1
|
Jacobi R, Hernández-Castillo D, Sinambela N, Bösking J, Pannwitz A, González L. Computation of Förster Resonance Energy Transfer in Lipid Bilayer Membranes. J Phys Chem A 2022; 126:8070-8081. [PMID: 36260519 PMCID: PMC9639162 DOI: 10.1021/acs.jpca.2c04524] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Calculations of Förster
Resonance Energy Transfer (FRET)
often neglect the influence of different chromophore orientations
or changes in the spectral overlap. In this work, we present two computational
approaches to estimate the energy transfer rate between chromophores
embedded in lipid bilayer membranes. In the first approach, we assess
the transition dipole moments and the spectral overlap by means of
quantum chemical calculations in implicit solvation, and we investigate
the alignment and distance between the chromophores in classical molecular
dynamics simulations. In the second, all properties are evaluated
integrally with hybrid quantum mechanical/molecular mechanics (QM/MM)
calculations. Both approaches come with advantages and drawbacks,
and despite the fact that they do not agree quantitatively, they provide
complementary insights on the different factors that influence the
FRET rate. We hope that these models can be used as a basis to optimize
energy transfers in nonisotropic media.
Collapse
Affiliation(s)
- Richard Jacobi
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090Vienna, Austria.,Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Straße 42, 1090Vienna, Austria
| | - David Hernández-Castillo
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090Vienna, Austria.,Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Straße 42, 1090Vienna, Austria
| | - Novitasari Sinambela
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081Ulm, Germany
| | - Julian Bösking
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081Ulm, Germany
| | - Andrea Pannwitz
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081Ulm, Germany
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090Vienna, Austria.,Vienna Research Platform on Accelerating Photoreaction Discovery, University of Vienna, Währinger Straße 17, 1090Vienna, Austria
| |
Collapse
|
2
|
Lerner E, Barth A, Hendrix J, Ambrose B, Birkedal V, Blanchard SC, Börner R, Sung Chung H, Cordes T, Craggs TD, Deniz AA, Diao J, Fei J, Gonzalez RL, Gopich IV, Ha T, Hanke CA, Haran G, Hatzakis NS, Hohng S, Hong SC, Hugel T, Ingargiola A, Joo C, Kapanidis AN, Kim HD, Laurence T, Lee NK, Lee TH, Lemke EA, Margeat E, Michaelis J, Michalet X, Myong S, Nettels D, Peulen TO, Ploetz E, Razvag Y, Robb NC, Schuler B, Soleimaninejad H, Tang C, Vafabakhsh R, Lamb DC, Seidel CAM, Weiss S. FRET-based dynamic structural biology: Challenges, perspectives and an appeal for open-science practices. eLife 2021; 10:e60416. [PMID: 33779550 PMCID: PMC8007216 DOI: 10.7554/elife.60416] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/09/2021] [Indexed: 12/18/2022] Open
Abstract
Single-molecule FRET (smFRET) has become a mainstream technique for studying biomolecular structural dynamics. The rapid and wide adoption of smFRET experiments by an ever-increasing number of groups has generated significant progress in sample preparation, measurement procedures, data analysis, algorithms and documentation. Several labs that employ smFRET approaches have joined forces to inform the smFRET community about streamlining how to perform experiments and analyze results for obtaining quantitative information on biomolecular structure and dynamics. The recent efforts include blind tests to assess the accuracy and the precision of smFRET experiments among different labs using various procedures. These multi-lab studies have led to the development of smFRET procedures and documentation, which are important when submitting entries into the archiving system for integrative structure models, PDB-Dev. This position paper describes the current 'state of the art' from different perspectives, points to unresolved methodological issues for quantitative structural studies, provides a set of 'soft recommendations' about which an emerging consensus exists, and lists openly available resources for newcomers and seasoned practitioners. To make further progress, we strongly encourage 'open science' practices.
