1
|
Qureshi MH, Ozlu N, Bayraktar H. Adaptive tracking algorithm for trajectory analysis of cells and layer-by-layer assessment of motility dynamics. Comput Biol Med 2022; 150:106193. [PMID: 37859286 DOI: 10.1016/j.compbiomed.2022.106193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/26/2022] [Accepted: 10/08/2022] [Indexed: 11/03/2022]
Abstract
Tracking biological objects such as cells or subcellular components imaged with time-lapse microscopy enables us to understand the molecular principles about the dynamics of cell behaviors. However, automatic object detection, segmentation and extracting trajectories remain as a rate-limiting step due to intrinsic challenges of video processing. This paper presents an adaptive tracking algorithm (Adtari) that automatically finds the optimum search radius and cell linkages to determine trajectories in consecutive frames. A critical assumption in most tracking studies is that displacement remains unchanged throughout the movie and cells in a few frames are usually analyzed to determine its magnitude. Tracking errors and inaccurate association of cells may occur if the user does not correctly evaluate the value or prior knowledge is not present on cell movement. The key novelty of our method is that minimum intercellular distance and maximum displacement of cells between frames are dynamically computed and used to determine the threshold distance. Since the space between cells is highly variable in a given frame, our software recursively alters the magnitude to determine all plausible matches in the trajectory analysis. Our method therefore eliminates a major preprocessing step where a constant distance was used to determine the neighbor cells in tracking methods. Cells having multiple overlaps and splitting events were further evaluated by using the shape attributes including perimeter, area, ellipticity and distance. The features were applied to determine the closest matches by minimizing the difference in their magnitudes. Finally, reporting section of our software were used to generate instant maps by overlaying cell features and trajectories. Adtari was validated by using videos with variable signal-to-noise, contrast ratio and cell density. We compared the adaptive tracking with constant distance and other methods to evaluate performance and its efficiency. Our algorithm yields reduced mismatch ratio, increased ratio of whole cell track, higher frame tracking efficiency and allows layer-by-layer assessment of motility to characterize single-cells. Adaptive tracking provides a reliable, accurate, time efficient and user-friendly open source software that is well suited for analysis of 2D fluorescence microscopy video datasets.
Collapse
Affiliation(s)
- Mohammad Haroon Qureshi
- Department of Molecular Biology and Genetics, Koç University, Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Turkey; Center for Translational Research, Koç University, Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Turkey
| | - Nurhan Ozlu
- Department of Molecular Biology and Genetics, Koç University, Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Turkey
| | - Halil Bayraktar
- Department of Molecular Biology and Genetics, Istanbul Technical University, Maslak, Sariyer, 34467, Istanbul, Turkey.
| |
Collapse
|
2
|
Rose M, Kurylowicz M, Mahmood M, Winkel S, Moran-Mirabal JM, Fradin C. Direct Measurement of the Affinity between tBid and Bax in a Mitochondria-Like Membrane. Int J Mol Sci 2021; 22:8240. [PMID: 34361006 PMCID: PMC8348223 DOI: 10.3390/ijms22158240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 01/05/2023] Open
Abstract
The execution step in apoptosis is the permeabilization of the outer mitochondrial membrane, controlled by Bcl-2 family proteins. The physical interactions between the different proteins in this family and their relative abundance literally determine the fate of the cells. These interactions, however, are difficult to quantify, as they occur in a lipid membrane and involve proteins with multiple conformations and stoichiometries which can exist both in soluble and membrane. Here we focus on the interaction between two core Bcl-2 family members, the executor pore-forming protein Bax and the truncated form of the activator protein Bid (tBid), which we imaged at the single particle level in a mitochondria-like planar supported lipid bilayer. We inferred the conformation of the proteins from their mobility, and detected their transient interactions using a novel single particle cross-correlation analysis. We show that both tBid and Bax have at least two different conformations at the membrane, and that their affinity for one another increases by one order of magnitude (with a 2D-KD decreasing from ≃1.6μm-2 to ≃0.1μm-2) when they pass from their loosely membrane-associated to their transmembrane form. We conclude by proposing an updated molecular model for the activation of Bax by tBid.
