1
|
Piegols L, Dwyer T, Glotzer SC, Eniola-Adefeso O. Shape-Dependent Structural Order of Red Blood Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:1876-1888. [PMID: 39807598 PMCID: PMC11780740 DOI: 10.1021/acs.langmuir.4c04335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
In this work, we show how shape matters for the ordering of red blood cells (RBCs) at a water-air interface for both artificially rigidified and sphered cells as a model system for hereditary spherocytosis. We report enhanced long-range order for spherical RBCs over disk-shaped RBCs arising from the increased local ordering of spheres relative to disks. We show that rigidity has a greater effect on the radial distribution of spherical vs disk-shaped RBCs by slightly increasing the average distance between cells. The onset of local hexatic bond order of spherical RBCs in mixed disc-sphere systems coincides with the appearance of clustering of spherical cells as the number fraction of spherocytes increases. Additionally, the radial distribution function in mixed-shape systems begins to change with the onset of local hexatic order and clustering of spherical RBCs. By analyzing the radial distribution functions of RBCs, local hexatic bond order, and clustering, we show that the structure of settled RBCs is dictated by shape. These shape-dictated structures may provide a basis for future tools for detecting RBC shape-altering diseases and disorders.
Collapse
Affiliation(s)
- Logan
D. Piegols
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Tobias Dwyer
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sharon C. Glotzer
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces
Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Omolola Eniola-Adefeso
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
2
|
Mazur M, Krauze W. Volumetric segmentation of biological cells and subcellular structures for optical diffraction tomography images. BIOMEDICAL OPTICS EXPRESS 2023; 14:5022-5035. [PMID: 37854559 PMCID: PMC10581803 DOI: 10.1364/boe.498275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 10/20/2023]
Abstract
Three-dimensional, quantitative imaging of biological cells and their internal structures performed by optical diffraction tomography (ODT) is an important part of biomedical research. However, conducting quantitative analysis of ODT images requires performing 3D segmentation with high accuracy, often unattainable with available segmentation methods. Therefore, in this work, we present a new semi-automatic method, called ODT-SAS, which combines several non-machine-learning techniques to segment cells and 2 types of their organelles: nucleoli and lipid structures (LS). ODT-SAS has been compared with Cellpose and slice-by-slice manual segmentation, respectively, in cell segmentation and organelles segmentation. The comparison shows superiority of ODT-SAS over Cellpose and reveals the potential of our technique in detecting cells, nucleoli and LS.
Collapse
Affiliation(s)
- Martyna Mazur
- Warsaw University of Technology, 8 Boboli Str., Warsaw, 02-525, Poland
| | - Wojciech Krauze
- Warsaw University of Technology, 8 Boboli Str., Warsaw, 02-525, Poland
| |
Collapse
|
3
|
Plasmodium falciparum and TNF-α Differentially Regulate Inflammatory and Barrier Integrity Pathways in Human Brain Endothelial Cells. mBio 2022; 13:e0174622. [PMID: 36036514 PMCID: PMC9601155 DOI: 10.1128/mbio.01746-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cerebral malaria is a severe complication of Plasmodium falciparum infection characterized by the loss of blood-brain barrier (BBB) integrity, which is associated with brain swelling and mortality in patients. P. falciparum-infected red blood cells and inflammatory cytokines, like tumor necrosis factor alpha (TNF-α), have been implicated in the development of cerebral malaria, but it is still unclear how they contribute to the loss of BBB integrity. Here, a combination of transcriptomic analysis and cellular assays detecting changes in barrier integrity and endothelial activation were used to distinguish between the effects of P. falciparum and TNF-α on a human brain microvascular endothelial cell (HBMEC) line and in primary human brain microvascular endothelial cells. We observed that while TNF-α induced high levels of endothelial activation, it only caused a small increase in HBMEC permeability. Conversely, P. falciparum-infected red blood cells (iRBCs) led to a strong increase in HBMEC permeability that was not mediated by cell death. Distinct transcriptomic profiles of TNF-α and P. falciparum in HBMECs confirm the differential effects of these stimuli, with the parasite preferentially inducing an endoplasmic reticulum stress response. Our results establish that there are fundamental differences in the responses induced by TNF-α and P. falciparum on brain endothelial cells and suggest that parasite-induced signaling is a major component driving the disruption of the BBB during cerebral malaria, proposing a potential target for much needed therapeutics.
Collapse
|
4
|
Babesia, Theileria, Plasmodium and Hemoglobin. Microorganisms 2022; 10:microorganisms10081651. [PMID: 36014069 PMCID: PMC9414693 DOI: 10.3390/microorganisms10081651] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 12/03/2022] Open
Abstract
The Propagation of Plasmodium spp. and Babesia/Theileria spp. vertebrate blood stages relies on the mediated acquisition of nutrients available within the host’s red blood cell (RBC). The cellular processes of uptake, trafficking and metabolic processing of host RBC proteins are thus crucial for the intraerythrocytic development of these parasites. In contrast to malarial Plasmodia, the molecular mechanisms of uptake and processing of the major RBC cytoplasmic protein hemoglobin remain widely unexplored in intraerythrocytic Babesia/Theileria species. In the paper, we thus provide an updated comparison of the intraerythrocytic stage feeding mechanisms of these two distantly related groups of parasitic Apicomplexa. As the associated metabolic pathways including proteolytic degradation and networks facilitating heme homeostasis represent attractive targets for diverse antimalarials, and alterations in these pathways underpin several mechanisms of malaria drug resistance, our ambition is to highlight some fundamental differences resulting in different implications for parasite management with the potential for novel interventions against Babesia/Theileria infections.
Collapse
|
5
|
McDermott S, Ayazi F, Collins J, Knapper J, Stirling J, Bowman R, Cicuta P. Multi-modal microscopy imaging with the OpenFlexure Delta Stage. OPTICS EXPRESS 2022; 30:26377-26395. [PMID: 36236831 DOI: 10.1364/oe.450211] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/13/2022] [Indexed: 06/16/2023]
Abstract
Microscopes are vital pieces of equipment in much of biological research and medical diagnostics. However, access to a microscope can represent a bottleneck in research, especially in lower-income countries. 'Smart' computer controlled motorized microscopes, which can perform automated routines or acquire images in a range of modalities are even more expensive and inaccessible. Developing low-cost, open-source, smart microscopes enables more researchers to conceive and execute optimized or more complex experiments. Here we present the OpenFlexure Delta Stage, a 3D-printed microscope designed for researchers. Powered by the OpenFlexure software stack, it is capable of performing automated experiments. The design files and assembly instructions are freely available under an open licence. Its intuitive and modular design-along with detailed documentation-allows researchers to implement a variety of imaging modes with ease. The versatility of this microscope is demonstrated by imaging biological and non-biological samples (red blood cells with Plasmodium parasites and colloidal particles in brightfield, epi-fluorescence, darkfield, Rheinberg and differential phase contrast. We present the design strategy and choice of tools to develop devices accessible to researchers from lower-income countries, as well as the advantages of an open-source project in this context. This microscope, having been open-source since its conception, has already been built and tested by researchers around the world, promoting a community of expertise and an environment of reproducibility in science.
Collapse
|
6
|
Introini V, Govendir MA, Rayner JC, Cicuta P, Bernabeu M. Biophysical Tools and Concepts Enable Understanding of Asexual Blood Stage Malaria. Front Cell Infect Microbiol 2022; 12:908241. [PMID: 35711656 PMCID: PMC9192966 DOI: 10.3389/fcimb.2022.908241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/27/2022] [Indexed: 12/02/2022] Open
Abstract
Forces and mechanical properties of cells and tissues set constraints on biological functions, and are key determinants of human physiology. Changes in cell mechanics may arise from disease, or directly contribute to pathogenesis. Malaria gives many striking examples. Plasmodium parasites, the causative agents of malaria, are single-celled organisms that cannot survive outside their hosts; thus, thost-pathogen interactions are fundamental for parasite’s biological success and to the host response to infection. These interactions are often combinations of biochemical and mechanical factors, but most research focuses on the molecular side. However, Plasmodium infection of human red blood cells leads to changes in their mechanical properties, which has a crucial impact on disease pathogenesis because of the interaction of infected red blood cells with other human tissues through various adhesion mechanisms, which can be probed and modelled with biophysical techniques. Recently, natural polymorphisms affecting red blood cell biomechanics have also been shown to protect human populations, highlighting the potential of understanding biomechanical factors to inform future vaccines and drug development. Here we review biophysical techniques that have revealed new aspects of Plasmodium falciparum invasion of red blood cells and cytoadhesion of infected cells to the host vasculature. These mechanisms occur differently across Plasmodium species and are linked to malaria pathogenesis. We highlight promising techniques from the fields of bioengineering, immunomechanics, and soft matter physics that could be beneficial for studying malaria. Some approaches might also be applied to other phases of the malaria lifecycle and to apicomplexan infections with complex host-pathogen interactions.
Collapse
Affiliation(s)
- Viola Introini
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Viola Introini,
| | - Matt A. Govendir
- European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona, Spain
| | - Julian C. Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Pietro Cicuta
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Maria Bernabeu
- European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona, Spain
| |
Collapse
|
7
|
Hernández-Castañeda MA, Lavergne M, Casanova P, Nydegger B, Merten C, Subramanian BY, Matthey P, Lannes N, Mantel PY, Walch M. A Profound Membrane Reorganization Defines Susceptibility of Plasmodium falciparum Infected Red Blood Cells to Lysis by Granulysin and Perforin. Front Immunol 2021; 12:643746. [PMID: 34093532 PMCID: PMC8170093 DOI: 10.3389/fimmu.2021.643746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/26/2021] [Indexed: 01/11/2023] Open
Abstract
Malaria remains one of the most serious health problems in developing countries. The causative agent of malaria, Plasmodium spp., have a complex life cycle involving multiple developmental stages as well as different morphological, biochemical and metabolic requirements. We recently found that γδ T cells control parasite growth using pore-forming proteins to deliver their cytotoxic proteases, the granzymes, into blood residing parasites. Here, we follow up on the molecular mechanisms of parasite growth inhibition by human pore-forming proteins. We confirm that Plasmodium falciparum infection efficiently depletes the red blood cells of cholesterol, which renders the parasite surrounding membranes susceptible to lysis by prokaryotic membrane disrupting proteins, such as lymphocytic granulysin or the human cathelicidin LL-37. Interestingly, not the cholesterol depletion but rather the simultaneous exposure of phosphatidylserine, a negatively charged phospholipid, triggers resistance of late stage parasitized red blood cells towards the eukaryotic pore forming protein perforin. Overall, by revealing the molecular events we establish here a pathogen-host interaction that involves host cell membrane remodeling that defines the susceptibility towards cytolytic molecules.