Collapse
Affiliation(s)
- Eitan Lerner
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, and The Center for Nanoscience and Nanotechnology, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Anders Barth
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Jelle Hendrix
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre and Biomedical Research Institute (BIOMED), Hasselt UniversityDiepenbeekBelgium
| | - Benjamin Ambrose
- Department of Chemistry, University of SheffieldSheffieldUnited Kingdom
| | - Victoria Birkedal
- Department of Chemistry and iNANO center, Aarhus UniversityAarhusDenmark
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research HospitalMemphisUnited States
| | - Richard Börner
- Laserinstitut HS Mittweida, University of Applied Science MittweidaMittweidaGermany
| | - Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität MünchenPlanegg-MartinsriedGermany
| | - Timothy D Craggs
- Department of Chemistry, University of SheffieldSheffieldUnited Kingdom
| | - Ashok A Deniz
- Department of Integrative Structural and Computational Biology, The Scripps Research InstituteLa JollaUnited States
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati School of MedicineCincinnatiUnited States
| | - Jingyi Fei
- Department of Biochemistry and Molecular Biology and The Institute for Biophysical Dynamics, University of ChicagoChicagoUnited States
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia UniversityNew YorkUnited States
| | - Irina V Gopich
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Howard Hughes Medical InstituteBaltimoreUnited States
| | - Christian A Hanke
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Gilad Haran
- Department of Chemical and Biological Physics, Weizmann Institute of ScienceRehovotIsrael
| | - Nikos S Hatzakis
- Department of Chemistry & Nanoscience Centre, University of CopenhagenCopenhagenDenmark
- Denmark Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Sungchul Hohng
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National UniversitySeoulRepublic of Korea
| | - Seok-Cheol Hong
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science and Department of Physics, Korea UniversitySeoulRepublic of Korea
| | - Thorsten Hugel
- Institute of Physical Chemistry and Signalling Research Centres BIOSS and CIBSS, University of FreiburgFreiburgGermany
| | - Antonino Ingargiola
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Chirlmin Joo
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of TechnologyDelftNetherlands
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of OxfordOxfordUnited Kingdom
| | - Harold D Kim
- School of Physics, Georgia Institute of TechnologyAtlantaUnited States
| | - Ted Laurence
- Physical and Life Sciences Directorate, Lawrence Livermore National LaboratoryLivermoreUnited States
| | - Nam Ki Lee
- School of Chemistry, Seoul National UniversitySeoulRepublic of Korea
| | - Tae-Hee Lee
- Department of Chemistry, Pennsylvania State UniversityUniversity ParkUnited States
| | - Edward A Lemke
- Departments of Biology and Chemistry, Johannes Gutenberg UniversityMainzGermany
- Institute of Molecular Biology (IMB)MainzGermany
| | - Emmanuel Margeat
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Universitié de MontpellierMontpellierFrance
| | | | - Xavier Michalet
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Sua Myong
- Department of Biophysics, Johns Hopkins UniversityBaltimoreUnited States
| | - Daniel Nettels
- Department of Biochemistry and Department of Physics, University of ZurichZurichSwitzerland
| | - Thomas-Otavio Peulen
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
| | - Evelyn Ploetz
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-UniversitätMünchenGermany
| | - Yair Razvag
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, and The Center for Nanoscience and Nanotechnology, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Nicole C Robb
- Warwick Medical School, University of WarwickCoventryUnited Kingdom
| | - Benjamin Schuler
- Department of Biochemistry and Department of Physics, University of ZurichZurichSwitzerland
| | - Hamid Soleimaninejad
- Biological Optical Microscopy Platform (BOMP), University of MelbourneParkvilleAustralia
| | - Chun Tang
- College of Chemistry and Molecular Engineering, PKU-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Peking UniversityBeijingChina
| | - Reza Vafabakhsh
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-UniversitätMünchenGermany
| | - Claus AM Seidel
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
- Department of Physiology, CaliforniaNanoSystems Institute, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
3
|
Anzola M, Sissa C, Painelli A, Hassanali AA, Grisanti L. Understanding Förster Energy Transfer through the Lens of Molecular Dynamics. J Chem Theory Comput 2020; 16:7281-7288. [DOI: 10.1021/acs.jctc.0c00893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mattia Anzola
