1
|
Zhigun A, Rajendran ML. Modelling non-local cell-cell adhesion: a multiscale approach. J Math Biol 2024; 88:55. [PMID: 38568280 PMCID: PMC10991076 DOI: 10.1007/s00285-024-02079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/27/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
Cell-cell adhesion plays a vital role in the development and maintenance of multicellular organisms. One of its functions is regulation of cell migration, such as occurs, e.g. during embryogenesis or in cancer. In this work, we develop a versatile multiscale approach to modelling a moving self-adhesive cell population that combines a careful microscopic description of a deterministic adhesion-driven motion component with an efficient mesoscopic representation of a stochastic velocity-jump process. This approach gives rise to mesoscopic models in the form of kinetic transport equations featuring multiple non-localities. Subsequent parabolic and hyperbolic scalings produce general classes of equations with non-local adhesion and myopic diffusion, a special case being the classical macroscopic model proposed in Armstrong et al. (J Theoret Biol 243(1): 98-113, 2006). Our simulations show how the combination of the two motion effects can unfold. Cell-cell adhesion relies on the subcellular cell adhesion molecule binding. Our approach lends itself conveniently to capturing this microscopic effect. On the macroscale, this results in an additional non-linear integral equation of a novel type that is coupled to the cell density equation.
Collapse
Affiliation(s)
- Anna Zhigun
- School of Mathematics and Physics, Queen's University Belfast, University Road, Belfast, BT7 1NN, Northern Ireland, UK.
| | - Mabel Lizzy Rajendran
- School of Mathematics, Watson Building, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
2
|
Nagendra K, Izzet A, Judd NB, Zakine R, Friedman L, Harrison OJ, Pontani LL, Shapiro L, Honig B, Brujic J. Push-pull mechanics of E-cadherin ectodomains in biomimetic adhesions. Biophys J 2023; 122:3506-3515. [PMID: 37528581 PMCID: PMC10502478 DOI: 10.1016/j.bpj.2023.07.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/12/2023] [Accepted: 07/27/2023] [Indexed: 08/03/2023] Open
Abstract
E-cadherin plays a central role in cell-cell adhesion. The ectodomains of wild-type cadherins form a crystalline-like two-dimensional lattice in cell-cell interfaces mediated by both trans (apposed cell) and cis (same cell) interactions. In addition to these extracellular forces, adhesive strength is further regulated by cytosolic phenomena involving α and β catenin-mediated interactions between cadherin and the actin cytoskeleton. Cell-cell adhesion can be further strengthened under tension through mechanisms that have not been definitively characterized in molecular detail. Here we quantitatively determine the role of the cadherin ectodomain in mechanosensing. To this end, we devise an E-cadherin-coated emulsion system, in which droplet surface tension is balanced by protein binding strength to give rise to stable areas of adhesion. To reach the honeycomb/cohesive limit, an initial emulsion compression by centrifugation facilitates E-cadherin trans binding, whereas a high protein surface concentration enables the cis-enhanced stabilization of the interface. We observe an abrupt concentration dependence on recruitment into adhesions of constant crystalline density, reminiscent of a first-order phase transition. Removing the lateral cis interaction with a "cis mutant" shifts this transition to higher surface densities leading to denser, yet weaker adhesions. In both proteins, the stabilization of progressively larger areas of deformation is consistent with single-molecule experiments that show a force-dependent lifetime enhancement in the cadherin ectodomain, which may be attributed to the "X-dimer" bond.
