1
|
Chou YC, Lin CY, Castan A, Chen J, Keneipp R, Yasini P, Monos D, Drndić M. Coupled nanopores for single-molecule detection. NATURE NANOTECHNOLOGY 2024; 19:1686-1692. [PMID: 39143316 DOI: 10.1038/s41565-024-01746-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 07/05/2024] [Indexed: 08/16/2024]
Abstract
Rapid sensing of molecules is increasingly important in many studies and applications, such as DNA sequencing and protein identification. Here, beyond atomically thin 2D nanopores, we conceptualize, simulate and experimentally demonstrate coupled, guiding and reusable bilayer nanopore platforms, enabling advanced ultrafast detection of unmodified molecules. The bottom layer can collimate and decelerate the molecule before it enters the sensing zone, and the top 2D pore (~2 nm) enables position sensing. We varied the number of pores in the bottom layer from one to nine while fixing one 2D pore in the top layer. When the number of pores in the bottom layer is reduced to one, sensing is performed by both layers, and distinct T- and W-shaped translocation signals indicate the precise position of molecules and are sensitive to fragment lengths. This is uniquely enabled by microsecond resolution capabilities and precision nanofabrication. Coupled nanopores represent configurable multifunctional systems with inter- and intralayer structures for improved electromechanical control and prolonged dwell times in a 2D sensing zone.
Collapse
Affiliation(s)
- Yung-Chien Chou
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Chih-Yuan Lin
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Alice Castan
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua Chen
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Rachael Keneipp
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Parisa Yasini
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Dimitri Monos
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marija Drndić
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Upadhyay G, Kapri R, Chaudhuri A. Gain reversal in the translocation dynamics of a semiflexible polymer through a flickering pore. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:185101. [PMID: 38262064 DOI: 10.1088/1361-648x/ad21a9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/23/2024] [Indexed: 01/25/2024]
Abstract
We study the driven translocation of a semiflexible polymer through an attractive extended pore with a periodically oscillating width. Similar to its flexible counterpart, a stiff polymer translocates through an oscillating pore more quickly than a static pore whose width is equal to the oscillating pore's mean width. This efficiency quantified as a gain in the translocation time, highlights a considerable dependence of the translocation dynamics on the stiffness of the polymer and the attractive nature of the pore. The gain characteristics for various polymer stiffness exhibit a trend reversal when the stickiness of the pore is changed. The gain reduces with increasing stiffness for a lower attractive strength of the pore, whereas it increases with increasing stiffness for higher attractive strengths. Such a dependence leads to the possibility of a high degree of robust selectivity in the translocation process.
Collapse
Affiliation(s)
- Gokul Upadhyay
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli 140306, India
| | - Rajeev Kapri
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli 140306, India
| | - Abhishek Chaudhuri
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli 140306, India
| |
Collapse
|
3
|
Seth S, Bhattacharya A. DNA Barcodes Using a Dual Nanopore Device. Methods Mol Biol 2024; 2744:197-211. [PMID: 38683320 PMCID: PMC11442030 DOI: 10.1007/978-1-0716-3581-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
We report a novel method based on the current blockade (CB) characteristics obtained from a dual nanopore device that can determine DNA barcodes with near-perfect accuracy using a Brownian dynamics simulation strategy. The method supersedes our previously reported velocity correction algorithm (S. Seth and A. Bhattacharya, RSC Advances, 11:20781-20787, 2021), taking advantage of the better measurement of the time-of-flight (TOF) protocol offered by the dual nanopore setup. We demonstrate the efficacy of the method by comparing our simulation data from a coarse-grained model of a polymer chain consisting of 2048 excluded volume beads of diameter 𝜎 = 24 bp using with those obtained from experimental CB data from a 48,500 bp λ-phage DNA, providing a 48500 2400 ≅ 24 base pair resolution in simulation. The simulation time scale is compared to the experimental time scale by matching the simulated time-of-flight (TOF) velocity distributions with those obtained experimentally (Rand et al., ACS Nano, 16:5258-5273, 2022). We then use the evolving coordinates of the dsDNA and the molecular features to reconstruct the current blockade characteristics on the fly using a volumetric model based on the effective van der Waal radii of the species inside and in the immediate vicinity of the pore. Our BD simulation mimics the control-zoom-in-logic to understand the origin of the TOF distributions due to the relaxation of the out-of-equilibrium conformations followed by a reversal of the electric fields. The simulation algorithm is quite general and can be applied to differentiate DNA barcodes from different species.
Collapse
|
4
|
Chernev A, Teng Y, Thakur M, Boureau V, Navratilova L, Cai N, Chen TH, Wen L, Artemov V, Radenovic A. Nature-Inspired Stalactite Nanopores for Biosensing and Energy Harvesting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302827. [PMID: 37243375 DOI: 10.1002/adma.202302827] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/24/2023] [Indexed: 05/28/2023]
Abstract
Nature provides a wide range of self-assembled structures from the nanoscale to the macroscale. Under the right thermodynamic conditions and with the appropriate material supply, structures like stalactites, icicles, and corals can grow. However, the natural growth process is time-consuming. This work demonstrates a fast, nature-inspired method for growing stalactite nanopores using heterogeneous atomic deposition of hafnium dioxide at the orifice of templated silicon nitride apertures. The stalactite nanostructures combine the benefits of reduced sensing region typically for 2-dimensional material nanopores with the asymmetric geometry of capillaries, resulting in ionic selectivity, stability, and scalability. The proposed growing method provides an adaptable nanopore platform for basic and applied nanofluidic research, including biosensing, energy science, and filtration technologies.
Collapse
Affiliation(s)
- Andrey Chernev
- Laboratory of Nanoscale Biology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Yunfei Teng
- Laboratory of Nanoscale Biology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Mukeshchand Thakur
- Laboratory of Nanoscale Biology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Victor Boureau
- Interdisciplinary Centre for Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Lucie Navratilova
- Interdisciplinary Centre for Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Nianduo Cai
- Laboratory of Nanoscale Biology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Tzu-Heng Chen
- Laboratory of Nanoscale Biology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Liping Wen
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Vasily Artemov
- Laboratory of Nanoscale Biology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Aleksandra Radenovic
- Laboratory of Nanoscale Biology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| |
Collapse
|
5
|
Roelen Z, Briggs K, Tabard-Cossa V. Analysis of Nanopore Data: Classification Strategies for an Unbiased Curation of Single-Molecule Events from DNA Nanostructures. ACS Sens 2023; 8:2809-2823. [PMID: 37436112 PMCID: PMC10913896 DOI: 10.1021/acssensors.3c00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Nanopores are versatile single-molecule sensors that are being used to sense increasingly complex mixtures of structured molecules with applications in molecular data storage and disease biomarker detection. However, increased molecular complexity presents additional challenges to the analysis of nanopore data, including more translocation events being rejected for not matching an expected signal structure and a greater risk of selection bias entering this event curation process. To highlight these challenges, here, we present the analysis of a model molecular system consisting of a nanostructured DNA molecule attached to a linear DNA carrier. We make use of recent advances in the event segmentation capabilities of Nanolyzer, a graphical analysis tool provided for nanopore event fitting, and describe approaches to the event substructure analysis. In the process, we identify and discuss important sources of selection bias that emerge in the analysis of this molecular system and consider the complicating effects of molecular conformation and variable experimental conditions (e.g., pore diameter). We then present additional refinements to existing analysis techniques, allowing for improved separation of multiplexed samples, fewer translocation events rejected as false negatives, and a wider range of experimental conditions for which accurate molecular information can be extracted. Increasing the coverage of analyzed events within nanopore data is not only important for characterizing complex molecular samples with high fidelity but is also becoming essential to the generation of accurate, unbiased training data as machine-learning approaches to data analysis and event identification continue to increase in prevalence.
Collapse
Affiliation(s)
- Zachary Roelen
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Kyle Briggs
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | | |
Collapse
|
6
|
Singh SL, Chauhan K, Bharadwaj AS, Kishore V, Laux P, Luch A, Singh AV. Polymer Translocation and Nanopore Sequencing: A Review of Advances and Challenges. Int J Mol Sci 2023; 24:6153. [PMID: 37047125 PMCID: PMC10094227 DOI: 10.3390/ijms24076153] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/01/2023] [Accepted: 02/28/2023] [Indexed: 03/31/2023] Open
Abstract
Various biological processes involve the translocation of macromolecules across nanopores; these pores are basically protein channels embedded in membranes. Understanding the mechanism of translocation is crucial to a range of technological applications, including DNA sequencing, single molecule detection, and controlled drug delivery. In this spirit, numerous efforts have been made to develop polymer translocation-based sequencing devices, these efforts include findings and insights from theoretical modeling, simulations, and experimental studies. As much as the past and ongoing studies have added to the knowledge, the practical realization of low-cost, high-throughput sequencing devices, however, has still not been realized. There are challenges, the foremost of which is controlling the speed of translocation at the single monomer level, which remain to be addressed in order to use polymer translocation-based methods for sensing applications. In this article, we review the recent studies aimed at developing control over the dynamics of polymer translocation through nanopores.