- Department of Chemistry, Life Science and Environmental Sustainability, Parma University, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Cristina Sissa
- Department of Chemistry, Life Science and Environmental Sustainability, Parma University, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Anna Painelli
- Department of Chemistry, Life Science and Environmental Sustainability, Parma University, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Ali A. Hassanali
- Condensed Matter and Statistical Physics, International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| | - Luca Grisanti
- Division of Theoretical Physics, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
Shaw RA, Johnston-Wood T, Ambrose B, Craggs TD, Hill JG. CHARMM-DYES: Parameterization of Fluorescent Dyes for Use with the CHARMM Force Field. J Chem Theory Comput 2020; 16:7817-7824. [DOI: 10.1021/acs.jctc.0c00721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Robert A. Shaw
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
- Present address: ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Tristan Johnston-Wood
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
- Present address: Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, U.K
| | - Benjamin Ambrose
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | - Timothy D. Craggs
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | - J. Grant Hill
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| |
Collapse
|
5
|
Shoura MJ, Giovan SM, Vetcher AA, Ziraldo R, Hanke A, Levene SD. Loop-closure kinetics reveal a stable, right-handed DNA intermediate in Cre recombination. Nucleic Acids Res 2020; 48:4371-4381. [PMID: 32182357 PMCID: PMC7192630 DOI: 10.1093/nar/gkaa153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 02/24/2020] [Accepted: 02/29/2020] [Indexed: 11/12/2022] Open
Abstract
In Cre site-specific recombination, the synaptic intermediate is a recombinase homotetramer containing a pair of loxP DNA target sites. The enzyme system's strand-exchange mechanism proceeds via a Holliday-junction (HJ) intermediate; however, the geometry of DNA segments in the synapse has remained highly controversial. In particular, all crystallographic structures are consistent with an achiral, planar Holliday-junction (HJ) structure, whereas topological assays based on Cre-mediated knotting of plasmid DNAs are consistent with a right-handed chiral junction. We use the kinetics of loop closure involving closely spaced (131-151 bp) loxP sites to investigate the in-aqueo ensemble of conformations for the longest-lived looped DNA intermediate. Fitting the experimental site-spacing dependence of the loop-closure probability, J, to a statistical-mechanical theory of DNA looping provides evidence for substantial out-of-plane HJ distortion, which unequivocally stands in contrast to the square-planar intermediate geometry from Cre-loxP crystal structures and those of other int-superfamily recombinases. J measurements for an HJ-isomerization-deficient Cre mutant suggest that the apparent geometry of the wild-type complex is consistent with temporal averaging of right-handed and achiral structures. Our approach connects the static pictures provided by crystal structures and the natural dynamics of macromolecules in solution, thus advancing a more comprehensive dynamic analysis of large nucleoprotein structures and their mechanisms.
Collapse
Affiliation(s)
- Massa J Shoura
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Stefan M Giovan
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Alexandre A Vetcher
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Riccardo Ziraldo
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Andreas Hanke
- Department of Physics, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
| | - Stephen D Levene
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
- Physics, University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
6
|
Cupellini L, Corbella M, Mennucci B, Curutchet C. Electronic energy transfer in biomacromolecules. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018. [DOI: 10.1002/wcms.1392] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale University of Pisa Pisa Italy
| | - Marina Corbella
- Departament de Farmàcia i Tecnologia Farmacèutica i Fisicoquímica and Institut de Química Teòrica i Computacional (IQTC‐UB), Facultat de Farmàcia i Ciències de l'Alimentació Universitat de Barcelona Barcelona Spain
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale University of Pisa Pisa Italy
| | - Carles Curutchet
- Departament de Farmàcia i Tecnologia Farmacèutica i Fisicoquímica and Institut de Química Teòrica i Computacional (IQTC‐UB), Facultat de Farmàcia i Ciències de l'Alimentació Universitat de Barcelona Barcelona Spain
| |
Collapse
|
7
|