Collapse
Affiliation(s)
- Maria Andrea Hernández-Castañeda
- Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Marilyne Lavergne
- Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Pierina Casanova
- Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Bryan Nydegger
- Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Carla Merten
- Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Bibin Yesodha Subramanian
- Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Patricia Matthey
- Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Nils Lannes
- Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Pierre-Yves Mantel
- Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Michael Walch
- Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
8
|
Di Gregorio E, Ferrauto G, Schwarzer E, Gianolio E, Valente E, Ulliers D, Aime S, Skorokhod O. Relaxometric studies of erythrocyte suspensions infected by Plasmodium falciparum: a tool for staging infection and testing anti-malarial drugs. Magn Reson Med 2020; 84:3366-3378. [PMID: 32602953 DOI: 10.1002/mrm.28387] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 12/23/2022]
Abstract
PURPOSE Malaria is a global health problem with the most malignant form caused by Plasmodium falciparum (P. falciparum). Parasite maturation in red blood cells (RBCs) is accompanied by changes including the formation of paramagnetic hemozoin (HZ) nanocrystals, and increased metabolism and variation in membrane lipid composition. Herein, MR relaxometry (MRR) was applied to investigate water exchange across RBCs' membrane and HZ formation in parasitized RBCs. METHODS Transverse water protons relaxation rate constants (R2 = 1/T2 ) were measured for assessing HZ formation in P. falciparum-parasitized human RBCs. Moreover, water exchange lifetimes across the RBC membrane (τi ) were assessed by measuring longitudinal relaxation rate constants (R1 = 1/T1 ) at 21.5 MHz in the presence of a gadolinium complex dissolved in the suspension medium. RESULTS τi increased after invasion of parasites (ring stage, mean τi / τ i 0 = 1.234 ± 0.022) and decreased during maturation to late trophozoite (mean τi / τ i 0 = 0.960 ± 0.075) and schizont stages (mean τi / τ i 0 = 1.019 ± 0.065). The HZ accumulation in advanced stages was revealed by T2 -shortening. The curves reporting R2 (1/T2 ) vs. magnetic field showed different slopes for non-parasitized RBCs (npRBCs) and parasitized RBCs (pRBCs), namely 0.003 ± 0.001 for npRBCs, 0.009 ± 0.002, 0.028 ± 0.004 and 0.055 ± 0.002 for pRBCs at ring-, early trophozoite-, and late trophozoite stage, respectively. Antimalarial molecules dihydroartemisinin and chloroquine elicited measurable changes in parasitized RBCs, namely dihydroartemisinin modified τi , whereas the interference of chloroquine with HZ formation was detectable by a significant T2 increase. CONCLUSIONS MRR can be considered a useful tool for reporting on P. falciparum blood stages and for screening potential antimalarial molecules.
Collapse
Affiliation(s)
- Enza Di Gregorio
- Molecular Imaging Center, Department of Molecular Biotechnologies and Health Sciences, University of Torino, Torino, Italy
| | - Giuseppe Ferrauto
- Molecular Imaging Center, Department of Molecular Biotechnologies and Health Sciences, University of Torino, Torino, Italy
| | | | - Eliana Gianolio
- Molecular Imaging Center, Department of Molecular Biotechnologies and Health Sciences, University of Torino, Torino, Italy
| | - Elena Valente
- Department of Oncology, University of Torino, Torino, Italy
| | | | - Silvio Aime
- Molecular Imaging Center, Department of Molecular Biotechnologies and Health Sciences, University of Torino, Torino, Italy
| | - Oleksii Skorokhod
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| |
Collapse
|
9
|
Lubiana P, Bouws P, Roth LK, Dörpinghaus M, Rehn T, Brehmer J, Wichers JS, Bachmann A, Höhn K, Roeder T, Thye T, Gutsmann T, Burmester T, Bruchhaus I, Metwally NG. Adhesion between P. falciparum infected erythrocytes and human endothelial receptors follows alternative binding dynamics under flow and febrile conditions. Sci Rep 2020; 10:4548. [PMID: 32161335 PMCID: PMC7066226 DOI: 10.1038/s41598-020-61388-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/25/2020] [Indexed: 11/10/2022] Open
Abstract
Characterizing the adhesive dynamics of Plasmodium falciparum infected erythrocytes (IEs) to different endothelial cell receptors (ECRs) in flow is a big challenge considering available methods. This study investigated the adhesive dynamics of IEs to five ECRs (CD36, ICAM-1, P-selectin, CD9, CSA) using simulations of in vivo-like flow and febrile conditions. To characterize the interactions between ECRs and knobby and knobless IEs of two laboratory-adapted P. falciplarum isolates, cytoadhesion analysis over time was performed using a new tracking bioinformatics method. The results revealed that IEs performed rolling adhesion exclusively over CD36, but exhibited stationary binding to the other four ECRs. The absence of knobs affected rolling adhesion both with respect to the distance travelled by IEs and their velocity. Knobs played a critical role at febrile temperatures by stabilizing the binding interaction. Our results clearly underline the complexity of the IE-receptor interaction and the importance of knobs for the survival of the parasite at fever temperatures, and lead us to propose a new hypothesis that could open up new strategies for the treatment of malaria.
Collapse
Affiliation(s)
- Pedro Lubiana
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Philip Bouws
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | | - Torben Rehn
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Jana Brehmer
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Anna Bachmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Katharina Höhn
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Thomas Roeder
- Molecular Physiology Department, Zoological Institute, Christian-Albrechts University Kiel, Kiel, Germany
| | - Thorsten Thye
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Thomas Gutsmann
- Division of Biophysics, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Thorsten Burmester
- Zoological Institute, Department of Molecular Physiology, Hamburg University, Hamburg, Germany
| | - Iris Bruchhaus
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany. .,Department of Biology, University of Hamburg, Hamburg, Germany.
| | | |
Collapse
|
10
|
Kennedy K, Cobbold SA, Hanssen E, Birnbaum J, Spillman NJ, McHugh E, Brown H, Tilley L, Spielmann T, McConville MJ, Ralph SA. Delayed death in the malaria parasite Plasmodium falciparum is caused by disruption of prenylation-dependent intracellular trafficking. PLoS Biol 2019; 17:e3000376. [PMID: 31318858 PMCID: PMC6667170 DOI: 10.1371/journal.pbio.3000376] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/30/2019] [Accepted: 07/01/2019] [Indexed: 02/07/2023] Open
Abstract
Apicomplexan parasites possess a plastid organelle called the apicoplast. Inhibitors that selectively target apicoplast housekeeping functions, including DNA replication and protein translation, are lethal for the parasite, and several (doxycycline, clindamycin, and azithromycin) are in clinical use as antimalarials. A major limitation of such drugs is that treated parasites only arrest one intraerythrocytic development cycle (approximately 48 hours) after treatment commences, a phenotype known as the ‘delayed death’ effect. The molecular basis of delayed death is a long-standing mystery in parasitology, and establishing the mechanism would aid rational clinical implementation of apicoplast-targeted drugs. Parasites undergoing delayed death transmit defective apicoplasts to their daughter cells and cannot produce the sole, blood-stage essential metabolic product of the apicoplast: the isoprenoid precursor isopentenyl-pyrophosphate. How the isoprenoid precursor depletion kills the parasite remains unknown. We investigated the requirements for the range of isoprenoids in the human malaria parasite Plasmodium falciparum and characterised the molecular and morphological phenotype of parasites experiencing delayed death. Metabolomic profiling reveals disruption of digestive vacuole function in the absence of apicoplast derived isoprenoids. Three-dimensional electron microscopy reveals digestive vacuole fragmentation and the accumulation of cytostomal invaginations, characteristics common in digestive vacuole disruption. We show that digestive vacuole disruption results from a defect in the trafficking of vesicles to the digestive vacuole. The loss of prenylation of vesicular trafficking proteins abrogates their membrane attachment and function and prevents the parasite from feeding. Our data show that the proximate cause of delayed death is an interruption of protein prenylation and consequent cellular trafficking defects. After treatment with drugs that target apicoplast functions, malaria parasites are initially superficially healthy and go on to infect new erythrocytes. This cell biology study shows that the parasites subsequently die in their second cycle due to trafficking defects caused by depletion of prenyl groups.
Collapse
Affiliation(s)
- Kit Kennedy
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Simon A. Cobbold
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Eric Hanssen
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
- Advanced Microscopy Facility, Bio21 Molecular Science and Biotechnology Institute, Victoria, Australia
| | - Jakob Birnbaum
- Molecular Biology and Immunology Section, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Natalie J. Spillman
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Emma McHugh
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Hannah Brown
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Leann Tilley
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Tobias Spielmann
- Molecular Biology and Immunology Section, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Malcolm J. McConville
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Stuart A. Ralph
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
11
|
Dasanna AK, Fedosov DA, Gompper G, Schwarz US. State diagram for wall adhesion of red blood cells in shear flow: from crawling to flipping. SOFT MATTER 2019; 15:5511-5520. [PMID: 31241632 DOI: 10.1039/c9sm00677j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Red blood cells in shear flow show a variety of different shapes due to the complex interplay between hydrodynamics and membrane elasticity. Malaria-infected red blood cells become generally adhesive and less deformable. Adhesion to a substrate leads to a reduction in shape variability and to a flipping motion of the non-spherical shapes during the mid-stage of infection. Here, we present a complete state diagram for wall adhesion of red blood cells in shear flow obtained by simulations, using a particle-based mesoscale hydrodynamics approach, multiparticle collision dynamics. We find that cell flipping at a substrate is replaced by crawling beyond a critical shear rate, which increases with both membrane stiffness and viscosity contrast between the cytosol and suspending medium. This change in cell dynamics resembles the transition between tumbling and tank-treading for red blood cells in free shear flow. In the context of malaria infections, the flipping-crawling transition would strongly increase the adhesive interactions with the vascular endothelium, but might be suppressed by the combined effect of increased elasticity and viscosity contrast.
