1
|
Barroso IG, Ferreira C, Terra WR. Water Transport and Enzyme Recycling in Tenebrio molitor Midgut: Insights From Transcriptomics, Proteomics, and In Vivo Inhibition Assays. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2025; 118:e70059. [PMID: 40199745 DOI: 10.1002/arch.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/27/2025] [Accepted: 03/30/2025] [Indexed: 04/10/2025]
Abstract
The low excretory rates of secreted digestive enzymes, such as trypsins, in insect species with peritrophic membranes led to the hypothesis of ectoperitrophic countercurrent water fluxes causing enzyme recycling. The midgut water flux model of Tenebrio molitor (T. molitor) is revisited and supported by in vivo experiments. Sequences from proteins putatively involved in water transport were retrieved from the T. molitor transcriptome by Blast and analyzed using bioinformatics tools. Gene expression of selected proteins was determined in three midgut sections (anterior, AM; middle, MM; posterior, PM) by RNA-seq, and transporter proteins were verified in microvillar-membrane-enriched midgut samples by proteomics. Genes encoding three cation chloride cotransporters (CCC) and four aquaporins were expressed in the midgut. TmNaCCC2, TmPrip, and TmEglp1 showed higher expression in the front half, while TmKCC, TmNKCC1, TmDrip, and TmEglp2 were more highly expressed in the back half. However, only TmNaCCC2 was found by proteomics. Midgut water fluxes were quantified by feeding T. molitor larvae with nonabsorbable dye and measuring its concentration along the midgut. The results suggest water absorption in AM and secretion in MM and PM, potentially caused by TmNaCCC2 and TmPrip in AM, and TmKCC and TmDrip in PM, whereas MM serves as a transition region. Larvae fed on furosemide, an NKCC and KCC inhibitor, showed altered midgut water fluxes, resulting in higher trypsin excretion into the hindgut, thus reinforcing the hypothesis of a countercurrent water flux generated by CCCs powering enzyme recycling in insect midguts.
Collapse
Affiliation(s)
- Ignacio G Barroso
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Clelia Ferreira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Walter R Terra
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Bahari F, Dzhala V, Balena T, Lillis KP, Staley KJ. Intraventricular haemorrhage in premature infants: the role of immature neuronal salt and water transport. Brain 2024; 147:3216-3233. [PMID: 38815055 PMCID: PMC11370806 DOI: 10.1093/brain/awae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 06/01/2024] Open
Abstract
Intraventricular haemorrhage is a common complication of premature birth. Survivors are often left with cerebral palsy, intellectual disability and/or hydrocephalus. Animal models suggest that brain tissue shrinkage, with subsequent vascular stretch and tear, is an important step in the pathophysiology, but the cause of this shrinkage is unknown. Clinical risk factors for intraventricular haemorrhage are biomarkers of hypoxic-ischaemic stress, which causes mature neurons to swell. However, immature neuronal volume might shift in the opposite direction in these conditions. This is because immature neurons express the chloride, salt and water transporter NKCC1, which subserves regulatory volume increases in non-neural cells, whereas mature neurons express KCC2, which subserves regulatory volume decreases. When hypoxic-ischaemic conditions reduce active ion transport and increase the cytoplasmic membrane permeability, the effects of these transporters are diminished. Consequentially, mature neurons swell (cytotoxic oedema), whereas immature neurons might shrink. After hypoxic-ischaemic stress, in vivo and in vitro multi-photon imaging of perinatal transgenic mice demonstrated shrinkage of viable immature neurons, bulk tissue shrinkage and blood vessel displacement. Neuronal shrinkage was correlated with age-dependent membrane salt and water transporter expression using immunohistochemistry. Shrinkage of immature neurons was prevented by prior genetic or pharmacological inhibition of NKCC1 transport. These findings open new avenues of investigation for the detection of acute brain injury by neuroimaging, in addition to prevention of neuronal shrinkage and the ensuing intraventricular haemorrhage, in premature infants.
Collapse
Affiliation(s)
- Fatemeh Bahari
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Volodymyr Dzhala
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Trevor Balena
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Kyle P Lillis
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Kevin J Staley
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Zhu C, Nie X, Lu Q, Bai Y, Jiang Z. Roles and regulation of Aquaporin-3 in maintaining the gut health: an updated review. Front Physiol 2023; 14:1264570. [PMID: 38089478 PMCID: PMC10714013 DOI: 10.3389/fphys.2023.1264570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2025] Open
Abstract
Aquaporin-3 (AQP3) is a predominant water channel protein expressed in the intestine, and plays important roles in the gut physiology and pathophysiology due to its permeability to water, glycerol and hydrogen peroxide. In this review, we systematically summarized the current understanding of the expression of AQP3 in the intestine of different species, and focused on the potential roles of AQP3 in water transport, different types of diarrhea and constipation, intestinal inflammation, intestinal barrier function, oxidative stress, and autophagy. These updated findings have supported that AQP3 may function as an important target in maintaining gut health of human and animals.