Collapse
Affiliation(s)
- Markus Rose
- Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada; (M.R.); (M.K.); (M.M.); (S.W.)
| | - Martin Kurylowicz
- Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada; (M.R.); (M.K.); (M.M.); (S.W.)
| | - Mohammad Mahmood
- Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada; (M.R.); (M.K.); (M.M.); (S.W.)
| | - Sheldon Winkel
- Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada; (M.R.); (M.K.); (M.M.); (S.W.)
| | - Jose M. Moran-Mirabal
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada;
| | - Cécile Fradin
- Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada; (M.R.); (M.K.); (M.M.); (S.W.)
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
3
|
Dupont A, Glück IM, Ponti D, Stirnnagel K, Hütter S, Perrotton F, Stanke N, Richter S, Lindemann D, Lamb DC. Identification of an Intermediate Step in Foamy Virus Fusion. Viruses 2020; 12:v12121472. [PMID: 33371254 PMCID: PMC7766700 DOI: 10.3390/v12121472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/13/2020] [Accepted: 12/17/2020] [Indexed: 12/20/2022] Open
Abstract
Viral glycoprotein-mediated membrane fusion is an essential step for productive infection of host cells by enveloped viruses; however, due to its rarity and challenges in detection, little is known about the details of fusion events at the single particle level. Here, we have developed dual-color foamy viruses (FVs) composed of eGFP-tagged prototype FV (PFV) Gag and mCherry-tagged Env of either PFV or macaque simian FV (SFVmac) origin that have been optimized for detection of the fusion process. Using our recently developed tracking imaging correlation (TrIC) analysis, we were able to detect the fusion process for both PFV and SFVmac Env containing virions. PFV Env-mediated fusion was observed both at the plasma membrane as well as from endosomes, whereas SFVmac Env-mediated fusion was only observed from endosomes. PFV Env-mediated fusion was observed to happen more often and more rapidly than as for SFVmac Env. Strikingly, using the TrIC method, we detected a novel intermediate state where the envelope and capsids are still tethered but separated by up to 400 nm before final separation of Env and Gag occurred.
Collapse
Affiliation(s)
- Aurélie Dupont
- Department of Chemistry, Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany; (A.D.); (I.M.G.); (D.P.); (F.P.)
- Center for Nano Science (CENS), Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
- LIPhy, University Grenoble Alpes, CNRS, F-38000 Grenoble, France
| | - Ivo M. Glück
- Department of Chemistry, Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany; (A.D.); (I.M.G.); (D.P.); (F.P.)
- Center for Nano Science (CENS), Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
| | - Dorothee Ponti
- Department of Chemistry, Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany; (A.D.); (I.M.G.); (D.P.); (F.P.)
- Center for Nano Science (CENS), Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
| | - Kristin Stirnnagel
- Medical Faculty “Carl Gustav Carus”, Institute of Virology, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany; (K.S.); (S.H.); (N.S.); (S.R.)
- CRTD/DFG-Center for Regenerative Therapies, Technische Universität Dresden, Fetscherstr. 105, 01307 Dresden, Germany
| | - Sylvia Hütter
- Medical Faculty “Carl Gustav Carus”, Institute of Virology, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany; (K.S.); (S.H.); (N.S.); (S.R.)
- CRTD/DFG-Center for Regenerative Therapies, Technische Universität Dresden, Fetscherstr. 105, 01307 Dresden, Germany
| | - Florian Perrotton
- Department of Chemistry, Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany; (A.D.); (I.M.G.); (D.P.); (F.P.)
| | - Nicole Stanke
- Medical Faculty “Carl Gustav Carus”, Institute of Virology, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany; (K.S.); (S.H.); (N.S.); (S.R.)
- CRTD/DFG-Center for Regenerative Therapies, Technische Universität Dresden, Fetscherstr. 105, 01307 Dresden, Germany
| | - Stefanie Richter
- Medical Faculty “Carl Gustav Carus”, Institute of Virology, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany; (K.S.); (S.H.); (N.S.); (S.R.)
- CRTD/DFG-Center for Regenerative Therapies, Technische Universität Dresden, Fetscherstr. 105, 01307 Dresden, Germany
| | - Dirk Lindemann
- Medical Faculty “Carl Gustav Carus”, Institute of Virology, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany; (K.S.); (S.H.); (N.S.); (S.R.)