Collapse
Affiliation(s)
- Anil K Dasanna
- BioQuant and Institute of Theoretical Physics, Heidelberg University, Heidelberg, Germany. and Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Dmitry A Fedosov
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Ulrich S Schwarz
- BioQuant and Institute of Theoretical Physics, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
12
|
Evidence against a Role of Elevated Intracellular Ca 2+ during Plasmodium falciparum Preinvasion. Biophys J 2019; 114:1695-1706. [PMID: 29642038 DOI: 10.1016/j.bpj.2018.02.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/19/2018] [Accepted: 02/09/2018] [Indexed: 12/11/2022] Open
Abstract
Severe malaria is primarily caused by Plasmodium falciparum parasites during their asexual reproduction cycle within red blood cells. One of the least understood stages in this cycle is the brief preinvasion period during which merozoite-red cell contacts lead to apical alignment of the merozoite in readiness for penetration, a stage of major relevance in the control of invasion efficiency. Red blood cell deformations associated with this process were suggested to be active plasma membrane responses mediated by transients of elevated intracellular calcium. Few studies have addressed this hypothesis because of technical challenges, and the results remained inconclusive. Here, Fluo-4 was used as a fluorescent calcium indicator with optimized protocols to investigate the distribution of the dye in red blood cell populations used as P. falciparum invasion targets in egress-invasion assays. Preinvasion dynamics was observed simultaneously under bright-field and fluorescence microscopy by recording egress-invasion events. All the egress-invasion sequences showed red blood cell deformations of varied intensities during the preinvasion period and the echinocytic changes that follow during invasion. Intraerythrocytic calcium signals were absent throughout this interval in over half the records and totally absent during the preinvasion period, regardless of deformation strength. When present, calcium signals were of a punctate modality, initiated within merozoites already poised for invasion. These results argue against a role of elevated intracellular calcium during the preinvasion stage. We suggest an alternative mechanism of merozoite-induced preinvasion deformations based on passive red cell responses to transient agonist-receptor interactions associated with the formation of adhesive coat filaments.
Collapse
|
13
|
Liu B, Blanch AJ, Namvar A, Carmo O, Tiash S, Andrew D, Hanssen E, Rajagopal V, Dixon MW, Tilley L. Multimodal analysis of
Plasmodium knowlesi
‐infected erythrocytes reveals large invaginations, swelling of the host cell, and rheological defects. Cell Microbiol 2019; 21:e13005. [PMID: 30634201 PMCID: PMC6593759 DOI: 10.1111/cmi.13005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/14/2018] [Accepted: 01/08/2019] [Indexed: 02/06/2023]
Abstract
The simian parasite Plasmodium knowlesi causes severe and fatal malaria infections in humans, but the process of host cell remodelling that underpins the pathology of this zoonotic parasite is only poorly understood. We have used serial block‐face scanning electron microscopy to explore the topography of P. knowlesi‐infected red blood cells (RBCs) at different stages of asexual development. The parasite elaborates large flattened cisternae (Sinton Mulligan's clefts) and tubular vesicles in the host cell cytoplasm, as well as parasitophorous vacuole membrane bulges and blebs, and caveolar structures at the RBC membrane. Large invaginations of host RBC cytoplasm are formed early in development, both from classical cytostomal structures and from larger stabilised pores. Although degradation of haemoglobin is observed in multiple disconnected digestive vacuoles, the persistence of large invaginations during development suggests inefficient consumption of the host cell cytoplasm. The parasite eventually occupies ~40% of the host RBC volume, inducing a 20% increase in volume of the host RBC and an 11% decrease in the surface area to volume ratio, which collectively decreases the ability of the P. knowlesi‐infected RBCs to enter small capillaries of a human erythrocyte microchannel analyser. Ektacytometry reveals a markedly decreased deformability, whereas correlative light microscopy/scanning electron microscopy and python‐based skeleton analysis (Skan) reveal modifications to the surface of infected RBCs that underpin these physical changes. We show that P. knowlesi‐infected RBCs are refractory to treatment with sorbitol lysis but are hypersensitive to hypotonic lysis. The observed physical changes in the host RBCs may underpin the pathology observed in patients infected with P. knowlesi.
Collapse
Affiliation(s)
- Boyin Liu
- Department of Biochemistry and Molecular Biology Bio21 Molecular Science and Biotechnology Institute Melbourne Victoria Australia
| | - Adam J. Blanch
- Department of Biochemistry and Molecular Biology Bio21 Molecular Science and Biotechnology Institute Melbourne Victoria Australia
| | - Arman Namvar
- Department of Biomedical Engineering The University of Melbourne Melbourne Victoria Australia
| | - Olivia Carmo
- Department of Biochemistry and Molecular Biology Bio21 Molecular Science and Biotechnology Institute Melbourne Victoria Australia
| | - Snigdha Tiash
- Department of Biochemistry and Molecular Biology Bio21 Molecular Science and Biotechnology Institute Melbourne Victoria Australia
| | - Dean Andrew
- Department of Biochemistry and Molecular Biology Bio21 Molecular Science and Biotechnology Institute Melbourne Victoria Australia
| | - Eric Hanssen
- Department of Biochemistry and Molecular Biology Bio21 Molecular Science and Biotechnology Institute Melbourne Victoria Australia
- Advanced Microscopy Facility Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne Melbourne Victoria Australia
| | - Vijay Rajagopal
- Department of Biomedical Engineering The University of Melbourne Melbourne Victoria Australia
| | - Matthew W.A. Dixon
- Department of Biochemistry and Molecular Biology Bio21 Molecular Science and Biotechnology Institute Melbourne Victoria Australia
| | - Leann Tilley
- Department of Biochemistry and Molecular Biology Bio21 Molecular Science and Biotechnology Institute Melbourne Victoria Australia
| |
Collapse
|
14
|
Introini V, Carciati A, Tomaiuolo G, Cicuta P, Guido S. Endothelial glycocalyx regulates cytoadherence in Plasmodium falciparum malaria. J R Soc Interface 2018; 15:20180773. [PMID: 30958233 PMCID: PMC6303788 DOI: 10.1098/rsif.2018.0773] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 11/20/2018] [Indexed: 12/31/2022] Open
Abstract
Malaria is associated with significant microcirculation disorders, especially when the infection reaches its severe stage. This can lead to a range of fatal conditions, from cerebral malaria to multiple organ failure, of not fully understood pathogenesis. It has recently been proposed that a breakdown of the glycocalyx, the carbohydrate-rich layer lining the vascular endothelium, plays a key role in severe malaria, but direct evidence supporting this hypothesis is still lacking. Here, the interactions between Plasmodium falciparum infected red blood cells ( PfRBCs) and endothelial glycocalyx are investigated by developing an in vitro, physiologically relevant model of human microcirculation based on microfluidics. Impairment of the glycocalyx is obtained by enzymatic removal of sialic acid residues, which, due to their terminal location and net negative charge, are implicated in the initial interactions with contacting cells. We show a more than twofold increase of PfRBC adhesion to endothelial cells upon enzymatic treatment, relative to untreated endothelial cells. As a control, no effect of enzymatic treatment on healthy red blood cell adhesion is found. The increased adhesion of PfRBCs is also associated with cell flipping and reduced velocity as compared to the untreated endothelium. Altogether, these results provide a compelling evidence of the increased cytoadherence of PfRBCs to glycocalyx-impaired vascular endothelium, thus supporting the advocated role of glycocalyx disruption in the pathogenesis of this disease.
Collapse
Affiliation(s)
- Viola Introini
- Biological and Soft Systems, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK
| | - Antonio Carciati
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Napoli, Italy
| | - Giovanna Tomaiuolo
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Napoli, Italy
- CEINGE Biotecnologie avanzate, Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Pietro Cicuta
- Biological and Soft Systems, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK
| | - Stefano Guido
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Napoli, Italy
- CEINGE Biotecnologie avanzate, Via Gaetano Salvatore 486, 80145 Napoli, Italy
| |
Collapse
|
15
|
Honrado C, Ciuffreda L, Spencer D, Ranford-Cartwright L, Morgan H. Dielectric characterization of Plasmodium falciparum-infected red blood cells using microfluidic impedance cytometry. J R Soc Interface 2018; 15:rsif.2018.0416. [PMID: 30333248 PMCID: PMC6228484 DOI: 10.1098/rsif.2018.0416] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/05/2018] [Indexed: 02/07/2023] Open
Abstract
Although malaria is the world's most life-threatening parasitic disease, there is no clear understanding of how certain biophysical properties of infected cells change during the malaria infection cycle. In this article, we use microfluidic impedance cytometry to measure the dielectric properties of Plasmodium falciparum-infected red blood cells (i-RBCs) at specific time points during the infection cycle. Individual parasites were identified within i-RBCs using green fluorescent protein (GFP) emission. The dielectric properties of cell sub-populations were determined using the multi-shell model. Analysis showed that the membrane capacitance and cytoplasmic conductivity of i-RBCs increased along the infection time course, due to membrane alterations caused by parasite infection. The volume ratio occupied by the parasite was estimated to vary from less than 10% at earlier stages, to approximately 90% at later stages. This knowledge could be used to develop new label-free cell sorting techniques for sample pre-enrichment, improving diagnosis.
Collapse
Affiliation(s)
- C Honrado
- Faculty of Physical Sciences and Engineering, Institute for Life Sciences, University of Southampton, Southampton, UK
| | - L Ciuffreda
- Institute of Infection, Immunity and Inflammation, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - D Spencer
- Faculty of Physical Sciences and Engineering, Institute for Life Sciences, University of Southampton, Southampton, UK
| | - L Ranford-Cartwright
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - H Morgan
- Faculty of Physical Sciences and Engineering, Institute for Life Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
16
|
Cell Swelling Induced by the Antimalarial KAE609 (Cipargamin) and Other PfATP4-Associated Antimalarials. Antimicrob Agents Chemother 2018; 62:AAC.00087-18. [PMID: 29555632 DOI: 10.1128/aac.00087-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/18/2018] [Indexed: 12/15/2022] Open
Abstract
For an increasing number of antimalarial agents identified in high-throughput phenotypic screens, there is evidence that they target PfATP4, a putative Na+ efflux transporter on the plasma membrane of the human malaria parasite Plasmodium falciparum For several such "PfATP4-associated" compounds, it has been noted that their addition to parasitized erythrocytes results in cell swelling. Here we show that six structurally diverse PfATP4-associated compounds, including the clinical candidate KAE609 (cipargamin), induce swelling of both isolated blood-stage parasites and intact parasitized erythrocytes. The swelling of isolated parasites is dependent on the presence of Na+ in the external environment and may be attributed to the osmotic consequences of Na+ uptake. The swelling of the parasitized erythrocyte results in an increase in its osmotic fragility. Countering cell swelling by increasing the osmolarity of the extracellular medium reduces the antiplasmodial efficacy of PfATP4-associated compounds, consistent with cell swelling playing a role in the antimalarial activity of this class of compounds.