Collapse
Affiliation(s)
- Cui Zhu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Xiaoyan Nie
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Qi Lu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yinshan Bai
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Zongyong Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
4
|
Toader C, Tataru CP, Florian IA, Covache-Busuioc RA, Dumitrascu DI, Glavan LA, Costin HP, Bratu BG, Ciurea AV. From Homeostasis to Pathology: Decoding the Multifaceted Impact of Aquaporins in the Central Nervous System. Int J Mol Sci 2023; 24:14340. [PMID: 37762642 PMCID: PMC10531540 DOI: 10.3390/ijms241814340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Aquaporins (AQPs), integral membrane proteins facilitating selective water and solute transport across cell membranes, have been the focus of extensive research over the past few decades. Particularly noteworthy is their role in maintaining cellular homeostasis and fluid balance in neural compartments, as dysregulated AQP expression is implicated in various degenerative and acute brain pathologies. This article provides an exhaustive review on the evolutionary history, molecular classification, and physiological relevance of aquaporins, emphasizing their significance in the central nervous system (CNS). The paper journeys through the early studies of water transport to the groundbreaking discovery of Aquaporin 1, charting the molecular intricacies that make AQPs unique. It delves into AQP distribution in mammalian systems, detailing their selective permeability through permeability assays. The article provides an in-depth exploration of AQP4 and AQP1 in the brain, examining their contribution to fluid homeostasis. Furthermore, it elucidates the interplay between AQPs and the glymphatic system, a critical framework for waste clearance and fluid balance in the brain. The dysregulation of AQP-mediated processes in this system hints at a strong association with neurodegenerative disorders such as Parkinson's Disease, idiopathic normal pressure hydrocephalus, and Alzheimer's Disease. This relationship is further explored in the context of acute cerebral events such as stroke and autoimmune conditions such as neuromyelitis optica (NMO). Moreover, the article scrutinizes AQPs at the intersection of oncology and neurology, exploring their role in tumorigenesis, cell migration, invasiveness, and angiogenesis. Lastly, the article outlines emerging aquaporin-targeted therapies, offering a glimpse into future directions in combatting CNS malignancies and neurodegenerative diseases.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Calin Petru Tataru
- Department of Opthamology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Central Military Emergency Hospital “Dr. Carol Davila”, 010825 Bucharest, Romania
| | - Ioan-Alexandru Florian
- Department of Neurosciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
| | - David-Ioan Dumitrascu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
| | - Luca Andrei Glavan
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
| | - Horia Petre Costin
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
5
|
Huang B, Wang H, Yang B. Non-Aquaporin Water Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:331-342. [PMID: 36717505 DOI: 10.1007/978-981-19-7415-1_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Water transport through membrane is so intricate that there are still some debates. AQPs are entirely accepted to allow water transmembrane movement depending on osmotic gradient. Cotransporters and uniporters, however, are also concerned in water homeostasis. UT-B has a single-channel water permeability that is similar to AQP1. CFTR was initially thought as a water channel but now not believed to transport water directly. By cotransporters, such as KCC4, NKCC1, SGLT1, GAT1, EAAT1, and MCT1, water is transported by water osmosis coupling with substrates, which explains how water is transported across the isolated small intestine. This chapter provides information about water transport mediated by other membrane proteins except AQPs.
Collapse
Affiliation(s)
- Boyue Huang
- Laboratory of Neuroscience and Tissue Engineering, Department of Anatomy, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Hongkai Wang
- Northwestern University Interdepartmental Neuroscience Program, Chicago, IL, USA
- Laboratory of Regenerative Rehabilitation and Department of Physical Medicine and Rehabilitation, Shirley Ryan AbilityLab and Northwestern University Feinberg School of Medicine and Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Baoxue Yang
- School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
6
|
Chugh M, Munjal A, Megason SG. Hydrostatic pressure as a driver of cell and tissue morphogenesis. Semin Cell Dev Biol 2022; 131:134-145. [PMID: 35534334 PMCID: PMC9529827 DOI: 10.1016/j.semcdb.2022.04.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 12/14/2022]
Abstract
Morphogenesis, the process by which tissues develop into functional shapes, requires coordinated mechanical forces. Most current literature ascribes contractile forces derived from actomyosin networks as the major driver of tissue morphogenesis. Recent works from diverse species have shown that pressure derived from fluids can generate deformations necessary for tissue morphogenesis. In this review, we discuss how hydrostatic pressure is generated at the cellular and tissue level and how the pressure can cause deformations. We highlight and review findings demonstrating the mechanical roles of pressures from fluid-filled lumens and viscous gel-like components of the extracellular matrix. We also emphasise the interactions and mechanochemical feedbacks between extracellular pressures and tissue behaviour in driving tissue remodelling. Lastly, we offer perspectives on the open questions in the field that will further our understanding to uncover new principles of tissue organisation during development.