Collapse
Affiliation(s)
- Swarn Lata Singh
- Department of Physics, Mahila Mahavidyalaya (MMV), Banaras Hindu University, Varanasi 221005, UP, India
| | - Keerti Chauhan
- Department of Physics, Banaras Hindu University, Varanasi 221005, UP, India
| | - Atul S. Bharadwaj
- Department of Physics, CMP Degree College, University of Allahabad, Prayagraj 211002, UP, India
| | - Vimal Kishore
- Department of Physics, Banaras Hindu University, Varanasi 221005, UP, India
| | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute of Risk Assessment (BfR) Maxdohrnstrasse 8-10, 10589 Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute of Risk Assessment (BfR) Maxdohrnstrasse 8-10, 10589 Berlin, Germany
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute of Risk Assessment (BfR) Maxdohrnstrasse 8-10, 10589 Berlin, Germany
| |
Collapse
|
7
|
Chen K, Choudhary A, Sandler SE, Maffeo C, Ducati C, Aksimentiev A, Keyser UF. Super-Resolution Detection of DNA Nanostructures Using a Nanopore. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207434. [PMID: 36630969 DOI: 10.1002/adma.202207434] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/28/2022] [Indexed: 06/17/2023]
Abstract
High-resolution analysis of biomolecules has brought unprecedented insights into fundamental biological processes and dramatically advanced biosensing. Notwithstanding the ongoing resolution revolution in electron microscopy and optical imaging, only a few methods are presently available for high-resolution analysis of unlabeled single molecules in their native states. Here, label-free electrical sensing of structured single molecules with a spatial resolution down to single-digit nanometers is demonstrated. Using a narrow solid-state nanopore, the passage of a series of nanostructures attached to a freely translocating DNA molecule is detected, resolving individual nanostructures placed as close as 6 nm apart and with a surface-to-surface gap distance of only 2 nm. Such super-resolution ability is attributed to the nanostructure-induced enhancement of the electric field at the tip of the nanopore. This work demonstrates a general approach to improving the resolution of single-molecule nanopore sensing and presents a critical advance towards label-free, high-resolution DNA sequence mapping, and digital information storage independent of molecular motors.
Collapse
Affiliation(s)
- Kaikai Chen
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Adnan Choudhary
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL, 61801, USA
| | - Sarah E Sandler
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Christopher Maffeo
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL, 61801, USA
| | - Caterina Ducati
- Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Avenue, Urbana, IL 61801, USA
| | - Ulrich F Keyser
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| |
Collapse
|
8
|
Lin CY, Fotis R, Xia Z, Kavetsky K, Chou YC, Niedzwiecki DJ, Biondi M, Thei F, Drndić M. Ultrafast Polymer Dynamics through a Nanopore. NANO LETTERS 2022; 22:8719-8727. [PMID: 36315497 DOI: 10.1021/acs.nanolett.2c03546] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ultrathin nanopore sensors allow single-molecule and polymer measurements at sub-microsecond time resolution enabled by high current signals (∼10-30 nA). We demonstrate for the first time the experimental probing of the ultrafast translocation and folded dynamics of double-stranded DNA (dsDNA) through a nanopore at 10 MHz bandwidth with acquisition of data points per 25 ns (150 MB/s). By introducing a rigorous algorithm, we are able to accurately identify each current level present within translocation events and elucidate the dynamic folded and unfolded behaviors. The remarkable sensitivity of this system reveals distortions of short-lived folded states at a lower bandwidth. This work revisits probing of dsDNA as a model polymer and develops broadly applicable methods. The combined improvements in sensor signals, instrumentation, and large data analysis methods uncover biomolecular dynamics at unprecedentedly small time scales.
Collapse
Affiliation(s)
- Chih-Yuan Lin
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Riley Fotis
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Zehui Xia
- Goeppert LLC, Philadelphia, Pennsylvania 19146, United States
| | - Kyril Kavetsky
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Material Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yung-Chien Chou
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | | | | | - Marija Drndić
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
9
|
Tripathi P, Chandler M, Maffeo CM, Fallahi A, Makhamreh A, Halman J, Aksimentiev A, Afonin KA, Wanunu M. Discrimination of RNA fiber structures using solid-state nanopores. NANOSCALE 2022; 14:6866-6875. [PMID: 35441627 PMCID: PMC9520586 DOI: 10.1039/d1nr08002d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
RNA fibers are a class of biomaterials that can be assembled using HIV-like kissing loop interactions. Because of the programmability of molecular design and low immunorecognition, these structures present an interesting opportunity to solve problems in nanobiotechnology and synthetic biology. However, the experimental tools to fully characterize and discriminate among different fiber structures in solution are limited. Herein, we utilize solid-state nanopore experiments and Brownian dynamics simulations to characterize and distinguish several RNA fiber structures that differ in their degrees of branching. We found that, regardless of the electrolyte type and concentration, fiber structures that have more branches produce longer and deeper ionic current blockades in comparison to the unbranched fibers. Experiments carried out at temperatures ranging from 20-60 °C revealed almost identical distributions of current blockade amplitudes, suggesting that the kissing loop interactions in fibers are resistant to heating within this range.
Collapse
Affiliation(s)
- Prabhat Tripathi
- Department of Physics, Northeastern University, Boston, MA, 02115, USA.
| | - Morgan Chandler
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | | | - Ali Fallahi
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Amr Makhamreh
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Justin Halman
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Aleksei Aksimentiev
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA.
| | - Kirill A Afonin
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Meni Wanunu
- Department of Physics, Northeastern University, Boston, MA, 02115, USA.
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
10
|
Lin K, Chen C, Wang C, Lian P, Wang Y, Xue S, Sha J, Chen Y. Fabrication of solid-state nanopores. NANOTECHNOLOGY 2022; 33:272003. [PMID: 35349996 DOI: 10.1088/1361-6528/ac622b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Nanopores are valuable single-molecule sensing tools that have been widely applied to the detection of DNA, RNA, proteins, viruses, glycans, etc. The prominent sensing platform is helping to improve our health-related quality of life and accelerate the rapid realization of precision medicine. Solid-state nanopores have made rapid progress in the past decades due to their flexible size, structure and compatibility with semiconductor fabrication processes. With the development of semiconductor fabrication techniques, materials science and surface chemistry, nanopore preparation and modification technologies have made great breakthroughs. To date, various solid-state nanopore materials, processing technologies, and modification methods are available to us. In the review, we outline the recent advances in nanopores fabrication and analyze the virtues and limitations of various membrane materials and nanopores drilling techniques.
Collapse
Affiliation(s)
- Kabin Lin
- Key Laboratory of Electronic Equipment Structure Design, Ministry of Education, School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, People's Republic of China
| | - Chen Chen
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Congsi Wang
- Key Laboratory of Electronic Equipment Structure Design, Ministry of Education, School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, People's Republic of China
| | - Peiyuan Lian
- Key Laboratory of Electronic Equipment Structure Design, Ministry of Education, School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, People's Republic of China
| | - Yan Wang
- School of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Song Xue
- Key Laboratory of Electronic Equipment Structure Design, Ministry of Education, School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, People's Republic of China
| | - Jingjie Sha
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Yunfei Chen
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| |
Collapse
|
11
|
Effect of Solvent Viscosity on the Driven Translocation of Charged Polymers through Nanopores. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2696-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Rivas F, DeAngelis PL, Rahbar E, Hall AR. Optimizing the sensitivity and resolution of hyaluronan analysis with solid-state nanopores. Sci Rep 2022; 12:4469. [PMID: 35296752 PMCID: PMC8927330 DOI: 10.1038/s41598-022-08533-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/03/2022] [Indexed: 11/09/2022] Open
Abstract
Hyaluronan (HA) is an essential carbohydrate in vertebrates that is a potentially robust bioindicator due to its critical roles in diverse physiological functions in health and disease. The intricate size-dependent function that exists for HA and its low abundance in most biological fluids have highlighted the need for sensitive technologies to provide accurate and quantitative assessments of polysaccharide molecular weight and concentration. We have demonstrated that solid state (SS-) nanopore technology can be exploited for this purpose, given its molecular sensitivity and analytical capacity, but there remains a need to further understand the impacts of experimental variables on the SS-nanopore signal for optimal interpretation of results. Here, we use model quasi-monodisperse HA polymers to determine the dependence of HA signal characteristics on a range of SS-nanopore measurement conditions, including applied voltage, pore diameter, and ionic buffer asymmetry. Our results identify important factors for improving the signal-to-noise ratio, resolution, and sensitivity of HA analysis with SS-nanopores.
Collapse
Affiliation(s)
- Felipe Rivas
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA
| | - Paul L DeAngelis
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK, 73104, USA
| | - Elaheh Rahbar
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA
| | - Adam R Hall
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA. .,Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
13
|
Choudhary A, Maffeo C, Aksimentiev A. Multi-resolution simulation of DNA transport through large synthetic nanostructures. Phys Chem Chem Phys 2022; 24:2706-2716. [PMID: 35050282 PMCID: PMC8855663 DOI: 10.1039/d1cp04589j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Modeling and simulation has become an invaluable partner in development of nanopore sensing systems. The key advantage of the nanopore sensing method - the ability to rapidly detect individual biomolecules as a transient reduction of the ionic current flowing through the nanopore - is also its key deficiency, as the current signal itself rarely provides direct information about the chemical structure of the biomolecule. Complementing experimental calibration of the nanopore sensor readout, coarse-grained and all-atom molecular dynamics simulations have been used extensively to characterize the nanopore translocation process and to connect the microscopic events taking place inside the nanopore to the experimentally measured ionic current blockades. Traditional coarse-grained simulations, however, lack the precision needed to predict ionic current blockades with atomic resolution whereas traditional all-atom simulations are limited by the length and time scales amenable to the method. Here, we describe a multi-resolution framework for modeling electric field-driven passage of DNA molecules and nanostructures through to-scale models of synthetic nanopore systems. We illustrate the method by simulating translocation of double-stranded DNA through a solid-state nanopore and a micron-scale slit, capture and translocation of single-stranded DNA in a double nanopore system, and modeling ionic current readout from a DNA origami nanostructure passage through a nanocapillary. We expect our multi-resolution simulation framework to aid development of the nanopore field by providing accurate, to-scale modeling capability to research laboratories that do not have access to leadership supercomputer facilities.