- CRTD/DFG-Center for Regenerative Therapies, Technische Universität Dresden, Fetscherstr. 105, 01307 Dresden, Germany
- Correspondence: (D.L.); (D.C.L.)
| | - Don C. Lamb
- Department of Chemistry, Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany; (A.D.); (I.M.G.); (D.P.); (F.P.)
- Center for Nano Science (CENS), Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
- Nanosystems Initiative München (NIM), Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
- Center for Integrated Protein Science (CIPSM), Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
- Correspondence: (D.L.); (D.C.L.)
| |
Collapse
|
4
|
McPhillimy J, Jevtics D, Guilhabert BJE, Klitis C, Hurtado A, Sorel M, Dawson MD, Strain MJ. Automated Nanoscale Absolute Accuracy Alignment System for Transfer Printing. ACS APPLIED NANO MATERIALS 2020; 3:10326-10332. [PMID: 33134883 PMCID: PMC7590505 DOI: 10.1021/acsanm.0c02224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/23/2020] [Indexed: 05/17/2023]
Abstract
The heterogeneous integration of micro- and nanoscale devices with on-chip circuits and waveguide platforms is a key enabling technology, with wide-ranging applications in areas including telecommunications, quantum information processing, and sensing. Pick and place integration with absolute positional accuracy at the nanoscale has been previously demonstrated for single proof-of-principle devices. However, to enable scaling of this technology for realization of multielement systems or high throughput manufacturing, the integration process must be compatible with automation while retaining nanoscale accuracy. In this work, an automated transfer printing process is realized by using a simple optical microscope, computer vision, and high accuracy translational stage system. Automatic alignment using a cross-correlation image processing method demonstrates absolute positional accuracy of transfer with an average offset of <40 nm (3σ < 390 nm) for serial device integration of both thin film silicon membranes and single nanowire devices. Parallel transfer of devices across a 2 × 2 mm2 area is demonstrated with an average offset of <30 nm (3σ < 705 nm). Rotational accuracy better than 45 mrad is achieved for all device variants. Devices can be selected and placed with high accuracy on a target substrate, both from lithographically defined positions on their native substrate or from a randomly distributed population. These demonstrations pave the way for future scalable manufacturing of heterogeneously integrated chip systems.
Collapse
Affiliation(s)
- John McPhillimy
- Institute
of Photonics, SUPA Department of Physics, University of Strathclyde, Glasgow, United Kingdom
- School
of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Dimitars Jevtics
- Institute
of Photonics, SUPA Department of Physics, University of Strathclyde, Glasgow, United Kingdom
| | - Benoit J. E. Guilhabert
- Institute
of Photonics, SUPA Department of Physics, University of Strathclyde, Glasgow, United Kingdom
| | | | - Antonio Hurtado
- Institute
of Photonics, SUPA Department of Physics, University of Strathclyde, Glasgow, United Kingdom
| | - Marc Sorel
- School
of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Martin D. Dawson
- Institute
of Photonics, SUPA Department of Physics, University of Strathclyde, Glasgow, United Kingdom
| | - Michael J. Strain
- Institute
of Photonics, SUPA Department of Physics, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
5
|
Möller J, Isbilir A, Sungkaworn T, Osberg B, Karathanasis C, Sunkara V, Grushevskyi EO, Bock A, Annibale P, Heilemann M, Schütte C, Lohse MJ. Single-molecule analysis reveals agonist-specific dimer formation of µ-opioid receptors. Nat Chem Biol 2020; 16:946-954. [PMID: 32541966 DOI: 10.1038/s41589-020-0566-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 05/13/2020] [Indexed: 01/08/2023]
Abstract
G-protein-coupled receptors (GPCRs) are key signaling proteins that mostly function as monomers, but for several receptors constitutive dimer formation has been described and in some cases is essential for function. Using single-molecule microscopy combined with super-resolution techniques on intact cells, we describe here a dynamic monomer-dimer equilibrium of µ-opioid receptors (µORs), where dimer formation is driven by specific agonists. The agonist DAMGO, but not morphine, induces dimer formation in a process that correlates both temporally and in its agonist- and phosphorylation-dependence with β-arrestin2 binding to the receptors. This dimerization is independent from, but may precede, µOR internalization. These data suggest a new level of GPCR regulation that links dimer formation to specific agonists and their downstream signals.