Collapse
|
17
|
Lavazec C. Molecular mechanisms of deformability of Plasmodium -infected erythrocytes. Curr Opin Microbiol 2017; 40:138-144. [DOI: 10.1016/j.mib.2017.11.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 12/11/2022]
|
18
|
Factors Diminishing Cytoadhesion of Red Blood Cells Infected by Plasmodium falciparum in Arterioles. Biophys J 2017; 113:1163-1172. [PMID: 28877497 DOI: 10.1016/j.bpj.2017.07.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/25/2017] [Accepted: 07/31/2017] [Indexed: 11/22/2022] Open
Abstract
Cytoadhesion of red blood cells infected by Plasmodium falciparum (Pf-IRBCs) is predominantly found in postcapillary venules, rather than in arterioles. However, factors influencing this phenomenon remain unclear. Here, we conduct a systematic study using a numerical model coupling the fluid and solid mechanics of the cells and cellular environment with the biochemical ligand-receptor interaction. Our results show that, once a Pf-IRBC adheres to the vascular wall, the Pf-IRBC can withstand even arteriole shear stresses, and exhibits either rolling or firm adhesion. We also perform a simulation of the multistep process of cytoadhesion, consisting of flow, margination, capture, and rolling or firm adhesion. This multistep simulation suggests that a lower probability of contact with the vascular wall at high shear rates may diminish adherent Pf-IRBCs in the arterioles.
Collapse
|
19
|
Dasanna AK, Lansche C, Lanzer M, Schwarz US. Rolling Adhesion of Schizont Stage Malaria-Infected Red Blood Cells in Shear Flow. Biophys J 2017; 112:1908-1919. [PMID: 28494961 DOI: 10.1016/j.bpj.2017.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 03/27/2017] [Accepted: 04/03/2017] [Indexed: 01/08/2023] Open
Abstract
To avoid clearance by the spleen, red blood cells infected with the human malaria parasite Plasmodium falciparum (iRBCs) adhere to the vascular endothelium through adhesive protrusions called "knobs" that the parasite induces on the surface of the host cell. However, the detailed relation between the developing knob structure and the resulting movement in shear flow is not known. Using flow chamber experiments on endothelial monolayers and tracking of the parasite inside the infected host cell, we find that trophozoites (intermediate-stage iRBCs) tend to flip due to their biconcave shape, whereas schizonts (late-stage iRBCs) tend to roll due to their almost spherical shape. We then use adhesive dynamics simulations for spherical cells to predict the effects of knob density and receptor multiplicity per knob on rolling adhesion of schizonts. We find that rolling adhesion requires a homogeneous coverage of the cell surface by knobs and that rolling adhesion becomes more stable and slower for higher knob density. Our experimental data suggest that schizonts are at the border between transient and stable rolling adhesion. They also allow us to establish an estimate for the molecular parameters for schizont adhesion to the vascular endothelium and to predict bond dynamics in the contact region.
Collapse
Affiliation(s)
- Anil K Dasanna
- BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany; Institute of Theoretical Physics, Heidelberg University, Heidelberg, Germany
| | - Christine Lansche
- Department of Infectious Diseases, Heidelberg University, Heidelberg, Germany
| | - Michael Lanzer
- Department of Infectious Diseases, Heidelberg University, Heidelberg, Germany
| | - Ulrich S Schwarz
- BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany; Institute of Theoretical Physics, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
20
|
Hempel C. Cryo scanning electron microscopy of Plasmodium falciparum-infected erythrocytes. APMIS 2017; 125:650-654. [PMID: 28493454 DOI: 10.1111/apm.12699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/27/2017] [Indexed: 11/29/2022]
Abstract
Plasmodium falciparum invades erythrocytes as an essential part of their life cycle. While living inside erythrocytes, the parasite remodels the cell's intracellular organization as well as its outer surface. Late trophozoite-stage parasites and schizonts introduce numerous small protrusions on the erythrocyte surface, called knobs. Current methods for studying these knobs include atomic force microscopy and electron microscopy. Standard electron microscopy methods rely on chemical fixation and dehydration modifying cell size. Here, a novel method is presented using rapid freezing and scanning electron microscopy under cryogenic conditions allowing for high resolution and magnification of erythrocytes. This novel technique can be used for precise estimates of knob density and for studies on cytoadhesion.
Collapse
Affiliation(s)
- Casper Hempel
- Centre for Medical Parasitology, Department of Clinical Microbiology, Copenhagen University Hospital, Denmark.,Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark.,Department of Micro- and Nanotechnology, Technical University of Denmark, Denmark
| |
Collapse
|
21
|
Waldecker M, Dasanna AK, Lansche C, Linke M, Srismith S, Cyrklaff M, Sanchez CP, Schwarz US, Lanzer M. Differential time-dependent volumetric and surface area changes and delayed induction of new permeation pathways in P. falciparum-infected hemoglobinopathic erythrocytes. Cell Microbiol 2016; 19. [PMID: 27450804 PMCID: PMC5298026 DOI: 10.1111/cmi.12650] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 07/01/2016] [Accepted: 07/15/2016] [Indexed: 12/31/2022]
Abstract
During intraerythrocytic development, Plasmodium falciparum increases the ion permeability of the erythrocyte plasma membrane to an extent that jeopardizes the osmotic stability of the host cell. A previously formulated numeric model has suggested that the parasite prevents premature rupture of the host cell by consuming hemoglobin (Hb) in excess of its own anabolic needs. Here, we have tested the colloid‐osmotic model on the grounds of time‐resolved experimental measurements on cell surface area and volume. We have further verified whether the colloid‐osmotic model can predict time‐dependent volumetric changes when parasites are grown in erythrocytes containing the hemoglobin variants S or C. A good agreement between model‐predicted and empirical data on both infected erythrocyte and intracellular parasite volume was found for parasitized HbAA and HbAC erythrocytes. However, a delayed induction of the new permeation pathways needed to be taken into consideration for the latter case. For parasitized HbAS erythrocyte, volumes diverged from model predictions, and infected erythrocytes showed excessive vesiculation during the replication cycle. We conclude that the colloid‐osmotic model provides a plausible and experimentally supported explanation of the volume expansion and osmotic stability of P. falciparum‐infected erythrocytes. The contribution of vesiculation to the malaria‐protective function of hemoglobin S is discussed.
Collapse
Affiliation(s)
- Mailin Waldecker
- Department of Infectious Diseases, Parasitology, Heidelberg University, Medical School, Im Neuenheimer Feld 324, Heidelberg, 69120, Baden-Württemberg, Germany
| | - Anil K Dasanna
- BioQuant, Heidelberg University, Im Neuenheimer Feld 267, Heidelberg, 69120, Baden-Württemberg, Germany.,Institute for Theoretical Physics, Heidelberg University, Philosophenweg 19, Heidelberg, 69120, Baden-Württemberg, Germany
| | - Christine Lansche
- Department of Infectious Diseases, Parasitology, Heidelberg University, Medical School, Im Neuenheimer Feld 324, Heidelberg, 69120, Baden-Württemberg, Germany
| | - Marco Linke
- BioQuant, Heidelberg University, Im Neuenheimer Feld 267, Heidelberg, 69120, Baden-Württemberg, Germany.,Institute for Theoretical Physics, Heidelberg University, Philosophenweg 19, Heidelberg, 69120, Baden-Württemberg, Germany
| | - Sirikamol Srismith
- Department of Infectious Diseases, Parasitology, Heidelberg University, Medical School, Im Neuenheimer Feld 324, Heidelberg, 69120, Baden-Württemberg, Germany
| | - Marek Cyrklaff
- Department of Infectious Diseases, Parasitology, Heidelberg University, Medical School, Im Neuenheimer Feld 324, Heidelberg, 69120, Baden-Württemberg, Germany
| | - Cecilia P Sanchez
- Department of Infectious Diseases, Parasitology, Heidelberg University, Medical School, Im Neuenheimer Feld 324, Heidelberg, 69120, Baden-Württemberg, Germany
| | - Ulrich S Schwarz
- BioQuant, Heidelberg University, Im Neuenheimer Feld 267, Heidelberg, 69120, Baden-Württemberg, Germany.,Institute for Theoretical Physics, Heidelberg University, Philosophenweg 19, Heidelberg, 69120, Baden-Württemberg, Germany
| | - Michael Lanzer
- Department of Infectious Diseases, Parasitology, Heidelberg University, Medical School, Im Neuenheimer Feld 324, Heidelberg, 69120, Baden-Württemberg, Germany
| |
Collapse
|
22
|
Helms G, Dasanna AK, Schwarz US, Lanzer M. Modeling cytoadhesion of Plasmodium falciparum-infected erythrocytes and leukocytes-common principles and distinctive features. FEBS Lett 2016; 590:1955-71. [PMID: 26992823 PMCID: PMC5071704 DOI: 10.1002/1873-3468.12142] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 02/01/2016] [Accepted: 02/07/2016] [Indexed: 12/25/2022]
Abstract
Cytoadhesion of Plasmodium falciparum‐infected erythrocytes to the microvascular endothelial lining shares striking similarities to cytoadhesion of leukocytes. In both cases, adhesins are presented in structures that raise them above the cell surface. Another similarity is the enhancement of adhesion under physical force (catch bonding). Here, we review recent advances in our understanding of the molecular and biophysical mechanisms underlying cytoadherence in both cellular systems. We describe how imaging, flow chamber experiments, single‐molecule measurements, and computational modeling have been used to decipher the relevant processes. We conclude that although the parasite seems to induce processes that resemble the cytoadherence of leukocytes, the mechanics of erythrocytes is such that the resulting behavior in shear flow is fundamentally different.
Collapse
Affiliation(s)
- Gesa Helms
- Department of Infectious Diseases, Heidelberg University, Germany
| | - Anil Kumar Dasanna
- BioQuant, Heidelberg, Germany.,Institute for Theoretical Physics, Heidelberg University, Germany
| | - Ulrich S Schwarz
- BioQuant, Heidelberg, Germany.,Institute for Theoretical Physics, Heidelberg University, Germany
| | - Michael Lanzer
- Department of Infectious Diseases, Heidelberg University, Germany
| |
Collapse
|
23
|
Tran PN, Brown SHJ, Rug M, Ridgway MC, Mitchell TW, Maier AG. Changes in lipid composition during sexual development of the malaria parasite Plasmodium falciparum. Malar J 2016; 15:73. [PMID: 26852399 PMCID: PMC4744411 DOI: 10.1186/s12936-016-1130-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/23/2016] [Indexed: 01/13/2023] Open
Abstract
Background The development of differentiated sexual stages (gametocytes) within human red blood cells is essential for the propagation of the malaria parasite, since only mature gametocytes will survive in the mosquito’s midgut. Hence gametocytogenesis is a pre-requisite for transmission of the disease. Physiological changes involved in sexual differentiation are still enigmatic. In particular the lipid metabolism—despite being central to cellular regulation and development—is not well explored. Methods Here the lipid profiles of red blood cells infected with the five different sexual stages of Plasmodium falciparum were analysed by mass spectrometry and compared to those from uninfected and asexual trophozoite infected erythrocytes. Results Fundamental differences between erythrocytes infected with the different parasite stages were revealed. In mature gametocytes many lipids that decrease in the trophozoite and early gametocyte infected red blood cells are regained. In particular, regulators of membrane fluidity, cholesterol and sphingomyelin, increased significantly during gametocyte maturation. Neutral lipids (serving mainly as caloriometric reserves) increased from 3 % of total lipids in uninfected to 27 % in stage V gametocyte infected red blood cells. The major membrane lipid class (phospholipids) decreased during gametocyte development. Conclusions The lipid profiles of infected erythrocytes are characteristic for the particular parasite life cycle and maturity stages of gametocytes. The obtained lipid profiles are crucial in revealing the lipid metabolism of malaria parasites and identifying targets to interfere with this deadly disease. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1130-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Phuong N Tran
- Research School of Biology, The Australian National University, Canberra, ACT, Australia. .,La Trobe Institute of Molecular Science, La Trobe University, Melbourne, VIC, Australia.
