1
|
Kirchner MK, Althammer F, Campos-Lira E, Montanez J, Stern JE. Endoplasmic Reticulum and Mitochondrial Calcium Handling Dynamically Shape Slow Afterhyperpolarizations in Vasopressin Magnocellular Neurons. J Neurosci 2024; 44:e0003242024. [PMID: 38937101 PMCID: PMC11270521 DOI: 10.1523/jneurosci.0003-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/15/2024] [Accepted: 06/10/2024] [Indexed: 06/29/2024] Open
Abstract
Many neurons including vasopressin (VP) magnocellular neurosecretory cells (MNCs) of the hypothalamic supraoptic nucleus (SON) generate afterhyperpolarizations (AHPs) during spiking to slow firing, a phenomenon known as spike frequency adaptation. The AHP is underlain by Ca2+-activated K+ currents, and while slow component (sAHP) features are well described, its mechanism remains poorly understood. Previous work demonstrated that Ca2+ influx through N-type Ca2+ channels is a primary source of sAHP activation in SON oxytocin neurons, but no obvious channel coupling was described for VP neurons. Given this, we tested the possibility of an intracellular source of sAHP activation, namely, the Ca2+-handling organelles endoplasmic reticulum (ER) and mitochondria in male and female Wistar rats. We demonstrate that ER Ca2+ depletion greatly inhibits sAHPs without a corresponding decrease in Ca2+ signal. Caffeine sensitized AHP activation by Ca2+ In contrast to ER, disabling mitochondria with CCCP or blocking mitochondria Ca2+ uniporters (MCUs) enhanced sAHP amplitude and duration, implicating mitochondria as a vital buffer for sAHP-activating Ca2+ Block of mitochondria Na+-dependent Ca2+ release via triphenylphosphonium (TPP+) failed to affect sAHPs, indicating that mitochondria Ca2+ does not contribute to sAHP activation. Together, our results suggests that ER Ca2+-induced Ca2+ release activates sAHPs and mitochondria shape the spatiotemporal trajectory of the sAHP via Ca2+ buffering in VP neurons. Overall, this implicates organelle Ca2+, and specifically ER-mitochondria-associated membrane contacts, as an important site of Ca2+ microdomain activity that regulates sAHP signaling pathways. Thus, this site plays a major role in influencing VP firing activity and systemic hormonal release.
Collapse
Affiliation(s)
- Matthew K Kirchner
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, Georgia 30303
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30303
| | - Ferdinand Althammer
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, Georgia 30303
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30303
| | - Elba Campos-Lira
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, Georgia 30303
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30303
| | - Juliana Montanez
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, Georgia 30303
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30303
| | - Javier E Stern
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, Georgia 30303
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30303
| |
Collapse
|
2
|
Krüger J, Lerche H. Retigabine and gabapentin restore channel function and neuronal firing in a cellular model of an epilepsy-associated dominant-negative KCNQ5 variant. Neuropharmacology 2024; 250:109892. [PMID: 38428481 DOI: 10.1016/j.neuropharm.2024.109892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/19/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
KCNQ5 encodes the voltage-gated potassium channel KV7.5, a member of the KV7 channel family, which conducts the M-current. This current is a potent regulator of neuronal excitability by regulating membrane potential in the subthreshold range of action potentials and mediating the medium and slow afterhyperpolarization. Recently, we have identified five loss-of-function variants in KCNQ5 in patients with genetic generalized epilepsy. Using the most severe dominant-negative variant (R359C), we set out to investigate pharmacological therapeutic intervention by KV7 channel openers on channel function and neuronal firing. Retigabine and gabapentin increased R359C-derived M-current amplitudes in HEK cells expressing homomeric or heteromeric mutant KV7.5 channels. Retigabine was most effective in restoring K+ currents. Ten μM retigabine was sufficient to reach the level of WT currents without retigabine, whereas 100 μM of gabapentin showed less than half of this effect and application of 50 μM ZnCl2 only significantly increased M-current amplitude in heteromeric channels. Overexpression of KV7.5-WT potently inhibited neuronal firing by increasing the M-current, whereas R359C overexpression had the opposite effect and additionally decreased the medium afterhyperpolarization current. Both aforementioned drugs and Zn2+ reversed the effect of R359C expression by reducing firing to nearly normal levels at high current injections. Our study shows that a dominant-negative variant with a complete loss-of-function in KV7.5 leads to largely increased neuronal firing which may explain a neuronal hyperexcitability in patients. KV7 channel openers, such as retigabine or gabapentin, could be treatment options for patients currently displaying pharmacoresistant epilepsy and carrying loss-of-function variants in KCNQ5.
Collapse
Affiliation(s)
- Johanna Krüger
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Straße 27, 72076, Tübingen, Germany.
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Straße 27, 72076, Tübingen, Germany.
| |
Collapse
|
3
|
Bothe MS, Kohl T, Felmy F, Gallant J, Chagnaud BP. Timing and precision of rattlesnake spinal motoneurons are determined by the KV7 2/3 potassium channel. Curr Biol 2024; 34:286-297.e5. [PMID: 38157862 DOI: 10.1016/j.cub.2023.11.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/11/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024]
Abstract
The evolution of novel motor behaviors requires modifications in the central pattern generators (CPGs) controlling muscle activity. How such changes gradually lead to novel behaviors remains enigmatic due to the long time course of evolution. Rattlesnakes provide a unique opportunity to investigate how a locomotor CPG was evolutionarily modified to generate a novel behavior-in this case, acoustic signaling. We show that motoneurons (MNs) in the body and tail spinal cord of rattlesnakes possess fundamentally different physiological characteristics, which allow MNs in the tail to integrate and transmit CPG output for controlling superfast muscles with high temporal precision. Using patch-clamp electrophysiology, we demonstrate that these differences in locomotor and rattle MNs are mainly determined by KV72/3 potassium channels. However, although KV72/3 exerted a significantly different influence on locomotor and rattle MN physiology, single-cell RNA-seq unexpectedly did not reveal any differences in KV72/3 channels' expression. VIDEO ABSTRACT.
Collapse
Affiliation(s)
| | - Tobias Kohl
- TUM School of Life Science, Technical University of Munich, 85354 Munich, Germany
| | - Felix Felmy
- Institute of Zoology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Jason Gallant
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Boris P Chagnaud
- Institute of Biology, University of Graz, 8010 Graz, Austria; Department of Biology II, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
4
|
Alhassen L, Alhassen W, Wong C, Sun Y, Xia Z, Civelli O, Hoshi N. Dehydroepiandrosterone Sulfate (DHEAS) Is an Endogenous Kv7 Channel Modulator That Reduces Kv7/M-Current Suppression and Inflammatory Pain. J Neurosci 2023; 43:7073-7083. [PMID: 37648450 PMCID: PMC10601364 DOI: 10.1523/jneurosci.2307-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 09/01/2023] Open
Abstract
Neuronal Kv7 voltage-gated potassium channels generate the M-current and regulate neuronal excitability. Here, we report that dehydroepiandrosterone sulfate (DHEAS) is an endogenous Kv7 channel modulator that attenuates Gq-coupled receptor-induced M-current suppression. DHEAS reduced muscarinic agonist-induced Kv7-current suppression of Kv7.1, Kv7.2, Kv7.4, or Kv7.5 homomeric currents and endogenous M-currents in rat sympathetic ganglion neurons. However, DHEAS per se did not alter the voltage dependence of these Kv7 homomeric channels or the m1 receptor-induced activation of phospholipase C or protein kinase C. DHEAS-treated Kv7.2 homomeric currents became resistant to depletion of phosphatidylinositol 4,5-bisphosphate (PIP2) induced by voltage-activated phosphatase, Ci-VSP or eVSP. Our computational models predicted a novel binding site for DHEAS in the cytoplasmic domain of Kv7 subunits. A single-point mutation of the predicted key histidine into cysteine in the rat Kv7.2 subunit, rKv7.2(H558C), resulted in a loss of effects of DHEAS on muscarinic Kv7 current suppression. Furthermore, in vivo administration of DHEAS in mice of both sexes reduced late phase pain responses in the formalin paw test. However, it did not have effects on early phase responses in the formalin paw test or responses in the hot plate test. Coadministration of a selective Kv7 inhibitor, XE991, and DHEAS eliminated analgesic effects of DHEAS in late phase responses in the formalin paw test. Collectively, these results suggest that DHEAS attenuates M-current suppression by stabilizing PIP2-Kv7 subunit interaction and can mitigate inflammatory pain.SIGNIFICANCE STATEMENT M-current suppression induced by stimulation of Gq-coupled receptors is a form of Kv7 current modulation that can reversibly increase neuronal excitability. This study demonstrates that DHEAS, an endogenous steroid hormone, is a novel Kv7 channel modulator that can attenuate M-current suppression without affecting basal Kv7 channel kinetics. Administration of DHEAS in vivo alleviated inflammatory pain in rodents. These results suggest that the degree of M-current suppression can be dynamically regulated by small molecules. Therefore, this novel form of Kv7 channel regulation holds promising potential as a therapeutic target for sensitized nervous activities, such as inflammatory pain.
