staphylococci was screened for their anti-Legionella activity. Nine of the tested strains were found to secrete anti-Legionella compounds. The culture supernatants of the strains, described in the literature to produce hemolytic peptides, were successfully submitted to a two step purification process. All the purified compounds, except one, corresponded to previously described hemolytic peptides and were not known for their anti-Legionella activity. By comparison of the minimal inhibitory concentrations, minimal permeabilization concentrations, decrease in the number of cultivable bacteria, hemolytic activity and selectivity, the purified peptides could be separated in two groups. First group, with warnericin RK as a leader, corresponds to the more hemolytic and bactericidal peptides. The peptides of the second group, represented by the PSMα from Staphylococcus epidermidis, appeared bacteriostatic and poorly hemolytic.
Collapse
Affiliation(s)
- A Marchand
- Laboratoire de Chimie et Microbiologie de l'Eau, UMR 6008 CNRS, IBMIG - UFR Sciences Fondamentales et Appliquées, Université de Poitiers, 1 rue du Georges Bonnet, 86022 Poitiers Cedex, France
| | | | | | | | | | | |
Collapse
|
19
|
Verdon J, Labanowski J, Sahr T, Ferreira T, Lacombe C, Buchrieser C, Berjeaud JM, Héchard Y. Fatty acid composition modulates sensitivity of Legionella pneumophila to warnericin RK, an antimicrobial peptide. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:1146-53. [PMID: 21182824 DOI: 10.1016/j.bbamem.2010.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 11/25/2010] [Accepted: 12/13/2010] [Indexed: 11/16/2022]
Abstract
Warnericin RK is an antimicrobial peptide, produced by a Staphyloccocus warneri strain, described to be specifically active against Legionella, the pathogenic bacteria responsible for Legionnaires' disease. Warnericin RK is an amphiphilic alpha-helical peptide, which possesses a detergent-like mode of action. Two others peptides, δ-hemolysin I and II, produced by the same S. warneri strain, are highly similar to S. aureus δ-hemolysin and also display anti-Legionella activity. It has been recently reported that S. aureus δ-hemolysin activity on vesicles is likewise related to phospholipid acyl-chain structure, such as chain length and saturation. As staphylococcal δ-hemolysins were highly similar, we thus hypothesized that fatty acid composition of Legionella's membrane might influence the sensitivity of the bacteria to warnericin RK. Relationship between sensitivity to the peptide and fatty acid composition was then followed in various conditions. Cells in stationary phase, which were already described as less resistant than cells in exponential phase, displayed higher amounts of branched-chain fatty acids (BCFA) and short chain fatty acids. An adapted strain, able to grow at a concentration 33 fold higher than minimal inhibitory concentration of the wild type (i.e. 1μM), was isolated after repeated transfers of L. pneumophila in the presence of increased concentrations of warnericin RK. The amount of BCFA was significantly higher in the adapted strain than in the wild type strain. Also, a transcriptomic analysis of the wild type and adapted strains showed that two genes involved in fatty acid biosynthesis were repressed in the adapted strain. These genes encode enzymes involved in desaturation and elongation of fatty acids respectively. Their repression was in agreement with the decrease of unsaturated fatty acids and fatty acid chain length in the adapted strain. Conclusively, our results indicate that the increase of BCFA and the decrease of fatty acid chain length in membrane were correlated with the increase in resistance to warnericin RK. Therefore, fatty acid profile seems to play a critical role in the sensitivity of L. pneumophila to warnericin RK.
Collapse
Affiliation(s)
- Julien Verdon
- Laboratoire de Chimie et Microbiologie de l'Eau, UMR CNRS 6008, Université de Poitiers, Poitiers, France
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Hilbi H, Jarraud S, Hartland E, Buchrieser C. Update on Legionnaires' disease: pathogenesis, epidemiology, detection and control. Mol Microbiol 2010; 76:1-11. [PMID: 20149105 PMCID: PMC2914503 DOI: 10.1111/j.1365-2958.2010.07086.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Legionellosis or Legionnaires' disease is an emerging and often-fatal form of pneumonia that is most severe in elderly and immunocompromised people, an ever-increasing risk group for infection. In recent years, the genomics of Legionella spp. has significantly increased our knowledge of the pathogenesis of this disease by providing new insights into the evolution and genetic and physiological basis of Legionella-host interactions. The seventh international conference on Legionella, Legionella 2009, illustrated many recent conceptual advances in epidemiology, pathogenesis and ecology. Experts in different fields presented new findings on basic mechanisms of pathogen-host interactions and bacterial evolution, as well as the clinical management and environmental prevalence and persistence of Legionella. The presentations revealed remarkable facts about the genetic and metabolic basis of the intracellular lifestyle of Legionella and reported on its striking ability to manipulate host cell processes by molecular mimicry. Together, these investigations will lead to new approaches for the treatment and prevention of Legionnaires' disease.
Collapse
Affiliation(s)
- Hubert Hilbi
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Sophie Jarraud
- Centre National de Référence des Legionella, Université de Lyon, INSERM U851, Faculté de Médecine, IFR 128, Lyon, France
| | - Elizabeth Hartland
- Department of Microbiology and Immunology, University of Melbourne, Victoria 3010, Australia
| | - Carmen Buchrieser
- Institut Pasteur, Biologie des Bactéries Intracellulaires, Paris, France
- CNRS URA 2171, Paris, France
| |
Collapse
|
21
|
Huang Y, Huang J, Chen Y. Alpha-helical cationic antimicrobial peptides: relationships of structure and function. Protein Cell 2010; 1:143-52. [PMID: 21203984 DOI: 10.1007/s13238-010-0004-3] [Citation(s) in RCA: 380] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 10/29/2009] [Indexed: 12/27/2022] Open
Abstract
Antimicrobial peptides (AMPs), with their extraordinary properties, such as broad-spectrum activity, rapid action and difficult development of resistance, have become promising molecules as new antibiotics. Despite their various mechanisms of action, the interaction of AMPs with the bacterial cell membrane is the key step for their mode of action. Moreover, it is generally accepted that the membrane is the primary target of most AMPs, and the interaction between AMPs and eukaryotic cell membranes (causing toxicity to host cells) limits their clinical application. Therefore, researchers are engaged in reforming or de novo designing AMPs as a 'single-edged sword' that contains high antimicrobial activity yet low cytotoxicity against eukaryotic cells. To improve the antimicrobial activity of AMPs, the relationship between the structure and function of AMPs has been rigorously pursued. In this review, we focus on the current knowledge of α-helical cationic antimicrobial peptides, one of the most common types of AMPs in nature.
Collapse
Affiliation(s)
- Yibing Huang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, Jilin University, Changchun 130021, China
| | | | | |
Collapse
|