Collapse
Affiliation(s)
- Adnan Choudhary
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Christopher Maffeo
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
14
|
Chen X, Chen J, Zhuo BY, Yang X, Luo MB. Simulation study for the pulling translocation of a polymer globule. Polym J 2021. [DOI: 10.1038/s41428-021-00502-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Electrical unfolding of cytochrome c during translocation through a nanopore constriction. Proc Natl Acad Sci U S A 2021; 118:2016262118. [PMID: 33883276 DOI: 10.1073/pnas.2016262118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many small proteins move across cellular compartments through narrow pores. In order to thread a protein through a constriction, free energy must be overcome to either deform or completely unfold the protein. In principle, the diameter of the pore, along with the effective driving force for unfolding the protein, as well as its barrier to translocation, should be critical factors that govern whether the process proceeds via squeezing, unfolding/threading, or both. To probe this for a well-established protein system, we studied the electric-field-driven translocation behavior of cytochrome c (cyt c) through ultrathin silicon nitride (SiNx) solid-state nanopores of diameters ranging from 1.5 to 5.5 nm. For a 2.5-nm-diameter pore, we find that, in a threshold electric-field regime of ∼30 to 100 MV/m, cyt c is able to squeeze through the pore. As electric fields inside the pore are increased, the unfolded state of cyt c is thermodynamically stabilized, facilitating its translocation. In contrast, for 1.5- and 2.0-nm-diameter pores, translocation occurs only by threading of the fully unfolded protein after it transitions through a higher energy unfolding intermediate state at the mouth of the pore. The relative energies between the metastable, intermediate, and unfolded protein states are extracted using a simple thermodynamic model that is dictated by the relatively slow (∼ms) protein translocation times for passing through the nanopore. These experiments map the various modes of protein translocation through a constriction, which opens avenues for exploring protein folding structures, internal contacts, and electric-field-induced deformability.
Collapse
|
16
|
Sarabadani J, Buyukdagli S, Ala-Nissila T. Pulling a DNA molecule through a nanopore embedded in an anionic membrane: tension propagation coupled to electrostatics. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:385101. [PMID: 32408289 DOI: 10.1088/1361-648x/ab9342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
We consider the influence of electrostatic forces on driven translocation dynamics of a flexible polyelectrolyte being pulled through a nanopore by an external force on the head monomer. To this end, we augment the iso-flux tension propagation theory with electrostatics for a negatively charged biopolymer pulled through a nanopore embedded in a similarly charged anionic membrane. We show that in the realistic case of a single-stranded DNA molecule, dilute salt conditions characterized by weak charge screening, and a negatively charged membrane, the translocation dynamics is unexpectedly accelerated despite the presence of large repulsive electrostatic interactions between the polymer coil on thecisside and the charged membrane. This is due to the rapid release of the electrostatic potential energy of the coil during translocation, leading to an effectively attractive force that assists end-driven translocation. The speedup results in non-monotonic polymer length and membrane charge dependence of the exponentαcharacterizing the translocation timeτ∝N0αof the polymer with lengthN0. In the regime of long polymersN0 ≳ 500, the translocation exponent exceeds its upper limitα= 2 previously observed for the same system without electrostatic interactions.
Collapse
Affiliation(s)
- Jalal Sarabadani
- School of Nano Science, Institute for Research in Fundamental Sciences (IPM), 19395-5531, Tehran, Iran
| | | | - Tapio Ala-Nissila
- Department of Applied Physics and QTF Center of Excellence, Aalto University, P.O. Box 11000, FI-00076 Aalto, Espoo, Finland
- Interdisciplinary Centre for Mathematical Modelling and Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom
| |
Collapse
|
17
|
Sachdev S, Feijoo Moreira S, Keehnen Y, Rems L, Kreutzer MT, Boukany PE. DNA-membrane complex formation during electroporation is DNA size-dependent. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183089. [DOI: 10.1016/j.bbamem.2019.183089] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 09/11/2019] [Accepted: 10/22/2019] [Indexed: 01/09/2023]
|
18
|
He L, Karau P, Tabard-Cossa V. Fast capture and multiplexed detection of short multi-arm DNA stars in solid-state nanopores. NANOSCALE 2019; 11:16342-16350. [PMID: 31386731 DOI: 10.1039/c9nr04566j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fast and multiplexed detection of low-abundance disease biomarkers at the point-of-need would transform medicine. Nanopores have gained attention as single-molecule counters to electrically detect a range of biological molecules in a handheld format, but challenges remain before diagnostic applications can emerge. For solid-state nanopore sensors, the specificity of the ionic current signatures and the rate of target capture required to simultaneously recognize and rapidly count a mixture of molecular targets in a complex sample are active areas of research. Herein, we study the capture and translocation characteristics of short N-arm star shaped DNA nanostructures to evaluate their potential as a family of surrogate label molecules for biomarkers of interest, designed for fast and reliable multiplexed detection based on conductance blockages. Simple hybridization of a varying number of short, easily synthesized 50 bp ssDNA strands allows the number of arms in the star shape DNA to be controlled from N = 3 to 12. By introducing more arms to the nanostructures, we show that we can controllably increase the nanopore signal-to-noise ratio for a range of pore sizes, producing conductance blockages which increase linearly with the number of arms, and we demonstrate conductance-based multiplexing through simultaneous detection of three such nanostructures. Moreover, the increased molecular signal strength facilitates detection under salt concentration asymmetries, allowing for a capture rate enhancement of two orders of magnitude without compromising the nanopore temporal and ionic signals. Together, these attributes (strong signal, multiplexing potential and increased counting rate) make the N-arm star DNA-based nanostructures promising candidates as proxy labels for the detection of multiple biomarkers of interest in future high sensitivity single-molecule solid-state nanopore-based assays.
Collapse
Affiliation(s)
- Liqun He
- Department of Physics, University of Ottawa, Ottawa, ON, Canada.
| | - Philipp Karau
- Department of Physics, University of Ottawa, Ottawa, ON, Canada.
| | | |
Collapse
|
19
|
Madejski GR, Briggs K, DesOrmeaux JP, Miller JJ, Roussie JA, Tabard-Cossa V, McGrath JL. Monolithic Fabrication of NPN/SiN x Dual Membrane Cavity for Nanopore-based DNA Sensing. ADVANCED MATERIALS INTERFACES 2019; 6:1900684. [PMID: 32577337 PMCID: PMC7310959 DOI: 10.1002/admi.201900684] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Indexed: 06/11/2023]
Abstract
Nanoscale preconfinement of DNA has been shown to reduce the variation of passage times through solid-state nanopores. Preconfinement has been previously achieved by forming a femtoliter-sized cavity capped with a highly porous layer of nanoporous silicon nitride (NPN). This cavity was formed by sealing a NPN nanofilter membrane against a substrate chip using water vapor delamination. Ultimately, this method of fabrication cannot keep a consistent spacing between the filter and solid-state nanopore due to thermal fluctuations and wrinkles in the membrane, nor can it be fabricated on thousands of individual devices reliably. To overcome these issues, we present a method to fabricate the femtoliter cavity monolithically, using a selective XeF2 etch to hollow out a polysilicon spacer sandwiched between silicon nitride layers. These monolithically fabricated cavities behave identically to their counterparts formed by vapor delamination, exhibiting similar translocation passage time variation reduction and folding suppression of DNA without requiring extensive manual assembly. The ability to form nanocavity sensors with nanometer-scale precision and to reliably manufacture them at scale using batch wafer processing techniques will find numerous applications, including motion control of polymers for single-molecule detection applications, filtering of dirty samples prior to nanopore detection, and simple fabrication of single-molecule nanobioreactors.
Collapse
Affiliation(s)
- Gregory R. Madejski
- Department of Biomedical Engineering, University of Rochester, Robert B. Goergen Hall Box 270168 Rochester, NY 14627, USA
| | - Kyle Briggs
- Department of Physics, University of Ottawa, 150 Louis-Pasteur Pvt, Ottawa, ON, K1N6N5, Canada
| | | | - Joshua J. Miller
- SiMPore Inc, 150 Lucius Gordon Dr, West Henrietta, NY, 14586, USA
| | - James A. Roussie
- SiMPore Inc, 150 Lucius Gordon Dr, West Henrietta, NY, 14586, USA
| | - Vincent Tabard-Cossa
- Department of Physics, University of Ottawa, 150 Louis-Pasteur Pvt, Ottawa, ON, K1N6N5, Canada
| | - James L. McGrath
- Department of Biomedical Engineering, University of Rochester, Robert B. Goergen Hall Box 270168 Rochester, NY 14627, USA
| |
Collapse
|
20
|
Olivares-Quiroz L, Vélez-Pérez JA. Translocation of non-interacting heteropolymer protein chains in terms of single helical propensity and size. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:565-574. [PMID: 30885619 DOI: 10.1016/j.bbapap.2019.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/27/2019] [Accepted: 03/13/2019] [Indexed: 11/29/2022]
Abstract
In this work we present an analytical framework to calculate the average translocation time τ required for an ideal proteinogenic polypeptide chain to cross over a small pore on a membrane. Translocation is considered to proceed as a chain of non-interacting amino acid residues of sequence {Xj} diffuses through the pore against an energy barrier Δℱ, set by chain entropy and unfolding-folding energetics. We analyze the effect of sequence heterogeneity on the dynamics of translocation by means of helical propensity of amino acid residues. In our calculations we use sequences of fifteen well-known proteins that are translocated which span two orders of magnitude in size according to the number of residues N. Results show non-symmetric free energy barriers as a consequence of sequence heterogeneity, such asymmetry in energy may be useful in differentiated directions of translocation. For the fifteen polypeptide chains considered we found conditions when sequence heterogeneity has not a significant effect on the time scale of translocation leading to a scaling law τ ∝ Nν, where ν ∼ 1.6 is an exponent that holds for most ground state energies. We also identify conditions when sequence heterogeneity has a great impact on the time scale of translocation, in consequence, no more scaling laws for τ there exist.
