1
|
Xiong H, Chang Q, Ding J, Wang S, Zhang W, Li Y, Wu Y, Lin P, Yang C, Liu M, Fang G, Yang Y, Xie J, Qi D, Jiang T, Fu W, Hu F, Chen Y, Yue R, Li Y, Cui Y, Li M, Fan S, Yang Y, Xu Y, Li D, Zhang F, Zhao H, Wu C, Zheng Q, Piatkevich KD, Fu Z. A highly stable monomeric red fluorescent protein for advanced microscopy. Nat Methods 2025:10.1038/s41592-025-02676-5. [PMID: 40247125 DOI: 10.1038/s41592-025-02676-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 03/07/2025] [Indexed: 04/19/2025]
Abstract
The stability of fluorescent proteins (FPs) is crucial for imaging techniques such as live-cell imaging, super-resolution microscopy and correlative light and electron microscopy. Although stable green and yellow FPs are available, stable monomeric red FPs (RFPs) remain limited. Here we develop an extremely stable monomeric RFP named mScarlet3-H and determine its structure at a 1.5 Å resolution. mScarlet3-H exhibits remarkable resistance to high temperature, chaotropic conditions and oxidative environments, enabling efficient correlative light and electron microscopy imaging and rapid (less than 1 day) whole-organ tissue clearing. In addition, its high photostability allows long-term three-dimensional structured illumination microscopy imaging of mitochondrial dynamics with minimal photobleaching. It also facilitates dual-color live-cell stimulated emission depletion imaging with a high signal-to-noise ratio and strong specificity. Systematic benchmarking against high-performing RFPs established mScarlet3-H as a highly stable RFP for multimodality microscopy in cell cultures and model organisms, complementing green FPs for multiplexed imaging in zebrafish, mice and Nicotiana benthamiana.
Collapse
Affiliation(s)
- Haiyan Xiong
- Key Laboratory of Clinical Laboratory Technology for Precision Medicine, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Public Technology Service Center, Fujian Medical University, Fuzhou, China
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Qiyuan Chang
- Key Laboratory of Clinical Laboratory Technology for Precision Medicine, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Public Technology Service Center, Fujian Medical University, Fuzhou, China
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jiayi Ding
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Shuyuan Wang
- Key Laboratory of Clinical Laboratory Technology for Precision Medicine, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Public Technology Service Center, Fujian Medical University, Fuzhou, China
| | - Wenhao Zhang
- School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yu Li
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| | - Yaochen Wu
- Key Laboratory of Clinical Laboratory Technology for Precision Medicine, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Public Technology Service Center, Fujian Medical University, Fuzhou, China
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Pengyan Lin
- Key Laboratory of Clinical Laboratory Technology for Precision Medicine, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Public Technology Service Center, Fujian Medical University, Fuzhou, China
| | - Chengyu Yang
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| | - Miaoxing Liu
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Guicun Fang
- Microscopy core facility of Westlake University, Hangzhou, China
| | - Yiwei Yang
- Institute of Life Sciences, Fuzhou University, Fuzhou, China
| | - Jiongfang Xie
- Microscopy core facility of Westlake University, Hangzhou, China
| | - Dong Qi
- Optofem Technology Company, Beijing, China
| | - Tao Jiang
- Beijing Nano Insights Technology Co. Ltd, Beijing, China
| | - Wenfeng Fu
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Fen Hu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yiming Chen
- Key Laboratory of Clinical Laboratory Technology for Precision Medicine, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Public Technology Service Center, Fujian Medical University, Fuzhou, China
| | - Rongcai Yue
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, China
- School of Pharmacy, Center of Translational Hematology, Fujian Medical University, Fuzhou, China
| | - Yanbin Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Yong Cui
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Min Li
- X-ray crystallography platform of National Protein Science Facility, Tsinghua University, Beijing, China
| | - Shilong Fan
- X-ray crystallography platform of National Protein Science Facility, Tsinghua University, Beijing, China
| | - Yufeng Yang
- Institute of Life Sciences, Fuzhou University, Fuzhou, China
| | - Yunlu Xu
- School of Pharmacy, Center of Translational Hematology, Fujian Medical University, Fuzhou, China
| | - Dong Li
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Fenghua Zhang
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Hu Zhao
- Chinese Institute for Brain Research, Beijing, China
| | - Congxian Wu
- Key Laboratory of Clinical Laboratory Technology for Precision Medicine, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Public Technology Service Center, Fujian Medical University, Fuzhou, China.
| | - Qingbing Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China.
| | - Kiryl D Piatkevich
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China.