Collapse
Affiliation(s)
- Lamees Alhassen
- Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, California 92697
| | - Wedad Alhassen
- Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, California 92697
| | - Cindy Wong
- Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, California 92697
| | - Yuxuan Sun
- Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, California 92697
| | - Zelin Xia
- Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, California 92697
| | - Olivier Civelli
- Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, California 92697
| | - Naoto Hoshi
- Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, California 92697
- Department of Physiology and Biophysics, University of California-Irvine, Irvine, California 92697
| |
Collapse
|
5
|
Varghese N, Moscoso B, Chavez A, Springer K, Ortiz E, Soh H, Santaniello S, Maheshwari A, Tzingounis AV. KCNQ2/3 Gain-of-Function Variants and Cell Excitability: Differential Effects in CA1 versus L2/3 Pyramidal Neurons. J Neurosci 2023; 43:6479-6494. [PMID: 37607817 PMCID: PMC10513074 DOI: 10.1523/jneurosci.0980-23.2023] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 08/24/2023] Open
Abstract
Gain-of-function (GOF) pathogenic variants in the potassium channels KCNQ2 and KCNQ3 lead to hyperexcitability disorders such as epilepsy and autism spectrum disorders. However, the underlying cellular mechanisms of how these variants impair forebrain function are unclear. Here, we show that the R201C variant in KCNQ2 has opposite effects on the excitability of two types of mouse pyramidal neurons of either sex, causing hyperexcitability in layer 2/3 (L2/3) pyramidal neurons and hypoexcitability in CA1 pyramidal neurons. Similarly, the homologous R231C variant in KCNQ3 leads to hyperexcitability in L2/3 pyramidal neurons and hypoexcitability in CA1 pyramidal neurons. However, the effects of KCNQ3 gain-of-function on excitability are specific to superficial CA1 pyramidal neurons. These findings reveal a new level of complexity in the function of KCNQ2 and KCNQ3 channels in the forebrain and provide a framework for understanding the effects of gain-of-function variants and potassium channels in the brain.SIGNIFICANCE STATEMENT KCNQ2/3 gain-of-function (GOF) variants lead to severe forms of neurodevelopmental disorders, but the mechanisms by which these channels affect neuronal activity are poorly understood. In this study, using a series of transgenic mice we demonstrate that the same KCNQ2/3 GOF variants can lead to either hyperexcitability or hypoexcitability in different types of pyramidal neurons [CA1 vs layer (L)2/3]. Additionally, we show that expression of the recurrent KCNQ2 GOF variant R201C in forebrain pyramidal neurons could lead to seizures and SUDEP. Our data suggest that the effects of KCNQ2/3 GOF variants depend on specific cell types and brain regions, possibly accounting for the diverse range of phenotypes observed in individuals with KCNQ2/3 GOF variants.
Collapse
Affiliation(s)
- Nissi Varghese
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269
| | - Bruno Moscoso
- Department of Neurology, Baylor College of Medicine, Houston, Texas 77030
| | - Ana Chavez
- Department of Neurology, Baylor College of Medicine, Houston, Texas 77030
| | - Kristen Springer
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269
| | - Erika Ortiz
- Department of Neurology, Baylor College of Medicine, Houston, Texas 77030
| | - Heun Soh
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269
| | - Sabato Santaniello
- Department of Biomedical Engineering and Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, Connecticut 06269
| | - Atul Maheshwari
- Department of Neurology, Baylor College of Medicine, Houston, Texas 77030
| | - Anastasios V Tzingounis
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269
| |
Collapse
|
6
|
Gain of function due to increased opening probability by two KCNQ5 pore variants causing developmental and epileptic encephalopathy. Proc Natl Acad Sci U S A 2022; 119:e2116887119. [PMID: 35377796 PMCID: PMC9169635 DOI: 10.1073/pnas.2116887119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Variants in genes encoding neuronally expressed potassium channel subunits are frequent causes of developmental and epileptic encephalopathies (DEEs). Characterization of their functional consequences is critical to confirm diagnosis, assess prognosis, and implement personalized treatments. In the present work, we describe two patients carrying variants in KCNQ5, a gene very recently and rarely found involved in DEEs, and reveal that they both cause remarkable gain-of-function consequences on channel activity. A PIP2-independent increase in open probability, without effects on membrane abundance or single-channel conductance, was responsible for the observed mutation-induced functional changes, thus revealing a pathomolecular disease mechanism for DEEs. Developmental and epileptic encephalopathies (DEEs) are neurodevelopmental diseases characterized by refractory epilepsy, distinct electroencephalographic and neuroradiological features, and various degrees of developmental delay. Mutations in KCNQ2, KCNQ3, and, more rarely, KCNQ5 genes encoding voltage-gated potassium channel subunits variably contributing to excitability control of specific neuronal populations at distinct developmental stages have been associated to DEEs. In the present work, the clinical features of two DEE patients carrying de novo KCNQ5 variants affecting the same residue in the pore region of the Kv7.5 subunit (G347S/A) are described. The in vitro functional properties of channels incorporating these variants were investigated with electrophysiological and biochemical techniques to highlight pathophysiological disease mechanisms. Currents carried by Kv7.5 G347 S/A channels displayed: 1) large (>10 times) increases in maximal current density, 2) the occurrence of a voltage-independent component, 3) slower deactivation kinetics, and 4) hyperpolarization shift in activation. All these functional features are consistent with a gain-of-function (GoF) pathogenetic mechanism. Similar functional changes were also observed when the same variants were introduced at the corresponding position in Kv7.2 subunits. Nonstationary noise analysis revealed that GoF effects observed for both Kv7.2 and Kv7.5 variants were mainly attributable to an increase in single-channel open probability, without changes in membrane abundance or single-channel conductance. The mutation-induced increase in channel opening probability was insensitive to manipulation of membrane levels of the critical Kv7 channel regulator PIP2. These results reveal a pathophysiological mechanism for KCNQ5-related DEEs, which might be exploited to implement personalized treatments.
Collapse
|
7
|
Abstract
KCNQ2 and KCNQ3 channels are associated with multiple neurodevelopmental disorders and are also therapeutic targets for neurological and neuropsychiatric diseases. For more than two decades, it has been thought that most KCNQ channels in the brain are either KCNQ2/3 or KCNQ3/5 heteromers. Here, we investigated the potential heteromeric compositions of KCNQ2-containing channels. We applied split-intein protein trans-splicing to form KCNQ2/5 tandems and coexpressed these with and without KCNQ3. Unexpectedly, we found that KCNQ2/5 tandems form functional channels independent of KCNQ3 in heterologous cells. Using mass spectrometry, we went on to demonstrate that KCNQ2 associates with KCNQ5 in native channels in the brain, even in the absence of KCNQ3. Additionally, our functional heterologous expression data are consistent with the formation of KCNQ2/3/5 heteromers. Thus, the composition of KCNQ channels is more diverse than has been previously recognized, necessitating a re-examination of the genotype/phenotype relationship of KCNQ2 pathogenic variants.
Collapse
|
8
|
de la Cruz L, Riquelme R, Vivas O, Barria A, Jensen JB. Dishevelled coordinates phosphoinositide kinases PI4KIIIα and PIP5KIγ for efficient PtdInsP2 synthesis. J Cell Sci 2022; 135:274231. [PMID: 34982154 PMCID: PMC8919331 DOI: 10.1242/jcs.259145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/14/2021] [Indexed: 02/05/2023] Open
Abstract
Phosphatidylinositol(4,5)-bisphosphate (PtdInsP2) is an important modulator of many cellular processes, and its abundance in the plasma membrane is closely regulated. We examined the hypothesis that members of the Dishevelled scaffolding protein family can bind the lipid kinases phosphatidylinositol 4-kinase (PI4K) and phosphatidylinositol 4-phosphate 5-kinase (PIP5K), facilitating synthesis of PtdInsP2 directly from phosphatidylinositol. We used several assays for PtdInsP2 to examine the cooperative function of phosphoinositide kinases and the Dishevelled protein Dvl3 in the context of two receptor signaling cascades. Simultaneous overexpression of PI4KIIIα (also known as PI4KA) and PIP5KIγ (also known as PIP5K1C) had a synergistic effect on PtdInsP2 synthesis that was recapitulated by overexpression of Dvl3. Increasing the activity of Dvl3 by overexpression increased resting plasma membrane PtdInsP2. Knockdown of Dvl3 reduced resting plasma membrane PtdInsP2 and slowed PtdInsP2 resynthesis following receptor activation. We confirm that Dvl3 promotes coupling of PI4KIIIα and PIP5KIγ and show that this interaction is essential for efficient resynthesis of PtdInsP2 following receptor activation.
Collapse
|
9
|
Sahu G, Turner RW. The Molecular Basis for the Calcium-Dependent Slow Afterhyperpolarization in CA1 Hippocampal Pyramidal Neurons. Front Physiol 2022; 12:759707. [PMID: 35002757 PMCID: PMC8730529 DOI: 10.3389/fphys.2021.759707] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/01/2021] [Indexed: 12/02/2022] Open
Abstract
Neuronal signal transmission depends on the frequency, pattern, and timing of spike output, each of which are shaped by spike afterhyperpolarizations (AHPs). There are classically three post-spike AHPs of increasing duration categorized as fast, medium and slow AHPs that hyperpolarize a cell over a range of 10 ms to 30 s. Intensive early work on CA1 hippocampal pyramidal cells revealed that all three AHPs incorporate activation of calcium-gated potassium channels. The ionic basis for a fAHP was rapidly attributed to the actions of big conductance (BK) and the mAHP to small conductance (SK) or Kv7 potassium channels. In stark contrast, the ionic basis for a prominent slow AHP of up to 30 s duration remained an enigma for over 30 years. Recent advances in pharmacological, molecular, and imaging tools have uncovered the expression of a calcium-gated intermediate conductance potassium channel (IK, KCa3.1) in central neurons that proves to contribute to the slow AHP in CA1 hippocampal pyramidal cells. Together the data show that the sAHP arises in part from a core tripartite complex between Cav1.3 (L-type) calcium channels, ryanodine receptors, and IK channels at endoplasmic reticulum-plasma membrane junctions. Work on the sAHP in CA1 pyramidal neurons has again quickened pace, with identified contributions by both IK channels and the Na-K pump providing answers to several mysteries in the pharmacological properties of the sAHP.