Collapse
Affiliation(s)
- L Olivares-Quiroz
- Departamento de Fisica and Posgrado en Ciencias de la Complejidad, Universidad Autonoma de la Ciudad de Mexico, CP 09760 Mexico City, Mexico; Centro de Ciencias de la Complejidad C3, UNAM, Circuito Mario de la Cueva 20, CP 04510 Mexico City, Mexico.
| | - José Antonio Vélez-Pérez
- Depto. Matemáticas y Mecánica, I.I.M.A.S., Universidad Nacional Autónoma de México, Apdo. Postal 20-726, 01000 Cd. México, Mexico; Posgrado en Nanociencias y Nanotecnología, Centro de Investigación y de Estudios Avanzados del IPN, Ap. Postal: 14-740, 07000 México, DF, Mexico.
| |
Collapse
|
21
|
Sychugov I, Zhang M, Linnros J. Non-stationary analysis of molecule capture and translocation in nanopore arrays. J Chem Phys 2019; 150:084904. [PMID: 30823763 DOI: 10.1063/1.5060661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Analytical formulas for the ON- and OFF-time distributions as well as for the autocorrelation function were derived for the case of single molecule translocation through nanopore arrays. The obtained time-dependent expressions describe very well experimentally recorded statistics of DNA translocations through an array of solid state nanopores, which allows us to extract molecule and system related physical parameters from the experimental traces. The necessity of non-stationary analysis as opposite to the steady-state approximation has been vindicated for the molecule capture process, where different time-dependent regimes were identified. A long tail in the distribution of translocation times has been rationalized invoking Markov jumps, where a possible sequential ordering of events was elucidated through autocorrelation function analysis.
Collapse
Affiliation(s)
- Ilya Sychugov
- Department of Applied Physics, School of Engineering Sciences, KTH-Royal Institute of Technology, 16440 Kista-Stockholm, Sweden
| | - Miao Zhang
- Department of Applied Physics, School of Engineering Sciences, KTH-Royal Institute of Technology, 16440 Kista-Stockholm, Sweden
| | - Jan Linnros
- Department of Applied Physics, School of Engineering Sciences, KTH-Royal Institute of Technology, 16440 Kista-Stockholm, Sweden
| |
Collapse
|
22
|
Chen K, Kong J, Zhu J, Ermann N, Predki P, Keyser UF. Digital Data Storage Using DNA Nanostructures and Solid-State Nanopores. NANO LETTERS 2019; 19:1210-1215. [PMID: 30585490 DOI: 10.1021/acs.nanolett.8b04715] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Solid-state nanopores are powerful tools for reading the three-dimensional shape of molecules, allowing for the translation of molecular structure information into electric signals. Here, we show a high-resolution integrated nanopore system for identifying DNA nanostructures that has the capability of distinguishing attached short DNA hairpins with only a stem length difference of 8 bp along a DNA double strand named the DNA carrier. Using our platform, we can read up to 112 DNA hairpins with a separating distance of 114 bp attached on a DNA carrier that carries digital information. Our encoding strategy allows for the creation of a library of molecules with a size of up to 5 × 1033 (2112) that is only built from a few hundred types of base molecules for data storage and has the potential to be extended by linking multiple DNA carriers. Our platform provides a nanopore- and DNA nanostructure-based data storage method with convenient access and the potential for miniature-scale integration.
Collapse
Affiliation(s)
- Kaikai Chen
- Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , Cambridge CB3 0HE , United Kingdom
| | - Jinglin Kong
- Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , Cambridge CB3 0HE , United Kingdom
| | - Jinbo Zhu
- Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , Cambridge CB3 0HE , United Kingdom
| | - Niklas Ermann
- Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , Cambridge CB3 0HE , United Kingdom
| | - Paul Predki
- Iridia Incorporated , 3156 Lionshead Avenue , Suite 1, Carlsbad , California 92010 , United States
| | - Ulrich F Keyser
- Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , Cambridge CB3 0HE , United Kingdom
| |
Collapse
|
23
|
Detecting topological variations of DNA at single-molecule level. Nat Commun 2019; 10:3. [PMID: 30602774 PMCID: PMC6315031 DOI: 10.1038/s41467-018-07924-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/05/2018] [Indexed: 11/08/2022] Open
Abstract
In addition to their use in DNA sequencing, ultrathin nanopore membranes have potential applications in detecting topological variations in deoxyribonucleic acid (DNA). This is due to the fact that when topologically edited DNA molecules, driven by electrophoretic forces, translocate through a narrow orifice, transient residings of edited segments inside the orifice modulate the ionic flow. Here we utilize two programmable barcoding methods based on base-pairing, namely forming a gap in dsDNA and creating protrusion sites in ssDNA for generating a hybrid DNA complex. We integrate a discriminative noise analysis for ds and ss DNA topologies into the threshold detection, resulting in improved multi-level signal detection and consequent extraction of reliable information about topological variations. Moreover, the positional information of the barcode along the template sequence can be determined unambiguously. All methods may be further modified to detect nicks in DNA, and thereby detect DNA damage and repair sites.
Collapse
|
24
|
Yamazaki H, Hu R, Zhao Q, Wanunu M. Photothermally Assisted Thinning of Silicon Nitride Membranes for Ultrathin Asymmetric Nanopores. ACS NANO 2018; 12:12472-12481. [PMID: 30457833 DOI: 10.1021/acsnano.8b06805] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Sculpting solid-state materials at the nanoscale is an important step in the manufacturing of numerous types of sensor devices, in particular solid-state nanopore sensors. Here we present mechanistic insight into laser-induced thinning of low-stress silicon nitride (SiN x) membranes and films. In a recent study, we observed that focusing a visible wavelength laser beam on a SiN x membrane results in efficient localized heating, and we used this effect to control temperature at a solid-state nanopore sensor. A side-effect of the observed heating was that the pores expand/degrade under prolonged high-power illumination, prompting us to study the mechanism of this etching process. We find that SiN x can be etched under exposure to light of ∼107 W/cm2 average intensity, with etch rates that are influenced by the supporting electrolyte. Combining this controlled etching with dielectric breakdown, an electrokinetic process for making pores, nanopores of arbitrary dimensions as small as 1-2 nm in diameter and thickness can easily be fabricated. Evidence gathered from biomolecule-pore interactions suggests that the pore geometries obtained using this method are more funnel-like, rather than hourglass-shaped. Refined control over pore dimensions can expand the range of applications of solid-state nanopores, for example, biopolymer sequencing and detection of specific biomarkers.
Collapse
Affiliation(s)
- Hirohito Yamazaki
- Department of Physics , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Rui Hu
- State Key Laboratory for Mesoscopic Physics, School of Physics , Peking University , Beijing 100871 , People's Republic of China
| | - Qing Zhao
- State Key Laboratory for Mesoscopic Physics, School of Physics , Peking University , Beijing 100871 , People's Republic of China
| | - Meni Wanunu
- Department of Physics , Northeastern University , Boston , Massachusetts 02115 , United States
| |
Collapse
|
25
|
Zhang H, Chen Q, Wu Y, Wang Y, Bei X, Xiao L. The temporal resolution and single-molecule manipulation of a solid-state nanopore by pressure and voltage. NANOTECHNOLOGY 2018; 29:495501. [PMID: 30215608 DOI: 10.1088/1361-6528/aae190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The translocation of DNA molecules through nanopores has attracted wide interest for single-molecule detection. However, the multiple roles of electric fields fundamentally constrain the deceleration and motion control of DNA translocation. In this paper, we show how a single anchored DNA molecule can be manipulated for repeated capture using a transmembrane pressure gradient. Continuously and slowly changing the magnitude of the pressure provided two opposite directions for the force field inside a nanopore, and we observed an anchored DNA molecule entering the nanopore throughout the process from tentative to total entry. The use of both voltage and pressure across a nanopore provides an alternative method to capture, detect and manipulate a DNA molecule at the single-molecule level.