- College of Life Sciences, Zhejiang University, Hangzhou, China.
| | - Zhifei Fu
- Key Laboratory of Clinical Laboratory Technology for Precision Medicine, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Public Technology Service Center, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
2
|
Donovan GM, Lin C, Sparkes I, Ashwin P. Emergence and stability of endoplasmic reticulum network streaming in plant cells. J Theor Biol 2024; 595:111954. [PMID: 39343133 DOI: 10.1016/j.jtbi.2024.111954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/18/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
The endoplasmic reticulum (ER) network is highly complex and highly dynamic in its geometry, and undergoes extensive remodeling and bulk flow. It is known that the ER dynamics are driven by actin-myosin dependent processes. ER motion through the cytoplasm will cause forces on the cytoplasm that will induce flow. However, ER will also clearly be passively transported by the bulk cytoplasmic streaming. We take the complex ER network structure into account and propose a positive-feedback mechanism among myosin-like motors, actin alignment, ER network dynamics for the emergence of ER flow. Using this model, we demonstrate that ER streaming may be an emergent feature of this three-way interaction and that the persistent-point density may be a key driver of the emergence of ER streaming.
Collapse
Affiliation(s)
- Graham M Donovan
- Department of Mathematics, University of Auckland, Auckland, 1142, New Zealand.
| | - Congping Lin
- School of Mathematics and Statistics, Center for Mathematical Sciences & Hubei Key Lab of Engineering Modelling and Scientific, Huazhong University of Science and Technology, Wuhan, China
| | - Imogen Sparkes
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - Peter Ashwin
- Department of Mathematics and Statistics, University of Exeter, Exeter, EX4 4QF, UK
| |
Collapse
|
3
|
Scott ZC, Steen SB, Huber G, Westrate LM, Koslover EF. The endoplasmic reticulum as an active liquid network. Proc Natl Acad Sci U S A 2024; 121:e2409755121. [PMID: 39392663 PMCID: PMC11494354 DOI: 10.1073/pnas.2409755121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
The peripheral endoplasmic reticulum (ER) forms a dense, interconnected, and constantly evolving network of membrane-bound tubules in eukaryotic cells. While individual structural elements and the morphogens that stabilize them have been described, a quantitative understanding of the dynamic large-scale network topology remains elusive. We develop a physical model of the ER as an active liquid network, governed by a balance of tension-driven shrinking and new tubule growth. This minimalist model gives rise to steady-state network structures with density and rearrangement timescales predicted from the junction mobility and tubule spawning rate. Several parameter-independent geometric features of the liquid network model are shown to be representative of ER architecture in live mammalian cells. The liquid network model connects the timescales of distinct dynamic features such as ring closure and new tubule growth in the ER. Furthermore, it demonstrates how the steady-state network morphology on a cellular scale arises from the balance of microscopic dynamic rearrangements.
Collapse
Affiliation(s)
| | - Samuel B. Steen
- Department of Chemistry and Biochemistry, Calvin University, Grand Rapids, MI49546
| | - Greg Huber
- Chan Zuckerberg Biohub—San Francisco, San Francisco, CA94158
| | - Laura M. Westrate
- Department of Chemistry and Biochemistry, Calvin University, Grand Rapids, MI49546
| | - Elena F. Koslover
- Department of Physics, University of California, San Diego, La Jolla, CA92093
| |
Collapse
|
4
|
Fricker M, Breeze E, Pain C, Kriechbaumer V, Aguilar C, Ugalde JM, Meyer AJ. Quantitation of ER Morphology and Dynamics. Methods Mol Biol 2024; 2772:49-75. [PMID: 38411806 DOI: 10.1007/978-1-0716-3710-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The plant endoplasmic reticulum forms a network of tubules connected by three-way junctions or sheet-like cisternae. Although the network is three-dimensional, in many plant cells, it is constrained to thin volume sandwiched between the vacuole and plasma membrane, effectively restricting it to a 2-D planar network. The structure of the network, and the morphology of the tubules and cisternae can be automatically extracted following intensity-independent edge-enhancement and various segmentation techniques to give an initial pixel-based skeleton, which is then converted to a graph representation. ER dynamics can be determined using optical flow techniques from computer vision or persistency analysis. Collectively, this approach yields a wealth of quantitative metrics for ER structure and can be used to describe the effects of pharmacological treatments or genetic manipulation. The software is publicly available.