| | - Simon H J Brown
- School of Medicine and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia.
| | - Melanie Rug
- Research School of Biology, The Australian National University, Canberra, ACT, Australia. .,Centre for Advanced Microscopy, The Australian National University, Canberra, ACT, Australia.
| | - Melanie C Ridgway
- Research School of Biology, The Australian National University, Canberra, ACT, Australia.
| | - Todd W Mitchell
- School of Medicine and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia.
| | - Alexander G Maier
- Research School of Biology, The Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
24
|
Crick AJ, Theron M, Tiffert T, Lew VL, Cicuta P, Rayner JC. Quantitation of malaria parasite-erythrocyte cell-cell interactions using optical tweezers. Biophys J 2015; 107:846-53. [PMID: 25140419 DOI: 10.1016/j.bpj.2014.07.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/21/2014] [Accepted: 07/07/2014] [Indexed: 02/07/2023] Open
Abstract
Erythrocyte invasion by Plasmodium falciparum merozoites is an essential step for parasite survival and hence the pathogenesis of malaria. Invasion has been studied intensively, but our cellular understanding has been limited by the fact that it occurs very rapidly: invasion is generally complete within 1 min, and shortly thereafter the merozoites, at least in in vitro culture, lose their invasive capacity. The rapid nature of the process, and hence the narrow time window in which measurements can be taken, have limited the tools available to quantitate invasion. Here we employ optical tweezers to study individual invasion events for what we believe is the first time, showing that newly released P. falciparum merozoites, delivered via optical tweezers to a target erythrocyte, retain their ability to invade. Even spent merozoites, which had lost the ability to invade, retain the ability to adhere to erythrocytes, and furthermore can still induce transient local membrane deformations in the erythrocyte membrane. We use this technology to measure the strength of the adhesive force between merozoites and erythrocytes, and to probe the cellular mode of action of known invasion inhibitory treatments. These data add to our understanding of the erythrocyte-merozoite interactions that occur during invasion, and demonstrate the power of optical tweezers technologies in unraveling the blood-stage biology of malaria.
Collapse
Affiliation(s)
- Alex J Crick
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Michel Theron
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Teresa Tiffert
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Virgilio L Lew
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Pietro Cicuta
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom.
| | - Julian C Rayner
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom.
| |
Collapse
|
25
|
Tibúrcio M, Sauerwein R, Lavazec C, Alano P. Erythrocyte remodeling by Plasmodium falciparum gametocytes in the human host interplay. Trends Parasitol 2015; 31:270-8. [PMID: 25824624 DOI: 10.1016/j.pt.2015.02.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/20/2015] [Accepted: 02/26/2015] [Indexed: 12/31/2022]
Abstract
The spread of malaria critically relies on the presence of Plasmodium transmission stages - the gametocytes - circulating in the blood of an infected individual, which are taken up by Anopheles mosquitoes. A striking feature of Plasmodium falciparum gametocytes is their long development inside the erythrocytes while sequestered in the internal organs of the human host. Recent studies of the molecular and cellular remodeling of the host erythrocyte induced by P. falciparum during gametocyte maturation are shedding light on how these may affect the establishment and maintenance of sequestration of the immature transmission stages and the subsequent release and circulation of mature gametocytes in the peripheral bloodstream.
Collapse
Affiliation(s)
- Marta Tibúrcio
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di Sanità, Viale Regina Elena n.299, 00161 Rome, Italy
| | - Robert Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Nijmegen HB 6500, The Netherlands
| | - Catherine Lavazec
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Descartes - Sorbonne Paris Cité, 75270 Paris, France
| | - Pietro Alano
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di Sanità, Viale Regina Elena n.299, 00161 Rome, Italy.
| |
Collapse
|
26
|
Characterization of red blood cells with multiwavelength transmission spectroscopy. BIOMED RESEARCH INTERNATIONAL 2015; 2015:382641. [PMID: 25654099 PMCID: PMC4309305 DOI: 10.1155/2015/382641] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 11/15/2014] [Indexed: 11/30/2022]
Abstract
Multiwavelength transmission (MWT) spectroscopy was applied to the investigation of the morphological parameters and composition of red blood cells (RBCs). The MWT spectra were quantitatively analyzed with a Mie theory based interpretation model modified to incorporate the effects of the nonsphericity and orientation of RBCs. The MWT spectra of the healthy and anemic samples were investigated for the RBC indices in open and blinded studies. When MWT performance was evaluated against a standard reference system, very good agreement between two methods, with R2 > 0.85 for all indices studied, was demonstrated. The RBC morphological parameters were used to characterize three types of anemia and to draw an association between RBC morphology and anemia severity. The MWT spectra of RBCs infected with malaria parasite Plasmodium falciparum at different life cycle stages were analyzed for RBC morphological parameters. The changes in the RBC volume, surface area, aspect ratio, and hemoglobin composition were used to trace the morphological and compositional alterations in the infected RBCs occurring with parasites' development and to provide insights into parasite-host interactions. The MWT method was shown to be reliable for determination of the RBC morphological parameters and to be valuable for identification of the RBC pathologic changes and disease states.
Collapse
|
27
|
Myrand-Lapierre ME, Deng X, Ang RR, Matthews K, Santoso AT, Ma H. Multiplexed fluidic plunger mechanism for the measurement of red blood cell deformability. LAB ON A CHIP 2015; 15:159-67. [PMID: 25325848 DOI: 10.1039/c4lc01100g] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The extraordinary deformability of red blood cells gives them the ability to repeatedly transit through the microvasculature of the human body. The loss of this capability is part of the pathology of a wide range of diseases including malaria, hemoglobinopathies, and micronutrient deficiencies. We report on a technique for multiplexed measurements of the pressure required to deform individual red blood cell through micrometer-scale constrictions. This measurement is performed by first infusing single red blood cells into a parallel array of ~1.7 μm funnel-shaped constrictions. Next, a saw-tooth pressure waveform is applied across the constrictions to squeeze each cell through its constriction. The threshold deformation pressure is then determined by relating the pressure-time data with the video of the deformation process. Our key innovation is a self-compensating fluidic network that ensures identical pressures are applied to each cell regardless of its position, as well as the presence of cells in neighboring constrictions. These characteristics ensure the consistency of the measurement process and robustness against blockages of the constrictions by rigid cells and debris. We evaluate this technique using in vitro cultures of RBCs infected with P. falciparum, the parasite that causes malaria, to demonstrate the ability to profile the deformability signature of a heterogeneous sample.
Collapse
Affiliation(s)
- Marie-Eve Myrand-Lapierre
- Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC, Canada V6T 1Z4.
| | | | | | | | | | | |
Collapse
|
28
|
Omori T, Imai Y, Kikuchi K, Ishikawa T, Yamaguchi T. Hemodynamics in the microcirculation and in microfluidics. Ann Biomed Eng 2014; 43:238-57. [PMID: 25398331 DOI: 10.1007/s10439-014-1180-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 11/04/2014] [Indexed: 12/20/2022]
Abstract
Hemodynamics in microcirculation is important for hemorheology and several types of circulatory disease. Although hemodynamics research has a long history, the field continues to expand due to recent advancements in numerical and experimental techniques at the micro-and nano-scales. In this paper, we review recent computational and experimental studies of blood flow in microcirculation and microfluidics. We first focus on the computational studies of red blood cell (RBC) dynamics, from the single cellular level to mesoscopic multiple cellular flows, followed by a review of recent computational adhesion models for white blood cells, platelets, and malaria-infected RBCs, in which the cell adhesion to the vascular wall is essential for cellular function. Recent developments in optical microscopy have enabled the observation of flowing blood cells in microfluidics. Experimental particle image velocimetry and particle tracking velocimetry techniques are described in this article. Advancements in micro total analysis system technologies have facilitated flowing cell separation with microfluidic devices, which can be used for biomedical applications, such as a diagnostic tool for breast cancer or large intestinal tumors. In this paper, cell-separation techniques are reviewed for microfluidic devices, emphasizing recent advances and the potential of this fast-evolving research field in the near future.
Collapse
Affiliation(s)
- Toshihiro Omori
- Department of Bioengineering and Robotics, Tohoku University, Aoba 6-6-01, Sendai, Miyagi, Japan,
| | | | | | | | | |
Collapse
|
29
|
Geislinger TM, Chan S, Moll K, Wixforth A, Wahlgren M, Franke T. Label-free microfluidic enrichment of ring-stage Plasmodium falciparum-infected red blood cells using non-inertial hydrodynamic lift. Malar J 2014; 13:375. [PMID: 25238792 PMCID: PMC4179788 DOI: 10.1186/1475-2875-13-375] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/18/2014] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Understanding of malaria pathogenesis caused by Plasmodium falciparum has been greatly deepened since the introduction of in vitro culture system, but the lack of a method to enrich ring-stage parasites remains a technical challenge. Here, a novel way to enrich red blood cells containing parasites in the early ring stage is described and demonstrated. METHODS A simple, straight polydimethylsiloxane microchannel connected to two syringe pumps for sample injection and two height reservoirs for sample collection is used to enrich red blood cells containing parasites in the early ring stage (8-10 h p.i.). The separation is based on the non-inertial hydrodynamic lift effect, a repulsive cell-wall interaction that enables continuous and label-free separation with deformability as intrinsic marker. RESULTS The possibility to enrich red blood cells containing P. falciparum parasites at ring stage with a throughput of ~12,000 cells per hour and an average enrichment factor of 4.3 ± 0.5 is demonstrated. CONCLUSION The method allows for the enrichment of red blood cells early after the invasion by P. falciparum parasites continuously and without any need to label the cells. The approach promises new possibilities to increase the sensitivity of downstream analyses like genomic- or diagnostic tests. The device can be produced as a cheap, disposable chip with mass production technologies and works without expensive peripheral equipment. This makes the approach interesting for the development of new devices for field use in resource poor settings and environments, e.g. with the aim to increase the sensitivity of microscope malaria diagnosis.