Collapse
Affiliation(s)
- Hengbin Zhang
- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing, 100871, People's Republic of China
| | | | | | | | | | | |
Collapse
|
26
|
Qiu Y, Siwy ZS, Wanunu M. Abnormal Ionic-Current Rectification Caused by Reversed Electroosmotic Flow under Viscosity Gradients across Thin Nanopores. Anal Chem 2018; 91:996-1004. [DOI: 10.1021/acs.analchem.8b04225] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yinghua Qiu
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - Zuzanna S. Siwy
- Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Meni Wanunu
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
27
|
Magill M, Waller E, de Haan HW. A sequential nanopore-channel device for polymer separation. J Chem Phys 2018; 149:174903. [DOI: 10.1063/1.5037449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Martin Magill
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe St N, Oshawa, Ontario L1H7K4, Canada
| | - Ed Waller
- Faculty of Energy Systems and Nuclear Science, University of Ontario Institute of Technology, 2000 Simcoe St N, Oshawa, Ontario L1H7K4, Canada
| | - Hendrick W. de Haan
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe St N, Oshawa, Ontario L1H7K4, Canada
| |
Collapse
|
28
|
Lee K, Park KB, Kim HJ, Yu JS, Chae H, Kim HM, Kim KB. Recent Progress in Solid-State Nanopores. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704680. [PMID: 30260506 DOI: 10.1002/adma.201704680] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 06/08/2018] [Indexed: 05/28/2023]
Abstract
The solid-state nanopore has attracted much attention as a next-generation DNA sequencing tool or a single-molecule biosensor platform with its high sensitivity of biomolecule detection. The platform has advantages of processability, robustness of the device, and flexibility in the nanopore dimensions as compared with the protein nanopore, but with the limitation of insufficient spatial and temporal resolution to be utilized in DNA sequencing. Here, the fundamental principles of the solid-state nanopore are summarized to illustrate the novelty of the device, and improvements in the performance of the platform in terms of device fabrication are explained. The efforts to reduce the electrical noise of solid-state nanopore devices, and thus to enhance the sensitivity of detection, are presented along with detailed descriptions of the noise properties of the solid-state nanopore. Applications of 2D materials including graphene, h-BN, and MoS2 as a nanopore membrane to enhance the spatial resolution of nanopore detection, and organic coatings on the nanopore membranes for the addition of chemical functionality to the nanopore are summarized. Finally, the recently reported applications of the solid-state nanopore are categorized and described according to the target biomolecules: DNA-bound proteins, modified DNA structures, proteins, and protein oligomers.
Collapse
Affiliation(s)
- Kidan Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyeong-Beom Park
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyung-Jun Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae-Seok Yu
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hongsik Chae
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun-Mi Kim
- Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ki-Bum Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
29
|
Al Sulaiman D, Cadinu P, Ivanov AP, Edel JB, Ladame S. Chemically Modified Hydrogel-Filled Nanopores: A Tunable Platform for Single-Molecule Sensing. NANO LETTERS 2018; 18:6084-6093. [PMID: 30105906 DOI: 10.1021/acs.nanolett.8b03111] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Label-free, single-molecule sensing is anideal candidate for biomedical applications that rely on the detection of low copy numbers in small volumes and potentially complex biofluids. Among them, solid-state nanopores can be engineered to detect single molecules of charged analytes when they are electrically driven through the nanometer-sized aperture. When successfully applied to nucleic acid sensing, fast transport in the range of 10-100 nucleotides per nanosecond often precludes the use of standard nanopores for the detection of the smallest fragments. Herein, hydrogel-filled nanopores (HFN) are reported that combine quartz nanopipettes with biocompatible chemical poly(vinyl) alcohol hydrogels engineered in-house. Hydrogels were modified physically or chemically to finely tune, in a predictable manner, the transport of specific molecules. Controlling the hydrogel mesh size and chemical composition allowed us to slow DNA transport by 4 orders of magnitude and to detect fragments as small as 100 base pairs (bp) with nanopores larger than 20 nm at an ionic strength comparable to physiological conditions. Considering the emergence of cell-free nucleic acids as blood biomarkers for cancer diagnostics or prenatal testing, the successful sensing and size profiling of DNA fragments ranging from 100 bp to >1 kbp long under physiological conditions demonstrates the potential of HFNs as a new generation of powerful and easily tunable molecular diagnostics tools.
Collapse
|
30
|
Yang H, Li Z, Si W, Lin K, Ma J, Li K, Sun L, Sha J, Chen Y. Identification of Single Nucleotides by a Tiny Charged Solid-State Nanopore. J Phys Chem B 2018; 122:7929-7935. [PMID: 30047733 DOI: 10.1021/acs.jpcb.8b06056] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Discrimination of single nucleotides by a nanopore remains a challenge because of the minor difference among the four types of single nucleotides. Here, the blockade currents induced by the translocation of single nucleotides through a 1.8 nm diameter silicon nitride nanopore have been measured. It is found that the single nucleotides are driven through the nanopore by an electroosmotic flow instead of electrophoretic force when a bias voltage is applied. The blockade currents for the four types of single nucleotides are unique and differentiable, following the order of the nucleotide volume. Also, the dwell time for each single nucleotide can last for several hundred microseconds with the advantage of the electroosmotic flow, which is helpful for single nucleotide identification. The dwell-time distributions are found to obey the first-passage time distribution from the 1D Fokker-Planck equation, from which the velocity and diffusion constant of each nucleotide can be deduced. Interestingly, the larger nucleotide is found to translocate faster than the smaller one inside the nanopore because the larger nucleotide has a larger surface area, which may produce larger drag force induced by the electroosmotic flow, which is validated by molecular dynamics simulations.
Collapse
|
31
|
Karau P, Tabard-Cossa V. Capture and Translocation Characteristics of Short Branched DNA Labels in Solid-State Nanopores. ACS Sens 2018; 3:1308-1315. [PMID: 29874054 DOI: 10.1021/acssensors.8b00165] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The challenge when employing solid-state nanopores as single-molecule sensors in a given assay is the specificity of the ionic current signal during the translocation of target molecules. Here we present the capture and translocation characteristics of short structurally defined DNA molecules that could serve as effective surrogate labels in biosensing applications. We produced T-shaped or Y-shaped DNA molecules with a 50 bp double-stranded DNA (dsDNA) backbone and a 25 bp dsDNA branch in the middle, as improved labels over short linear DNA fragments. We show that molecular topologies can be distinguished from linear DNA by analyzing ionic current blockades produced as these DNA labels translocate through nanopores fabricated by controlled breakdown on 10-nm-thick SiN membranes and ranging in diameter from 4 to 10 nm. Event signatures are shown to be a direct result of the structure of the label and lead to an increased signal-to-noise ratio over that of short linear dsDNA, in addition to well resolved dwell times for the pore size in this range. These results show that structurally defined branched DNA molecules can be robustly detected for a broad range of pore size, and thus represent promising candidates as surrogate labels in a variety of nanopore-based molecular or immunoassay schemes.
Collapse
Affiliation(s)
- Philipp Karau
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | | |
Collapse
|
32
|
Suhonen PM, Linna RP. Dynamics of driven translocation of semiflexible polymers. Phys Rev E 2018; 97:062413. [PMID: 30011459 DOI: 10.1103/physreve.97.062413] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Indexed: 11/07/2022]
Abstract
We study translocation of semiflexible polymers driven by force f_{d} inside a nanometer-scale pore using our three-dimensional Langevin dynamics model. We show that the translocation time τ increases with increasing bending rigidity κ. Similarly, the exponent β for the scaling of τ with polymer length N,τ∼N^{β}, increases with increasing κ as well as with increasing f_{d}. By comparing waiting times between semiflexible and fully flexible polymers we show that for realistic f_{d} translocation dynamics is to a large extent, but not completely, determined by the polymer's elastic length measured in number of Kuhn segments N_{Kuhn}. Unlike in driven translocation of flexible polymers, friction related to the polymer segment on the trans side has a considerable effect on the resulting dynamics. This friction is intermittently reduced by buckling of the polymer segment in the vicinity of the pore opening on the trans side. We show that in the experimentally relevant regime where viscosity is higher than in computer simulation models, the probability for this buckling increases with increasing f_{d}, giving rise to a larger contribution to the trans side friction at small f_{d}. Similarly to flexible polymers, we find significant center-of-mass diffusion of the cis side polymer segment which speeds up translocation. This effect is larger for smaller f_{d}. However, this speedup is smaller than the slowing down due to the trans side friction. At large enough N_{Kuhn}, the roles can be seen to be reversed, and the dynamics of flexible polymers can be reached. However, for example, polymers used in translocation experiments of DNA are elastically so short that the finite-length dynamics outlined here applies.
Collapse
Affiliation(s)
- P M Suhonen
- Department of Computer Science, Aalto University, P.O. Box 15400, FI-00076 Aalto, Finland
| | - R P Linna
- Department of Computer Science, Aalto University, P.O. Box 15400, FI-00076 Aalto, Finland
| |
Collapse
|
33
|
Sarabadani J, Ala-Nissila T. Theory of pore-driven and end-pulled polymer translocation dynamics through a nanopore: an overview. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:274002. [PMID: 29794332 DOI: 10.1088/1361-648x/aac796] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We review recent progress on the theory of dynamics of polymer translocation through a nanopore based on the iso-flux tension propagation (IFTP) theory. We investigate both pore-driven translocation of flexible and a semi-flexible polymers, and the end-pulled case of flexible chains by means of the IFTP theory and extensive molecular dynamics (MD) simulations. The validity of the IFTP theory can be quantified by the waiting time distributions of the monomers which reveal the details of the dynamics of the translocation process. The IFTP theory allows a parameter-free description of the translocation process and can be used to derive exact analytic scaling forms in the appropriate limits, including the influence due to the pore friction that appears as a finite-size correction to asymptotic scaling. We show that in the case of pore-driven semi-flexible and end-pulled polymer chains the IFTP theory must be augmented with an explicit trans side friction term for a quantitative description of the translocation process.