Collapse
Affiliation(s)
- Kartikeya Nagendra
- Center for Soft Matter Research, Department of Physics, New York University, New York, New York; Molecular Biophysics and Biochemistry Training Program, NYU Grossman School of Medicine, New York, New York
| | - Adrien Izzet
- Center for Soft Matter Research, Department of Physics, New York University, New York, New York
| | - Nicolas B Judd
- Center for Soft Matter Research, Department of Physics, New York University, New York, New York
| | - Ruben Zakine
- Center for Soft Matter Research, Department of Physics, New York University, New York, New York
| | - Leah Friedman
- Center for Soft Matter Research, Department of Physics, New York University, New York, New York; Département de Physique, École Normale Supérieure, PSL University, Paris, France
| | - Oliver J Harrison
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York
| | - Léa-Laetitia Pontani
- Laboratoire Jean Perrin, Institut de Biologie Paris-Seine, Sorbonne Université, CNRS, Paris, France
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York
| | - Barry Honig
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York; Department of Medicine, Division of Nephrology, Columbia University, New York, New York; Department of Systems Biology, Columbia University, New York, New York
| | - Jasna Brujic
- Center for Soft Matter Research, Department of Physics, New York University, New York, New York; Laboratoire de Physique et Mécanique de Milieux Hétérogènes, UMR 7636, CNRS, ESPCI Paris-PSL, Sorbonne Université, Université Paris Cité, Paris, France.
| |
Collapse
|
3
|
Kaurin D, Bal PK, Arroyo M. Peeling dynamics of fluid membranes bridged by molecular bonds: moving or breaking. J R Soc Interface 2022; 19:20220183. [PMID: 35765808 PMCID: PMC9240675 DOI: 10.1098/rsif.2022.0183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/01/2022] [Indexed: 11/28/2022] Open
Abstract
Biological adhesion is a critical mechanical function of complex organisms. At the scale of cell-cell contacts, adhesion is remarkably tunable to enable both cohesion and malleability during development, homeostasis and disease. It is physically supported by transient and laterally mobile molecular bonds embedded in fluid membranes. Thus, unlike specific adhesion at solid-solid or solid-fluid interfaces, peeling at fluid-fluid interfaces can proceed by breaking bonds, by moving bonds or by a combination of both. How the additional degree of freedom provided by bond mobility changes the mechanics of peeling is not understood. To address this, we develop a theoretical model coupling diffusion, reactions and mechanics. Mobility and reaction rates determine distinct peeling regimes. In a diffusion-dominated Stefan-like regime, bond motion establishes self-stabilizing dynamics that increase the effective fracture energy. In a reaction-dominated regime, peeling proceeds by travelling fronts where marginal diffusion and unbinding control peeling speed. In a mixed reaction-diffusion regime, strengthening by bond motion competes with weakening by bond breaking in a force-dependent manner, defining the strength of the adhesion patch. In turn, patch strength depends on molecular properties such as bond stiffness, force sensitivity or crowding. We thus establish the physical rules enabling tunable cohesion in cellular tissues and in engineered biomimetic systems.
Collapse
Affiliation(s)
- Dimitri Kaurin
- Universitat Politècnica de Catalunya-BarcelonaTech, 08034 Barcelona, Spain
| | - Pradeep K. Bal
- Universitat Politècnica de Catalunya-BarcelonaTech, 08034 Barcelona, Spain
| | - Marino Arroyo
- Universitat Politècnica de Catalunya-BarcelonaTech, 08034 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08034 Barcelona, Spain
- CIMNE, 08034 Barcelona, Spain
| |
Collapse
|
4
|
Thompson CJ, Vu VH, Leckband DE, Schwartz DK. Cadherin cis and trans interactions are mutually cooperative. Proc Natl Acad Sci U S A 2021; 118:e2019845118. [PMID: 33658369 PMCID: PMC7958404 DOI: 10.1073/pnas.2019845118] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Cadherin transmembrane proteins are responsible for intercellular adhesion in all biological tissues and modulate tissue morphogenesis, cell motility, force transduction, and macromolecular transport. The protein-mediated adhesions consist of adhesive trans interactions and lateral cis interactions. Although theory suggests cooperativity between cis and trans bonds, direct experimental evidence of such cooperativity has not been demonstrated. Here, the use of superresolution microscopy, in conjunction with intermolecular single-molecule Förster resonance energy transfer, demonstrated the mutual cooperativity of cis and trans interactions. Results further demonstrate the consequent assembly of large intermembrane junctions, using a biomimetic lipid bilayer cell adhesion model. Notably, the presence of cis interactions resulted in a nearly 30-fold increase in trans-binding lifetimes between epithelial-cadherin extracellular domains. In turn, the presence of trans interactions increased the lifetime of cis bonds. Importantly, comparison of trans-binding lifetimes of small and large cadherin clusters suggests that this cooperativity is primarily due to allostery. The direct quantitative demonstration of strong mutual cooperativity between cis and trans interactions at intermembrane adhesions provides insights into the long-standing controversy of how weak cis and trans interactions act in concert to create strong macroscopic cell adhesions.