Collapse
Affiliation(s)
- Mayank Chugh
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.
| | - Akankshi Munjal
- Department of Cell Biology, Duke University School of Medicine, Nanaline Duke Building, 307 Research Drive, Durham, NC 27710, USA.
| | - Sean G Megason
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Zhang J, Li S, Deng F, Baikeli B, Yu W, Liu G. Distribution of aquaporins and sodium transporters in the gastrointestinal tract of a desert hare, Lepus yarkandensis. Sci Rep 2019; 9:16639. [PMID: 31719660 PMCID: PMC6851143 DOI: 10.1038/s41598-019-53291-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/30/2019] [Indexed: 01/16/2023] Open
Abstract
Lepus yarkandensis is a desert hare of the Tarim Basin in western China, and it has strong adaptability to arid environments. Aquaporins (AQPs) are a family of water channel proteins that facilitate transmembrane water transport. Gastrointestinal tract AQPs are involved in fluid absorption in the small intestine and colon. This study aimed to determine the distribution of AQPs and sodium transporters in the gastrointestinal tract of L. yarkandensis and to compare the expression of these proteins with that in Oryctolagus cuniculus. Immunohistochemistry was performed to analyse the cellular distribution of these proteins, and the acquired images were analysed with IpWin32 software. Our results revealed that AQP1 was located in the colonic epithelium, central lacteal cells, fundic gland parietal cells, and capillary endothelial cells; AQP3 was located in the colonic epithelium, small intestinal villus epithelium, gastric pit and fundic gland; AQP4 was located in the fundic gland, small intestinal gland and colonic epithelium; and epithelial sodium channel (ENaC) and Na+-K+-ATPase were located in the epithelial cells, respectively. The higher expression levels of AQP1, AQP3, ENaC and Na+-K+-ATPase in the colon of L. yarkandensis compared to those in O. cuniculus suggested that L. yarkandensis has a higher capacity for faecal dehydration.
Collapse
Affiliation(s)
- Jianping Zhang
- College of Life Science, Tarim University Alar, Xinjiang Province, 843300, People's Republic of China.
- Key Laboratory of Biological Resources Protection and Utilization in Tarim Basin, Tarim University Alar, Xinjiang Province, 843300, People's Republic of China.
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, and Anhui Province Key Laboratory of Translational Cancer Research Bengbu Medical College Bengbu, Anhui Province, 233030, People's Republic of China.
| | - Shuwei Li
- College of Life Science, Tarim University Alar, Xinjiang Province, 843300, People's Republic of China
- Key Laboratory of Biological Resources Protection and Utilization in Tarim Basin, Tarim University Alar, Xinjiang Province, 843300, People's Republic of China
| | - Fang Deng
- College of Life Science, Tarim University Alar, Xinjiang Province, 843300, People's Republic of China
| | - Buheliqihan Baikeli
- College of Life Science, Tarim University Alar, Xinjiang Province, 843300, People's Republic of China
| | - Weijiang Yu
- College of Life Science, Tarim University Alar, Xinjiang Province, 843300, People's Republic of China
| | - Guoquan Liu
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, and Anhui Province Key Laboratory of Translational Cancer Research Bengbu Medical College Bengbu, Anhui Province, 233030, People's Republic of China.
- Department of Basic Veterinary Medicine, and Key Lab of Swine Genetics and Breeding and Agricultural Animal Breeding and Reproduction, College of Animal Science and Veterinary Medicine Huazhong Agricultural University Wuhan, Hubei Province, 430070, People's Republic of China.
| |
Collapse
|
8
|
Abstract
Water at interfaces governs many processes on the molecular scale from electrochemical and enzymatic reactions to protein folding. Here we focus on water transport through proteinaceous pores that are so narrow that the water molecules cannot overtake each other in the pore. After a short introduction into the single-file transport theory, we analyze experiments in which the unitary water permeability, pf, of water channel proteins (aquaporins, AQPs), potassium channels (KcsA), and antibiotics (gramicidin-A derivatives) has been obtained. A short outline of the underlying methods (scanning electrochemical microscopy, fluorescence correlation spectroscopy, measurements of vesicle light scattering) is also provided. We conclude that pf increases exponentially with a decreasing number NH of hydrogen bond donating or accepting residues in the channel wall. The variance in NH is responsible for a more than hundredfold change in pf. The dehydration penalty at the channel mouth has a smaller effect on pf. The intricate link between pf and the Gibbs activation energy barrier, ΔG‡t, for water flow suggests that conformational transitions of water channels act as a third determinant of pf.
Collapse
Affiliation(s)
- Andreas Horner
- Johannes Kepler University Linz, Institute of Biophysics, Gruberstr. 40, 4020 Linz, Austria.
| | | |
Collapse
|
9
|
Hannesschläger C, Barta T, Siligan C, Horner A. Quantification of Water Flux in Vesicular Systems. Sci Rep 2018; 8:8516. [PMID: 29867158 PMCID: PMC5986868 DOI: 10.1038/s41598-018-26946-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/22/2018] [Indexed: 01/29/2023] Open
Abstract
Water transport across lipid membranes is fundamental to all forms of life and plays a major role in health and disease. However, not only typical water facilitators like aquaporins facilitate water flux, but also transporters, ion channels or receptors represent potent water pathways. The efforts directed towards a mechanistic understanding of water conductivity determinants in transmembrane proteins, the development of water flow inhibitors, and the creation of biomimetic membranes with incorporated membrane proteins or artificial water channels depend on reliable and accurate ways of quantifying water permeabilities Pf. A conventional method is to subject vesicles to an osmotic gradient in a stopped-flow device: Fast recordings of scattered light intensity are converted into the time course of vesicle volume change. Even though an analytical solution accurately acquiring Pf from scattered light intensities exists, approximations potentially misjudging Pf by orders of magnitude are used. By means of computational and experimental data we point out that erroneous results such as that the single channel water permeability pf depends on the osmotic gradient are direct results of such approximations. Finally, we propose an empirical solution of which calculated permeability values closely match those calculated with the analytical solution in the relevant range of parameters.