Collapse
Affiliation(s)
- Mark Fricker
- Department of Biology, University of Oxford, Oxford, UK.
| | - Emily Breeze
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Charlotte Pain
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Verena Kriechbaumer
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Carlos Aguilar
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - José M Ugalde
- INRES-Chemical Signalling, University of Bonn, Bonn, Germany
| | - Andreas J Meyer
- INRES-Chemical Signalling, University of Bonn, Bonn, Germany
| |
Collapse
|
5
|
Scott ZC, Koning K, Vanderwerp M, Cohen L, Westrate LM, Koslover EF. Endoplasmic reticulum network heterogeneity guides diffusive transport and kinetics. Biophys J 2023; 122:3191-3205. [PMID: 37401053 PMCID: PMC10432226 DOI: 10.1016/j.bpj.2023.06.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/17/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023] Open
Abstract
The endoplasmic reticulum (ER) is a dynamic network of interconnected sheets and tubules that orchestrates the distribution of lipids, ions, and proteins throughout the cell. The impact of its complex, dynamic morphology on its function as an intracellular transport hub remains poorly understood. To elucidate the functional consequences of ER network structure and dynamics, we quantify how the heterogeneity of the peripheral ER in COS7 cells affects diffusive protein transport. In vivo imaging of photoactivated ER membrane proteins demonstrates their nonuniform spreading to adjacent regions, in a manner consistent with simulations of diffusing particles on extracted network structures. Using a minimal network model to represent tubule rearrangements, we demonstrate that ER network dynamics are sufficiently slow to have little effect on diffusive protein transport. Furthermore, stochastic simulations reveal a novel consequence of ER network heterogeneity: the existence of "hot spots" where sparse diffusive reactants are more likely to find one another. ER exit sites, specialized domains regulating cargo export from the ER, are shown to be disproportionately located in highly accessible regions, further from the outer boundary of the cell. Combining in vivo experiments with analytic calculations, quantitative image analysis, and computational modeling, we demonstrate how structure guides diffusive protein transport and reactions in the ER.
Collapse
Affiliation(s)
| | - Katherine Koning
- Department of Chemistry and Biochemistry, Calvin University, Grand Rapids, Michigan
| | - Molly Vanderwerp
- Department of Chemistry and Biochemistry, Calvin University, Grand Rapids, Michigan
| | | | - Laura M Westrate
- Department of Chemistry and Biochemistry, Calvin University, Grand Rapids, Michigan
| | - Elena F Koslover
- Department of Physics, University of California, San Diego, La Jolla, California.
| |
Collapse
|
6
|
Zucker B, Golani G, Kozlov MM. Model for ring closure in ER tubular network dynamics. Biophys J 2022:S0006-3495(22)00825-6. [DOI: 10.1016/j.bpj.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/23/2022] [Accepted: 10/04/2022] [Indexed: 11/29/2022] Open
|
7
|
Pain C, Tolmie F, Wojcik S, Wang P, Kriechbaumer V. intER-ACTINg: the structure and dynamics of ER and actin are interlinked. J Microsc 2022. [PMID: 35985796 DOI: 10.1111/jmi.13139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022]
Abstract
The actin cytoskeleton is the driver of gross ER remodelling and the movement and positioning of other membrane-bound organelles such as Golgi bodies. Rapid ER membrane remodelling is a feature of most plant cells and is important for normal cellular processes, including targeted secretion, immunity and signalling. Modifications to the actin cytoskeleton, through pharmacological agents such as Latrunculin B and phalloidin, or disruption of normal myosin function also affect ER structure and/or dynamics. Here, we investigate the impact of changes in the actin cytoskeleton on structure and dynamics on the ER as well as in return the impact of modified ER structure on the architecture of the actin cytoskeleton. By expressing actin markers that affect actin dynamics, or expressing of ER-shaping proteins that influence ER architecture, we found that the structure of ER-actin networks is closely inter-related; affecting one component is likely to have a direct effect on the other. Therefore, our results indicate that a complicated regulatory machinery and cross-talk between these two structures must exist in plants to co-ordinate the function of ER-actin network during multiple subcellular processes. In addition, when considering organelle structure and dynamics, the choice of actin marker is essential in preventing off-target organelle structure and dynamics modifications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Charlotte Pain
- Plant Cell Biology, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Frances Tolmie
- Plant Cell Biology, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Stefan Wojcik
- Plant Cell Biology, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Pengwei Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Verena Kriechbaumer
- Plant Cell Biology, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| |