Collapse
Affiliation(s)
- Giriraj Sahu
- National Institute of Pharmaceutical Education and Research Ahmedabad, Ahmedabad, India
| | - Ray W Turner
- Department Cell Biology & Anatomy, Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
10
|
PIP 2-dependent coupling of voltage sensor and pore domains in K v7.2 channel. Commun Biol 2021; 4:1189. [PMID: 34650221 PMCID: PMC8517023 DOI: 10.1038/s42003-021-02729-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/23/2021] [Indexed: 01/10/2023] Open
Abstract
Phosphatidylinositol-4,5-bisphosphate (PIP2) is a signaling lipid which regulates voltage-gated Kv7/KCNQ potassium channels. Altered PIP2 sensitivity of neuronal Kv7.2 channel is involved in KCNQ2 epileptic encephalopathy. However, the molecular action of PIP2 on Kv7.2 gating remains largely elusive. Here, we use molecular dynamics simulations and electrophysiology to characterize PIP2 binding sites in a human Kv7.2 channel. In the closed state, PIP2 localizes to the periphery of the voltage-sensing domain (VSD). In the open state, PIP2 binds to 4 distinct interfaces formed by the cytoplasmic ends of the VSD, the gate, intracellular helices A and B and their linkers. PIP2 binding induces bilayer-interacting conformation of helices A and B and the correlated motion of the VSD and the pore domain, whereas charge-neutralizing mutations block this coupling and reduce PIP2 sensitivity of Kv7.2 channels by disrupting PIP2 binding. These findings reveal the allosteric role of PIP2 in Kv7.2 channel activation. Pant et al. describe the mechanism by which PIP2 might regulate homomeric Kv7.2 channels. They identify sites important in the binding of the PIP2 lipid to Kv7.2 channels and propose that the PIP2 binding to a specific site results in the coupling between the voltage sensor domain (VSD) and pore domain (PD), which stabilizes the open state of the channel.
Collapse
|
11
|
Gao X, Bender F, Soh H, Chen C, Altafi M, Schütze S, Heidenreich M, Gorbati M, Corbu MA, Carus-Cadavieco M, Korotkova T, Tzingounis AV, Jentsch TJ, Ponomarenko A. Place fields of single spikes in hippocampus involve Kcnq3 channel-dependent entrainment of complex spike bursts. Nat Commun 2021; 12:4801. [PMID: 34376649 PMCID: PMC8355348 DOI: 10.1038/s41467-021-24805-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 06/29/2021] [Indexed: 02/07/2023] Open
Abstract
Hippocampal pyramidal cells encode an animal's location by single action potentials and complex spike bursts. These elementary signals are believed to play distinct roles in memory consolidation. The timing of single spikes and bursts is determined by intrinsic excitability and theta oscillations (5-10 Hz). Yet contributions of these dynamics to place fields remain elusive due to the lack of methods for specific modification of burst discharge. In mice lacking Kcnq3-containing M-type K+ channels, we find that pyramidal cell bursts are less coordinated by the theta rhythm than in controls during spatial navigation, but not alert immobility. Less modulated bursts are followed by an intact post-burst pause of single spike firing, resulting in a temporal discoordination of network oscillatory and intrinsic excitability. Place fields of single spikes in one- and two-dimensional environments are smaller in the mutant. Optogenetic manipulations of upstream signals reveal that neither medial septal GABA-ergic nor cholinergic inputs alone, but rather their joint activity, is required for entrainment of bursts. Our results suggest that altered representations by bursts and single spikes may contribute to deficits underlying cognitive disabilities associated with KCNQ3-mutations in humans.
Collapse
Affiliation(s)
- Xiaojie Gao
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| | - Franziska Bender
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| | - Heun Soh
- University of Connecticut, Storrs, CT, USA
| | - Changwan Chen
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Institute for Vegetative Physiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Mahsa Altafi
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian Schütze
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Matthias Heidenreich
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Maria Gorbati
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| | | | - Marta Carus-Cadavieco
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| | - Tatiana Korotkova
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Institute for Vegetative Physiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | | | - Thomas J Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany.
- Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany.
| | - Alexey Ponomarenko
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany.
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
12
|
Laker D, Tolle F, Stegen M, Heerdegen M, Köhling R, Kirschstein T, Wolfart J. K v7 and K ir6 Channels Shape the Slow AHP in Mouse Dentate Gyrus Granule Cells and Control Burst-like Firing Behavior. Neuroscience 2021; 467:56-72. [PMID: 34048798 DOI: 10.1016/j.neuroscience.2021.05.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 11/29/2022]
Abstract
The slow afterhyperpolarizing potential (sAHP) can silence a neuron for hundreds of milliseconds. Thereby, the sAHP determines the discharge behavior of many types of neurons. In dentate granule cells (DGCs), serving as a filter into the hippocampal network, mostly tonic or adapting discharge properties have been described. As under standard whole-cell recording conditions the sAHP is inhibited, we reevaluated the intrinsic functional phenotype of DGCs and the conductances underlying the sAHP, using gramicidine-perforated patch-clamp technique. We found that in 97/113 (86%) of the DGCs, a burst of action potentials (APs) to excitation ended by a large sAHP, despite continued depolarization. This result suggests that burst-like firing is the default functional phenotype of DGCs and that sAHPs are important for it. Indeed, burst-like firing DGCs showed a significantly higher sAHP-current (IsAHP) amplitude compared to spike-frequency adapting cells (16/113 = 14%). The IsAHP was mediated by Kv7 and Kir6 channels by pharmacological inhibition using XE991 and tolbutamide, although heterogeneously among DGCs. The percent inhibition of IsAHP by these compounds also correlated with the AP number and AP burst length. Application of 100 µM nickel after XE991 and tolbutamide detected a third conductance contributing to burst-like firing and the sAHP, most likely mediated by T-type calcium channels. Lastly, medial perforant path-dentate gyrus long-term potentiation was amplified by XE991 and tolbutamide. In conclusion, the sAHP shapes intrinsic burst-like firing which, under physiological circumstances, could be controlled via cholinergic afferents and ATP metabolism.
Collapse
Affiliation(s)
- Debora Laker
- Oscar Langendorff Institute of Physiology, University Medicine Rostock, Rostock, Germany
| | - Frederik Tolle
- Oscar Langendorff Institute of Physiology, University Medicine Rostock, Rostock, Germany
| | - Michael Stegen
- Department of Neurosurgery, University of Freiburg, Germany
| | - Marco Heerdegen
- Oscar Langendorff Institute of Physiology, University Medicine Rostock, Rostock, Germany
| | - Rüdiger Köhling
- Oscar Langendorff Institute of Physiology, University Medicine Rostock, Rostock, Germany
| | - Timo Kirschstein
- Oscar Langendorff Institute of Physiology, University Medicine Rostock, Rostock, Germany.
| | - Jakob Wolfart
- Oscar Langendorff Institute of Physiology, University Medicine Rostock, Rostock, Germany
| |
Collapse
|
13
|
Loss of KCNQ2 or KCNQ3 Leads to Multifocal Time-Varying Activity in the Neonatal Forebrain Ex Vivo. eNeuro 2021; 8:ENEURO.0024-21.2021. [PMID: 33863780 PMCID: PMC8143017 DOI: 10.1523/eneuro.0024-21.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 12/29/2022] Open
Abstract
Epileptic encephalopathies represent a group of disorders often characterized by refractory seizures, regression in cognitive development, and typically poor prognosis. Dysfunction of KCNQ2 and KCNQ3 channels has emerged as a major cause of neonatal epilepsy. However, our understanding of the cellular mechanisms that may both explain the origins of epilepsy and inform treatment strategies for KCNQ2 and KCNQ3 dysfunction is still lacking. Here, using mesoscale calcium imaging and pharmacology, we demonstrate that in mouse neonatal brain slices, conditional loss of Kcnq2 from forebrain excitatory neurons (Pyr:Kcnq2 mice) or constitutive deletion of Kcnq3 leads to sprawling hyperactivity across the neocortex. Surprisingly, the generation of time-varying hypersynchrony in slices from Pyr:Kcnq2 mice does not require fast synaptic transmission. This is in contrast to control littermates and constitutive Kcnq3 knock-out mice where activity is primarily driven by fast synaptic transmission in the neocortex. Unlike in the neocortex, hypersynchronous activity in the hippocampal formation from Kcnq2 conditional and Kcnq3 constitutive knock-out mice persists in the presence of synaptic transmission blockers. Thus, we propose that loss of KCNQ2 or KCNQ3 function differentially leads to network hyperactivity across the forebrain in a region-specific and macro-circuit-specific manner.
Collapse
|
14
|
Borgini M, Mondal P, Liu R, Wipf P. Chemical modulation of Kv7 potassium channels. RSC Med Chem 2021; 12:483-537. [PMID: 34046626 PMCID: PMC8128042 DOI: 10.1039/d0md00328j] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/01/2020] [Indexed: 01/10/2023] Open
Abstract
The rising interest in Kv7 modulators originates from their ability to evoke fundamental electrophysiological perturbations in a tissue-specific manner. A large number of therapeutic applications are, in part, based on the clinical experience with two broad-spectrum Kv7 agonists, flupirtine and retigabine. Since precise molecular structures of human Kv7 channel subtypes in closed and open states have only very recently started to emerge, computational studies have traditionally been used to analyze binding modes and direct the development of more potent and selective Kv7 modulators with improved safety profiles. Herein, the synthetic and medicinal chemistry of small molecule modulators and the representative biological properties are summarized. Furthermore, new therapeutic applications supported by in vitro and in vivo assay data are suggested.