Collapse
Affiliation(s)
- Christof Hannesschläger
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, 4020, Linz, Austria
| | - Thomas Barta
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, 4020, Linz, Austria
| | - Christine Siligan
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, 4020, Linz, Austria
| | - Andreas Horner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, 4020, Linz, Austria.
| |
Collapse
|
10
|
Garneau AP, Marcoux AA, Frenette-Cotton R, Mac-Way F, Lavoie JL, Isenring P. Molecular insights into the normal operation, regulation, and multisystemic roles of K +-Cl - cotransporter 3 (KCC3). Am J Physiol Cell Physiol 2017; 313:C516-C532. [PMID: 28814402 DOI: 10.1152/ajpcell.00106.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/26/2017] [Accepted: 08/14/2017] [Indexed: 12/12/2022]
Abstract
Long before the molecular identity of the Na+-dependent K+-Cl- cotransporters was uncovered in the mid-nineties, a Na+-independent K+-Cl- cotransport system was also known to exist. It was initially observed in sheep and goat red blood cells where it was shown to be ouabain-insensitive and to increase in the presence of N-ethylmaleimide (NEM). After it was established between the early and mid-nineties, the expressed sequence tag (EST) databank was found to include a sequence that was highly homologous to those of the Na+-dependent K+-Cl- cotransporters. This sequence was eventually found to code for the Na+-independent K+-Cl- cotransport function that was described in red blood cells several years before. It was termed KCC1 and led to the discovery of three isoforms called KCC2, KCC3, and KCC4. Since then, it has become obvious that each one of these isoforms exhibits unique patterns of distribution and fulfills distinct physiological roles. Among them, KCC3 has been the subject of great attention in view of its important role in the nervous system and its association with a rare hereditary sensorimotor neuropathy (called Andermann syndrome) that affects many individuals in Quebec province (Canada). It was also found to play important roles in the cardiovascular system, the organ of Corti, and circulating blood cells. As will be seen in this review, however, there are still a number of uncertainties regarding the transport properties, structural organization, and regulation of KCC3. The same is true regarding the mechanisms by which KCC3 accomplishes its numerous functions in animal cells.
Collapse
Affiliation(s)
- A P Garneau
- Nephrology Research Group, Department of Medicine, Laval University, Quebec City, Quebec, Canada; and
- Cardiometabolic Axis, Kinesiology Department, University of Montréal, Montreal, Quebec, Canada
| | - A A Marcoux
- Nephrology Research Group, Department of Medicine, Laval University, Quebec City, Quebec, Canada; and
| | - R Frenette-Cotton
- Nephrology Research Group, Department of Medicine, Laval University, Quebec City, Quebec, Canada; and
| | - F Mac-Way
- Nephrology Research Group, Department of Medicine, Laval University, Quebec City, Quebec, Canada; and
| | - J L Lavoie
- Cardiometabolic Axis, Kinesiology Department, University of Montréal, Montreal, Quebec, Canada
| | - P Isenring
- Nephrology Research Group, Department of Medicine, Laval University, Quebec City, Quebec, Canada; and
| |
Collapse
|
11
|
Shashikanth N, Yeruva S, Ong MLDM, Odenwald MA, Pavlyuk R, Turner JR. Epithelial Organization: The Gut and Beyond. Compr Physiol 2017; 7:1497-1518. [DOI: 10.1002/cphy.c170003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Glykys J, Dzhala V, Egawa K, Kahle KT, Delpire E, Staley K. Chloride Dysregulation, Seizures, and Cerebral Edema: A Relationship with Therapeutic Potential. Trends Neurosci 2017; 40:276-294. [PMID: 28431741 DOI: 10.1016/j.tins.2017.03.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 11/18/2022]
Abstract
Pharmacoresistant seizures and cytotoxic cerebral edema are serious complications of ischemic and traumatic brain injury. Intraneuronal Cl- concentration ([Cl-]i) regulation impacts on both cell volume homeostasis and Cl--permeable GABAA receptor-dependent membrane excitability. Understanding the pleiotropic molecular determinants of neuronal [Cl-]i - cytoplasmic impermeant anions, polyanionic extracellular matrix (ECM) glycoproteins, and plasmalemmal Cl- transporters - could help the identification of novel anticonvulsive and neuroprotective targets. The cation/Cl- cotransporters and ECM metalloproteinases may be particularly druggable targets for intervention. We establish here a paradigm that accounts for recent data regarding the complex regulatory mechanisms of neuronal [Cl-]i and how these mechanisms impact on neuronal volume and excitability. We propose approaches to modulate [Cl-]i that are relevant for two common clinical sequela of brain injury: edema and seizures.