Collapse
Affiliation(s)
- Jan Möller
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Ali Isbilir
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Titiwat Sungkaworn
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany.,Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Brendan Osberg
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Max Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Bioinformatics and Omics Data Science Platform, Berlin, Germany
| | - Christos Karathanasis
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | | | - Eugene O Grushevskyi
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Andreas Bock
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Paolo Annibale
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Christof Schütte
- Zuse Institute Berlin, Berlin, Germany.,Free University of Berlin, Berlin, Germany
| | - Martin J Lohse
- Max Delbrück Center for Molecular Medicine, Berlin, Germany. .,Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany. .,Free University of Berlin, Berlin, Germany. .,ISAR Bioscience Institute, Munich/Planegg, Germany.
| |
Collapse
|
6
|
Liu SL, Wang ZG, Xie HY, Liu AA, Lamb DC, Pang DW. Single-Virus Tracking: From Imaging Methodologies to Virological Applications. Chem Rev 2020; 120:1936-1979. [PMID: 31951121 PMCID: PMC7075663 DOI: 10.1021/acs.chemrev.9b00692] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
Uncovering
the mechanisms of virus infection and assembly is crucial
for preventing the spread of viruses and treating viral disease. The
technique of single-virus tracking (SVT), also known as single-virus
tracing, allows one to follow individual viruses at different parts
of their life cycle and thereby provides dynamic insights into fundamental
processes of viruses occurring in live cells. SVT is typically based
on fluorescence imaging and reveals insights into previously unreported
infection mechanisms. In this review article, we provide the readers
a broad overview of the SVT technique. We first summarize recent advances
in SVT, from the choice of fluorescent labels and labeling strategies
to imaging implementation and analytical methodologies. We then describe
representative applications in detail to elucidate how SVT serves
as a valuable tool in virological research. Finally, we present our
perspectives regarding the future possibilities and challenges of
SVT.
Collapse
Affiliation(s)
- Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine , Nankai University , Tianjin 300071 , P. R. China.,Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , P. R. China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine , Nankai University , Tianjin 300071 , P. R. China
| | - Hai-Yan Xie
- School of Life Science , Beijing Institute of Technology , Beijing 100081 , P. R. China
| | - An-An Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine , Nankai University , Tianjin 300071 , P. R. China
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), and Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM) , Ludwig-Maximilians-Universität , München , 81377 , Germany
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine , Nankai University , Tianjin 300071 , P. R. China.,College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology , Wuhan University , Wuhan 430072 , P. R. China
| |
Collapse
|
7
|
Heterologous calcium-dependent inactivation of Orai1 by neighboring TRPV1 channels modulates cell migration and wound healing. Commun Biol 2019; 2:88. [PMID: 30854480 PMCID: PMC6399350 DOI: 10.1038/s42003-019-0338-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 02/05/2019] [Indexed: 02/06/2023] Open
Abstract
Store-operated calcium entry (SOCE) is an essential calcium influx mechanism in animal cells. One of the most important auto regulatory control systems involves calcium-dependent inactivation (CDI) of the Orai channel, which prevents excessive calcium influx. In the present study we analyze the role of two channels in the induction of CDI on Orai1. Here we show that calcium entering through freely diffusing TRPV1 channels induce strong CDI on Orai1 while calcium entering through P2X4 channel does not. TRPV1 can induce CDI on Orai1 because both channels were found in close proximity in the cell membrane. This was not observed with P2X4 channels. To our knowledge, this is the first study demonstrating that calcium arising from different channels may contribute to the modulation of Orai1 through CDI in freely diffusing single channels of living cells. Our results highlight the role of TRPV1-mediated CDI on Orai1 in cell migration and wound healing. Bastián-Eugenio et al. showed that calcium entering the cell via TRPV1, but not P2X4 channels, can induce calcium-dependent inactivation of Orai1. This inactivation impacts thrombin-induced cell migration and wound healing suggesting an important role of Orai1 modulation by TRPV1 channels.