Collapse
|
8
|
Haimov E, Urbakh M, Kozlov MM. Negative tension controls stability and structure of intermediate filament networks. Sci Rep 2022; 12:16. [PMID: 34996899 PMCID: PMC8741771 DOI: 10.1038/s41598-021-02536-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022] Open
Abstract
Networks, whose junctions are free to move along the edges, such as two-dimensional soap froths and membrane tubular networks of endoplasmic reticulum are intrinsically unstable. This instability is a result of a positive tension applied to the network elements. A paradigm of networks exhibiting stable polygonal configurations in spite of the junction mobility, are networks formed by bundles of Keratin Intermediate Filaments (KIFs) in live cells. A unique feature of KIF networks is a, hypothetically, negative tension generated in the network bundles due to an exchange of material between the network and an effective reservoir of unbundled filaments. Here we analyze the structure and stability of two-dimensional networks with mobile three-way junctions subject to negative tension. First, we analytically examine a simplified case of hexagonal networks with symmetric junctions and demonstrate that, indeed, a negative tension is mandatory for the network stability. Another factor contributing to the network stability is the junction elastic resistance to deviations from the symmetric state. We derive an equation for the optimal density of such networks resulting from an interplay between the tension and the junction energy. We describe a configurational degeneration of the optimal energy state of the network. Further, we analyze by numerical simulations the energy of randomly generated networks with, generally, asymmetric junctions, and demonstrate that the global minimum of the network energy corresponds to the irregular configurations.
Collapse
Affiliation(s)
- Ehud Haimov
- School of Physics and Astronomy, Raymond and Beverley Sackler Faculty of Exact Sciences, Tel-Aviv University, 69978, Tel-Aviv, Israel
| | - Michael Urbakh
- School of Chemistry, Raymond and Beverley Sackler Faculty of Exact Sciences, Tel-Aviv University, 69978, Tel-Aviv, Israel.
| | - Michael M Kozlov
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, 69978, Tel-Aviv, Israel.
| |
Collapse
|
9
|
Intertwined and Finely Balanced: Endoplasmic Reticulum Morphology, Dynamics, Function, and Diseases. Cells 2021; 10:cells10092341. [PMID: 34571990 PMCID: PMC8472773 DOI: 10.3390/cells10092341] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 02/07/2023] Open
Abstract
The endoplasmic reticulum (ER) is an organelle that is responsible for many essential subcellular processes. Interconnected narrow tubules at the periphery and thicker sheet-like regions in the perinuclear region are linked to the nuclear envelope. It is becoming apparent that the complex morphology and dynamics of the ER are linked to its function. Mutations in the proteins involved in regulating ER structure and movement are implicated in many diseases including neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and amyotrophic lateral sclerosis (ALS). The ER is also hijacked by pathogens to promote their replication. Bacteria such as Legionella pneumophila and Chlamydia trachomatis, as well as the Zika virus, bind to ER morphology and dynamics-regulating proteins to exploit the functions of the ER to their advantage. This review covers our understanding of ER morphology, including the functional subdomains and membrane contact sites that the organelle forms. We also focus on ER dynamics and the current efforts to quantify ER motion and discuss the diseases related to ER morphology and dynamics.
Collapse
|
10
|
Rosado A, Bayer EM. Geometry and cellular function of organelle membrane interfaces. PLANT PHYSIOLOGY 2021; 185:650-662. [PMID: 33793898 PMCID: PMC8133572 DOI: 10.1093/plphys/kiaa079] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/17/2020] [Indexed: 05/09/2023]
Abstract
A vast majority of cellular processes take root at the surface of biological membranes. By providing a two-dimensional platform with limited diffusion, membranes are, by nature, perfect devices to concentrate signaling and metabolic components. As such, membranes often act as "key processors" of cellular information. Biological membranes are highly dynamic and deformable and can be shaped into curved, tubular, or flat conformations, resulting in differentiated biophysical properties. At membrane contact sites, membranes from adjacent organelles come together into a unique 3D configuration, forming functionally distinct microdomains, which facilitate spatially regulated functions, such as organelle communication. Here, we describe the diversity of geometries of contact site-forming membranes in different eukaryotic organisms and explore the emerging notion that their shape, 3D architecture, and remodeling jointly define their cellular activity. The review also provides selected examples highlighting changes in membrane contact site architecture acting as rapid and local responses to cellular perturbations, and summarizes our current understanding of how those structural changes confer functional specificity to those cellular territories.