Collapse
Affiliation(s)
- Matteo Borgini
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| | - Pravat Mondal
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| | - Ruiting Liu
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| |
Collapse
|
15
|
Er81 Transcription Factor Fine-Tunes Striatal Cholinergic Interneuron Activity and Drives Habit Formation. J Neurosci 2021; 41:4392-4409. [PMID: 33849945 DOI: 10.1523/jneurosci.0967-20.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 11/21/2022] Open
Abstract
The molecular mechanisms tuning cholinergic interneuron (CIN) activity, although crucial for striatal function and behavior, remain largely unexplored. Previous studies report that the Etv1/Er81 transcription factor is vital for regulating neuronal maturation and activity. While Er81 is known to be expressed in the striatum during development, its specific role in defining CIN properties and the resulting consequences on striatal function is unknown. We report here that Er81 is expressed in CINs and its specific ablation leads to prominent changes in their molecular, morphologic, and electrophysiological features. In particular, the lack of Er81 amplifies intrinsic delayed-rectifier and hyperpolarization-activated currents, which subsequently alters the tonic and phasic activity of CINs. We further reveal that Er81 expression is required for normal CIN pause and time-locked responses to sensorimotor inputs in awake mice. Overall, this study uncovers a new cell type-specific control of CIN function in the striatum which drives habit formation in adult male mice.SIGNIFICANCE STATEMENT Although previous studies have shown that cholinergic interneurons drive striatal activity and habit formation, the underlying molecular mechanisms controlling their function are unknown. Here we reveal that key cholinergic interneuron physiological properties are controlled by Er81, a transcription factor regulating neuronal activity and development in a cell-specific manner. Moreover, our findings uncover a link between the Er81-dependent molecular control of cholinergic interneuron function and habit formation in mice. These insights will contribute to the future enhancement of our understanding of disorders that involve behavioral inflexibility, such as autism and addiction.
Collapse
|
16
|
Varghese N, Lauritano A, Taglialatela M, Tzingounis AV. KCNQ3 is the principal target of retigabine in CA1 and subicular excitatory neurons. J Neurophysiol 2021; 125:1440-1449. [PMID: 33729829 DOI: 10.1152/jn.00564.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Retigabine is a first-in-class potassium channel opener approved for patients with epilepsy. Unfortunately, several side effects have limited its use in clinical practice, overshadowing its beneficial effects. Multiple studies have shown that retigabine acts by enhancing the activity of members of the voltage-gated KCNQ (Kv7) potassium channel family, particularly the neuronal KCNQ channels KCNQ2-KCNQ5. However, it is currently unknown whether retigabine's action in neurons is mediated by all KCNQ neuronal channels or by only a subset. This knowledge is necessary to elucidate retigabine's mechanism of action in the central nervous system and its adverse effects and to design more effective and selective retigabine analogs. In this study, we show that the action of retigabine in excitatory neurons strongly depends on the presence of KCNQ3 channels. Deletion of Kcnq3 severely limited the ability of retigabine to reduce neuronal excitability in mouse CA1 and subiculum excitatory neurons. In addition, we report that in the absence of KCNQ3 channels, retigabine can enhance CA1 pyramidal neuron activity, leading to a greater number of action potentials and reduced spike frequency adaptation; this finding further supports a key role of KCNQ3 channels in mediating the action of retigabine. Our work provides new insight into the action of retigabine in forebrain neurons, clarifying retigabine's action in the nervous system.NEW & NOTEWORTHY Retigabine has risen to prominence as a first-in-class potassium channel opener approved by the Food and Drug Administration, with potential for treating multiple neurological disorders. Here, we demonstrate that KCNQ3 channels are the primary target of retigabine in excitatory neurons, as deleting these channels greatly diminishes the effect of retigabine in pyramidal neurons. Our data provide the first indication that retigabine controls neuronal firing properties primarily through KCNQ3 channels.
Collapse
Affiliation(s)
- Nissi Varghese
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut
| | - Anna Lauritano
- Department of Neuroscience, University of Naples Federico II, Naples, Italy
| | | | | |
Collapse
|
17
|
Tran B, Ji ZG, Xu M, Tsuchida TN, Cooper EC. Two KCNQ2 Encephalopathy Variants in the Calmodulin-Binding Helix A Exhibit Dominant-Negative Effects and Altered PIP 2 Interaction. Front Physiol 2020; 11:1144. [PMID: 33041849 PMCID: PMC7518097 DOI: 10.3389/fphys.2020.571813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/18/2020] [Indexed: 11/13/2022] Open
Abstract
Heterozygous missense variants in KCNQ2, which encodes the potassium channel subunit Kv7.2, are among the most common genetic causes of severe neonatal-onset epileptic encephalopathy. Because about 20% of known severe Kv7.2 missense changes lie within the intracellular C-terminal region, improving understanding of the underlying pathogenic mechanisms is important. We analyzed the basis for the severe phenotypes of Kv7.2 A337T and A337G, variants in the C-terminal’s calmodulin (CaM)-binding Helix A. When expressed heterologously in mammalian cells, alone or in combination with wild type Kv7.2 or with wild type Kv7.2 and Kv7.3, both variants strongly suppressed channel currents. A337T channels expressed alone exhibited significantly reduced protein half-life and surface trafficking and co-immunoprecipitated less CaM. For both variants, increasing cellular phosphatidylinositol 4,5-bisphosphate (PIP2) by overexpression of PI(4)P5-kinase restored current densities. For both variants, the fraction of current suppressed by activation of M1 muscarinic receptors with 10 μM oxotremorine methiodide, which depletes PIP2, was less than for controls. During voltage-sensitive phosphatase-induced transient PIP2 depletion and resynthesize, potassium current inhibition and recovery kinetics were both markedly slowed. These results suggest that these variants may reduce currents by a mechanism not previously described: slowing of PIP2 migration between the bulk membrane and binding sites mediating channel electromechanical coupling. A novel Kv7.2/3-selective opener, SF0034, rescued current amplitudes. Our findings show that these two Helix A variants suppress channel current density strongly, consistent with their severe heterozygous phenotypes, implicate impairment of CaM and PIP2 regulation in KCNQ2 encephalopathy pathogenesis, and highlight the potential usefulness of selective Kv7 openers for this distinctive pathogenic mechanism and patient subgroup.
Collapse
Affiliation(s)
- Baouyen Tran
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Zhi-Gang Ji
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Mingxuan Xu
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Tammy N Tsuchida
- Departments of Pediatrics and Neurology, Children's National Medical Center, Washington, DC, United States
| | - Edward C Cooper
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States.,Department of Neurology, Baylor College of Medicine, Houston, TX, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
18
|
Miceli F, Carotenuto L, Barrese V, Soldovieri MV, Heinzen EL, Mandel AM, Lippa N, Bier L, Goldstein DB, Cooper EC, Cilio MR, Taglialatela M, Sands TT. A Novel Kv7.3 Variant in the Voltage-Sensing S 4 Segment in a Family With Benign Neonatal Epilepsy: Functional Characterization and in vitro Rescue by β-Hydroxybutyrate. Front Physiol 2020; 11:1040. [PMID: 33013448 PMCID: PMC7498716 DOI: 10.3389/fphys.2020.01040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/29/2020] [Indexed: 01/09/2023] Open
Abstract
Pathogenic variants in KCNQ2 and KCNQ3, paralogous genes encoding Kv7.2 and Kv7.3 voltage-gated K+ channel subunits, are responsible for early-onset developmental/epileptic disorders characterized by heterogeneous clinical phenotypes ranging from benign familial neonatal epilepsy (BFNE) to early-onset developmental and epileptic encephalopathy (DEE). KCNQ2 variants account for the majority of pedigrees with BFNE and KCNQ3 variants are responsible for a much smaller subgroup, but the reasons for this imbalance remain unclear. Analysis of additional pedigrees is needed to further clarify the nature of this genetic heterogeneity and to improve prediction of pathogenicity for novel variants. We identified a BFNE family with two siblings and a parent affected. Exome sequencing on samples from both parents and siblings revealed a novel KCNQ3 variant (c.719T>G; p.M240R), segregating in the three affected individuals. The M240 residue is conserved among human Kv7.2-5 and lies between the two arginines (R5 and R6) closest to the intracellular side of the voltage-sensing S4 transmembrane segment. Whole cell patch-clamp recordings in Chinese hamster ovary (CHO) cells revealed that homomeric Kv7.3 M240R channels were not functional, whereas heteromeric channels incorporating Kv7.3 M240R mutant subunits with Kv7.2 and Kv7.3 displayed a depolarizing shift of about 10 mV in activation gating. Molecular modeling results suggested that the M240R substitution preferentially stabilized the resting state and possibly destabilized the activated state of the Kv7.3 subunits, a result consistent with functional data. Exposure to β-hydroxybutyrate (BHB), a ketone body generated during the ketogenic diet (KD), reversed channel dysfunction induced by the M240R variant. In conclusion, we describe the first missense loss-of-function (LoF) pathogenic variant within the S4 segment of Kv7.3 identified in patients with BFNE. Studied under conditions mimicking heterozygosity, the M240R variant mainly affects the voltage sensitivity, in contrast to previously analyzed BFNE Kv7.3 variants that reduce current density. Our pharmacological results provide a rationale for the use of KD in patients carrying LoF variants in Kv7.2 or Kv7.3 subunits.