Collapse
Affiliation(s)
- Jalal Sarabadani
- School of Nano Science, Institute for Research in Fundamental Sciences (IPM), 19395-5531, Tehran, Iran. Interdisciplinary Centre for Mathematical Modelling, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom. Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom. Department of Applied Physics and QTF Center of Excellence, Aalto University School of Science, PO Box 11000, FI-00076 Aalto, Espoo, Finland
| | | |
Collapse
|
34
|
Wilson J, Aksimentiev A. Water-Compression Gating of Nanopore Transport. PHYSICAL REVIEW LETTERS 2018; 120:268101. [PMID: 30004740 PMCID: PMC6262874 DOI: 10.1103/physrevlett.120.268101] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/18/2018] [Indexed: 05/22/2023]
Abstract
Electric field-driven motion of biomolecules is a process essential to many analytics methods, in particular, to nanopore sensing, where a transient reduction of nanopore ionic current indicates the passage of a biomolecule through the nanopore. However, before any molecule can be examined by a nanopore, the molecule must first enter the nanopore from the solution. Previously, the rate of capture by a nanopore was found to increase with the strength of the applied electric field. Here, we theoretically show that, in the case of narrow pores in graphene membranes, increasing the strength of the electric field can not only decrease the rate of capture, but also repel biomolecules from the nanopore. As the strong electric field polarizes water near and within the nanopore, the high gradient of the field also produces a strong dielectrophoretic force that compresses the water. The pressure difference caused by the sharp water density gradient produces a hydrostatic force that repels DNA or proteins from the nanopore, preventing, in certain conditions, their capture. We show that such local compression of fluid can regulate the transport of biomolecules through nanoscale passages in the absence of physical gates and sort proteins according to their phosphorylated states.
Collapse
Affiliation(s)
- James Wilson
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801 and Beckman Institute for Advanced Science and Technology
| |
Collapse
|
35
|
Haridasan N, Kannam SK, Mogurampelly S, Sathian SP. Translational mobilities of proteins in nanochannels: A coarse-grained molecular dynamics study. Phys Rev E 2018; 97:062415. [PMID: 30011556 DOI: 10.1103/physreve.97.062415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Indexed: 05/18/2023]
Abstract
We investigated the translation of a protein through model nanopores using coarse-grained (CG) nonequilibrium molecular dynamics (NEMD) simulations and compared the mobilities with those obtained from previous coarse-grained equilibrium molecular dynamics model. We considered the effects of nanopore confinement and external force on the translation of streptavidin through nanopores of dimensions representative of experiments. As the nanopore radius approaches the protein hydrodynamic radius, r_{h}/r_{p}→1 (where r_{h} is the hydrodynamic radius of protein and r_{p} is the pore radius), the translation times are observed to increase by two orders of magnitude. The translation times are found to be in good agreement with the one-dimensional biased diffusion model. The results presented in this paper provide useful insights on nanopore designs intended to control the motion of biomolecules.
Collapse
Affiliation(s)
- Navaneeth Haridasan
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India
| | - Sridhar Kumar Kannam
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- School of Sciences, RMIT University, Melbourne, Victoria 3001, Australia
| | - Santosh Mogurampelly
- Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Sarith P Sathian
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
36
|
Zhang M, Ngampeerapong C, Redin D, Ahmadian A, Sychugov I, Linnros J. Thermophoresis-Controlled Size-Dependent DNA Translocation through an Array of Nanopores. ACS NANO 2018; 12:4574-4582. [PMID: 29648793 DOI: 10.1021/acsnano.8b00961] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Large arrays of nanopores can be used for high-throughput biomolecule translocation with applications toward size discrimination and sorting at the single-molecule level. In this paper, we propose to discriminate DNA length by the capture rate of the molecules to an array of relatively large nanopores (50-130 nm) by introducing a thermal gradient by laser illumination in front of the pores balancing the force from an external electric field. Nanopore arrays defined by photolithography were batch processed using standard silicon technology in combination with electrochemical etching. Parallel translocation of single, fluorophore-labeled dsDNA strands is recorded by imaging the array with a fast CMOS camera. The experimental data show that the capture rates of DNA molecules decrease with increasing DNA length due to the thermophoretic effect of the molecules. It is shown that the translocation can be completely turned off for the longer molecule using an appropriate bias, thus allowing a size discrimination of the DNA translocation through the nanopores. A derived analytical model correctly predicts the observed capture rate. Our results demonstrate that by combining a thermal and a potential gradient at the nanopores, such large nanopore arrays can potentially be used as a low-cost, high-throughput platform for molecule sensing and sorting.
Collapse
Affiliation(s)
- Miao Zhang
- Department of Applied Physics , KTH Royal Institute of Technology , Electrum 229 , 164 40 Kista , Sweden
| | - Chonmanart Ngampeerapong
- Department of Applied Physics , KTH Royal Institute of Technology , Electrum 229 , 164 40 Kista , Sweden
| | - David Redin
- School of Biotechnology, Division of Gene Technology, Science for Life Laboratory , KTH Royal Institute of Technology , SE-171 65 , Solna , Sweden
| | - Afshin Ahmadian
- School of Biotechnology, Division of Gene Technology, Science for Life Laboratory , KTH Royal Institute of Technology , SE-171 65 , Solna , Sweden
| | - Ilya Sychugov
- Department of Applied Physics , KTH Royal Institute of Technology , Electrum 229 , 164 40 Kista , Sweden
| | - Jan Linnros
- Department of Applied Physics , KTH Royal Institute of Technology , Electrum 229 , 164 40 Kista , Sweden
| |
Collapse
|
37
|
Briggs K, Madejski G, Magill M, Kastritis K, de Haan HW, McGrath JL, Tabard-Cossa V. DNA Translocations through Nanopores under Nanoscale Preconfinement. NANO LETTERS 2018; 18:660-668. [PMID: 29087723 PMCID: PMC5814347 DOI: 10.1021/acs.nanolett.7b03987] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
To reduce unwanted variation in the passage speed of DNA through solid-state nanopores, we demonstrate nanoscale preconfinement of translocating molecules using an ultrathin nanoporous silicon nitride membrane separated from a single sensing nanopore by a nanoscale cavity. We present comprehensive experimental and simulation results demonstrating that the presence of an integrated nanofilter within nanoscale distances of the sensing pore eliminates the dependence of molecular passage time distributions on pore size, revealing a global minimum in the coefficient of variation of the passage time. These results provide experimental verification that the inter- and intramolecular passage time variation depends on the conformational entropy of each molecule prior to translocation. Furthermore, we show that the observed consistently narrower passage time distributions enables a more reliable DNA length separation independent of pore size and stability. We also demonstrate that the composite nanofilter/nanopore devices can be configured to suppress the frequency of folded translocations, ensuring single-file passage of captured DNA molecules. By greatly increasing the rate at which usable data can be collected, these unique attributes will offer significant practical advantages to many solid-state nanopore-based sensing schemes, including sequencing, genomic mapping, and barcoded target detection.
Collapse
Affiliation(s)
- Kyle Briggs
- Department of Physics, University of Ottawa, Ottawa, ON, Canada
| | - Gregory Madejski
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Martin Magill
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, ON, Canada
| | | | - Hendrick W. de Haan
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, ON, Canada
| | - James L. McGrath
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | | |
Collapse
|
38
|
Suhonen PM, Piili J, Linna RP. Quantification of tension to explain bias dependence of driven polymer translocation dynamics. Phys Rev E 2018; 96:062401. [PMID: 29347436 DOI: 10.1103/physreve.96.062401] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Indexed: 11/07/2022]
Abstract
Motivated by identifying the origin of the bias dependence of tension propagation, we investigate methods for measuring tension propagation quantitatively in computer simulations of driven polymer translocation. Here, the motion of flexible polymer chains through a narrow pore is simulated using Langevin dynamics. We measure tension forces, bead velocities, bead distances, and bond angles along the polymer at all stages of translocation with unprecedented precision. Measurements are done at a standard temperature used in simulations and at zero temperature to pin down the effect of fluctuations. The measured quantities were found to give qualitatively similar characteristics, but the bias dependence could be determined only using tension force. We find that in the scaling relation τ∼N^{β}f_{d}^{α} for translocation time τ, the polymer length N, and the bias force f_{d}, the increase of the exponent β with bias is caused by center-of-mass diffusion of the polymer toward the pore on the cis side. We find that this diffusion also causes the exponent α to deviate from the ideal value -1. The bias dependence of β was found to result from combination of diffusion and pore friction and so be relevant for polymers that are too short to be considered asymptotically long. The effect is relevant in experiments all of which are made using polymers whose lengths are far below the asymptotic limit. Thereby, our results also corroborate the theoretical prediction by Sakaue's theory [Polymers 8, 424 (2016)2073-436010.3390/polym8120424] that there should not be bias dependence of β for asymptotically long polymers. By excluding fluctuations we also show that monomer crowding at the pore exit cannot have a measurable effect on translocation dynamics under realistic conditions.
Collapse
Affiliation(s)
- P M Suhonen
- Department of Computer Science, Aalto University, P.O. Box 15400, FI-00076 Aalto, Finland
| | - J Piili
- Department of Computer Science, Aalto University, P.O. Box 15400, FI-00076 Aalto, Finland
| | - R P Linna
- Department of Computer Science, Aalto University, P.O. Box 15400, FI-00076 Aalto, Finland
| |
Collapse
|
39
|
Akbari A, Meragawi SE, Martin ST, Corry B, Shamsaei E, Easton CD, Bhattacharyya D, Majumder M. Solvent Transport Behavior of Shear Aligned Graphene Oxide Membranes and Implications in Organic Solvent Nanofiltration. ACS APPLIED MATERIALS & INTERFACES 2018; 10:2067-2074. [PMID: 29251906 PMCID: PMC10707417 DOI: 10.1021/acsami.7b11777] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Solvent transport in membranes composed of stacked sheets of graphene oxide (GO) with molecular scale channels and a complex arrangement of hydrophobic and hydrophilic domains is not well understood. Here, we observe that the interlayer space between GO sheets expands in different solvents without disturbing the membrane integrity and is typically larger in aqueous media compared to nonaqueous media. However, the membranes have a tighter molecule sieving feature in aqueous media as demonstrated by lower permeance and higher solute rejection arising from interfacial water layers "sticking" to charged polar groups. As a result of this polar interaction, the permeance of polar solvents in GO membrane scales inversely to the polarity of the solvent, which is contrary to other polymeric and ceramic hydrophilic membranes and also scales inversely to the viscosity of solvents as per continuum expectations. We highlight the extended solvent-handling space of GO membranes, such as in polar protic, polar aprotic, and nonpolar solvents, demonstrating versatility over a commercial nanofiltration membrane, and we predict exciting new applications in advanced separation engineering.