Collapse
|
8
|
Twelfth International Foamy Virus Conference-Meeting Report. Viruses 2019; 11:v11020134. [PMID: 30717288 PMCID: PMC6409691 DOI: 10.3390/v11020134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 01/06/2023] Open
Abstract
The 12th International Foamy Virus Conference took place on 30–31 August 2018 at the Technische Universität Dresden, Dresden, Germany. The meeting included presentations on current research on non-human primate and non-primate foamy viruses (FVs; also called spumaretroviruses) as well as keynote talks on related research areas in retroviruses. The taxonomy of foamy viruses was updated earlier this year to create five new genera in the subfamily, Spumaretrovirinae, based on their animal hosts. Research on viruses from different genera was presented on topics of potential relevance to human health, such as natural infections and cross-species transmission, replication, and viral-host interactions in particular with the immune system, dual retrovirus infections, virus structure and biology, and viral vectors for gene therapy. This article provides an overview of the current state-of-the-field, summarizes the meeting highlights, and presents some important questions that need to be addressed in the future.
Collapse
|
9
|
Veerapathiran S, Wohland T. Fluorescence techniques in developmental biology. J Biosci 2018; 43:541-553. [PMID: 30002271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Advanced fluorescence techniques, commonly known as the F-techniques, measure the kinetics and the interactions of biomolecules with high sensitivity and spatiotemporal resolution. Applications of the F-techniques, which were initially limited to cells, were further extended to study in vivo protein organization and dynamics in whole organisms. The integration of F-techniques with multi-photon microscopy and light-sheet microscopy widened their applications in the field of developmental biology. It became possible to penetrate the thick tissues of living organisms and obtain good signal-to-noise ratio with reduced photo-induced toxicity. In this review, we discuss the principle and the applications of the three most commonly used F-techniques in developmental biology: Fluorescence Recovery After Photo-bleaching (FRAP), Fo¨ rster Resonance Energy Transfer (FRET), and Fluorescence Correlation and Cross-Correlation Spectroscopy (FCS and FCCS).
Collapse
Affiliation(s)
- Sapthaswaran Veerapathiran
- Department of Biological Sciences and NUS Centre for Bio-Imaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117557, Singapore
| | | |
Collapse
|
10
|
|
11
|
Parveen N, Borrenberghs D, Rocha S, Hendrix J. Single Viruses on the Fluorescence Microscope: Imaging Molecular Mobility, Interactions and Structure Sheds New Light on Viral Replication. Viruses 2018; 10:E250. [PMID: 29748498 PMCID: PMC5977243 DOI: 10.3390/v10050250] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/24/2018] [Accepted: 05/04/2018] [Indexed: 12/13/2022] Open
Abstract
Viruses are simple agents exhibiting complex reproductive mechanisms. Decades of research have provided crucial basic insights, antiviral medication and moderately successful gene therapy trials. The most infectious viral particle is, however, not always the most abundant one in a population, questioning the utility of classic ensemble-averaging virology. Indeed, viral replication is often not particularly efficient, prone to errors or containing parallel routes. Here, we review different single-molecule sensitive fluorescence methods that we employ routinely to investigate viruses. We provide a brief overview of the microscopy hardware needed and discuss the different methods and their application. In particular, we review how we applied (i) single-molecule Förster resonance energy transfer (smFRET) to probe the subviral human immunodeficiency virus (HIV-1) integrase (IN) quaternary structure; (ii) single particle tracking to study interactions of the simian virus 40 with membranes; (iii) 3D confocal microscopy and smFRET to quantify the HIV-1 pre-integration complex content and quaternary structure; (iv) image correlation spectroscopy to quantify the cytosolic HIV-1 Gag assembly, and finally; (v) super-resolution microscopy to characterize the interaction of HIV-1 with tetherin during assembly. We hope this review is an incentive for setting up and applying similar single-virus imaging studies in daily virology practice.
