1
|
Mann MM, Tang JD, Berger BW. Engineering human liver fatty acid binding protein for detection of poly- and perfluoroalkyl substances. Biotechnol Bioeng 2021; 119:513-522. [PMID: 34723386 DOI: 10.1002/bit.27981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 01/09/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a large group of synthetic fluorinated chemicals with surface active and water-repellent properties. The combination of wide-spread use in numerous consumer and industrial products and extended biological half-lives arising from strong carbon-fluorine bonds has led to significant accumulation of PFAS in humans. As most human interaction with PFAS comes from ingestion, it is important to be able to detect PFAS in drinking water as well as in agricultural water. Here we present an approach to designing a fluorescence-based biosensor for the rapid detection of PFAS based on human liver fatty acid binding protein (hLFABP). Introduction of solvatochromic fluorophores within the ligand binding pocket (L50) allowed for intrinsic detection of perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), and perfluorohexanesulfonic acid (PFHxS) via blue-shifts in fluorescence emission spectra. Initially, a single tryptophan mutation (L50W) was found to be able to detect PFOA with a limit of detection (LOD) of 2.8 ppm. We improved the sensitivity of the biosensor by exchanging tryptophan for the thiol reactive fluorophore, acrylodan. The acrylodan conjugated C69S/F50C hLFABP variant is capable of detecting PFOA, PFOS, and PFHxS in PBS with LODs of 112 ppb, 345 ppb, and 1.09 ppm, respectively. The protein-based sensor is also capable of detecting these contaminants at similar ranges in spiked environmental water samples, including samples containing an interfering anionic surfactant sodium dodecyl sulfate. Overall, this study demonstrates engineered hLFABP is a useful platform for detection of PFAS in environmental water samples and highlights its ease of use and versatility in field applications.
Collapse
Affiliation(s)
- Madison M Mann
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, United States
| | - James D Tang
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, United States
| | - Bryan W Berger
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, United States
| |
Collapse
|
2
|
Busi B, Yarava JR, Bertarello A, Freymond F, Adamski W, Maurin D, Hiller M, Oschkinat H, Blackledge M, Emsley L. Similarities and Differences among Protein Dynamics Studied by Variable Temperature Nuclear Magnetic Resonance Relaxation. J Phys Chem B 2021; 125:2212-2221. [PMID: 33635078 DOI: 10.1021/acs.jpcb.0c10188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Understanding and describing the dynamics of proteins is one of the major challenges in biology. Here, we use multifield variable-temperature NMR longitudinal relaxation (R1) measurements to determine the hierarchical activation energies of motions of four different proteins: two small globular proteins (GB1 and the SH3 domain of α-spectrin), an intrinsically disordered protein (the C-terminus of the nucleoprotein of the Sendai virus, Sendai Ntail), and an outer membrane protein (OmpG). The activation energies map the motions occurring in the side chains, in the backbone, and in the hydration shells of the proteins. We were able to identify similarities and differences in the average motions of the proteins. We find that the NMR relaxation properties of the four proteins do share similar features. The data characterizing average backbone motions are found to be very similar, the same for methyl group rotations, and similar activation energies are measured. The main observed difference occurs for the intrinsically disordered Sendai Ntail, where we observe much lower energy of activation for motions of protons associated with the protein-solvent interface as compared to the others. We also observe variability between the proteins regarding side chain 15N relaxation of lysine residues, with a higher activation energy observed in OmpG. This hints at strong interactions with negatively charged lipids in the bilayer and provides a possible mechanistic clue for the "positive-inside" rule for helical membrane proteins. Overall, these observations refine the understanding of the similarities and differences between hierarchical dynamics in proteins.
Collapse
Affiliation(s)
- Baptiste Busi
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Jayasubba Reddy Yarava
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany.,Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Andrea Bertarello
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - François Freymond
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Wiktor Adamski
- Université Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | - Damien Maurin
- Université Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | - Matthias Hiller
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany.,Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Hartmut Oschkinat
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany.,Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | | | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|