Collapse
Affiliation(s)
- Thomas M Geislinger
- />Experimental Physics I, University of Augsburg, 86159 Augsburg, Germany
- />Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Box 280, S-171 77 Stockholm, Sweden
- />Nanosystems Initiative Munich, Schellingstraße 4, 80799 Munich, Germany
| | - Sherwin Chan
- />Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Box 280, S-171 77 Stockholm, Sweden
| | - Kirsten Moll
- />Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Box 280, S-171 77 Stockholm, Sweden
| | - Achim Wixforth
- />Experimental Physics I, University of Augsburg, 86159 Augsburg, Germany
- />Nanosystems Initiative Munich, Schellingstraße 4, 80799 Munich, Germany
| | - Mats Wahlgren
- />Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Box 280, S-171 77 Stockholm, Sweden
| | - Thomas Franke
- />Experimental Physics I, University of Augsburg, 86159 Augsburg, Germany
- />Nanosystems Initiative Munich, Schellingstraße 4, 80799 Munich, Germany
- />Biomedical Engineering, University of Glasgow, Oakfield Avenue, G12 8LT Glasgow, Scotland, UK
| |
Collapse
|
30
|
Host iron status and iron supplementation mediate susceptibility to erythrocytic stage Plasmodium falciparum. Nat Commun 2014; 5:4446. [PMID: 25059846 DOI: 10.1038/ncomms5446] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/18/2014] [Indexed: 11/09/2022] Open
Abstract
Iron deficiency and malaria have similar global distributions, and frequently co-exist in pregnant women and young children. Where both conditions are prevalent, iron supplementation is complicated by observations that iron deficiency anaemia protects against falciparum malaria, and that iron supplements increase susceptibility to clinically significant malaria, but the mechanisms remain obscure. Here, using an in vitro parasite culture system with erythrocytes from iron-deficient and replete human donors, we demonstrate that Plasmodium falciparum infects iron-deficient erythrocytes less efficiently. In addition, owing to merozoite preference for young erythrocytes, iron supplementation of iron-deficient individuals reverses the protective effects of iron deficiency. Our results provide experimental validation of field observations reporting protective effects of iron deficiency and harmful effects of iron administration on human malaria susceptibility. Because recovery from anaemia requires transient reticulocytosis, our findings imply that in malarious regions iron supplementation should be accompanied by effective measures to prevent falciparum malaria.
Collapse
|
31
|
Geislinger TM, Franke T. Hydrodynamic lift of vesicles and red blood cells in flow--from Fåhræus & Lindqvist to microfluidic cell sorting. Adv Colloid Interface Sci 2014; 208:161-76. [PMID: 24674656 DOI: 10.1016/j.cis.2014.03.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 02/28/2014] [Accepted: 03/02/2014] [Indexed: 12/31/2022]
Abstract
Hydrodynamic lift forces acting on cells and particles in fluid flow receive ongoing attention from medicine, mathematics, physics and engineering. The early findings of Fåhræus & Lindqvist on the viscosity change of blood with the diameter of capillaries motivated extensive studies both experimentally and theoretically to illuminate the underlying physics. We review this historical development that led to the discovery of the inertial and non-inertial lift forces and elucidate the origins of these forces that are still not entirely clear. Exploiting microfluidic techniques induced a tremendous amount of new insights especially into the more complex interactions between the flow field and deformable objects like vesicles or red blood cells. We trace the way from the investigation of single cell dynamics to the recent developments of microfluidic techniques for particle and cell sorting using hydrodynamic forces. Such continuous and label-free on-chip cell sorting devices promise to revolutionize medical analyses for personalized point-of-care diagnosis. We present the state-of-the-art of different hydrodynamic lift-based techniques and discuss their advantages and limitations.
Collapse
|
32
|
Ye T, Phan-Thien N, Khoo BC, Lim CT. Stretching and relaxation of malaria-infected red blood cells. Biophys J 2014; 105:1103-9. [PMID: 24010653 DOI: 10.1016/j.bpj.2013.07.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 07/09/2013] [Accepted: 07/11/2013] [Indexed: 10/26/2022] Open
Abstract
The invasion of red blood cells (RBCs) by malaria parasites is a complex dynamic process, in which the infected RBCs gradually lose their deformability and their ability to recover their original shape is greatly reduced with the maturation of the parasites. In this work, we developed two types of cell model, one with an included parasite, and the other without an included parasite. The former is a representation of real malaria-infected RBCs, in which the parasite is treated as a rigid body. In the latter, where the parasite is absent, the membrane modulus and viscosity are elevated so as to produce the same features present in the parasite model. In both cases, the cell membrane is modeled as a viscoelastic triangular network connected by wormlike chains. We studied the transient behaviors of stretching deformation and shape relaxation of malaria-infected RBCs based on these two models and found that both models can generate results in agreement with those of previously published studies. With the parasite maturation, the shape deformation becomes smaller and smaller due to increasing cell rigidity, whereas the shape relaxation time becomes longer and longer due to the cell's reduced ability to recover its original shape.
Collapse
Affiliation(s)
- Ting Ye
- Department of Mechanical Engineering, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
33
|
Kim K, Yoon H, Diez-Silva M, Dao M, Dasari RR, Park Y. High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:011005. [PMID: 23797986 PMCID: PMC4019420 DOI: 10.1117/1.jbo.19.1.011005] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 05/06/2013] [Accepted: 05/29/2013] [Indexed: 05/18/2023]
Abstract
We present high-resolution optical tomographic images of human red blood cells (RBC) parasitized by malaria-inducing Plasmodium falciparum (Pf)-RBCs. Three-dimensional (3-D) refractive index (RI) tomograms are reconstructed by recourse to a diffraction algorithm from multiple two-dimensional holograms with various angles of illumination. These 3-D RI tomograms of Pf-RBCs show cellular and subcellular structures of host RBCs and invaded parasites in fine detail. Full asexual intraerythrocytic stages of parasite maturation (ring to trophozoite to schizont stages) are then systematically investigated using optical diffraction tomography algorithms. These analyses provide quantitative information on the structural and chemical characteristics of individual host Pf-RBCs, parasitophorous vacuole, and cytoplasm. The in situ structural evolution and chemical characteristics of subcellular hemozoin crystals are also elucidated.
Collapse
Affiliation(s)
- Kyoohyun Kim
- Korea Advanced Institute of Science and Technology, Department of Physics, Daejeon 305-701, Republic of Korea
| | - HyeOk Yoon
- Korea Advanced Institute of Science and Technology, Department of Physics, Daejeon 305-701, Republic of Korea
| | - Monica Diez-Silva
- Massachusetts Institute of Technology, Department of Material Science and Engineering, Cambridge, Massachusetts 02142
| | - Ming Dao
- Massachusetts Institute of Technology, Department of Material Science and Engineering, Cambridge, Massachusetts 02142
| | - Ramachandra R. Dasari
- Massachusetts Institute of Technology, George R. Harrison Spectroscopy Laboratory, Cambridge, Massachusetts 02194
| | - YongKeun Park
- Korea Advanced Institute of Science and Technology, Department of Physics, Daejeon 305-701, Republic of Korea
- Address all correspondence to: YongKeun Park, Korea Advanced Institute of Science and Technology, Department of Physics, 291 Daehak-Ro Yusung-Gu, Daejeon 305-701, Republic of Korea. Tel: (82) 42-350-2514; Fax: (82) 42-350-7160; E-mail:
| |
Collapse
|
34
|
Crick AJ, Tiffert T, Shah SM, Kotar J, Lew VL, Cicuta P. An automated live imaging platform for studying merozoite egress-invasion in malaria cultures. Biophys J 2013; 104:997-1005. [PMID: 23473482 DOI: 10.1016/j.bpj.2013.01.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 01/11/2013] [Accepted: 01/15/2013] [Indexed: 11/16/2022] Open
Abstract
Most cases of severe and fatal malaria are caused by the intraerythrocytic asexual reproduction cycle of Plasmodium falciparum. One of the most intriguing and least understood stages in this cycle is the brief preinvasion period during which dynamic merozoite-red-cell interactions align the merozoite apex in preparation for penetration. Studies of the molecular mechanisms involved in this process face formidable technical challenges, requiring multiple observations of merozoite egress-invasion sequences in live cultures under controlled experimental conditions, using high-resolution microscopy and a variety of fluorescent imaging tools. Here we describe a first successful step in the development of a fully automated, robotic imaging platform to enable such studies. Schizont-enriched live cultures of P. falciparum were set up on an inverted stage microscope with software-controlled motorized functions. By applying a variety of imaging filters and selection criteria, we identified infected red cells that were likely to rupture imminently, and recorded their coordinates. We developed a video-image analysis to detect and automatically record merozoite egress events in 100% of the 40 egress-invasion sequences recorded in this study. We observed a substantial polymorphism of the dynamic condition of pre-egress infected cells, probably reflecting asynchronies in the diversity of confluent processes leading to merozoite release.
Collapse
Affiliation(s)
- Alex J Crick
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
35
|
Safeukui I, Buffet PA, Perrot S, Sauvanet A, Aussilhou B, Dokmak S, Couvelard A, Hatem DC, Mohandas N, David PH, Mercereau-Puijalon O, Milon G. Surface area loss and increased sphericity account for the splenic entrapment of subpopulations of Plasmodium falciparum ring-infected erythrocytes. PLoS One 2013; 8:e60150. [PMID: 23555907 PMCID: PMC3610737 DOI: 10.1371/journal.pone.0060150] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 02/21/2013] [Indexed: 11/19/2022] Open
Abstract
Ex vivo perfusion of human spleens revealed innate retention of numerous cultured Plasmodium falciparum ring-infected red blood cells (ring-iRBCs). Ring-iRBC retention was confirmed by a microsphiltration device, a microbead-based technology that mimics the mechanical filtering function of the human spleen. However, the cellular alterations underpinning this retention remain unclear. Here, we use ImageStream technology to analyze infected RBCs’ morphology and cell dimensions before and after fractionation with microsphiltration. Compared to fresh normal RBCs, the mean cell membrane surface area loss of trophozoite-iRBCs, ring-iRBCs and uninfected co-cultured RBCs (uRBCs) was 14.2% (range: 8.3–21.9%), 9.6% (7.3–12.2%) and 3.7% (0–8.4), respectively. Microsphilters retained 100%, ∼50% and 4% of trophozoite-iRBCs, ring-iRBCs and uRBCs, respectively. Retained ring-iRBCs display reduced surface area values (estimated mean, range: 17%, 15–18%), similar to the previously shown threshold of surface-deficient RBCs retention in the human spleen (surface area loss: >18%). By contrast, ring-iRBCs that successfully traversed microsphilters had minimal surface area loss and normal sphericity, suggesting that these parameters are determinants of their retention. To confirm this hypothesis, fresh normal RBCs were exposed to lysophosphatidylcholine to induce a controlled loss of surface area. This resulted in a dose-dependent retention in microsphilters, with complete retention occurring for RBCs displaying >14% surface area loss. Taken together, these data demonstrate that surface area loss and resultant increased sphericity drive ring-iRBC retention in microsphilters, and contribute to splenic entrapment of a subpopulation of ring-iRBCs. These findings trigger more interest in malaria research fields, including modeling of infection kinetics, estimation of parasite load, and analysis of risk factors for severe clinical forms. The determination of the threshold of splenic retention of ring-iRBCs has significant implications for diagnosis (spleen functionality) and drug treatment (screening of adjuvant therapy targeting ring-iRBCs).