Collapse
Affiliation(s)
- Connor J Thompson
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309
| | - Vinh H Vu
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - Deborah E Leckband
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - Daniel K Schwartz
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309;
| |
Collapse
|
5
|
Thompson CJ, Su Z, Vu VH, Wu Y, Leckband DE, Schwartz DK. Cadherin clusters stabilized by a combination of specific and nonspecific cis-interactions. eLife 2020; 9:e59035. [PMID: 32876051 PMCID: PMC7505656 DOI: 10.7554/elife.59035] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022] Open
Abstract
We demonstrate a combined experimental and computational approach for the quantitative characterization of lateral interactions between membrane-associated proteins. In particular, weak, lateral (cis) interactions between E-cadherin extracellular domains tethered to supported lipid bilayers, were studied using a combination of dynamic single-molecule Förster Resonance Energy Transfer (FRET) and kinetic Monte Carlo (kMC) simulations. Cadherins are intercellular adhesion proteins that assemble into clusters at cell-cell contacts through cis- and trans- (adhesive) interactions. A detailed and quantitative understanding of cis-clustering has been hindered by a lack of experimental approaches capable of detecting and quantifying lateral interactions between proteins on membranes. Here single-molecule intermolecular FRET measurements of wild-type E-cadherin and cis-interaction mutants combined with simulations demonstrate that both nonspecific and specific cis-interactions contribute to lateral clustering on lipid bilayers. Moreover, the intermolecular binding and dissociation rate constants are quantitatively and independently determined, demonstrating an approach that is generalizable for other interacting proteins.
Collapse
Affiliation(s)
- Connor J Thompson
- Department of Chemical and Biological Engineering, University of Colorado BoulderBoulderUnited States
| | - Zhaoqian Su
- Department of Systems and Computational Biology, Albert Einstein College of MedicineBronxUnited States
| | - Vinh H Vu
- Department of Biochemistry and University of Illinois, Urbana-ChampaignUrbanaUnited States
| | - Yinghao Wu
- Department of Systems and Computational Biology, Albert Einstein College of MedicineBronxUnited States
| | - Deborah E Leckband
- Department of Biochemistry and University of Illinois, Urbana-ChampaignUrbanaUnited States
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana-ChampaignUrbanaUnited States
| | - Daniel K Schwartz
- Department of Chemical and Biological Engineering, University of Colorado BoulderBoulderUnited States
| |
Collapse
|
6
|
Biswas KH. Molecular Mobility-Mediated Regulation of E-Cadherin Adhesion. Trends Biochem Sci 2019; 45:163-173. [PMID: 31810601 DOI: 10.1016/j.tibs.2019.10.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/22/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022]
Abstract
Cells in epithelial tissues utilize homotypic E-cadherin interaction-mediated adhesions to both physically adhere to each other and sense the physical properties of their microenvironment, such as the presence of other cells in close vicinity or an alteration in the mechanical tension of the tissue. These position E-cadherin centrally in organogenesis and other processes, and its function is therefore tightly regulated through a variety of means including endocytosis and gene expression. How does membrane molecular mobility of E-cadherin, and thus membrane physical properties and associated actin cytoskeleton, impinges on the assembly of adhesive clusters and signaling is discussed.