Collapse
Affiliation(s)
- Abel Rosado
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Emmanuelle M Bayer
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d’Ornon, France
- Author for communication:
| |
Collapse
|
11
|
Kriechbaumer V, Brandizzi F. The plant endoplasmic reticulum: an organized chaos of tubules and sheets with multiple functions. J Microsc 2020; 280:122-133. [PMID: 32426862 PMCID: PMC10895883 DOI: 10.1111/jmi.12909] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/08/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022]
Abstract
The endoplasmic reticulum is a fascinating organelle at the core of the secretory pathway. It is responsible for the synthesis of one third of the cellular proteome and, in plant cells, it produces receptors and transporters of hormones as well as the proteins responsible for the biosynthesis of critical components of a cellulosic cell wall. The endoplasmic reticulum structure resembles a spider-web network of interconnected tubules and cisternae that pervades the cell. The study of the dynamics and interaction of this organelles with other cellular structures such as the plasma membrane, the Golgi apparatus and the cytoskeleton, have been permitted by the implementation of fluorescent protein and advanced confocal imaging. In this review, we report on the findings that contributed towards the understanding of the endoplasmic reticulum morphology and function with the aid of fluorescent proteins, focusing on the contributions provided by pioneering work from the lab of the late Professor Chris Hawes.
Collapse
Affiliation(s)
- V Kriechbaumer
- Plant Cell Biology, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, U.K
| | - F Brandizzi
- MSU-DOE Plant Research Laboratory, Department of Plant Biology, Michigan State University, East Lansing, Michigan, U.S.A
| |
Collapse
|
12
|
Li W, Zhang S, Yang G. Dynamic organization of intracellular organelle networks. WIREs Mech Dis 2020; 13:e1505. [PMID: 32865347 DOI: 10.1002/wsbm.1505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/06/2020] [Accepted: 07/09/2020] [Indexed: 01/07/2023]
Abstract
Intracellular organelles are membrane-bound and biochemically distinct compartments constructed to serve specialized functions in eukaryotic cells. Through extensive interactions, they form networks to coordinate and integrate their specialized functions for cell physiology. A fundamental property of these organelle networks is that they constantly undergo dynamic organization via membrane fusion and fission to remodel their internal connections and to mediate direct material exchange between compartments. The dynamic organization not only enables them to serve critical physiological functions adaptively but also differentiates them from many other biological networks such as gene regulatory networks and cell signaling networks. This review examines this fundamental property of the organelle networks from a systems point of view. The focus is exclusively on homotypic networks formed by mitochondria, lysosomes, endosomes, and the endoplasmic reticulum, respectively. First, key mechanisms that drive the dynamic organization of these networks are summarized. Then, several distinct organizational properties of these networks are highlighted. Next, spatial properties of the dynamic organization of these networks are emphasized, and their functional implications are examined. Finally, some representative molecular machineries that mediate the dynamic organization of these networks are surveyed. Overall, the dynamic organization of intracellular organelle networks is emerging as a fundamental and unifying paradigm in the internal organization of eukaryotic cells. This article is categorized under: Metabolic Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Wenjing Li
- Laboratory of Computational Biology and Machine Intelligence, School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Shuhao Zhang
- Laboratory of Computational Biology and Machine Intelligence, School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, Nankai University, Tianjin, China
| | - Ge Yang
- Laboratory of Computational Biology and Machine Intelligence, School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.,Department of Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
13
|
Harant D, Lang I. Stay in Touch-The Cortical ER of Moss Protonemata in Osmotic Stress Situations. PLANTS 2020; 9:plants9040421. [PMID: 32235617 PMCID: PMC7238208 DOI: 10.3390/plants9040421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 11/16/2022]
Abstract
Plasmolysis is usually introduced to cell biology students as a tool to illustrate the plasma membrane: hypertonic solutions cause the living protoplast to shrink by osmotic water loss; hence, it detaches from the surrounding cell wall. What happens, however, with the subcellular structures in the cell cortex during this process of turgor loss? Here, we investigated the cortical endoplasmic reticulum (ER) in moss protonema cells of Physcomitrella patens in a cell line carrying a transgenic ER marker (GFP-HDEL). The plasma membrane was labelled simultaneously with the fluorescent dye FM4-64 to achieve structural separation. By placing the protonemata in a hypertonic mannitol solution (0.8 M), we were able to follow the behaviour of the cortical ER and the protoplast during plasmolysis by confocal laser scanning microscopy (CLSM). The protoplast shape and structural changes of the ER were further examined after depolymerisation of actin microfilaments with latrunculin B (1 µM). In its natural state, the cortical ER is a dynamic network of fine tubes and cisternae underneath the plasma membrane. Under acute and long-term plasmolysis (up to 45 min), changes in the protoplast form and the cortical ER, as well as the formation of Hechtian strands and Hechtian reticula, were observed. The processing of the high-resolution z-scans allowed the creation of 3D models and gave detailed insight into the ER of living protonema cells before, during and after plasmolysis.