Collapse
Affiliation(s)
- Innocent Safeukui
- Institut Pasteur, Immunologie Moléculaire des Parasites, Département de Parasitologie Mycologie, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Chitnis CE, Staines HM. Dealing with change: the different microenvironments faced by the malarial parasite. Mol Microbiol 2013; 88:1-4. [PMID: 23421761 DOI: 10.1111/mmi.12179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2013] [Indexed: 11/29/2022]
Abstract
In a new paper, Pillai et al. (2013) report that in vitro asexual blood-stage Plasmodium falciparum parasite cultures are able to grow unhindered in media with surprisingly broad ranges of ionic constituents. In doing so, the authors demonstrate that long known changes in the cationic composition of the cytosol of host erythrocytes induced by developing intra-erythrocytic parasites are not essential for growth. Moreover, their results also suggest that besides a low K(+) environment, which has been shown to trigger key processes such as microneme secretion and merozoite egress, there must be alternative signals that can regulate these processes and allow normal growth in diverse ionic environments. Given these findings, mechanisms by which the parasite is able to sense and tolerate different ionic environments are worthy of further study in an effort to identify urgently needed novel anti-malarial strategies.
Collapse
Affiliation(s)
- Chetan E Chitnis
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | | |
Collapse
|
37
|
Safeukui I, Buffet PA, Perrot S, Sauvanet A, Aussilhou B, Dokmak S, Couvelard A, Hatem DC, Mohandas N, David PH, Mercereau-Puijalon O, Milon G. Surface area loss and increased sphericity account for the splenic entrapment of subpopulations of Plasmodium falciparum ring-infected erythrocytes. PLoS One 2013. [PMID: 23555907 DOI: 10.1371/joumal.pone.0060150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023] Open
Abstract
Ex vivo perfusion of human spleens revealed innate retention of numerous cultured Plasmodium falciparum ring-infected red blood cells (ring-iRBCs). Ring-iRBC retention was confirmed by a microsphiltration device, a microbead-based technology that mimics the mechanical filtering function of the human spleen. However, the cellular alterations underpinning this retention remain unclear. Here, we use ImageStream technology to analyze infected RBCs' morphology and cell dimensions before and after fractionation with microsphiltration. Compared to fresh normal RBCs, the mean cell membrane surface area loss of trophozoite-iRBCs, ring-iRBCs and uninfected co-cultured RBCs (uRBCs) was 14.2% (range: 8.3-21.9%), 9.6% (7.3-12.2%) and 3.7% (0-8.4), respectively. Microsphilters retained 100%, ∼50% and 4% of trophozoite-iRBCs, ring-iRBCs and uRBCs, respectively. Retained ring-iRBCs display reduced surface area values (estimated mean, range: 17%, 15-18%), similar to the previously shown threshold of surface-deficient RBCs retention in the human spleen (surface area loss: >18%). By contrast, ring-iRBCs that successfully traversed microsphilters had minimal surface area loss and normal sphericity, suggesting that these parameters are determinants of their retention. To confirm this hypothesis, fresh normal RBCs were exposed to lysophosphatidylcholine to induce a controlled loss of surface area. This resulted in a dose-dependent retention in microsphilters, with complete retention occurring for RBCs displaying >14% surface area loss. Taken together, these data demonstrate that surface area loss and resultant increased sphericity drive ring-iRBC retention in microsphilters, and contribute to splenic entrapment of a subpopulation of ring-iRBCs. These findings trigger more interest in malaria research fields, including modeling of infection kinetics, estimation of parasite load, and analysis of risk factors for severe clinical forms. The determination of the threshold of splenic retention of ring-iRBCs has significant implications for diagnosis (spleen functionality) and drug treatment (screening of adjuvant therapy targeting ring-iRBCs).
Collapse
Affiliation(s)
- Innocent Safeukui
- Institut Pasteur, Immunologie Moléculaire des Parasites, Département de Parasitologie Mycologie, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Wu T, Feng JJ. Simulation of malaria-infected red blood cells in microfluidic channels: Passage and blockage. BIOMICROFLUIDICS 2013; 7:44115. [PMID: 24404048 PMCID: PMC3751956 DOI: 10.1063/1.4817959] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/26/2013] [Indexed: 05/12/2023]
Abstract
Malaria-infected red blood cells (iRBCs) become less deformable with the progression of infection and tend to occlude microcapillaries. This process has been investigated in vitro using microfluidic channels. The objective of this paper is to provide a quantitative basis for interpreting the experimental observations of iRBC occlusion of microfluidic channels. Using a particle-based model for the iRBC, we simulate the traverse of iRBCs through a converging microfluidic channel and explore the progressive loss of cell deformability due to three factors: the stiffening of the membrane, the reduction of the cell's surface-volume ratio, and the growing solid parasites inside the cell. When examined individually, each factor tends to hinder the passage of the iRBC and lengthen the transit time. Moreover, at sufficient magnitude, each may lead to obstruction of narrow microfluidic channels. We then integrate the three factors into a series of simulations that mimic the development of malaria infection through the ring, trophozoite, and schizont stages. These simulations successfully reproduce the experimental observation that with progression of infection, the iRBC transitions from passage to blockage in larger and larger channels. The numerical results suggest a scheme for quantifying iRBC rigidification through microfluidic measurements of the critical pressure required for passage.
Collapse
Affiliation(s)
- Tenghu Wu
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - James J Feng
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada ; Department of Mathematics, University of British Columbia, Vancouver, British Columbia V6T 1Z2, Canada
| |
Collapse
|
39
|
How malaria parasites reduce the deformability of infected red blood cells. Biophys J 2012; 103:1-10. [PMID: 22828326 DOI: 10.1016/j.bpj.2012.05.026] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 04/23/2012] [Accepted: 05/15/2012] [Indexed: 11/23/2022] Open
Abstract
The pathogenesis of malaria is largely due to stiffening of the infected red blood cells (RBCs). Contemporary understanding ascribes the loss of RBC deformability to a 10-fold increase in membrane stiffness caused by extra cross-linking in the spectrin network. Local measurements by micropipette aspiration, however, have reported only an increase of ∼3-fold in the shear modulus. We believe the discrepancy stems from the rigid parasite particles inside infected cells, and have carried out numerical simulations to demonstrate this mechanism. The cell membrane is represented by a set of discrete particles connected by linearly elastic springs. The cytosol is modeled as a homogeneous Newtonian fluid, and discretized by particles as in standard smoothed particle hydrodynamics. The malaria parasite is modeled as an aggregate of particles constrained to rigid-body motion. We simulate RBC stretching tests by optical tweezers in three dimensions. The results demonstrate that the presence of a sizeable parasite greatly reduces the ability of RBCs to deform under stretching. With the solid inclusion, the observed loss of deformability can be predicted quantitatively using the local membrane elasticity measured by micropipettes.
Collapse
|
40
|
Shape-shifting gametocytes: how and why does P. falciparum go banana-shaped? Trends Parasitol 2012; 28:471-8. [PMID: 22939181 DOI: 10.1016/j.pt.2012.07.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 07/23/2012] [Accepted: 07/25/2012] [Indexed: 01/15/2023]
Abstract
Plasmodium falciparum is named for the crescent or falciform shape it adopts when preparing to undergo transfer to a mosquito vector. By contrast, gametocytes of the other (less virulent) human malaria parasites retain a more rounded shape. We describe the machinery that elongates falciparum gametocytes and discuss its relation with the machinery that elongates the invasive zoites. We address the question - why do falciparum malaria gametocytes go banana-shaped? The answer may lie in the finding that gametocyte maturation is associated with an increase in cellular deformability. The shape-shifting ability of gametocytes may facilitate the sequestration of early-stage gametocytes, while enabling late-stage gametocytes to circulate in the blood stream without being removed by the mechanical filtering mechanisms in the host spleen.
Collapse
|
41
|
Lim EJ, Ober TJ, Edd JF, McKinley GH, Toner M. Visualization of microscale particle focusing in diluted and whole blood using particle trajectory analysis. LAB ON A CHIP 2012; 12:2199-210. [PMID: 22382737 PMCID: PMC4211080 DOI: 10.1039/c2lc21100a] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Inertial microfluidics has demonstrated the potential to provide a rich range of capabilities to manipulate biological fluids and particles to address various challenges in biomedical science and clinical medicine. Various microchannel geometries have been used to study the inertial focusing behavior of particles suspended in simple buffer solutions or in highly diluted blood. One aspect of inertial focusing that has not been studied is how particles suspended in whole or minimally diluted blood respond to inertial forces in microchannels. The utility of imaging techniques (i.e., high-speed bright-field imaging and long exposure fluorescence (streak) imaging) primarily used to observe particle focusing in microchannels is limited in complex fluids such as whole blood due to interference from the large numbers of red blood cells (RBCs). In this study, we used particle trajectory analysis (PTA) to observe the inertial focusing behavior of polystyrene beads, white blood cells, and PC-3 prostate cancer cells in physiological saline and blood. Identification of in-focus (fluorescently labeled) particles was achieved at mean particle velocities of up to 1.85 m s(-1). Quantitative measurements of in-focus particles were used to construct intensity maps of particle frequency in the channel cross-section and scatter plots of particle centroid coordinates vs. particle diameter. PC-3 cells spiked into whole blood (HCT = 45%) demonstrated a novel focusing mode not observed in physiological saline or diluted blood. PTA can be used as an experimental frame of reference for understanding the physical basis of inertial lift forces in whole blood and discover inertial focusing modes that can be used to enable particle separation in whole blood.