Collapse
Affiliation(s)
- Kabir H Biswas
- College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha 34110, Qatar.
| |
Collapse
|
7
|
Thompson CJ, Vu VH, Leckband DE, Schwartz DK. Cadherin Extracellular Domain Clustering in the Absence of Trans-Interactions. J Phys Chem Lett 2019; 10:4528-4534. [PMID: 31335147 PMCID: PMC6815682 DOI: 10.1021/acs.jpclett.9b01500] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
While both cis and trans (adhesive)-interactions cooperate in the assembly of intercellular adhesions, computational simulations have predicted that two-dimensional confinement may promote cis-oligomerization, in the absence of trans-interactions. Here, single-molecule tracking of cadherin extracellular domains on supported lipid bilayers revealed the density-dependent formation of oligomers and cis-clusters in the absence of trans-interactions. Lateral oligomers were virtually eliminated by mutating a putative cis (lateral) binding interface. At low cadherin surface coverage, wild-type and mutant cadherin diffused rapidly, consistent with the motion of a lipid molecule within a cadherin-free supported bilayer and with cadherins diffusing as monomers. Although the diffusion of mutant cadherin did not change appreciably with increasing surface coverage, the average short-time diffusion coefficient of wild-type cadherin slowed significantly above a fractional surface coverage of ∼0.01 (∼1100 molecules/μm2). A detailed analysis of molecular trajectories suggested the presence of a broad size distribution of cis-cadherin oligomers. These findings verify predictions that two-dimensional confinement promotes cis-oligomerization, in the absence of trans-interactions.
Collapse
Affiliation(s)
- Connor J. Thompson
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder 80309, Colorado, United States
| | - Vinh H. Vu
- Department of Biochemistry, University of Illinois, Urbana–Champaign, Urbana 61801, Illinois, United States
| | - Deborah E. Leckband
- Department of Biochemistry, University of Illinois, Urbana–Champaign, Urbana 61801, Illinois, United States
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana–Champaign, Urbana 61801, Illinois, United States
| | - Daniel K. Schwartz
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder 80309, Colorado, United States
| |
Collapse
|
8
|
Liu X, Zhu L, Wang R, Lou X, Yao X, Ni C, Qin Z. IFNγ inhibits fibroblast-leading tumor cell invasion through downregulating N-cadherin. Biochem Biophys Res Commun 2019; 512:544-551. [PMID: 30914199 DOI: 10.1016/j.bbrc.2019.03.136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 03/20/2019] [Indexed: 12/11/2022]
Abstract
Tumor metastasis accounts for most tumor-associated mortality and is closely related with stromal fibroblasts in the tumor microenvironment. It was reported that fibroblasts promoted tumor metastasis through directly leading tumor cell invasion; however, inflammatory microenvironment in the growing tumor may influence the outcome. Here, we found that the cytokine IFNγ, a key immune mediator secreted by T cells, could alter mouse lung tumor associated fibroblast-leading LLC tumor cell invasion in Matrigel. The motility of fibroblasts and adhesion with tumor cells were dramatically impaired upon IFNγ stimulation. We further found that IFNγ reduced the expression of N-cadherin on the surface of fibroblasts through upregulating SMAD7 and suppressing the downstream SMAD2 phosphorylation. N-cadherin was essential for fibroblast motility and adhesions with tumor cells. Moreover, fibroblasts could promote tumor progression and the deficiency of IFNγR signaling in fibroblasts reduced liver metastasis of LLC tumor in vivo. Collectively, our results demonstrate that IFNγ inhibits fibroblast-leading tumor cell invasion by inhibiting the motility of fibroblasts and their adhesion with tumor cells. The findings indicate that inflammatory cytokines in the tumor microenvironment may regulate the fibroblast-associated tumor metastasis.