Collapse
Affiliation(s)
- Francesco Miceli
- Department of Neuroscience, University of Naples “Federico II”, Naples, Italy
| | - Lidia Carotenuto
- Department of Neuroscience, University of Naples “Federico II”, Naples, Italy
| | - Vincenzo Barrese
- Department of Neuroscience, University of Naples “Federico II”, Naples, Italy
| | | | - Erin L. Heinzen
- Eshelman School of Pharmacy, Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Arthur M. Mandel
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| | - Natalie Lippa
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Louise Bier
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - David B. Goldstein
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Edward C. Cooper
- Departments of Neurology, Neuroscience, and Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Maria Roberta Cilio
- Department of Pediatrics and Institute of Experimental and Clinical Research, Cliniques universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | | | - Tristan T. Sands
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
19
|
PIP 2: A critical regulator of vascular ion channels hiding in plain sight. Proc Natl Acad Sci U S A 2020; 117:20378-20389. [PMID: 32764146 PMCID: PMC7456132 DOI: 10.1073/pnas.2006737117] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The phosphoinositide, phosphatidylinositol 4,5-bisphosphate (PIP2), has long been established as a major contributor to intracellular signaling, primarily by virtue of its role as a substrate for phospholipase C (PLC). Signaling by Gq-protein-coupled receptors triggers PLC-mediated hydrolysis of PIP2 into inositol 1,4,5-trisphosphate and diacylglycerol, which are well known to modulate vascular ion channel activity. Often overlooked, however, is the role PIP2 itself plays in this regulation. Although numerous reports have demonstrated that PIP2 is critical for ion channel regulation, how it impacts vascular function has received scant attention. In this review, we focus on PIP2 as a regulator of ion channels in smooth muscle cells and endothelial cells-the two major classes of vascular cells. We further address the concerted effects of such regulation on vascular function and blood flow control. We close with a consideration of current knowledge regarding disruption of PIP2 regulation of vascular ion channels in disease.
Collapse
|
20
|
Kirchner MK, Armstrong WE, Guan D, Ueta Y, Foehring RC. PIP 2 alters of Ca 2+ currents in acutely dissociated supraoptic oxytocin neurons. Physiol Rep 2020; 7:e14198. [PMID: 31444865 PMCID: PMC6708058 DOI: 10.14814/phy2.14198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 07/11/2019] [Indexed: 12/21/2022] Open
Abstract
Magnocellular neurosecretory cells (MNCs) occupying the supraoptic nucleus (SON) contain voltage‐gated Ca2+ channels that provide Ca2+ for triggering vesicle release, initiating signaling pathways, and activating channels, such as the potassium channels underlying the afterhyperpolarization (AHP). Phosphotidylinositol 4,5‐bisphosphate (PIP2) is a phospholipid membrane component that has been previously shown to modulate Ca2+ channels, including in the SON in our previous work. In this study, we further investigated the ways in which PIP2 modulates these channels, and for the first time show how PIP2 modulates CaV channel currents in native membranes. Using whole cell patch clamp of genetically labeled dissociated neurons, we demonstrate that PIP2 depletion via wortmannin (0.5 μmol/L) inhibits Ca2+ channel currents in OT but not VP neurons. Additionally, it hyperpolarizes voltage‐dependent activation of the channels by ~5 mV while leaving the slope of activation unchanged, properties unaffected in VP neurons. We also identified key differences in baseline currents between the cell types, wherein VP whole cell Ca2+ currents display more inactivation and shorter deactivation time constants. Wortmannin accelerates inactivation of Ca2+ channels in OT neurons, which we show to be mostly an effect on N‐type Ca2+ channels. Finally, we demonstrate that wortmannin prevents prepulse‐induced facilitation of peak Ca2+ channel currents. We conclude that PIP2 is a modulator that enhances current through N‐type channels. This has implications for the afterhyperpolarization (AHP) of OT neurons, as previous work from our laboratory demonstrated the AHP is inhibited by wortmannin, and that its primary activation is from intracellular Ca2+ contributed by N‐type channels.
Collapse
Affiliation(s)
- Matthew K Kirchner
- Department of Anatomy and Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - William E Armstrong
- Department of Anatomy and Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Dongxu Guan
- Department of Anatomy and Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Robert C Foehring
- Department of Anatomy and Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
21
|
Kessi M, Chen B, Peng J, Tang Y, Olatoutou E, He F, Yang L, Yin F. Intellectual Disability and Potassium Channelopathies: A Systematic Review. Front Genet 2020; 11:614. [PMID: 32655623 PMCID: PMC7324798 DOI: 10.3389/fgene.2020.00614] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/20/2020] [Indexed: 01/15/2023] Open
Abstract
Intellectual disability (ID) manifests prior to adulthood as severe limitations to intellectual function and adaptive behavior. The role of potassium channelopathies in ID is poorly understood. Therefore, we aimed to evaluate the relationship between ID and potassium channelopathies. We hypothesized that potassium channelopathies are strongly associated with ID initiation, and that both gain- and loss-of-function mutations lead to ID. This systematic review explores the burden of potassium channelopathies, possible mechanisms, advancements using animal models, therapies, and existing gaps. The literature search encompassed both PubMed and Embase up to October 2019. A total of 75 articles describing 338 cases were included in this review. Nineteen channelopathies were identified, affecting the following genes: KCNMA1, KCNN3, KCNT1, KCNT2, KCNJ10, KCNJ6, KCNJ11, KCNA2, KCNA4, KCND3, KCNH1, KCNQ2, KCNAB1, KCNQ3, KCNQ5, KCNC1, KCNB1, KCNC3, and KCTD3. Twelve of these genes presented both gain- and loss-of-function properties, three displayed gain-of-function only, three exhibited loss-of-function only, and one had unknown function. How gain- and loss-of-function mutations can both lead to ID remains largely unknown. We identified only a few animal studies that focused on the mechanisms of ID in relation to potassium channelopathies and some of the few available therapeutic options (channel openers or blockers) appear to offer limited efficacy. In conclusion, potassium channelopathies contribute to the initiation of ID in several instances and this review provides a comprehensive overview of which molecular players are involved in some of the most prominent disease phenotypes.
Collapse
Affiliation(s)
- Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China.,Kilimanjaro Christian Medical University College, Moshi, Tanzania.,Mawenzi Regional Referral Hospital, Moshi, Tanzania
| | - Baiyu Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Yulin Tang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Eleonore Olatoutou
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fang He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| |
Collapse
|
22
|
Nappi P, Miceli F, Soldovieri MV, Ambrosino P, Barrese V, Taglialatela M. Epileptic channelopathies caused by neuronal Kv7 (KCNQ) channel dysfunction. Pflugers Arch 2020; 472:881-898. [PMID: 32506321 DOI: 10.1007/s00424-020-02404-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/12/2020] [Accepted: 05/18/2020] [Indexed: 11/28/2022]
Abstract
Seizures are the most common neurological manifestation in the newborn period, with an estimated incidence of 1.8-3.5 per 1000 live births. Prolonged or intractable seizures have a detrimental effect on cognition and brain function in experimental animals and are associated with adverse long-term neurodevelopmental sequelae and an increased risk of post-neonatal epilepsy in humans. The developing brain is particularly susceptible to the potentially severe effects of epilepsy, and epilepsy, especially when refractory to medications, often results in a developmental and epileptic encephalopathy (DEE) with developmental arrest or regression. DEEs can be primarily attributed to genetic causes. Given the critical role of potassium (K+) currents with distinct subcellular localization, biophysical properties, modulation, and pharmacological profile in regulating intrinsic electrical properties of neurons and their responsiveness to synaptic inputs, it is not too surprising that genetic research in the past two decades has identified several K+ channel genes as responsible for a large fraction of DEE. In the present article, we review the genetically determined epileptic channelopathies affecting three members of the Kv7 family, namely Kv7.2 (KCNQ2), Kv7.3 (KCNQ3), and Kv7.5 (KCNQ5); we review the phenotypic spectrum of Kv7-related epileptic channelopathies, the different genetic and pathogenetic mechanisms, and the emerging genotype-phenotype correlations which may prove crucial for prognostic predictions, disease management, parental counseling, and individually tailored therapeutic attempts.
Collapse
Affiliation(s)
- Piera Nappi
- Section of Pharmacology, Department of Neuroscience, University of Naples, "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Francesco Miceli
- Section of Pharmacology, Department of Neuroscience, University of Naples, "Federico II", Via Pansini 5, 80131, Naples, Italy
| | | | - Paolo Ambrosino
- Department of Science and Technology (DST), University of Sannio, Benevento, Italy
| | - Vincenzo Barrese
- Section of Pharmacology, Department of Neuroscience, University of Naples, "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Maurizio Taglialatela
- Section of Pharmacology, Department of Neuroscience, University of Naples, "Federico II", Via Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
23
|
Zhang J, Kim EC, Chen C, Procko E, Pant S, Lam K, Patel J, Choi R, Hong M, Joshi D, Bolton E, Tajkhorshid E, Chung HJ. Identifying mutation hotspots reveals pathogenetic mechanisms of KCNQ2 epileptic encephalopathy. Sci Rep 2020; 10:4756. [PMID: 32179837 PMCID: PMC7075958 DOI: 10.1038/s41598-020-61697-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 03/02/2020] [Indexed: 11/08/2022] Open
Abstract
Kv7 channels are enriched at the axonal plasma membrane where their voltage-dependent potassium currents suppress neuronal excitability. Mutations in Kv7.2 and Kv7.3 subunits cause epileptic encephalopathy (EE), yet the underlying pathogenetic mechanism is unclear. Here, we used novel statistical algorithms and structural modeling to identify EE mutation hotspots in key functional domains of Kv7.2 including voltage sensing S4, the pore loop and S6 in the pore domain, and intracellular calmodulin-binding helix B and helix B-C linker. Characterization of selected EE mutations from these hotspots revealed that L203P at S4 induces a large depolarizing shift in voltage dependence of Kv7.2 channels and L268F at the pore decreases their current densities. While L268F severely reduces expression of heteromeric channels in hippocampal neurons without affecting internalization, K552T and R553L mutations at distal helix B decrease calmodulin-binding and axonal enrichment. Importantly, L268F, K552T, and R553L mutations disrupt current potentiation by increasing phosphatidylinositol 4,5-bisphosphate (PIP2), and our molecular dynamics simulation suggests PIP2 interaction with these residues. Together, these findings demonstrate that each EE variant causes a unique combination of defects in Kv7 channel function and neuronal expression, and suggest a critical need for both prediction algorithms and experimental interrogations to understand pathophysiology of Kv7-associated EE.