Reinartz I, Sinner C, Nettels D, Stucki-Buchli B, Stockmar F, Panek PT, Jacob CR, Nienhaus GU, Schuler B, Schug A. Simulation of FRET dyes allows quantitative comparison against experimental data. J Chem Phys 2018; 148:123321. [DOI: 10.1063/1.5010434] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Ines Reinartz
- Department of Physics, Karlsruhe Institute of Technology, Wolfgang-Gaede-Str. 1, 76131 Karlsruhe, Germany
- Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Claude Sinner
- Department of Physics, Karlsruhe Institute of Technology, Wolfgang-Gaede-Str. 1, 76131 Karlsruhe, Germany
- Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Daniel Nettels
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Brigitte Stucki-Buchli
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Florian Stockmar
- Institute of Applied Physics, Karlsruhe Institute of Technology, Wolfgang-Gaede-Str. 1, 76131 Karlsruhe, Germany
| | - Pawel T. Panek
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| | - Christoph R. Jacob
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| | - Gerd Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology, Wolfgang-Gaede-Str. 1, 76131 Karlsruhe, Germany
- HEiKA–Heidelberg Karlsruhe Research Partnership, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Nanotechnology and Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Benjamin Schuler
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Department of Physics, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Alexander Schug
- Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- John von Neumann Institute for Computing, Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
8
|
Bernstein OM, McGee TE, Silzel LE, Silzel JW. Fluorescent pseudorotaxanes of a quinodicarbocyanine dye with gamma cyclodextrin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 189:202-214. [PMID: 28820972 DOI: 10.1016/j.saa.2017.07.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/26/2017] [Accepted: 07/30/2017] [Indexed: 06/07/2023]
Abstract
Spectrophotometric titration of buffered solutions of gamma cyclodextrin (γCD) and 1,1'-diethyl,2,2'-dicarbocyanine (DDI) demonstrates extension of the known 1:2 host:guest complex to form a previously unreported 2:2 complex near the γCD solubility limit. Though DDI is predominantly hosted as a non-fluorescent H-aggregate, both complexes exist in respective equilibria with two secondary complexes hosting unaggregated DDI as 1:1 and 2:1 complexes. The 2:1 complex exhibits significant fluorescence emission, with a quantum yield six times that of DDI in organic solvents, but ten times lower than that of an analogous indodicarbocyanine. Fragment Molecular Orbital calculations suggest that the 2:1 complex has the tail-to-tail conformation, and that solvent access to the dye strongly favors photoisomerization. In the host-guest complex, γCD limits solvent access to the dye and hinders rotation of the quinolyl terminal groups, but nevertheless pairwise rotation of methine carbons within the γCD cavity likely remains as a significant nonradiative relaxation pathway for the excited state.
Collapse
Affiliation(s)
- Olivia M Bernstein
- Department of Chemistry, Physics, and Engineering, Biola University, 13800 Biola Avenue, La Mirada, CA 90639, USA
| | - Tiffany E McGee
- Department of Chemistry, Physics, and Engineering, Biola University, 13800 Biola Avenue, La Mirada, CA 90639, USA
| | - Lisa E Silzel
- Department of Chemistry, Physics, and Engineering, Biola University, 13800 Biola Avenue, La Mirada, CA 90639, USA
| | - John W Silzel
- Department of Chemistry, Physics, and Engineering, Biola University, 13800 Biola Avenue, La Mirada, CA 90639, USA.
| |
Collapse
|
9
|
Montenegro FA, Cantero JR, Barrera NP. Combining Mass Spectrometry and X-Ray Crystallography for Analyzing Native-Like Membrane Protein Lipid Complexes. Front Physiol 2017; 8:892. [PMID: 29170643 PMCID: PMC5684187 DOI: 10.3389/fphys.2017.00892] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/24/2017] [Indexed: 01/22/2023] Open
Abstract
Membrane proteins represent a challenging family of macromolecules, particularly related to the methodology aimed at characterizing their three-dimensional structure. This is mostly due to their amphipathic nature as well as requirements of ligand bindings to stabilize or control their function. Recently, Mass Spectrometry (MS) has become an important tool to identify the overall stoichiometry of native-like membrane proteins complexed to ligand bindings as well as to provide insights into the transport mechanism across the membrane, with complementary information coming from X-ray crystallography. This perspective article emphasizes MS findings coupled with X-ray crystallography in several membrane protein lipid complexes, in particular transporters, ion channels and molecular machines, with an overview of techniques that allows a more thorough structural interpretation of the results, which can help us to unravel hidden mysteries on the membrane protein function.