Collapse
Affiliation(s)
- Xiaomeng Liu
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Linyu Zhu
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Ruirui Wang
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiaohan Lou
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiaohan Yao
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Chen Ni
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.
| | - Zhihai Qin
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China; Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
9
|
Brander S, Jank T, Hugel T. AFM Imaging Suggests Receptor-Free Penetration of Lipid Bilayers by Toxins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:365-371. [PMID: 30565941 DOI: 10.1021/acs.langmuir.8b03146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A crucial step of exotoxin action is the attack on the membrane. Many exotoxins show an architecture following the AB model, where a binding subunit translocates an "action" subunit across a cell membrane. Atomic force microscopy is an ideal technique to study these systems because of its ability to provide structural as well as dynamic information at the same time. We report first images of toxins Photorhabdus luminescens TcdA1 and Clostridium difficile TcdB on a supported lipid bilayer. A significant amount of toxin binds to the bilayer at neutral pH in the absence of receptors. Lack of diffusion indicates that toxin particles penetrate the membrane. This observation is supported by fluorescence recovery after photobleaching measurements. We mimic endocytosis by acidification while imaging the particles over time; however, we see no large conformational change. We therefore conclude that the toxin particles we imaged in neutral conditions had already formed a pore and speculate that there is no "pre-pore" state in our imaging conditions (i.e., in the absence of receptor).
Collapse
|
10
|
|
11
|
Chaparro Sosa AF, Kienle DF, Falatach RM, Flanagan J, Kaar JL, Schwartz DK. Stabilization of Immobilized Enzymes via the Chaperone-Like Activity of Mixed Lipid Bilayers. ACS APPLIED MATERIALS & INTERFACES 2018; 10:19504-19513. [PMID: 29767959 DOI: 10.1021/acsami.8b05523] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Biomimetic lipid bilayers represent intriguing materials for enzyme immobilization, which is critical for many biotechnological applications. Here, through the creation of mixed lipid bilayers, the retention of immobilized enzyme structures and catalytic activity are dramatically enhanced. The enhancement in the retention of enzyme structures, which correlated with an increase in enzyme activity, is observed using dynamic single-molecule (SM) fluorescence methods. The results of SM analysis specifically show that lipid bilayers composed of mixtures of 1,2-dioleoyl- sn-glycero-3-phosphocholine (DOPC) and 1,2-dioleoyl- sn-glycero-3-phospho-(1'- rac-glycerol) (DOPG) stabilize the folded state of nitroreductase (NfsB), increasing the rate of refolding relative to unfolding of enzyme molecules on the bilayer surface. Remarkably, for optimal compositions with 15-50% DOPG, over 95% of NfsB remains folded while the activity of the enzyme is increased as much as 2 times over that in solution. Within this range of DOPG, the strength of the interaction of folded and unfolded NfsB with the bilayer surface was also significantly altered, which was evident by the change in the diffusion of folded and unfolded NfsB in the bilayer. Ultimately, these findings provide direct evidence for the chaperone-like activity of mixed DOPG/DOPC lipid bilayers, which can be controlled by tuning the fraction of DOPG in the bilayer.
Collapse
Affiliation(s)
- Andres F Chaparro Sosa
- Department of Chemical and Biological Engineering , University of Colorado , Boulder , Colorado 80309 , United States
| | - Daniel F Kienle
- Department of Chemical and Biological Engineering , University of Colorado , Boulder , Colorado 80309 , United States
| | - Rebecca M Falatach
- Department of Chemical and Biological Engineering , University of Colorado , Boulder , Colorado 80309 , United States
| | - Jessica Flanagan
- Department of Chemical and Biological Engineering , University of Colorado , Boulder , Colorado 80309 , United States
| | - Joel L Kaar
- Department of Chemical and Biological Engineering , University of Colorado , Boulder , Colorado 80309 , United States
| | - Daniel K Schwartz
- Department of Chemical and Biological Engineering , University of Colorado , Boulder , Colorado 80309 , United States
| |
Collapse
|
12
|
Nelson N, Schwartz DK. Single-Molecule Resolution of Antimicrobial Peptide Interactions with Supported Lipid A Bilayers. Biophys J 2018; 114:2606-2616. [PMID: 29874611 PMCID: PMC6129183 DOI: 10.1016/j.bpj.2018.04.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/16/2018] [Accepted: 04/12/2018] [Indexed: 01/12/2023] Open