Collapse
Affiliation(s)
- Nagma Parveen
- Laboratory for Photochemistry and Spectroscopy, Molecular Imaging and Photonics Division, Chemistry Department, KU Leuven, B-3001 Leuven, Belgium.
| | - Doortje Borrenberghs
- Laboratory for Photochemistry and Spectroscopy, Molecular Imaging and Photonics Division, Chemistry Department, KU Leuven, B-3001 Leuven, Belgium.
| | - Susana Rocha
- Laboratory for Photochemistry and Spectroscopy, Molecular Imaging and Photonics Division, Chemistry Department, KU Leuven, B-3001 Leuven, Belgium.
| | - Jelle Hendrix
- Laboratory for Photochemistry and Spectroscopy, Molecular Imaging and Photonics Division, Chemistry Department, KU Leuven, B-3001 Leuven, Belgium.
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre and Biomedical Research Institute (BIOMED), Hasselt University, B-3590 Diepenbeek, Belgium.
| |
Collapse
|
12
|
Lee DW, Hsu HL, Bacon KB, Daniel S. Image Restoration and Analysis of Influenza Virions Binding to Membrane Receptors Reveal Adhesion-Strengthening Kinetics. PLoS One 2016; 11:e0163437. [PMID: 27695072 PMCID: PMC5047597 DOI: 10.1371/journal.pone.0163437] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/08/2016] [Indexed: 11/19/2022] Open
Abstract
With the development of single-particle tracking (SPT) microscopy and host membrane mimics called supported lipid bilayers (SLBs), stochastic virus-membrane binding interactions can be studied in depth while maintaining control over host receptor type and concentration. However, several experimental design challenges and quantitative image analysis limitations prevent the widespread use of this approach. One main challenge of SPT studies is the low signal-to-noise ratio of SPT videos, which is sometimes inevitable due to small particle sizes, low quantum yield of fluorescent dyes, and photobleaching. These situations could render current particle tracking software to yield biased binding kinetic data caused by intermittent tracking error. Hence, we developed an effective image restoration algorithm for SPT applications called STAWASP that reveals particles with a signal-to-noise ratio of 2.2 while preserving particle features. We tested our improvements to the SPT binding assay experiment and imaging procedures by monitoring X31 influenza virus binding to α2,3 sialic acid glycolipids. Our interests lie in how slight changes to the peripheral oligosaccharide structures can affect the binding rate and residence times of viruses. We were able to detect viruses binding weakly to a glycolipid called GM3, which was undetected via assays such as surface plasmon resonance. The binding rate was around 28 folds higher when the virus bound to a different glycolipid called GD1a, which has a sialic acid group extending further away from the bilayer surface than GM3. The improved imaging allowed us to obtain binding residence time distributions that reflect an adhesion-strengthening mechanism via multivalent bonds. We empirically fitted these distributions using a time-dependent unbinding rate parameter, koff, which diverges from standard treatment of koff as a constant. We further explain how to convert these models to fit ensemble-averaged binding data obtained by assays such as surface plasmon resonance.
Collapse
Affiliation(s)
- Donald W. Lee
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
| | - Hung-Lun Hsu
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
| | - Kaitlyn B. Bacon
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
| | - Susan Daniel
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
13
|
Halstead JM, Wilbertz JH, Wippich F, Lionnet T, Ephrussi A, Chao JA. TRICK: A Single-Molecule Method for Imaging the First Round of Translation in Living Cells and Animals. Methods Enzymol 2016; 572:123-57. [PMID: 27241753 DOI: 10.1016/bs.mie.2016.02.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
The life of an mRNA is dynamic within a cell. The development of quantitative fluorescent microscopy techniques to image single molecules of RNA has allowed many aspects of the mRNA lifecycle to be directly observed in living cells. Recent advances in live-cell multicolor RNA imaging, however, have now made it possible to investigate RNA metabolism in greater detail. In this chapter, we present an overview of the design and implementation of the translating RNA imaging by coat protein knockoff RNA biosensor, which allows untranslated mRNAs to be distinguished from ones that have undergone a round of translation. The methods required for establishing this system in mammalian cell lines and Drosophila melanogaster oocytes are described here, but the principles may be applied to any experimental system.