Collapse
Affiliation(s)
- Abozar Akbari
- Nanoscale Science and Engineering Laboratory (NSEL), Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Sally E. Meragawi
- Nanoscale Science and Engineering Laboratory (NSEL), Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Samuel T. Martin
- Nanoscale Science and Engineering Laboratory (NSEL), Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Ben Corry
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Ezzatollah Shamsaei
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Christopher D. Easton
- CSIRO Materials Science and Engineering, Bayview Avenue, Clayton, Victoria 3168, Australia
| | - Dibakar Bhattacharyya
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Mainak Majumder
- Nanoscale Science and Engineering Laboratory (NSEL), Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
- ARC Research Hub for Graphene Enabled Industry Transformation, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
40
|
Beamish E, Tabard-Cossa V, Godin M. Identifying Structure in Short DNA Scaffolds Using Solid-State Nanopores. ACS Sens 2017; 2:1814-1820. [PMID: 29182276 DOI: 10.1021/acssensors.7b00628] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The identification of molecular tags along nucleic acid sequences has many potential applications in bionanotechnology, disease biomarker detection, and DNA sequencing. An attractive approach to this end is the use of solid-state nanopores, which can electrically detect molecular substructure and can be integrated into portable lab-on-a-chip sensors. We present here a DNA origami-based approach of molecular assembly in which solid-state nanopores are capable of differentiating 165 bp scaffolds containing zero, one, and two dsDNA protrusions. This highly scalable technique requires minimal sample preparation and is customizable for a wide range of targets and applications. As a proof-of-concept, an aptamer-based DNA displacement reaction is performed in which a dsDNA protrusion is formed along a 255 bp scaffold in the presence of ATP. While ATP is too small to be directly sensed using conventional nanopore methods, our approach allows us to detect ATP by identifying molecular substructure along the DNA scaffold.
Collapse
Affiliation(s)
- Eric Beamish
- Department
of Physics, ‡Department of Mechanical Engineering, and §Ottawa-Carleton
Institute for Biomedical Engineering, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Vincent Tabard-Cossa
- Department
of Physics, ‡Department of Mechanical Engineering, and §Ottawa-Carleton
Institute for Biomedical Engineering, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Michel Godin
- Department
of Physics, ‡Department of Mechanical Engineering, and §Ottawa-Carleton
Institute for Biomedical Engineering, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
41
|
Park KB, Kim HJ, Kang YH, Yu JS, Chae H, Lee K, Kim HM, Kim KB. Highly reliable and low-noise solid-state nanopores with an atomic layer deposited ZnO membrane on a quartz substrate. NANOSCALE 2017; 9:18772-18780. [PMID: 29168535 DOI: 10.1039/c7nr05755e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We present a fabrication scheme for a solid-state ZnO nanopore membrane directly deposited on top of a quartz substrate by atomic layer deposition (ALD) and investigate the characteristics of DNA translocation through the nanopores. We chose a ZnO membrane owing to its high isoelectric point (∼9.5) as well as its chemical and mechanical stability. Aside from the extremely low noise level exhibited by this device on a highly insulating and low dielectric quartz substrate, it also slows down the translocation speed of DNA by more than one order of magnitude as compared to that of a SiNx nanopore device. We propose that the electrostatic interaction between the positively charged ZnO nanopore wall, resulting from the high isoelectric point of ZnO, and the negatively charged phosphate backbone of DNA provides an additional frictional force that slows down the DNA translocation.
Collapse
Affiliation(s)
- Kyeong-Beom Park
- Department of Materials Science and Engineering, Seoul National University, Seoul 151-742, Korea.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
McMullen AJ, Tang JX, Stein D. Nanopore Measurements of Filamentous Viruses Reveal a Sub-nanometer-Scale Stagnant Fluid Layer. ACS NANO 2017; 11:11669-11677. [PMID: 29091733 DOI: 10.1021/acsnano.7b06767] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report measurements and analyses of nanopore translocations by fd and M13, two related strains of filamentous virus that are identical except for their charge densities. The standard continuum theory of electrokinetics greatly overestimates the translocation speed and the conductance associated with counterions for both viruses. Furthermore, fd and M13 behave differently from one another, even translocating in opposite directions under certain conditions. This cannot be explained by Manning-condensed counterions or a number of other proposed models. Instead, we argue that these anomalous findings are consequences of the breakdown of the validity of continuum hydrodynamics at the scale of a few molecular layers. Next to a polyelectrolyte, there exists an extra-viscous, sub-nanometer-thin boundary layer that has a giant influence on the transport characteristics. We show that a stagnant boundary layer captures the essential hydrodynamics and extends the validity of the electrokinetic theory beyond the continuum limit. A stagnant layer with a thickness of about half a nanometer consistently improves predictions of the ionic current change induced by virus translocations and of the translocation velocity for both fd and M13 over a wide range of nanopore dimensions and salt concentrations.
Collapse
Affiliation(s)
- Angus J McMullen
- Department of Physics, Brown University , Providence, Rhode Island 02912, United States
| | - Jay X Tang
- Department of Physics, Brown University , Providence, Rhode Island 02912, United States
| | - Derek Stein
- Department of Physics, Brown University , Providence, Rhode Island 02912, United States
| |
Collapse
|
43
|
Lee K, Lee H, Lee SH, Kim HM, Kim KB, Kim SJ. Enhancing the sensitivity of DNA detection by structurally modified solid-state nanopore. NANOSCALE 2017; 9:18012-18021. [PMID: 29131223 DOI: 10.1039/c7nr05840c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Solid-state nanopore is an ionic current-based biosensing platform, which would be a top candidate for next-generation DNA sequencing and a high-throughput drug-screening tool at single-molecular-scale resolution. There have been several approaches to enhance the sensitivity and reliability of biomolecule detection using the nanopores particularly in two aspects: signal-to-noise ratio (SNR) and translocation dwell time. In this study, an additional nano-well of 100-150 nm diameter and the aspect ratio of ∼5 called 'guide structure' was inserted in conventional silicon-substrate nanopore device to increase both SNR and dwell time. First, the magnitude of signals (conductance drop (ΔG)) increased 2.5 times under applied voltage of 300 mV through the guide-inserted nanopore compared to the conventional SiN/Si nanopore in the same condition. Finite element simulation was conducted to figure out the origin of ΔG modification, which showed that the guide structure produced high ΔG due to the compartmental limitation of ion transports through the guide to the sensing nanopore. Second, the translocation velocity decreased in the guide-inserted structure to a maximum of 20% of the velocity in the conventional device at 300 mV. Electroosmotic drag formed inside the guide structure, when directly applied to the remaining segment of translocating DNA molecules in cis chamber, affected the DNA translocation velocity. This study is the first experimental report on the effect of the geometrical confinement to a remnant DNA on both SNR and dwell time of nanopore translocations.
Collapse
Affiliation(s)
- Kidan Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
44
|
Yamazaki H, Hu R, Henley RY, Halman J, Afonin KA, Yu D, Zhao Q, Wanunu M. Label-Free Single-Molecule Thermoscopy Using a Laser-Heated Nanopore. NANO LETTERS 2017; 17:7067-7074. [PMID: 28975798 DOI: 10.1021/acs.nanolett.7b03752] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
When light is used to excite electronic transitions in a material, nonradiative energy during relaxation is often released in the form of heat. In this work, we show that photoexcitation of a silicon nitride nanopore using a focused visible laser results in efficient localized photothermal heating, which reduces the nearby electrolyte viscosity and increases the ionic conductance. In addition, a strong localized thermal gradient in the pore vicinity is produced, evidenced by finite-element simulations and experimental observation of both ion and DNA thermophoresis. After correcting for thermophoresis, the nanopore current can be used as a nanoscale thermometer, enabling rapid force thermoscopy. We utilize this to probe thermal melting transitions in synthetic and native biomolecules that are heated at the nanopore. Our results on single molecules are validated by correspondence to bulk measurements, which paves the way to various biophysical experiments that require rapid temperature and force control on individual molecules.