Collapse
Affiliation(s)
- Dominik Harant
- Core Facility Cell Imaging & Ultrastructure Research, Faculty of Life Sciences, The University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria;
| | - Ingeborg Lang
- Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, The University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
- Correspondence:
| |
Collapse
|
14
|
Pain C, Kriechbaumer V. Defining the dance: quantification and classification of endoplasmic reticulum dynamics. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1757-1762. [PMID: 31811712 PMCID: PMC7094074 DOI: 10.1093/jxb/erz543] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The availability of quantification methods for subcellular organelle dynamic analysis has increased rapidly over the last 20 years. The application of these techniques to contiguous subcellular structures that exhibit dynamic remodelling over a range of scales and orientations is challenging, as quantification of 'movement' rarely corresponds to traditional, qualitative classifications of types of organelle movement. The plant endoplasmic reticulum represents a particular challenge for dynamic quantification as it itself is an entirely contiguous organelle that is in a constant state of flux and gross remodelling, controlled by the actinomyosin cytoskeleton.
Collapse
Affiliation(s)
- Charlotte Pain
- Oxford Brookes University, Faculty of Health and Life Sciences, Gipsy Lane, Plant Cell Biology, Oxford, UK
| | - Verena Kriechbaumer
- Oxford Brookes University, Faculty of Health and Life Sciences, Gipsy Lane, Plant Cell Biology, Oxford, UK
- Correspondence:
| |
Collapse
|
15
|
Espadas J, Pendin D, Bocanegra R, Escalada A, Misticoni G, Trevisan T, Velasco Del Olmo A, Montagna A, Bova S, Ibarra B, Kuzmin PI, Bashkirov PV, Shnyrova AV, Frolov VA, Daga A. Dynamic constriction and fission of endoplasmic reticulum membranes by reticulon. Nat Commun 2019; 10:5327. [PMID: 31757972 PMCID: PMC6876568 DOI: 10.1038/s41467-019-13327-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 10/25/2019] [Indexed: 12/16/2022] Open
Abstract
The endoplasmic reticulum (ER) is a continuous cell-wide membrane network. Network formation has been associated with proteins producing membrane curvature and fusion, such as reticulons and atlastin. Regulated network fragmentation, occurring in different physiological contexts, is less understood. Here we find that the ER has an embedded fragmentation mechanism based upon the ability of reticulon to produce fission of elongating network branches. In Drosophila, Rtnl1-facilitated fission is counterbalanced by atlastin-driven fusion, with the prevalence of Rtnl1 leading to ER fragmentation. Ectopic expression of Drosophila reticulon in COS-7 cells reveals individual fission events in dynamic ER tubules. Consistently, in vitro analyses show that reticulon produces velocity-dependent constriction of lipid nanotubes leading to stochastic fission via a hemifission mechanism. Fission occurs at elongation rates and pulling force ranges intrinsic to the ER, thus suggesting a principle whereby the dynamic balance between fusion and fission controlling organelle morphology depends on membrane motility.