Collapse
Affiliation(s)
- Felipe A Montenegro
- Laboratory of Nanophysiology and Structural Biology, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge R Cantero
- Laboratory of Nanophysiology and Structural Biology, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nelson P Barrera
- Laboratory of Nanophysiology and Structural Biology, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
10
|
Pinheiro S, Curutchet C. Can Förster Theory Describe Stereoselective Energy Transfer Dynamics in a Protein-Ligand Complex? J Phys Chem B 2017; 121:2265-2278. [PMID: 28235382 DOI: 10.1021/acs.jpcb.7b00217] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Förster resonance energy transfer (FRET) reactions involving ligands and aromatic amino acids can substantially impact the fluorescence properties of a protein-ligand complex, an impact intimately related to the corresponding binding mode. Structural characterization of such binding events in terms of intermolecular distances can be done through the well-known R-6 distance-dependent Förster rate expression. However, such an interpretation suffers from uncertainties underlying Förster theory in the description of the electronic coupling that promotes FRET, mostly related to the dipole-dipole orientation factor, dielectric screening effects, and deviations from the ideal dipole approximation. Here, we investigate how Förster approximations impact the prediction of energy transfer dynamics in the complex between flurbiprofen (FBP) and human serum albumin (HSA), as well as a model FBP-Trp dyad, in which recent observation of enantioselective fluorescence quenching has been ascribed to energy transfer from FBP to Trp. To this end, we combine classical molecular dynamics simulations with polarizable quantum mechanics/molecular mechanics calculations that allow overcoming Förster approximations. On the basis of our results, we discuss the potential of structure-based simulations in the characterization of drug-binding events through fluorescence techniques. Overall, we find an excellent agreement between theory and experiment both in terms of enantioselectivity and FRET times, thus strongly supporting the reliability of the binding modes proposed for the (S) and (R) enantiomers of FBP. In particular, we show that the dynamic quenching arises from a small fraction of drug bound to the secondary site of HSA at the interface between subdomains IIA and IIB, whereas the enantioselectivity arises from the larger flexibility of the (S)-FBP enantiomer in the binding pocket.
Collapse
Affiliation(s)
- Silvana Pinheiro
- Departament de Farmàcia i Tecnologia Farmacèutica i Fisicoquímica and Institut de Biomedicina (IBUB), Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona , Av. Joan XXIII s/n, Barcelona 08028, Spain
| | - Carles Curutchet
- Departament de Farmàcia i Tecnologia Farmacèutica i Fisicoquímica and Institut de Biomedicina (IBUB), Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona , Av. Joan XXIII s/n, Barcelona 08028, Spain
| |
Collapse
|
11
|
Kyrychenko A, Rodnin MV, Ghatak C, Ladokhin AS. Joint refinement of FRET measurements using spectroscopic and computational tools. Anal Biochem 2017; 522:1-9. [PMID: 28108168 DOI: 10.1016/j.ab.2017.01.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 01/12/2017] [Accepted: 01/16/2017] [Indexed: 12/28/2022]
Abstract
The variability of the orientation factor is a long-standing challenge in converting FRET efficiency measurements into donor-acceptor distances. We propose the use of molecular dynamics (MD) simulations to characterize orientation distributions and thus improve the accuracy of distance measurements. Here, we test this approach by comparing experimental and simulated FRET efficiencies for a model donor-acceptor pair of enhanced cyan and enhanced yellow FPs connected by a flexible linker. Several spectroscopic techniques were used to characterize FRET in solution. In addition, a series of atomistic MD simulations of a total length of 1.5 μs were carried out to calculate the distances and the orientation factor in the FRET-pair. The resulting MD-based and experimentally measured FRET efficiency histograms coincided with each other, allowing for direct comparison of distance distributions. Despite the fact that the calculated average orientation factor was close to 2/3, the application of the average κ2 to the entire histogram of FRET efficiencies resulted in a substantial artificial broadening of the calculated distribution of apparent donor-acceptor distances. By combining single pair-FRET measurements with computational tools, we demonstrate that accounting for the donor and acceptor orientation heterogeneity is critical for accurate representation of the donor-acceptor distance distribution from FRET measurements.
Collapse
Affiliation(s)
- Alexander Kyrychenko
- Institute of Chemistry and School of Chemistry, V. N. Karazin Kharkiv National University, 4 Svobody Square, Kharkiv 61022, Ukraine; Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS 66160-7421, USA.
| | - Mykola V Rodnin
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS 66160-7421, USA
| | - Chiranjib Ghatak
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS 66160-7421, USA
| | - Alexey S Ladokhin
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS 66160-7421, USA.