Collapse
Affiliation(s)
- Joseph Glykys
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA.
| | - Volodymyr Dzhala
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Kiyoshi Egawa
- Department of Pediatrics, Hokkaido University Hospital, Sapporo 0010019, Japan
| | - Kristopher T Kahle
- Departments of Neurosurgery, Pediatrics, and Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kevin Staley
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Huang B, Wang H, Yang B. Water Transport Mediated by Other Membrane Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 969:251-261. [PMID: 28258579 DOI: 10.1007/978-94-024-1057-0_17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Water transport through membrane is so intricate that there are still some debates. (Aquaporins) AQPs are entirely accepted to allow water transmembrane movement depending on osmotic gradient. Cotransporters and uniporters , however, are also concerned in water homeotatsis. Urea transporter B (UT-B) has a single-channel water permeability that is similar to AQP1. Cystic fibrosis transmembrane conductance regulator (CFTR ) was initially thought as a water channel but now not believed to transport water directly. By cotranporters, water is transported by water osmosis coupling with substrates, which explains how water is transported across the isolated small intestine. This chapter provides information about water transport mediated by other membrane proteins except AQPs .
Collapse
Affiliation(s)
- Boyue Huang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Hongkai Wang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Department of Anatomy, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Baoxue Yang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing, 100191, China.
| |
Collapse
|
14
|
Expression, Distribution and Role of Aquaporin Water Channels in Human and Animal Stomach and Intestines. Int J Mol Sci 2016; 17:ijms17091399. [PMID: 27589719 PMCID: PMC5037679 DOI: 10.3390/ijms17091399] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/09/2016] [Accepted: 08/22/2016] [Indexed: 12/22/2022] Open
Abstract
Stomach and intestines are involved in the secretion of gastrointestinal fluids and the absorption of nutrients and fluids, which ensure normal gut functions. Aquaporin water channels (AQPs) represent a major transcellular route for water transport in the gastrointestinal tract. Until now, at least 11 AQPs (AQP1–11) have been found to be present in the stomach, small and large intestines. These AQPs are distributed in different cell types in the stomach and intestines, including gastric epithelial cells, gastric glands cells, absorptive epithelial cells (enterocytes), goblet cells and Paneth cells. AQP1 is abundantly distributed in the endothelial cells of the gastrointestinal tract. AQP3 and AQP4 are mainly distributed in the basolateral membrane of epithelial cells in the stomach and intestines. AQP7, AQP8, AQP10 and AQP11 are distributed in the apical of enterocytes in the small and large intestines. Although AQP-null mice displayed almost no phenotypes in gastrointestinal tracts, the alterations of the expression and localization of these AQPs have been shown to be associated with the pathology of gastrointestinal disorders, which suggests that AQPs play important roles serving as potential therapeutic targets. Therefore, this review provides an overview of the expression, localization and distribution of AQPs in the stomach, small and large intestine of human and animals. Furthermore, this review emphasizes the potential roles of AQPs in the physiology and pathophysiology of stomach and intestines.
Collapse
|
15
|
Erokhova L, Horner A, Ollinger N, Siligan C, Pohl P. The Sodium Glucose Cotransporter SGLT1 Is an Extremely Efficient Facilitator of Passive Water Transport. J Biol Chem 2016; 291:9712-20. [PMID: 26945065 PMCID: PMC4850308 DOI: 10.1074/jbc.m115.706986] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/04/2016] [Indexed: 11/06/2022] Open
Abstract
The small intestine is void of aquaporins adept at facilitating vectorial water transport, and yet it reabsorbs ∼8 liters of fluid daily. Implications of the sodium glucose cotransporter SGLT1 in either pumping water or passively channeling water contrast with its reported water transporting capacity, which lags behind that of aquaporin-1 by 3 orders of magnitude. Here we overexpressed SGLT1 in MDCK cell monolayers and reconstituted the purified transporter into proteoliposomes. We observed the rate of osmotic proteoliposome deflation by light scattering. Fluorescence correlation spectroscopy served to assess (i) SGLT1 abundance in both vesicles and plasma membranes and (ii) flow-mediated dilution of an aqueous dye adjacent to the cell monolayer. Calculation of the unitary water channel permeability, pf, yielded similar values for cell and proteoliposome experiments. Neither the absence of glucose or Na(+), nor the lack of membrane voltage in vesicles, nor the directionality of water flow grossly altered pf Such weak dependence on protein conformation indicates that a water-impermeable occluded state (glucose and Na(+) in their binding pockets) lasts for only a minor fraction of the transport cycle or, alternatively, that occlusion of the substrate does not render the transporter water-impermeable as was suggested by computational studies of the bacterial homologue vSGLT. Although the similarity between the pf values of SGLT1 and aquaporin-1 makes a transcellular pathway plausible, it renders water pumping physiologically negligible because the passive flux would be orders of magnitude larger.