Collapse
Affiliation(s)
- J M Halstead
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - J H Wilbertz
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - F Wippich
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - T Lionnet
- Transcription Imaging Consortium, HHMI Janelia Research Campus, Ashburn, VA, United States
| | - A Ephrussi
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - J A Chao
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| |
Collapse
|
14
|
Zagato E, Forier K, Martens T, Neyts K, Demeester J, De Smedt S, Remaut K, Braeckmans K. Single-particle tracking for studying nanomaterial dynamics: applications and fundamentals in drug delivery. Nanomedicine (Lond) 2015; 9:913-27. [PMID: 24981654 DOI: 10.2217/nnm.14.43] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Many macromolecular therapeutics could potentially treat genetic disorders and cancer. They have, however, not yet reached the clinical stage owing to a lack of suitable carriers that can bring the therapeutics from the administration site to the subcellular site in target cells. One of the reasons that is hindering the development of such carriers is the limited knowledge of their transport dynamics and intracellular processing. Single-particle tracking (SPT) microscopy, thanks to its single molecule sensitivity and its broad applicability, has found its entry in the field of drug delivery to get an answer to these questions. This review aims to introduce the fundamentals of SPT to the drug delivery community and highlight the most recent discoveries obtained with SPT in the field of drug delivery.
Collapse
Affiliation(s)
- Elisa Zagato
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ghent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Stone MB, Veatch SL. Far-red organic fluorophores contain a fluorescent impurity. Chemphyschem 2014; 15:2240-6. [PMID: 24782148 PMCID: PMC4180537 DOI: 10.1002/cphc.201402002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 03/06/2014] [Indexed: 11/06/2022]
Abstract
Far-red organic fluorophores commonly used in traditional and super-resolution localization microscopy are found to contain a fluorescent impurity with green excitation and near-red emission. This near-red fluorescent impurity can interfere with some multicolor stochastic optical reconstruction microscopy/photoactivated localization microscopy measurements in live cells and produce subtle artifacts in chemically fixed cells. We additionally describe alternatives to avoid artifacts in super-resolution localization microscopy.
Collapse
Affiliation(s)
- Matthew B. Stone
- Department of Biophysics, University of Michigan, 930 N University, Ann Arbor MI 48109
| | - Sarah L. Veatch
- Department of Biophysics, University of Michigan, 930 N University, Ann Arbor MI 48109
| |
Collapse
|
16
|
Borrenberghs D, Thys W, Rocha S, Demeulemeester J, Weydert C, Dedecker P, Hofkens J, Debyser Z, Hendrix J. HIV virions as nanoscopic test tubes for probing oligomerization of the integrase enzyme. ACS NANO 2014; 8:3531-45. [PMID: 24654558 PMCID: PMC4004294 DOI: 10.1021/nn406615v] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Employing viruses as nanoscopic lipid-enveloped test tubes allows the miniaturization of protein-protein interaction (PPI) assays while preserving the physiological environment necessary for particular biological processes. Applied to the study of the human immunodeficiency virus type 1 (HIV-1), viral biology and pathology can also be investigated in novel ways, both in vitro as well as in infected cells. In this work we report on an experimental strategy that makes use of engineered HIV-1 viral particles, to allow for probing PPIs of the HIV-1 integrase (IN) inside viruses with single-molecule Förster resonance energy transfer (FRET) using fluorescent proteins (FP). We show that infectious fluorescently labeled viruses can be obtained and that the quantity of labels can be accurately measured and controlled inside individual viral particles. We demonstrate, with proper control experiments, the formation of IN oligomers in single viral particles and inside viral complexes in infected cells. Finally, we show a clear effect on IN oligomerization of small molecule inhibitors of interactions of IN with its natural human cofactor LEDGF/p75, corroborating that IN oligomer enhancing drugs are active already at the level of the virus and strongly suggesting the presence of a dynamic, enhanceable equilibrium between the IN dimer and tetramer in viral particles. Although applied to the HIV-1 IN enzyme, our methodology for utilizing HIV virions as nanoscopic test tubes for probing PPIs is generic, i.e., other PPIs targeted into the HIV-1, or PPIs targeted into other viruses, can potentially be studied with a similar strategy.