Collapse
Affiliation(s)
- Hirohito Yamazaki
- Department of Physics, Northeastern University , Boston, Massachusetts 02115, United States
| | - Rui Hu
- Department of Physics, Northeastern University , Boston, Massachusetts 02115, United States
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University , Beijing 100871, People's Republic of China
| | - Robert Y Henley
- Department of Physics, Northeastern University , Boston, Massachusetts 02115, United States
| | - Justin Halman
- Department of Chemistry, University of North Carolina at Charlotte , 9201 University City Boulevard, Charlotte, North Carolina 28223, United States
| | - Kirill A Afonin
- Department of Chemistry, University of North Carolina at Charlotte , 9201 University City Boulevard, Charlotte, North Carolina 28223, United States
| | - Dapeng Yu
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University , Beijing 100871, People's Republic of China
| | - Qing Zhao
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University , Beijing 100871, People's Republic of China
| | - Meni Wanunu
- Department of Physics, Northeastern University , Boston, Massachusetts 02115, United States
| |
Collapse
|
45
|
Sarabadani J, Ikonen T, Mökkönen H, Ala-Nissila T, Carson S, Wanunu M. Driven translocation of a semi-flexible polymer through a nanopore. Sci Rep 2017; 7:7423. [PMID: 28785040 PMCID: PMC5547125 DOI: 10.1038/s41598-017-07227-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/26/2017] [Indexed: 01/05/2023] Open
Abstract
We study the driven translocation of a semi-flexible polymer through a nanopore by means of a modified version of the iso-flux tension propagation theory, and extensive molecular dynamics (MD) simulations. We show that in contrast to fully flexible chains, for semi-flexible polymers with a finite persistence length [Formula: see text] the trans side friction must be explicitly taken into account to properly describe the translocation process. In addition, the scaling of the end-to-end distance R N as a function of the chain length N must be known. To this end, we first derive a semi-analytic scaling form for R N, which reproduces the limits of a rod, an ideal chain, and an excluded volume chain in the appropriate limits. We then quantitatively characterize the nature of the trans side friction based on MD simulations. Augmented with these two factors, the theory shows that there are three main regimes for the scaling of the average translocation time τ ∝ N α . In the rod [Formula: see text], Gaussian [Formula: see text] and excluded volume chain [Formula: see text] ≫ 10 6 limits, α = 2, 3/2 and 1 + ν, respectively, where ν is the Flory exponent. Our results are in good agreement with available simulations and experimental data.
Collapse
Affiliation(s)
- Jalal Sarabadani
- Department of Applied Physics and COMP Center of Excellence, Aalto University School of Science, P.O. Box 11000, FI-00076, Aalto, Espoo, Finland.
| | - Timo Ikonen
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044, VTT, Finland
| | - Harri Mökkönen
- Department of Applied Physics and COMP Center of Excellence, Aalto University School of Science, P.O. Box 11000, FI-00076, Aalto, Espoo, Finland
| | - Tapio Ala-Nissila
- Department of Applied Physics and COMP Center of Excellence, Aalto University School of Science, P.O. Box 11000, FI-00076, Aalto, Espoo, Finland
- Department of Mathematical Sciences and Department of Physics, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| | - Spencer Carson
- Department of Physics, Northeastern University, Boston, MA, 02115, United States
| | - Meni Wanunu
- Department of Physics, Northeastern University, Boston, MA, 02115, United States
| |
Collapse
|
46
|
Song Y, Zhang J, Li D. Microfluidic and Nanofluidic Resistive Pulse Sensing: A Review. MICROMACHINES 2017; 8:E204. [PMID: 30400393 PMCID: PMC6190343 DOI: 10.3390/mi8070204] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/11/2017] [Accepted: 06/21/2017] [Indexed: 12/31/2022]
Abstract
The resistive pulse sensing (RPS) method based on the Coulter principle is a powerful method for particle counting and sizing in electrolyte solutions. With the advancement of micro- and nano-fabrication technologies, microfluidic and nanofluidic resistive pulse sensing technologies and devices have been developed. Due to the unique advantages of microfluidics and nanofluidics, RPS sensors are enabled with more functions with greatly improved sensitivity and throughput and thus have wide applications in fields of biomedical research, clinical diagnosis, and so on. Firstly, this paper reviews some basic theories of particle sizing and counting. Emphasis is then given to the latest development of microfuidic and nanofluidic RPS technologies within the last 6 years, ranging from some new phenomena, methods of improving the sensitivity and throughput, and their applications, to some popular nanopore or nanochannel fabrication techniques. The future research directions and challenges on microfluidic and nanofluidic RPS are also outlined.
Collapse
Affiliation(s)
- Yongxin Song
- Department of Marine Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Junyan Zhang
- Department of Marine Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Dongqing Li
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
47
|
Abstract
We use an accurate coarse-grained model for DNA and stochastic molecular dynamics simulations to study the pore translocation of 10-kbp-long DNA rings that are knotted. By monitoring various topological and physical observables we find that there is not one, as previously assumed, but rather two qualitatively different modes of knot translocation. For both modes the pore obstruction caused by knot passage has a brief duration and typically occurs at a late translocation stage. Both effects are well in agreement with experiments and can be rationalized with a transparent model based on the concurrent tensioning and sliding of the translocating knotted chains. We also observed that the duration of the pore obstruction event is more controlled by the knot translocation velocity than the knot size. These features should advance the interpretation and design of future experiments aimed at probing the spontaneous knotting of biopolymers.
Collapse
Affiliation(s)
- Antonio Suma
- Molecular and Statistical Biophysics, International School for Advanced Studies (SISSA), I-34136 Trieste, Italy
| | - Cristian Micheletti
- Molecular and Statistical Biophysics, International School for Advanced Studies (SISSA), I-34136 Trieste, Italy
| |
Collapse
|
48
|
Affiliation(s)
- Wenqing Shi
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Alicia K. Friedman
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Lane A. Baker
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
49
|
Yoo J, Wilson J, Aksimentiev A. Improved model of hydrated calcium ion for molecular dynamics simulations using classical biomolecular force fields. Biopolymers 2016; 105:752-63. [PMID: 27144470 PMCID: PMC4958550 DOI: 10.1002/bip.22868] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/26/2016] [Accepted: 04/28/2016] [Indexed: 12/16/2022]
Abstract
Calcium ions (Ca(2+) ) play key roles in various fundamental biological processes such as cell signaling and brain function. Molecular dynamics (MD) simulations have been used to study such interactions, however, the accuracy of the Ca(2+) models provided by the standard MD force fields has not been rigorously tested. Here, we assess the performance of the Ca(2+) models from the most popular classical force fields AMBER and CHARMM by computing the osmotic pressure of model compounds and the free energy of DNA-DNA interactions. In the simulations performed using the two standard models, Ca(2+) ions are seen to form artificial clusters with chloride, acetate, and phosphate species; the osmotic pressure of CaAc2 and CaCl2 solutions is a small fraction of the experimental values for both force fields. Using the standard parameterization of Ca(2+) ions in the simulations of Ca(2+) -mediated DNA-DNA interactions leads to qualitatively wrong outcomes: both AMBER and CHARMM simulations suggest strong inter-DNA attraction whereas, in experiment, DNA molecules repel one another. The artificial attraction of Ca(2+) to DNA phosphate is strong enough to affect the direction of the electric field-driven translocation of DNA through a solid-state nanopore. To address these shortcomings of the standard Ca(2+) model, we introduce a custom model of a hydrated Ca(2+) ion and show that using our model brings the results of the above MD simulations in quantitative agreement with experiment. Our improved model of Ca(2+) can be readily applied to MD simulations of various biomolecular systems, including nucleic acids, proteins and lipid bilayer membranes. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 752-763, 2016.
Collapse
Affiliation(s)
- Jejoong Yoo
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801
- Center for the Physics of Living Cells
| | - James Wilson
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801
- Center for the Physics of Living Cells
- Beckman Institute for Advanced Science and Technology
| |
Collapse
|
50
|
Gilboa T, Torfstein C, Juhasz M, Grunwald A, Ebenstein Y, Weinhold E, Meller A. Single-Molecule DNA Methylation Quantification Using Electro-optical Sensing in Solid-State Nanopores. ACS NANO 2016; 10:8861-8870. [PMID: 27580095 DOI: 10.1021/acsnano.6b04748] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Detection of epigenetic markers, including 5-methylcytosine, is crucial due to their role in gene expression regulation and due to the mounting evidence of aberrant DNA methylation patterns in cancer biogenesis. Single-molecule methods to date have primarily been focused on hypermethylation detection; however, many oncogenes are hypomethylated during cancer development, presenting an important unmet biosensing challenge. To this end, we have developed a labeling and single-molecule quantification method for multiple unmethylated cytosine-guanine dinucleotides (CpGs). Our method involves a single-step covalent coupling of DNA with synthetic cofactor analogues using DNA methyltransferases (MTases) followed by molecule-by-molecule electro-optical nanopore detection and quantification with single or multiple colors. This sensing method yields a calibrated scale to directly quantify the number of unmethylated CpGs in the target sequences of each DNA molecule. Importantly, our method can be used to analyze ∼10 kbp long double-stranded DNA while circumventing PCR amplification or bisulfite conversion. Expanding this technique to use two colors, as demonstrated here, would enable sensing of multiple DNA MTases through orthogonal labeling/sensing of unmethylated CpGs (or other epigenetic modifications) associated with specific recognition sites. Our proof-of-principle study may permit sequence-specific, direct targeting of clinically relevant hypomethylated sites in the genome.
Collapse
Affiliation(s)
- Tal Gilboa
- Department of Biomedical Engineering, The Technion-Israel Institute of Technology , Haifa, 32000 Israel
| | - Chen Torfstein
- Department of Biomedical Engineering, The Technion-Israel Institute of Technology , Haifa, 32000 Israel
| | - Matyas Juhasz
- Institute of Organic Chemistry, RWTH Aachen University , Landoltweg 1, D-52056 Aachen, Germany
| | - Assaf Grunwald
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University , Tel Aviv, 6997801 Israel
| | - Yuval Ebenstein
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University , Tel Aviv, 6997801 Israel
| | - Elmar Weinhold
- Institute of Organic Chemistry, RWTH Aachen University , Landoltweg 1, D-52056 Aachen, Germany
| | - Amit Meller
- Department of Biomedical Engineering, The Technion-Israel Institute of Technology , Haifa, 32000 Israel
- Department of Biomedical Engineering, Boston University , Boston, Massachusetts 02215, United States
| |
Collapse
|