| |
Collapse
|
12
|
Kempe D, Cerminara M, Poblete S, Schöne A, Gabba M, Fitter J. Single-Molecule FRET Measurements in Additive-Enriched Aqueous Solutions. Anal Chem 2016; 89:694-702. [PMID: 27966879 DOI: 10.1021/acs.analchem.6b03147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The addition of high amounts of chemical denaturants, salts, viscosity enhancers or macro-molecular crowding agents has an impact on the physical properties of buffer solutions. Among others, the (microscopic) viscosity, the refractive index, the dielectric constant, and the ionic strength can be affected. Here, we systematically evaluate the importance of solvent characteristics with respect to single-molecule FRET (smFRET) data. First, we present a confocal based method for the determination of fluorescence quantum yields to facilitate a fast characterization of smFRET-samples at sub-nM-concentrations. As a case study, we analyze smFRET data of structurally rigid, double-stranded DNA-oligonucleotides in aqueous buffer and in buffers with specific amounts of glycerol, guanidine hydrochloride (GdnHCl), and sodium chloride (NaCl) added. We show that the calculation of interdye distances, without taking into account solvent-induced spectral and photophysical changes of the labels, leads to deviations of up to 4 Å from the real interdye distances. Additionally, we demonstrate that electrostatic dye-dye repulsions are negligible for the interdye distance regime considered here (>50 Å). Finally, we use our approach to validate the further compaction of the already unfolded state of phosphoglycerate kinase (PGK) with decreasing denaturant concentrations, a mechanism known as coil-globule transition.
Collapse
Affiliation(s)
- Daryan Kempe
- AG Biophysik, I. Physikalisches Institut (IA), RWTH Aachen University , 52056 Aachen, Germany
| | | | | | | | | | - Jörg Fitter
- AG Biophysik, I. Physikalisches Institut (IA), RWTH Aachen University , 52056 Aachen, Germany
| |
Collapse
|
13
|
Trusova VM, Gorbenko GP, Deligeorgiev T, Gadjev N. Probing protein-lipid interactions by FRET between membrane fluorophores. Methods Appl Fluoresc 2016; 4:034014. [PMID: 28355160 DOI: 10.1088/2050-6120/4/3/034014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Förster resonance energy transfer (FRET) is a powerful fluorescence technique that has found numerous applications in medicine and biology. One area where FRET proved to be especially informative involves the intermolecular interactions in biological membranes. The present study was focused on developing and verifying a Monte-Carlo approach to analyzing the results of FRET between the membrane-bound fluorophores. This approach was employed to quantify FRET from benzanthrone dye ABM to squaraine dye SQ-1 in the model protein-lipid system containing a polycationic globular protein lysozyme and negatively charged lipid vesicles composed of phosphatidylcholine and phosphatidylglycerol. It was found that acceptor redistribution between the lipid bilayer and protein binding sites resulted in the decrease of FRET efficiency. Quantification of this effect in terms of the proposed methodology yielded both structural and binding parameters of lysozyme-lipid complexes.
Collapse
Affiliation(s)
- Valeriya M Trusova
- Department of Nuclear and Medical Physics, V.N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv 61022, Ukraine. Address to whom any correspondence should be addressed: Valeriya M. Trusova, 19-32 Geroyev Truda Str., Kharkiv 61144, Ukraine
| | | | | | | |
Collapse
|
14
|
Chen L, Zheng QC, Zhang HX. Insights into the effects of mutations on Cren7-DNA binding using molecular dynamics simulations and free energy calculations. Phys Chem Chem Phys 2015; 17:5704-11. [PMID: 25622968 DOI: 10.1039/c4cp05413j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A novel, highly conserved chromatin protein, Cren7 is involved in regulating essential cellular processes such as transcription, replication and repair. Although mutations in the DNA-binding loop of Cren7 destabilize the structure and reduce DNA-binding activity, the details are not very clear. Focusing on the specific Cren7-dsDNA complex (PDB code ), we applied molecular dynamics (MD) simulations and the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) free energy calculations to explore the structural and dynamic effects of W26A, L28A, and K53A mutations in comparison to the wild-type protein. The energetic analysis indicated that the intermolecular van der Waals interaction and nonpolar solvation energy play an important role in the binding process of Cren7 and dsDNA. Compared with the wild type Cren7, all the studied mutants W26A, L28A, and K53A have obviously reduced binding free energies with dsDNA in the reduction of the polar and/or nonpolar interactions. These results further elucidated the previous experiments to understand the Cren7-DNA interaction comprehensively. Our work also would provide support for an understanding of the interactions of proteins with nucleic acids.
Collapse
Affiliation(s)
- Lin Chen
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China.
| | | | | |
Collapse
|