Collapse
Affiliation(s)
- Liudmila Erokhova
- From the Institute of Biophysics, Johannes Kepler University Linz, 4020 Linz, Austria
| | - Andreas Horner
- From the Institute of Biophysics, Johannes Kepler University Linz, 4020 Linz, Austria
| | - Nicole Ollinger
- From the Institute of Biophysics, Johannes Kepler University Linz, 4020 Linz, Austria
| | - Christine Siligan
- From the Institute of Biophysics, Johannes Kepler University Linz, 4020 Linz, Austria
| | - Peter Pohl
- From the Institute of Biophysics, Johannes Kepler University Linz, 4020 Linz, Austria
| |
Collapse
|
16
|
Madeira A, Moura TF, Soveral G. Detecting Aquaporin Function and Regulation. Front Chem 2016; 4:3. [PMID: 26870725 PMCID: PMC4734071 DOI: 10.3389/fchem.2016.00003] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/12/2016] [Indexed: 12/14/2022] Open
Abstract
Water is the major component of cells and tissues throughout all forms of life. Fluxes of water and solutes through cell membranes and epithelia are essential for osmoregulation and energy homeostasis. Aquaporins are membrane channels expressed in almost every organism and involved in the bidirectional transfer of water and small solutes across cell membranes. Aquaporins have important biological roles and have been implicated in several pathophysiological conditions suggesting a great translational potential in aquaporin-based diagnostics and therapeutics. Detecting aquaporin function is critical for assessing regulation and screening for new activity modulators that can prompt the development of efficient medicines. Appropriate methods for functional analysis comprising suitable cell models and techniques to accurately evaluate water and solute membrane permeability are essential to validate aquaporin function and assess short-term regulation. The present review describes established assays commonly used to assess aquaporin function in cells and tissues, as well as the experimental biophysical strategies required to reveal functional regulation and identify modulators, the first step for aquaporin drug discovery.
Collapse
Affiliation(s)
- Ana Madeira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa Lisboa, Portugal
| | - Teresa F Moura
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de LisboaLisboa, Portugal; Faculdade de Ciências e Tecnologia, Universidade Nova de LisboaCaparica, Portugal
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de LisboaLisboa, Portugal; Departamento Bioquimica e Biologia Humana, Faculty of Pharmacy, Universidade de LisboaLisboa, Portugal
| |
Collapse
|
17
|
Delpire E, Staley KJ. Novel determinants of the neuronal Cl(-) concentration. J Physiol 2014; 592:4099-114. [PMID: 25107928 PMCID: PMC4215762 DOI: 10.1113/jphysiol.2014.275529] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 08/01/2014] [Indexed: 12/11/2022] Open
Abstract
It is now a well-accepted view that cation-driven Cl(-) transporters in neurons are involved in determining the intracellular Cl(-) concentration. In the present review, we propose that additional factors, which are often overlooked, contribute substantially to the Cl(-) gradient across neuronal membranes. After briefly discussing the data supporting and opposing the role of cation-chloride cotransporters in regulating Cl(-), we examine the participation of the following factors in the formation of the transmembrane Cl(-) gradient: (i) fixed 'Donnan' charges inside and outside the cell; (ii) the properties of water (free vs. bound); and (iii) water transport through the cotransporters. We demonstrate a steep relationship between intracellular Cl(-) and the concentration of fixed negative charges on macromolecules. We show that in the absence of water transport through the K(+)-Cl(-) cotransporter, a large osmotic gradient builds at concentrations below or above a set value of 'Donnan' charges, and show that at any value of these fixed charges, the reversal potential for Cl(-) equates that of K(+). When the movement of water across the membrane is a source of free energy, it is sufficient to modify the movement of Cl(-) through the cotransporter. In this scenario, the reversal potential for Cl(-) does not closely follow that of K(+). Furthermore, our simulations demonstrate that small differences in the availability of freely diffusible water between inside and outside the cell greatly affect the Cl(-) reversal potential, particularly when osmolar transmembrane gradients are minimized, for example by idiogenic osmoles. We also establish that the presence of extracellular charges has little effect on the chloride reversal potential, but greatly affects the effective inhibitory conductance for Cl(-). In conclusion, our theoretical analysis of the presence of fixed anionic charges and water bound on macromolecules inside and outside the cell greatly impacts both Cl(-) gradient and Cl(-) conductance across neuronal membranes.
Collapse
Affiliation(s)
- Eric Delpire
- Department of Anaesthesiology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Kevin J Staley
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Dukoff DJ, Hogg DW, Hawrysh PJ, Buck LT. Scavenging ROS dramatically increase NMDA receptor whole-cell currents in painted turtle cortical neurons. ACTA ACUST UNITED AC 2014; 217:3346-55. [PMID: 25063855 DOI: 10.1242/jeb.105825] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Oxygen deprivation triggers excitotoxic cell death in mammal neurons through excessive calcium loading via over-activation of N-methyl-d-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. This does not occur in the western painted turtle, which overwinters for months without oxygen. Neurological damage is avoided through anoxia-mediated decreases in NMDA and AMPA receptor currents that are dependent upon a modest rise in intracellular Ca(2+) concentrations ([Ca(2+)]i) originating from mitochondria. Anoxia also blocks mitochondrial reactive oxygen species (ROS) generation, which is another potential signaling mechanism to regulate glutamate receptors. To assess the effects of decreased intracellular [ROS] on NMDA and AMPA receptor currents, we scavenged ROS with N-2-mercaptopropionylglycine (MPG) or N-acetylcysteine (NAC). Unlike anoxia, ROS scavengers increased NMDA receptor whole-cell currents by 100%, while hydrogen peroxide decreased currents. AMPA receptor currents and [Ca(2+)]i concentrations were unaffected by ROS manipulation. Because decreases in [ROS] increased NMDA receptor currents, we next asked whether mitochondrial Ca(2+) release prevents receptor potentiation during anoxia. Normoxic activation of mitochondrial ATP-sensitive potassium (mKATP) channels with diazoxide decreased NMDA receptor currents and was unaffected by subsequent ROS scavenging. Diazoxide application following ROS scavenging did not rescue scavenger-mediated increases in NMDA receptor currents. Fluorescent measurement of [Ca(2+)]i and ROS levels demonstrated that [Ca(2+)]i increases before ROS decreases. We conclude that decreases in ROS concentration are not linked to anoxia-mediated decreases in NMDA/AMPA receptor currents but are rather associated with an increase in NMDA receptor currents that is prevented during anoxia by mitochondrial Ca(2+) release.