Collapse
Affiliation(s)
- Eugene J Lim
- Electrical Engineering and Computer Science Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
42
|
Aingaran M, Zhang R, Law SK, Peng Z, Undisz A, Meyer E, Diez-Silva M, Burke TA, Spielmann T, Lim CT, Suresh S, Dao M, Marti M. Host cell deformability is linked to transmission in the human malaria parasite Plasmodium falciparum. Cell Microbiol 2012; 14:983-93. [PMID: 22417683 DOI: 10.1111/j.1462-5822.2012.01786.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gametocyte maturation in Plasmodium falciparum is a critical step in the transmission of malaria. While the majority of parasites proliferate asexually in red blood cells, a small fraction of parasites undergo sexual conversion and mature over 2 weeks to become competent for transmission to a mosquito vector. Immature gametocytes sequester in deep tissues while mature stages must be able to circulate, pass the spleen and present themselves to the mosquito vector in order to complete transmission. Sequestration of asexual red blood cell stage parasites has been investigated in great detail. These studies have demonstrated that induction of cytoadherence properties through specific receptor-ligand interactions coincides with a significant increase in host cell stiffness. In contrast, the adherence and biophysical properties of gametocyte-infected red blood cells have not been studied systematically. Utilizing a transgenic line for 3D live imaging, in vitro capillary assays and 3D finite element whole cell modelling, we studied the role of cellular deformability in determining the circulatory characteristics of gametocytes. Our analysis shows that the red blood cell deformability of immature gametocytes displays an overall decrease followed by rapid restoration in mature gametocytes. Intriguingly, simulations suggest that along with deformability variations, the morphological changes of the parasite may play an important role in tissue distribution in vivo. Taken together, we present a model, which suggests that mature but not immature gametocytes circulate in the peripheral blood for uptake in the mosquito blood meal and transmission to another human host thus ensuring long-term survival of the parasite.
Collapse
Affiliation(s)
- Mythili Aingaran
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Guo Q, Reiling SJ, Rohrbach P, Ma H. Microfluidic biomechanical assay for red blood cells parasitized by Plasmodium falciparum. LAB ON A CHIP 2012; 12:1143-50. [PMID: 22318405 DOI: 10.1039/c2lc20857a] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Red blood cells parasitized by Plasmodium falciparum can be distinguished from uninfected cells and characterized on the basis of reduced deformability. To enable improved and simplified analysis, we developed a microfluidic device to measure red blood cell deformability using precisely controlled pressure. Individual red blood cells are deformed through multiple funnel-shaped constrictions with openings ranging from 5 down to 1 μm. Precisely controlled pressures are generated on-chip using a microfluidic circuit that attenuates an externally applied pressure by a factor of 100. The pressures required to squeeze each cell through the constriction are used as a readout to determine the intrinsic stiffness of each cell. Using this method, parasitized cells from ring through schizont stages were shown to be 1.5 to 200 times stiffer than uninfected cells. The measured deformability values of uninfected and parasitized cells showed clearly distinct distributions, demonstrating the potential of using this technique to study the pathophysiology of this disease, and the effect of potential drugs.
Collapse
Affiliation(s)
- Quan Guo
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
44
|
Hanssen E, Knoechel C, Dearnley M, Dixon MW, Le Gros M, Larabell C, Tilley L. Soft X-ray microscopy analysis of cell volume and hemoglobin content in erythrocytes infected with asexual and sexual stages of Plasmodium falciparum. J Struct Biol 2012; 177:224-32. [DOI: 10.1016/j.jsb.2011.09.003] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 09/05/2011] [Accepted: 09/09/2011] [Indexed: 12/13/2022]
|
45
|
Cho S, Kim S, Kim Y, Park Y. Optical imaging techniques for the study of malaria. Trends Biotechnol 2011; 30:71-9. [PMID: 21930322 DOI: 10.1016/j.tibtech.2011.08.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Revised: 08/25/2011] [Accepted: 08/26/2011] [Indexed: 02/07/2023]
Abstract
Malarial infection needs to be imaged to reveal the mechanisms behind malaria pathophysiology and to provide insights to aid in the diagnosis of the disease. Recent advances in optical imaging methods are now being transferred from physics laboratories to the biological field, revolutionizing how we study malaria. To provide insight into how these imaging techniques can improve the study and treatment of malaria, we summarize recent progress on optical imaging techniques, ranging from in vitro visualization of the disease progression of malaria infected red blood cells (iRBCs) to in vivo imaging of malaria parasites in the liver.
Collapse
Affiliation(s)
- Sangyeon Cho
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, 305-701, Republic of Korea
| | | | | | | |
Collapse
|
46
|
Mauritz J, Seear R, Esposito A, Kaminski C, Skepper J, Warley A, Lew V, Tiffert T. X-ray microanalysis investigation of the changes in Na, K, and hemoglobin concentration in plasmodium falciparum-infected red blood cells. Biophys J 2011; 100:1438-45. [PMID: 21402025 PMCID: PMC3059598 DOI: 10.1016/j.bpj.2011.02.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/21/2011] [Accepted: 02/01/2011] [Indexed: 11/15/2022] Open
Abstract
Plasmodium falciparum is responsible for severe malaria. During the ∼48 h duration of its asexual reproduction cycle in human red blood cells, the parasite causes profound alterations in the homeostasis of the host red cell, with reversal of the normal Na and K gradients across the host cell membrane, and a drastic fall in hemoglobin content. A question critical to our understanding of how the host cell retains its integrity for the duration of the cycle had been previously addressed by modeling the homeostasis of infected cells. The model predicted a critical contribution of excess hemoglobin consumption to cell integrity (the colloidosmotic hypothesis). Here we tested this prediction with the use of electron-probe x-ray microanalysis to measure the stage-related changes in Na, K, and Fe contents in single infected red cells and in uninfected controls. The results document a decrease in Fe signal with increased Na/K ratio. Interpreted in terms of concentrations, the results point to a sustained fall in host cell hemoglobin concentration with parasite maturation, supporting a colloidosmotic role of excess hemoglobin digestion. The results also provide, for the first time to our knowledge, comprehensive maps of the elemental distributions of Na, K, and Fe in falciparum-infected red blood cells.
Collapse
Affiliation(s)
- Jakob M.A. Mauritz
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Rachel Seear
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Alessandro Esposito
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Clemens F. Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
- School for Advanced Optical Technologies, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jeremy N. Skepper
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Alice Warley
- Centre for Ultrastructural Imaging, King's College London, London, United Kingdom
| | - Virgilio L. Lew
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Teresa Tiffert
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
47
|
Kaminski Schierle GS, Bertoncini CW, Chan FTS, van der Goot AT, Schwedler S, Skepper J, Schlachter S, van Ham T, Esposito A, Kumita JR, Nollen EAA, Dobson CM, Kaminski CF. A FRET sensor for non-invasive imaging of amyloid formation in vivo. Chemphyschem 2011; 12:673-680. [PMID: 21308945 PMCID: PMC5402868 DOI: 10.1002/cphc.201000996] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Indexed: 11/10/2022]
Abstract
Misfolding and aggregation of amyloidogenic polypeptides lie at the root of many neurodegenerative diseases. Whilst protein aggregation can be readily studied in vitro by established biophysical techniques, direct observation of the nature and kinetics of aggregation processes taking place in vivo is much more challenging. We describe here, however, a Förster resonance energy transfer sensor that permits the aggregation kinetics of amyloidogenic proteins to be quantified in living systems by exploiting our observation that amyloid assemblies can act as energy acceptors for variants of fluorescent proteins. The observed lifetime reduction can be attributed to fluorescence energy transfer to intrinsic energy states associated with the growing amyloid species. Indeed, for a-synuclein, a protein whose aggregation is linked to Parkinson's disease, we have used this sensor to follow the kinetics of the self-association reactions taking place in vitro and in vivo and to reveal the nature of the ensuing aggregated species. Experiments were conducted in vitro, in cells in culture and in living Caenorhabditis elegans. For the latter the readout correlates directly with the appearance of a toxic phenotype. The ability to measure the appearance and development of pathogenic amyloid species in a living animal and the ability to relate such data to similar processes observed in vitro provides a powerful new tool in the study of the pathology of the family of misfolding disorders. Our study confirms the importance of the molecular environment in which aggregation reactions take place, highlighting similarities as well as differences between the processes occurring in vitro and in vivo, and their significance for defining the molecular physiology of the diseases with which they are associated.
Collapse
Affiliation(s)
- Gabriele S. Kaminski Schierle
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA (U.K.)
| | - Carlos W. Bertoncini
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW (U.K.)
- Laboratory of Molecular Biophysics, Institute for Research in Biomedicine, Baldiri Reixac 10-12, 08028, Barcelona (Spain)
| | - Fiona T. S. Chan
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA (U.K.)
| | - Annemieke T. van der Goot
- Department of Genetics, University Medical Centre Groningen and University of Groningen 9700 RB Groningen (The Netherlands)
| | - Stefanie Schwedler
- Physikalische Chemie I, Fakultät für Chemie Universität Bielefeld, Universitätsstr. 25, 33615, Bielefeld (Germany)
| | - Jeremy Skepper
- Department of Physiology, Development and Neuroscience University of Cambridge, Downing Street, Cambridge CB2 3DY (U.K.)
| | - Simon Schlachter
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA (U.K.)
| | - Tjakko van Ham
- Department of Genetics, University Medical Centre Groningen and University of Groningen 9700 RB Groningen (The Netherlands)
| | - Alessandro Esposito
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA (U.K.)
| | - Janet R. Kumita
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW (U.K.)
| | - Ellen A. A. Nollen
- Department of Genetics, University Medical Centre Groningen and University of Groningen 9700 RB Groningen (The Netherlands)
| | - Christopher M. Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW (U.K.)
| | - Clemens F. Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA (U.K.)
- Friedrich-Alexander University of Erlangen Nürnberg 91052 Erlangen (Germany)
| |
Collapse
|
48
|
Mauritz JMA, Esposito A, Tiffert T, Skepper JN, Warley A, Yoon YZ, Cicuta P, Lew VL, Guck JR, Kaminski CF. Biophotonic techniques for the study of malaria-infected red blood cells. Med Biol Eng Comput 2010; 48:1055-63. [PMID: 20661776 DOI: 10.1007/s11517-010-0668-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 07/11/2010] [Indexed: 12/23/2022]
Abstract
Investigation of the homeostasis of red blood cells upon infection by Plasmodium falciparum poses complex experimental challenges. Changes in red cell shape, volume, protein, and ion balance are difficult to quantify. In this article, we review a wide range of optical techniques for quantitative measurements of critical homeostatic parameters in malaria-infected red blood cells. Fluorescence lifetime imaging and tomographic phase microscopy, quantitative deconvolution microscopy, and X-ray microanalysis, are used to measure haemoglobin concentration, cell volume, and ion contents. Atomic force microscopy is briefly reviewed in the context of these optical methodologies. We also describe how optical tweezers and optical stretchers can be usefully applied to empower basic malaria research to yield diagnostic information on cell compliance changes upon malaria infection. The combined application of these techniques sheds new light on the detailed mechanisms of malaria infection providing potential for new diagnostic or therapeutic approaches.
Collapse
Affiliation(s)
- Jakob M A Mauritz
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|