Collapse
Affiliation(s)
- Doortje Borrenberghs
- Laboratory for Photochemistry and Spectroscopy, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Flanders, Belgium
| | - Wannes Thys
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Kapucijnenvoer 33, 3000 Leuven, Flanders, Belgium
| | - Susana Rocha
- Laboratory for Photochemistry and Spectroscopy, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Flanders, Belgium
| | - Jonas Demeulemeester
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Kapucijnenvoer 33, 3000 Leuven, Flanders, Belgium
| | - Caroline Weydert
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Kapucijnenvoer 33, 3000 Leuven, Flanders, Belgium
| | - Peter Dedecker
- Laboratory for Photochemistry and Spectroscopy, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Flanders, Belgium
| | - Johan Hofkens
- Laboratory for Photochemistry and Spectroscopy, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Flanders, Belgium
- Nano-Science Center, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Kapucijnenvoer 33, 3000 Leuven, Flanders, Belgium
| | - Jelle Hendrix
- Laboratory for Photochemistry and Spectroscopy, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Flanders, Belgium
- Address correspondence to
| |
Collapse
|
17
|
Deschout H, Martens T, Vercauteren D, Remaut K, Demeester J, De Smedt SC, Neyts K, Braeckmans K. Correlation of dual colour single particle trajectories for improved detection and analysis of interactions in living cells. Int J Mol Sci 2013; 14:16485-514. [PMID: 23965965 PMCID: PMC3759922 DOI: 10.3390/ijms140816485] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 07/18/2013] [Accepted: 07/29/2013] [Indexed: 11/16/2022] Open
Abstract
Interactions between objects inside living cells are often investigated by looking for colocalization between fluorescence microscopy images that are recorded in separate colours corresponding to the fluorescent label of each object. The fundamental limitation of this approach in the case of dynamic objects is that coincidental colocalization cannot be distinguished from true interaction. Instead, correlation between motion trajectories obtained by dual colour single particle tracking provides a much stronger indication of interaction. However, frequently occurring phenomena in living cells, such as immobile phases or transient interactions, can limit the correlation to small parts of the trajectories. The method presented here, developed for the detection of interaction, is based on the correlation inside a window that is scanned along the trajectories, covering different subsets of the positions. This scanning window method was validated by simulations and, as an experimental proof of concept, it was applied to the investigation of the intracellular trafficking of polymeric gene complexes by endosomes in living retinal pigment epithelium cells, which is of interest to ocular gene therapy.
Collapse
Affiliation(s)
- Hendrik Deschout
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Harelbekestraat 72, B-9000 Gent, Belgium; E-Mails: (H.D.); (T.M.); (D.V.); (K.R.); (J.D.); (S.C.D.S.)
- Center for Nano- and Biophotonics, Ghent University, B-9000 Gent, Belgium
| | - Thomas Martens
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Harelbekestraat 72, B-9000 Gent, Belgium; E-Mails: (H.D.); (T.M.); (D.V.); (K.R.); (J.D.); (S.C.D.S.)
- Center for Nano- and Biophotonics, Ghent University, B-9000 Gent, Belgium
| | - Dries Vercauteren
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Harelbekestraat 72, B-9000 Gent, Belgium; E-Mails: (H.D.); (T.M.); (D.V.); (K.R.); (J.D.); (S.C.D.S.)
- Center for Nano- and Biophotonics, Ghent University, B-9000 Gent, Belgium
| | - Katrien Remaut
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Harelbekestraat 72, B-9000 Gent, Belgium; E-Mails: (H.D.); (T.M.); (D.V.); (K.R.); (J.D.); (S.C.D.S.)
| | - Jo Demeester
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Harelbekestraat 72, B-9000 Gent, Belgium; E-Mails: (H.D.); (T.M.); (D.V.); (K.R.); (J.D.); (S.C.D.S.)
| | - Stefaan C. De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Harelbekestraat 72, B-9000 Gent, Belgium; E-Mails: (H.D.); (T.M.); (D.V.); (K.R.); (J.D.); (S.C.D.S.)
| | - Kristiaan Neyts
- Center for Nano- and Biophotonics, Ghent University, B-9000 Gent, Belgium
- Liquid Crystals and Photonics Group, Ghent University, Sint-Pietersnieuwstraat 41, B-9000 Gent, Belgium; E-Mail:
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Harelbekestraat 72, B-9000 Gent, Belgium; E-Mails: (H.D.); (T.M.); (D.V.); (K.R.); (J.D.); (S.C.D.S.)
- Center for Nano- and Biophotonics, Ghent University, B-9000 Gent, Belgium
| |
Collapse
|