Collapse
Affiliation(s)
- Javier Espadas
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular, Biology, University of the Basque Country, Leioa, 48940, Spain
| | - Diana Pendin
- Scientific Institute, IRCCS E. Medea, Laboratory of Molecular Biology, Bosisio Parini, Lecco, Italy
- Neuroscience Institute, Italian National Research Council (CNR), Padova, Italy
| | - Rebeca Bocanegra
- IMDEA Nanociencia, C/Faraday 9, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Artur Escalada
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular, Biology, University of the Basque Country, Leioa, 48940, Spain
| | - Giulia Misticoni
- Scientific Institute, IRCCS E. Medea, Laboratory of Molecular Biology, Bosisio Parini, Lecco, Italy
| | - Tatiana Trevisan
- Scientific Institute, IRCCS E. Medea, Laboratory of Molecular Biology, Bosisio Parini, Lecco, Italy
| | - Ariana Velasco Del Olmo
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular, Biology, University of the Basque Country, Leioa, 48940, Spain
| | - Aldo Montagna
- Scientific Institute, IRCCS E. Medea, Laboratory of Molecular Biology, Bosisio Parini, Lecco, Italy
| | - Sergio Bova
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Borja Ibarra
- IMDEA Nanociencia, C/Faraday 9, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
- Nanobiotecnología (IMDEA-Nanociencia) Unidad Asociada al Centro Nacional de Biotecnologia (CSIC), 28049, Madrid, Spain
| | - Peter I Kuzmin
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Pavel V Bashkirov
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Moscow, 119435, Russia
| | - Anna V Shnyrova
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular, Biology, University of the Basque Country, Leioa, 48940, Spain
| | - Vadim A Frolov
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular, Biology, University of the Basque Country, Leioa, 48940, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48013, Spain.
| | - Andrea Daga
- Scientific Institute, IRCCS E. Medea, Laboratory of Molecular Biology, Bosisio Parini, Lecco, Italy.
| |
Collapse
|
16
|
Pain C, Kriechbaumer V, Kittelmann M, Hawes C, Fricker M. Quantitative analysis of plant ER architecture and dynamics. Nat Commun 2019; 10:984. [PMID: 30816109 PMCID: PMC6395764 DOI: 10.1038/s41467-019-08893-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/05/2019] [Indexed: 02/06/2023] Open
Abstract
The endoplasmic reticulum (ER) is a highly dynamic polygonal membrane network composed of interconnected tubules and sheets (cisternae) that forms the first compartment in the secretory pathway involved in protein translocation, folding, glycosylation, quality control, lipid synthesis, calcium signalling, and metabolon formation. Despite its central role in this plethora of biosynthetic, metabolic and physiological processes, there is little quantitative information on ER structure, morphology or dynamics. Here we describe a software package (AnalyzER) to automatically extract ER tubules and cisternae from multi-dimensional fluorescence images of plant ER. The structure, topology, protein-localisation patterns, and dynamics are automatically quantified using spatial, intensity and graph-theoretic metrics. We validate the method against manually-traced ground-truth networks, and calibrate the sub-resolution width estimates against ER profiles identified in serial block-face SEM images. We apply the approach to quantify the effects on ER morphology of drug treatments, abiotic stress and over-expression of ER tubule-shaping and cisternal-modifying proteins.
Collapse
Affiliation(s)
- Charlotte Pain
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Verena Kriechbaumer
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Maike Kittelmann
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Chris Hawes
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Mark Fricker
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| |
Collapse
|
17
|
Ionic stress enhances ER-PM connectivity via phosphoinositide-associated SYT1 contact site expansion in Arabidopsis. Proc Natl Acad Sci U S A 2019; 116:1420-1429. [PMID: 30610176 DOI: 10.1073/pnas.1818099116] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The interorganelle communication mediated by membrane contact sites (MCSs) is an evolutionary hallmark of eukaryotic cells. MCS connections enable the nonvesicular exchange of information between organelles and allow them to coordinate responses to changing cellular environments. In plants, the importance of MCS components in the responses to environmental stress has been widely established, but the molecular mechanisms regulating interorganelle connectivity during stress still remain opaque. In this report, we use the model plant Arabidopsis thaliana to show that ionic stress increases endoplasmic reticulum (ER)-plasma membrane (PM) connectivity by promoting the cortical expansion of synaptotagmin 1 (SYT1)-enriched ER-PM contact sites (S-EPCSs). We define differential roles for the cortical cytoskeleton in the regulation of S-EPCS dynamics and ER-PM connectivity, and we identify the accumulation of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] at the PM as a molecular signal associated with the ER-PM connectivity changes. Our study highlights the functional conservation of EPCS components and PM phosphoinositides as modulators of ER-PM connectivity in eukaryotes, and uncovers unique aspects of the spatiotemporal regulation of ER-PM connectivity in plants.