Abstract
The molecular interactions between antimicrobial peptides (AMPs) and lipid A-containing supported lipid bilayers were probed using single-molecule total internal reflection fluorescence microscopy. Hybrid supported lipid bilayers with lipid A outer leaflets and phospholipid (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE)) inner leaflets were prepared and characterized, and the spatiotemporal trajectories of individual fluorescently labeled LL37 and Melittin AMPs were determined as they interacted with the bilayer surfaces comprising either monophosphoryl or diphosphoryl lipid A (from Escherichia coli) to determine the impact of electrostatic interactions. Large numbers of trajectories were obtained and analyzed to obtain the distributions of surface residence times and the statistics of the spatial trajectories. Interestingly, the AMP species were sensitive to subtle differences in the charge of the lipid, with both peptides diffusing more slowly and residing longer on the diphosphoryl lipid A. Furthermore, the single-molecule dynamics indicated a qualitative difference between the behavior of AMPs on hybrid Lipid A bilayers and on those composed entirely of DOPE. Whereas AMPs interacting with a DOPE bilayer exhibited two-dimensional Brownian diffusion with a diffusion coefficient of ∼1.7 μm2/s, AMPs adsorbed to the lipid A surface exhibited much slower apparent diffusion (on the order of ∼0.1 μm2/s) and executed intermittent trajectories that alternated between two-dimensional Brownian diffusion and desorption-mediated three-dimensional flights. Overall, these findings suggested that bilayers with lipid A in the outer leaflet, as it is in bacterial outer membranes, are valuable model systems for the study of the initial stage of AMP-bacterium interactions. Furthermore, single-molecule dynamics was sensitive to subtle differences in electrostatic interactions between cationic AMPs and monovalent or divalent anionic lipid A moieties.
Collapse
Affiliation(s)
- Nathaniel Nelson
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado
| | - Daniel K Schwartz
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado.
| |
Collapse
|
13
|
Cai Y, Schwartz DK. Mapping the Functional Tortuosity and Spatiotemporal Heterogeneity of Porous Polymer Membranes with Super-Resolution Nanoparticle Tracking. ACS APPLIED MATERIALS & INTERFACES 2017; 9:43258-43266. [PMID: 29161008 DOI: 10.1021/acsami.7b15335] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
As particles flow through porous media, they follow complex pathways and experience heterogeneous environments that are challenging to characterize. Tortuosity is often used as a parameter to characterize the complexity of pathways in porous materials and is useful in understanding hindered mass transport in industrial filtration and mass separation processes. However, conventional calculations of tortuosity provide only average values under static conditions; they are insensitive to the intrinsic heterogeneity of porous media and do not account for potential effects of operating conditions. Here, we employ a high-throughput nanoparticle tracking method which enables the observation of actual particle trajectories in polymer membranes under relevant operating conditions. Our results indicate that tortuosity is not simply a structural material property but is instead a functional property that depends on flow rate and particle size. We also resolved the spatiotemporal heterogeneity of flowing particles in these porous media. The distributions of tortuosity and of local residence/retention times were surprisingly broad, exhibiting heavy tails representing a population of highly tortuous trajectories and local regions with anomalously long residence times. Interestingly, local tortuosity and residence times were directly correlated, suggesting the presence of highly confining regions that cause more meandering trajectories and longer retention times. The comprehensive information about tortuosity and spatiotemporal heterogeneity provided by these methods will advance the understanding of complex mass transport and assist rational design and synthesis of porous materials.
Collapse
Affiliation(s)
- Yu Cai
- Department of Chemical and Biological Engineering, University of Colorado Boulder , 596 UCB, Boulder, Colorado 80309-0596, United States
| | - Daniel K Schwartz
- Department of Chemical and Biological Engineering, University of Colorado Boulder , 596 UCB, Boulder, Colorado 80309-0596, United States
| |
Collapse
|
14
|
Yousefpour A, Modarress H, Goharpey F, Amjad-Iranagh S. Combination of anti-hypertensive drugs: a molecular dynamics simulation study. J Mol Model 2017; 23:158. [DOI: 10.1007/s00894-017-3333-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 03/27/2017] [Indexed: 01/03/2023]
|