Collapse
Affiliation(s)
- David James Dukoff
- Department of Cell and Systems Biology and Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - David William Hogg
- Department of Cell and Systems Biology and Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Peter John Hawrysh
- Department of Cell and Systems Biology and Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Leslie Thomas Buck
- Department of Cell and Systems Biology and Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| |
Collapse
|
19
|
Wegner LH. Root pressure and beyond: energetically uphill water transport into xylem vessels? JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:381-93. [PMID: 24311819 DOI: 10.1093/jxb/ert391] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The thermodynamics of root pressure remains an enigma up to the present day. Water is transported radially into xylem vessels, under some conditions even when the xylem sap is more dilute than the ambient medium (soil solution). It is suggested here that water secretion across the plasma membrane of xylem parenchyma cells is driven by a co-transport of water and solutes as previously shown for mammalian epithelia (Zeuthen T. 2010. Water-transporting proteins. Journal of Membrane Biology 234, 57-73.). This process could drive volume flow 'energetically uphill', against the free energy gradient of water. According to the model, solutes released by xylem parenchyma cells are subsequently retrieved from the sap at the expense of metabolic energy to maintain the concentration gradient that drives the water secretion. Transporters of the CCC type known to mediate water secretion in mammalian cells have also been found in Arabidopsis and in rice. The mechanism proposed here for root pressure could also explain refilling of embolized vessels. Moreover, it could contribute to long-distance water transport in trees when the cohesion-tension mechanism of water ascent fails. This is discussed with respect to the old and the more recent literature on these subjects.
Collapse
Affiliation(s)
- Lars H Wegner
- Karlsruhe Institute of Technology, Institute of Botany I, and Institute of Pulsed Power and Microwave Technology, Campus North, Building 630, Hermann-v-Helmholtz Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
20
|
Recktenwald EB, Ross DA, Fessenden SW, Wall CJ, Van Amburgh ME. Urea-N recycling in lactating dairy cows fed diets with 2 different levels of dietary crude protein and starch with or without monensin. J Dairy Sci 2013; 97:1611-22. [PMID: 24377801 DOI: 10.3168/jds.2013-7162] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 11/02/2013] [Indexed: 11/19/2022]
Abstract
Rumensin (monensin; Elanco Animal Health, Greenfield, IN) has been shown to reduce ammonia production and microbial populations in vitro; thus, it would be assumed to reduce ruminal ammonia production and subsequent urea production and consequently affect urea recycling. The objective of this experiment was to determine the effects of 2 levels of dietary crude protein (CP) and 2 levels of starch, with and without Rumensin on urea-N recycling in lactating dairy cattle. Twelve lactating Holstein dairy cows (107 ± 21 d in milk, 647 kg ± 37 kg of body weight) were fed diets characterized as having high (16.7%) or low (15.3%) CP with or without Rumensin, while dietary starch levels (23 vs. 29%) were varied between 2 feeding periods with at least 7d of adaptation between measurements. Cows assigned to high or low protein and to Rumensin or no Rumensin remained on those treatments to avoid carryover effects. The diets consisted of approximately 40% corn silage, 20% alfalfa hay, and 40% concentrate mix specific to the treatment diets, with 0.5 kg of wheat straw added to the high starch diets to enhance effective fiber intake. The diets were formulated using Cornell Net Carbohydrate and Protein System (version 6.1), and the low-protein diets were formulated to be deficient for rumen ammonia to create conditions that should enhance the demand for urea recycling. The high-protein diets were formulated to be positive for both rumen ammonia and metabolizable protein. Rumen fluid, urine, feces, and milk samples were collected before and after a 72-h continuous jugular infusion of (15)N(15)N-urea. Total urine and feces were collected during the urea infusions for N balance measurements. Milk yield and dry matter intake were improved in cows fed the higher level of dietary CP and by Rumensin. Ruminal ammonia and milk and plasma urea nitrogen concentrations corresponded to dietary CP concentration. As has been shown in vitro, Rumensin reduced rumen ammonia concentration by approximately 23% but did not affect urea entry rate or gastrointestinal entry rate. Urea entry rate averaged approximately 57% of total N intake for cattle with and without Rumensin, and gastrointestinal rate was similar at 43 and 42% of N intake for cattle fed and not fed Rumensin, respectively. The cattle fed the high-protein diet had a 25% increase in urea entry rate and no effect of starch level was observed for any recycling parameters. Contrary to our hypothesis, Rumensin did not alter urea production and recycling.