Collapse
Affiliation(s)
- Jiaren Zhang
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Eung Chang Kim
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Congcong Chen
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Erik Procko
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Shashank Pant
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Kin Lam
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Jaimin Patel
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Rebecca Choi
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Mary Hong
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Dhruv Joshi
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Eric Bolton
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Emad Tajkhorshid
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Hee Jung Chung
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA.
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA.
| |
Collapse
|
24
|
Manville RW, Abbott GW. Potassium channels act as chemosensors for solute transporters. Commun Biol 2020; 3:90. [PMID: 32111967 PMCID: PMC7048750 DOI: 10.1038/s42003-020-0820-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/06/2020] [Indexed: 01/27/2023] Open
Abstract
Potassium channels form physical complexes with solute transporters in vivo, yet little is known about their range of possible signaling modalities and the underlying mechanisms. The KCNQ2/3 potassium channel, which generates neuronal M-current, is voltage-gated and its activity is also stimulated by binding of various small molecules. KCNQ2/3 forms reciprocally regulating complexes with sodium-coupled myo-inositol transporters (SMITs) in mammalian neurons. Here, we report that the neurotransmitter γ-aminobutyric acid (GABA) and other small molecules directly regulate myo-inositol transport in rat dorsal root ganglia, and by human SMIT1-KCNQ2/3 complexes in vitro, by inducing a distinct KCNQ2/3 pore conformation. Reciprocally, SMIT1 tunes KCNQ2/3 sensing of GABA and related metabolites. Ion permeation and mutagenesis studies suggest that SMIT1 and GABA similarly alter KCNQ2/3 pore conformation but via different KCNQ subunits and molecular mechanisms. KCNQ channels therefore act as chemosensors to enable co-assembled myo-inositol transporters to respond to diverse stimuli including neurotransmitters, metabolites and drugs.
Collapse
Affiliation(s)
- Rίan W Manville
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA.
| |
Collapse
|
25
|
Tzingounis AV. SMITten for KCNQ Channels. Biophys J 2019; 113:503-505. [PMID: 28793205 DOI: 10.1016/j.bpj.2017.06.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 06/25/2017] [Accepted: 06/30/2017] [Indexed: 11/16/2022] Open
|
26
|
Key J, Mueller AK, Gispert S, Matschke L, Wittig I, Corti O, Münch C, Decher N, Auburger G. Ubiquitylome profiling of Parkin-null brain reveals dysregulation of calcium homeostasis factors ATP1A2, Hippocalcin and GNA11, reflected by altered firing of noradrenergic neurons. Neurobiol Dis 2019; 127:114-130. [PMID: 30763678 DOI: 10.1016/j.nbd.2019.02.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/05/2018] [Accepted: 02/08/2019] [Indexed: 02/06/2023] Open
Abstract
Parkinson's disease (PD) is the second most frequent neurodegenerative disorder in the old population. Among its monogenic variants, a frequent cause is a mutation in the Parkin gene (Prkn). Deficient function of Parkin triggers ubiquitous mitochondrial dysfunction and inflammation in the brain, but it remains unclear how selective neural circuits become vulnerable and finally undergo atrophy. We attempted to go beyond previous work, mostly done in peripheral tumor cells, which identified protein targets of Parkin activity, an ubiquitin E3 ligase. Thus, we now used aged Parkin-knockout (KO) mouse brain for a global quantification of ubiquitylated peptides by mass spectrometry (MS). This approach confirmed the most abundant substrate to be VDAC3, a mitochondrial outer membrane porin that modulates calcium flux, while uncovering also >3-fold dysregulations for neuron-specific factors. Ubiquitylation decreases were prominent for Hippocalcin (HPCA), Calmodulin (CALM1/CALML3), Pyruvate Kinase (PKM2), sodium/potassium-transporting ATPases (ATP1A1/2/3/4), the Rab27A-GTPase activating protein alpha (TBC1D10A) and an ubiquitin ligase adapter (DDB1), while strong increases occurred for calcium transporter ATP2C1 and G-protein subunits G(i)/G(o)/G(Tr). Quantitative immunoblots validated elevated abundance for the electrogenic pump ATP1A2, for HPCA as neuron-specific calcium sensor, which stimulates guanylate cyclases and modifies axonal slow afterhyperpolarization (sAHP), and for the calcium-sensing G-protein GNA11. We assessed if compensatory molecular regulations become insufficient over time, leading to functional deficits. Patch clamp experiments in acute Parkin-KO brain slices indeed revealed alterations of the electrophysiological properties in aged noradrenergic locus coeruleus (LC) neurons. LC neurons of aged Parkin-KO brain showed an acceleration of the spontaneous pacemaker frequency, a reduction in sAHP and shortening of action potential duration, without modulation of KCNQ potassium currents. These findings indicate altered calcium-dependent excitability in a PARK2 model of PD, mediated by diminished turnover of potential Parkin targets such as ATP1A2 and HPCA. The data also identified further novel Parkin substrate candidates like SIRT2, OTUD7B and CUL5. Our elucidation of neuron-specific mechanisms of PD pathogenesis helps to explain the known exceptional susceptibility of noradrenergic and dopaminergic projections to alterations of calcium homeostasis and its mitochondrial buffering.
Collapse
Affiliation(s)
- J Key
- Exp. Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - A K Mueller
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior - MCMBB; Clinic for Neurology, Philipps-University Marburg, 35037 Marburg, Germany
| | - S Gispert
- Exp. Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - L Matschke
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior - MCMBB; Clinic for Neurology, Philipps-University Marburg, 35037 Marburg, Germany
| | - I Wittig
- Functional Proteomics, SFB 815 Core Unit, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - O Corti
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France; Inserm, U1127, Paris, F-75013, France; CNRS, UMR 7225, Paris, F-75013, France; Sorbonne Universités, Paris, F-75013, France
| | - C Münch
- Institute of Biochemistry II, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - N Decher
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior - MCMBB; Clinic for Neurology, Philipps-University Marburg, 35037 Marburg, Germany.
| | - G Auburger
- Exp. Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
27
|
Gq-Coupled Muscarinic Receptor Enhancement of KCNQ2/3 Channels and Activation of TRPC Channels in Multimodal Control of Excitability in Dentate Gyrus Granule Cells. J Neurosci 2018; 39:1566-1587. [PMID: 30593498 DOI: 10.1523/jneurosci.1781-18.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 12/21/2022] Open
Abstract
KCNQ (Kv7, "M-type") K+ channels and TRPC (transient receptor potential, "canonical") cation channels are coupled to neuronal discharge properties and are regulated via Gq/11-protein-mediated signals. Stimulation of Gq/11-coupled receptors both consumes phosphatidylinositol 4,5-bisphosphate (PIP2) via phosphalipase Cβ hydrolysis and stimulates PIP2 synthesis via rises in Ca2+ i and other signals. Using brain-slice electrophysiology and Ca2+ imaging from male and female mice, we characterized threshold K+ currents in dentate gyrus granule cells (DGGCs) and CA1 pyramidal cells, the effects of Gq/11-coupled muscarinic M1 acetylcholine (M1R) stimulation on M current and on neuronal discharge properties, and elucidated the intracellular signaling mechanisms involved. We observed disparate signaling cascades between DGGCs and CA1 neurons. DGGCs displayed M1R enhancement of M-current, rather than suppression, due to stimulation of PIP2 synthesis, which was paralleled by increased PIP2-gated G-protein coupled inwardly rectifying K+ currents as well. Deficiency of KCNQ2-containing M-channels ablated the M1R-induced enhancement of M-current in DGGCs. Simultaneously, M1R stimulation in DGGCs induced robust increases in [Ca2+]i, mostly due to TRPC currents, consistent with, and contributing to, neuronal depolarization and hyperexcitability. CA1 neurons did not display such multimodal signaling, but rather M current was suppressed by M1R stimulation in these cells, similar to the previously described actions of M1R stimulation on M-current in peripheral ganglia that mostly involves PIP2 depletion. Therefore, these results point to a pleiotropic network of cholinergic signals that direct cell-type-specific, precise control of hippocampal function with strong implications for hyperexcitability and epilepsy.SIGNIFICANCE STATEMENT At the neuronal membrane, protein signaling cascades consisting of ion channels and metabotropic receptors govern the electrical properties and neurotransmission of neuronal networks. Muscarinic acetylcholine receptors are G-protein-coupled metabotropic receptors that control the excitability of neurons through regulating ion channels, intracellular Ca2+ signals, and other second-messenger cascades. We have illuminated previously unknown actions of muscarinic stimulation on the excitability of hippocampal principal neurons that include M channels, TRPC (transient receptor potential, "canonical") cation channels, and powerful regulation of lipid metabolism. Our results show that these signaling pathways, and mechanisms of excitability, are starkly distinct between peripheral ganglia and brain, and even between different principal neurons in the hippocampus.
Collapse
|
28
|
Soh H, Park S, Ryan K, Springer K, Maheshwari A, Tzingounis AV. Deletion of KCNQ2/3 potassium channels from PV+ interneurons leads to homeostatic potentiation of excitatory transmission. eLife 2018; 7:e38617. [PMID: 30382937 PMCID: PMC6211828 DOI: 10.7554/elife.38617] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/19/2018] [Indexed: 12/18/2022] Open
Abstract
KCNQ2/3 channels, ubiquitously expressed neuronal potassium channels, have emerged as indispensable regulators of brain network activity. Despite their critical role in brain homeostasis, the mechanisms by which KCNQ2/3 dysfunction lead to hypersychrony are not fully known. Here, we show that deletion of KCNQ2/3 channels changed PV+ interneurons', but not SST+ interneurons', firing properties. We also find that deletion of either KCNQ2/3 or KCNQ2 channels from PV+ interneurons led to elevated homeostatic potentiation of fast excitatory transmission in pyramidal neurons. Pvalb-Kcnq2 null-mice showed increased seizure susceptibility, suggesting that decreases in interneuron KCNQ2/3 activity remodels excitatory networks, providing a new function for these channels.