Collapse
|
18
|
Sparkes I. Lessons from optical tweezers: quantifying organelle interactions, dynamics and modelling subcellular events. CURRENT OPINION IN PLANT BIOLOGY 2018; 46:55-61. [PMID: 30081386 DOI: 10.1016/j.pbi.2018.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/06/2018] [Accepted: 07/13/2018] [Indexed: 05/24/2023]
Abstract
Optical tweezers enable users to physically trap organelles and move them laterally within the plant cell. Recent advances have highlighted physical interactions between functionally related organelle pairs, such as ER-Golgi and peroxisome-chloroplast, and have shown how organelle positioning affects plant growth. Quantification of these processes has provided insight into the force components which ultimately drive organelle movement and positioning in plant cells. Application of optical tweezers has therefore revolutionised our understanding of plant organelle dynamics.
Collapse
Affiliation(s)
- Imogen Sparkes
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK.
| |
Collapse
|
19
|
Perico C, Sparkes I. Plant organelle dynamics: cytoskeletal control and membrane contact sites. THE NEW PHYTOLOGIST 2018; 220:381-394. [PMID: 30078196 DOI: 10.1111/nph.15365] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/10/2018] [Indexed: 05/22/2023]
Abstract
Contents Summary 381 I. Introduction 381 II. Basic movement characteristics 382 III. Actin and associated motors, myosins, play a primary role in plant organelle movement and positioning 382 IV. Mechanisms of myosin recruitment: a tightly regulated system? 384 V. Microtubules, associated motors and interplay with actin 386 VI. Role of organelle interactions: tales of tethers 387 VII. Summary model to describe organelle movement in higher plants 390 VIII. Why is organelle movement important? 390 IX. Conclusions and future perspectives 391 Acknowledgements 391 References 391 SUMMARY: Organelle movement and positioning are correlated with plant growth and development. Movement characteristics are seemingly erratic yet respond to external stimuli including pathogens and light. Given these clear correlations, we still do not understand the specific roles that movement plays in these processes. There are few exceptions including organelle inheritance during cell division and photorelocation of chloroplasts to prevent photodamage. The molecular and biophysical components that drive movement can be broken down into cytoskeletal components, motor proteins and tethers, which allow organelles to physically interact with one another. Our understanding of these components and concepts has exploded over the past decade, with recent technological advances allowing an even more in-depth profiling. Here, we provide an overview of the cytoskeletal and tethering components and discuss the mechanisms behind organelle movement in higher plants.
Collapse
Affiliation(s)
- Chiara Perico
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Imogen Sparkes
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| |
Collapse
|
20
|
Bayer EM, Sparkes I, Vanneste S, Rosado A. From shaping organelles to signalling platforms: the emerging functions of plant ER-PM contact sites. CURRENT OPINION IN PLANT BIOLOGY 2017; 40:89-96. [PMID: 28865976 DOI: 10.1016/j.pbi.2017.08.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/24/2017] [Accepted: 08/15/2017] [Indexed: 06/07/2023]
Abstract
The plant endoplasmic reticulum (ER) defines the biosynthetic site of lipids and proteins destined for secretion, but also contains important signal transduction and homeostasis components that regulate multiple hormonal and developmental responses. To achieve its various functions, the ER has a unique architecture, both reticulated and highly plastic, that facilitates the spatial-temporal segregation of biochemical reactions and the establishment of inter-organelle communication networks. At the cell cortex, the cortical ER (cER) anchors to and functionally couples with the PM through largely static structures known as ER-PM contact sites (EPCS). These spatially confined microdomains are emerging as critical regulators of the geometry of the cER network, and as highly specialized signalling hubs. In this review, we share recent insights into how EPCS regulate cER remodelling, and discuss the proposed roles for plant EPCS components in the integration of environmental and developmental signals at the cER-PM interface.
Collapse
Affiliation(s)
- Emmanuelle M Bayer
- Laboratory of Membrane Biogenesis, UMR 5200 CNRS, University of Bordeaux, 71 avenue Edouard Bourlaux, 33140 Villenave d'Ornon, France
| | - Imogen Sparkes
- Biosciences, CLES, Exeter University, Geoffrey Pope Building, Stocker Rd, Exeter EX4 4QD, UK; School of Biological Sciences, University of Bristol, Bristol Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Steffen Vanneste
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Abel Rosado
- Department of Botany, Faculty of Sciences, University of British Columbia, Vancouver V6T 1Z4, Canada.
| |
Collapse
|