Collapse
Affiliation(s)
- E B Recktenwald
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - D A Ross
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - S W Fessenden
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - C J Wall
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - M E Van Amburgh
- Department of Animal Science, Cornell University, Ithaca, NY 14853.
| |
Collapse
|
21
|
Zeuthen T, MacAulay N. Transport of water against its concentration gradient: fact or fiction? ACTA ACUST UNITED AC 2012. [DOI: 10.1002/wmts.54] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Laforenza U. Water channel proteins in the gastrointestinal tract. Mol Aspects Med 2012; 33:642-50. [PMID: 22465691 DOI: 10.1016/j.mam.2012.03.001] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 03/09/2012] [Accepted: 03/11/2012] [Indexed: 12/24/2022]
Abstract
Water transport through the human digestive system is physiologically crucial for maintaining body water homeostasis and ensure digestive and absorptive functions. Within the gastrointestinal tract, water recirculates, being secreted with the digestive juices and then almost entirely absorbed by the small and large intestine. The importance of aquaporins (AQPs), transmembrane water channel proteins, in the rapid passage of water across plasma membranes in the gastrointestinal tract appears immediately evident. Several AQP isoforms are found in gastrointestinal epithelia, with AQP1, 3, 7, 10 and 11 being the most abundantly expressed in the whole gut. On the other hand, AQP4 and 8 are located selectively in the stomach and colon, respectively. Here we review AQP expression and localization at the tissue, cellular and subcellular level in gastrointestinal epithelia, and their modification in various gut diseases.
Collapse
Affiliation(s)
- Umberto Laforenza
- Department of Molecular Medicine, Section of Human Physiology, University of Pavia, Via Forlanini 6, I-27100 Pavia, Italy.
| |
Collapse
|
23
|
Zeuthen T, Macaulay N. Cotransport of water by Na⁺-K⁺-2Cl⁻ cotransporters expressed in Xenopus oocytes: NKCC1 versus NKCC2. J Physiol 2012; 590:1139-54. [PMID: 22250214 DOI: 10.1113/jphysiol.2011.226316] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The NKCC1 and NKCC2 isoforms of the mammalian Na⁺–K⁺–2Cl⁻ cotransporter were expressed in Xenopus oocytes and the relation between external ion concentration and water fluxes determined.Water fluxes were determined from changes in the oocytes volume and ion fluxes from 86Rb+ uptake. Isotonic increases in external K⁺ concentration elicited abrupt inward water fluxes in NKCC1; the K⁺ dependence obeyed one-site kinetics with a K₀.₅ of 7.5 mM. The water fluxes were blocked by bumetanide, had steep temperature dependence and could proceed uphill against an osmotic gradient of 20 mosmol l⁻¹. A comparison between ion and water fluxes indicates that 460 water molecules are cotransported for each turnover of the protein. In contrast, NKCC2 did not support water fluxes.Water transport in NKCC1 induced by increases in the external osmolarity had high activation energy and was blocked by bumetanide. The osmotic effects of NaCl were smaller than those of urea and mannitol. This supports the notion of interaction between ions and water in NKCC1 and allows for an estimate of around 600 water molecules transported per turnover of the protein. Osmotic gradients did not induce water transport in NKCC2. We conclude that NKCC1 plays a direct role for water balance in most cell types, while NKCC2 fulfils its role in the kidney of transporting ions but not water. The different behaviour of NKCC1 and NKCC2 is discussed on the basis of recent molecular models based on studies of structural and molecular dynamics.
Collapse
Affiliation(s)
- Thomas Zeuthen
- The Panum Institute, Institute of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3C, DK-2200N Denmark.
| | | |
Collapse
|
24
|
Erokhova L, Horner A, Kügler P, Pohl P. Monitoring single-channel water permeability in polarized cells. J Biol Chem 2011; 286:39926-32. [PMID: 21940624 PMCID: PMC3220579 DOI: 10.1074/jbc.m111.291864] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
So far the determination of unitary permeability (pf) of water channels that are expressed in polarized cells is subject to large errors because the opening of a single water channel does not noticeably increase the water permeability of a membrane patch above the background. That is, in contrast to the patch clamp technique, where the single ion channel conductance may be derived from a single experiment, two experiments separated in time and/or space are required to obtain the single-channel water permeability pf as a function of the incremental water permeability (Pf,c) and the number (n) of water channels that contributed to Pf,c. Although the unitary conductance of ion channels is measured in the native environment of the channel, pf is so far derived from reconstituted channels or channels expressed in oocytes. To determine the pf of channels from live epithelial monolayers, we exploit the fact that osmotic volume flow alters the concentration of aqueous reporter dyes adjacent to the epithelia. We measure these changes by fluorescence correlation spectroscopy, which allows the calculation of both Pf,c and osmolyte dilution within the unstirred layer. Shifting the focus of the laser from the aqueous solution to the apical and basolateral membranes allowed the FCS-based determination of n. Here we validate the new technique by determining the pf of aquaporin 5 in Madin-Darby canine kidney cell monolayers. Because inhibition and subsequent activity rescue are monitored on the same sample, drug effects on exocytosis or endocytosis can be dissected from those on pf.
Collapse
|