Collapse
Affiliation(s)
- Heun Soh
- Department of Physiology and NeurobiologyUniversity of ConnecticutConnecticutUnited States
| | - Suhyeorn Park
- Department of NeurologyBaylor College of MedicineTexasUnited States
| | - Kali Ryan
- Department of Physiology and NeurobiologyUniversity of ConnecticutConnecticutUnited States
| | - Kristen Springer
- Department of Physiology and NeurobiologyUniversity of ConnecticutConnecticutUnited States
| | - Atul Maheshwari
- Department of NeurologyBaylor College of MedicineTexasUnited States
| | | |
Collapse
|
29
|
Abstract
Exome and targeted sequencing have revolutionized clinical diagnosis. This has been particularly striking in epilepsy and neurodevelopmental disorders, for which new genes or new variants of preexisting candidate genes are being continuously identified at increasing rates every year. A surprising finding of these efforts is the recognition that gain of function potassium channel variants are actually associated with certain types of epilepsy, such as malignant migrating partial seizures of infancy or early-onset epileptic encephalopathy. This development has been difficult to understand as traditionally potassium channel loss-of-function, not gain-of-function, has been associated with hyperexcitability disorders. In this article, we describe the current state of the field regarding the gain-of-function potassium channel variants associated with epilepsy (KCNA2, KCNB1, KCND2, KCNH1, KCNH5, KCNJ10, KCNMA1, KCNQ2, KCNQ3, and KCNT1) and speculate on the possible cellular mechanisms behind the development of seizures and epilepsy in these patients. Understanding how potassium channel gain-of-function leads to epilepsy will provide new insights into the inner working of neural circuits and aid in developing new therapies.
Collapse
Affiliation(s)
- Zachary Niday
- Dept. of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | | |
Collapse
|
30
|
Tiwari MN, Mohan S, Biala Y, Yaari Y. Differential contributions of Ca 2+ -activated K + channels and Na + /K + -ATPases to the generation of the slow afterhyperpolarization in CA1 pyramidal cells. Hippocampus 2018; 28:338-357. [PMID: 29431274 PMCID: PMC5947627 DOI: 10.1002/hipo.22836] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/17/2017] [Accepted: 02/05/2018] [Indexed: 12/13/2022]
Abstract
In many types of CNS neurons, repetitive spiking produces a slow afterhyperpolarization (sAHP), providing sustained, intrinsically generated negative feedback to neuronal excitation. Changes in the sAHP have been implicated in learning behaviors, in cognitive decline in aging, and in epileptogenesis. Despite its importance in brain function, the mechanisms generating the sAHP are still controversial. Here we have addressed the roles of M-type K+ current (IM ), Ca2+ -gated K+ currents (ICa(K) 's) and Na+ /K+ -ATPases (NKAs) current to sAHP generation in adult rat CA1 pyramidal cells maintained at near-physiological temperature (35 °C). No evidence for IM contribution to the sAHP was found in these neurons. Both ICa(K) 's and NKA current contributed to sAHP generation, the latter being the predominant generator of the sAHP, particularly when evoked with short trains of spikes. Of the different NKA isoenzymes, α1 -NKA played the key role, endowing the sAHP a steep voltage-dependence. Thus normal and pathological changes in α1 -NKA expression or function may affect cognitive processes by modulating the inhibitory efficacy of the sAHP.
Collapse
Affiliation(s)
- Manindra Nath Tiwari
- Department of Medical Neurobiology; Institute for Medical Research Israel‐CanadaThe Hebrew University‐Hadassah School of MedicineJerusalem91120Israel
| | - Sandesh Mohan
- Department of Medical Neurobiology; Institute for Medical Research Israel‐CanadaThe Hebrew University‐Hadassah School of MedicineJerusalem91120Israel
| | - Yoav Biala
- Department of Medical Neurobiology; Institute for Medical Research Israel‐CanadaThe Hebrew University‐Hadassah School of MedicineJerusalem91120Israel
| | - Yoel Yaari
- Department of Medical Neurobiology; Institute for Medical Research Israel‐CanadaThe Hebrew University‐Hadassah School of MedicineJerusalem91120Israel
| |
Collapse
|
31
|
McQuate A, Latorre-Esteves E, Barria A. A Wnt/Calcium Signaling Cascade Regulates Neuronal Excitability and Trafficking of NMDARs. Cell Rep 2017; 21:60-69. [DOI: 10.1016/j.celrep.2017.09.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/24/2017] [Accepted: 09/06/2017] [Indexed: 02/06/2023] Open
|
32
|
SMIT1 Modifies KCNQ Channel Function and Pharmacology by Physical Interaction with the Pore. Biophys J 2017; 113:613-626. [PMID: 28793216 DOI: 10.1016/j.bpj.2017.06.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/26/2017] [Accepted: 06/12/2017] [Indexed: 11/22/2022] Open
Abstract
Voltage-gated potassium channels of the KCNQ (Kv7) subfamily are essential for control of cellular excitability and repolarization in a wide range of cell types. Recently, we and others found that some KCNQ channels functionally and physically interact with sodium-dependent solute transporters, including myo-inositol transporters SMIT1 and SMIT2, potentially facilitating various modes of channel-transporter signal integration. In contrast to indirect effects such as channel regulation by SMIT-transported, myo-inositol-derived phosphatidylinositol 4,5-bisphosphate (PIP2), the mechanisms and functional consequences of the physical interaction of channels with transporters have been little studied. Here, using co-immunoprecipitation with different channel domains, we found that SMIT1 binds to the KCNQ2 pore module. We next tested the effects of SMIT1 co-expression, in the absence of extracellular myo-inositol or other SMIT1 substrates, on fundamental functional attributes of KCNQ2, KCNQ2/3, KCNQ1, and KCNQ1-KCNE1 channels. Without exception, SMIT1 altered KCNQ ion selectivity, sensitivity to extracellular K+, and pharmacology, consistent with an impact on conformation of the KCNQ pore. SMIT1 also altered the gating kinetics and/or voltage dependence of KCNQ2, KCNQ2/3, and KCNQ1-KCNE1. In contrast, SMIT1 had no effect on Kv1.1 (KCNA1) gating, ion selectivity, or pharmacology. We conclude that, independent of its transport activity and indirect regulatory mechanisms involving inositol-derived increases in PIP2, SMIT1, and likely other related sodium-dependent solute transporters, regulates KCNQ channel ion selectivity, gating, and pharmacology by direct physical interaction with the pore module.
Collapse
|
33
|
Kirchner MK, Foehring RC, Wang L, Chandaka GK, Callaway JC, Armstrong WE. Phosphatidylinositol 4,5-bisphosphate (PIP 2 ) modulates afterhyperpolarizations in oxytocin neurons of the supraoptic nucleus. J Physiol 2017; 595:4927-4946. [PMID: 28383826 DOI: 10.1113/jp274219] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/04/2017] [Indexed: 01/19/2023] Open
Abstract
KEY POINTS Afterhyperpolarizations (AHPs) generated by repetitive action potentials in supraoptic magnocellular neurons regulate repetitive firing and spike frequency adaptation but relatively little is known about PIP2 's control of these AHPs. We examined how changes in PIP2 levels affected AHPs, somatic [Ca2+ ]i , and whole cell Ca2+ currents. Manipulations of PIP2 levels affected both medium and slow AHP currents in oxytocin (OT) neurons of the supraoptic nucleus. Manipulations of PIP2 levels did not modulate AHPs by influencing Ca2+ release from IP3 -triggered Ca2+ stores, suggesting more direct modulation of channels by PIP2 . PIP2 depletion reduced spike-evoked Ca2+ entry and voltage-gated Ca2+ currents. PIP2 appears to influence AHPs in OT neurons by reducing Ca2+ influx during spiking. ABSTRACT Oxytocin (OT)- and vasopressin (VP)-secreting magnocellular neurons of the supraoptic nucleus (SON) display calcium-dependent afterhyperpolarizations (AHPs) following a train of action potentials that are critical to shaping the firing patterns of these cells. Previous work demonstrated that the lipid phosphatidylinositol 4,5-bisphosphate (PIP2 ) enabled the slow AHP component (sAHP) in cortical pyramidal neurons. We investigated whether this phenomenon occurred in OT and VP neurons of the SON. Using whole cell recordings in coronal hypothalamic slices from adult female rats, we demonstrated that inhibition of PIP2 synthesis with wortmannin robustly blocked both the medium and slow AHP currents (ImAHP and IsAHP ) of OT, but not VP neurons with high affinity. We further tested this by introducing a water-soluble PIP2 analogue (diC8 -PIP2 ) into neurons, which in OT neurons not only prevented wortmannin's inhibitory effect, but slowed rundown of the ImAHP and IsAHP . Inhibition of phospholipase C (PLC) with U73122 did not inhibit either ImAHP or IsAHP in OT neurons, consistent with wortmannin's effects not being due to reducing diacylglycerol (DAG) or IP3 availability, i.e. PIP2 modulation of AHPs is not likely to involve downstream Ca2+ release from inositol 1,4,5-trisphosphate (IP3 )-triggered Ca2+ -store release, or channel modulation via DAG and protein kinase C (PKC). We found that wortmannin reduced [Ca2+ ]i increase induced by spike trains in OT neurons, but had no effect on AHPs evoked by uncaging intracellular Ca2+ . Finally, wortmannin selectively reduced whole cell Ca2+ currents in OT neurons while leaving VP neurons unaffected. The results indicate that PIP2 modulates both the ImAHP and IsAHP in OT neurons, most likely by controlling Ca2+ entry through voltage-gated Ca2+ channels opened during spike trains.
Collapse
Affiliation(s)
- Matthew K Kirchner
- Department of Anatomy and Neurobiology and Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Robert C Foehring
- Department of Anatomy and Neurobiology and Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Lie Wang
- Department of Anatomy and Neurobiology and Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Giri Kumar Chandaka
- Department of Anatomy and Neurobiology and Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Joseph C Callaway
- Department of Anatomy and Neurobiology and Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| | - William E Armstrong
- Department of Anatomy and Neurobiology and Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
34
|
Neverisky DL, Abbott GW. KCNQ-SMIT complex formation facilitates ion channel-solute transporter cross talk. FASEB J 2017; 31:2828-2838. [PMID: 28283543 DOI: 10.1096/fj.201601334r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/26/2017] [Indexed: 11/11/2022]
Abstract
Voltage-gated potassium channels formed by KCNQ2 and KCNQ3 are essential for normal neuronal excitability. KCNQ2/3 channel activity is augmented in vivo by phosphatidylinositol 4,5-bisphosphate (PIP2), which is generated from myo-inositol, an osmolyte transported into cells by sodium-dependent myo-inositol transporters (SMITs). Here, we discovered that KCNQ2/3 channels isoform-specifically colocalize with SMIT1 and SMIT2 at sciatic nerve nodes of Ranvier and in axon initial segments, and form channel-transporter complexes in vitro and in vivo KCNQ2/3 coexpression protected SMIT1 activity from the otherwise inhibitory effects of cellular depolarization imposed by elevating extracellular [K+], and KCNQ2 was required for potentiation of SMIT activity by myo-inositol preincubation. Cytoskeletal disruption, which speeds PIP2 dispersion, attenuated potentiation of KCNQ2/3 currents by SMIT1-mediated myo-inositol uptake, suggesting close channel-transporter juxtaposition ensures KCNQ2/3 exposure to locally high myo-inositol-derived PIP2 concentrations. Thus, KCNQ2/3-SMIT1/2 coassembly permits cross talk via physical interaction, and may also be required for optimal, reciprocal indirect regulation via membrane potential and PIP2, especially within the specialized architecture of axons.-Neverisky, D. L., Abbott, G. W. KCNQ-SMIT complex formation facilitates ion channel-solute transporter cross talk.
Collapse
Affiliation(s)
- Daniel L Neverisky
- Bioelectricity Laboratory, Department of Pharmacology, and Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, California, USA
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Pharmacology, and Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
35
|
Early-onset epileptic encephalopathy caused by a reduced sensitivity of Kv7.2 potassium channels to phosphatidylinositol 4,5-bisphosphate. Sci Rep 2016; 6:38167. [PMID: 27905566 PMCID: PMC5131271 DOI: 10.1038/srep38167] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/04/2016] [Indexed: 12/17/2022] Open
Abstract
Kv7.2 and Kv7.3 subunits underlie the M-current, a neuronal K+ current characterized by an absolute functional requirement for phosphatidylinositol 4,5-bisphosphate (PIP2). Kv7.2 gene mutations cause early-onset neonatal seizures with heterogeneous clinical outcomes, ranging from self-limiting benign familial neonatal seizures to severe early-onset epileptic encephalopathy (Kv7.2-EE). In this study, the biochemical and functional consequences prompted by a recurrent variant (R325G) found independently in four individuals with severe forms of neonatal-onset EE have been investigated. Upon heterologous expression, homomeric Kv7.2 R325G channels were non-functional, despite biotin-capture in Western blots revealed normal plasma membrane subunit expression. Mutant subunits exerted dominant-negative effects when incorporated into heteromeric channels with Kv7.2 and/or Kv7.3 subunits. Increasing cellular PIP2 levels by co-expression of type 1γ PI(4)P5-kinase (PIP5K) partially recovered homomeric Kv7.2 R325G channel function. Currents carried by heteromeric channels incorporating Kv7.2 R325G subunits were more readily inhibited than wild-type channels upon activation of a voltage-sensitive phosphatase (VSP), and recovered more slowly upon VSP switch-off. These results reveal for the first time that a mutation-induced decrease in current sensitivity to PIP2 is the primary molecular defect responsible for Kv7.2-EE in individuals carrying the R325G variant, further expanding the range of pathogenetic mechanisms exploitable for personalized treatment of Kv7.2-related epilepsies.
Collapse
|
36
|
Greene DL, Hoshi N. Modulation of Kv7 channels and excitability in the brain. Cell Mol Life Sci 2016; 74:495-508. [PMID: 27645822 DOI: 10.1007/s00018-016-2359-y] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/25/2016] [Accepted: 09/06/2016] [Indexed: 11/26/2022]
Abstract
Neuronal Kv7 channels underlie a voltage-gated non-inactivating potassium current known as the M-current. Due to its particular characteristics, Kv7 channels show pronounced control over the excitability of neurons. We will discuss various factors that have been shown to drastically alter the activity of this channel such as protein and phospholipid interactions, phosphorylation, calcium, and numerous neurotransmitters. Kv7 channels locate to key areas for the control of action potential initiation and propagation. Moreover, we will explore the dynamic surface expression of the channel modulated by neurotransmitters and neural activity. We will also focus on known principle functions of neural Kv7 channels: control of resting membrane potential and spiking threshold, setting the firing frequency, afterhyperpolarization after burst firing, theta resonance, and transient hyperexcitability from neurotransmitter-induced suppression of the M-current. Finally, we will discuss the contribution of altered Kv7 activity to pathologies such as epilepsy and cognitive deficits.
Collapse
Affiliation(s)
- Derek L Greene
- Department of Pharmacology, University of California, 360 Med Surge II, Irvine, CA, 92697, USA
| | - Naoto Hoshi
- Department of Pharmacology, University of California, 360 Med Surge II, Irvine, CA, 92697, USA.
- Department of Physiology and Biophysics, University of California, Irvine, USA.
| |
Collapse
|
37
|
Lehnert S, Hartmann S, Hessler S, Adelsberger H, Huth T, Alzheimer C. Ion channel regulation by β-secretase BACE1 - enzymatic and non-enzymatic effects beyond Alzheimer's disease. Channels (Austin) 2016; 10:365-378. [PMID: 27253079 DOI: 10.1080/19336950.2016.1196307] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
β-site APP-cleaving enzyme 1 (BACE1) has become infamous for its pivotal role in the pathogenesis of Alzheimer's disease (AD). Consequently, BACE1 represents a prime target in drug development. Despite its detrimental involvement in AD, it should be quite obvious that BACE1 is not primarily present in the brain to drive mental decline. In fact, additional functions have been identified. In this review, we focus on the regulation of ion channels, specifically voltage-gated sodium and KCNQ potassium channels, by BACE1. These studies provide evidence for a highly unexpected feature in the functional repertoire of BACE1. Although capable of cleaving accessory channel subunits, BACE1 exerts many of its physiologically significant effects through direct, non-enzymatic interactions with main channel subunits. We discuss how the underlying mechanisms can be conceived and develop scenarios how the regulation of ion conductances by BACE1 might shape electric activity in the intact and diseased brain and heart.
Collapse
Affiliation(s)
- Sandra Lehnert
- a Institute of Physiology and Pathophysiology , Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen , Germany
| | - Stephanie Hartmann
- a Institute of Physiology and Pathophysiology , Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen , Germany
| | - Sabine Hessler
- b School of Psychology , University of Sussex , Brighton , UK
| | - Helmuth Adelsberger
- c Institute of Neuroscience, Technische Universität München , München , Germany
| | - Tobias Huth
- a Institute of Physiology and Pathophysiology , Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen , Germany
| | - Christian Alzheimer
- a Institute of Physiology and Pathophysiology , Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen , Germany
| |
Collapse
|
38
|
Osmoregulatory inositol transporter SMIT1 modulates electrical activity by adjusting PI(4,5)P2 levels. Proc Natl Acad Sci U S A 2016; 113:E3290-9. [PMID: 27217553 DOI: 10.1073/pnas.1606348113] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Myo-inositol is an important cellular osmolyte in autoregulation of cell volume and fluid balance, particularly for mammalian brain and kidney cells. We find it also regulates excitability. Myo-inositol is the precursor of phosphoinositides, key signaling lipids including phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. However, whether myo-inositol accumulation during osmoregulation affects signaling and excitability has not been fully explored. We found that overexpression of the Na(+)/myo-inositol cotransporter (SMIT1) and myo-inositol supplementation enlarged intracellular PI(4,5)P2 pools, modulated several PI(4,5)P2-dependent ion channels including KCNQ2/3 channels, and attenuated the action potential firing of superior cervical ganglion neurons. Further experiments using the rapamycin-recruitable phosphatase Sac1 to hydrolyze PI(4)P and the P4M probe to visualize PI(4)P suggested that PI(4)P levels increased after myo-inositol supplementation with SMIT1 expression. Elevated relative levels of PIP and PIP2 were directly confirmed using mass spectrometry. Inositol trisphosphate production and release of calcium from intracellular stores also were augmented after myo-inositol supplementation. Finally, we found that treatment with a hypertonic solution mimicked the effect we observed with SMIT1 overexpression, whereas silencing tonicity-responsive enhancer binding protein prevented these effects. These results show that ion channel function and cellular excitability are under regulation by several "physiological" manipulations that alter the PI(4,5)P2 setpoint. We demonstrate a previously unrecognized linkage between extracellular osmotic changes and the electrical properties of excitable cells.
Collapse
|