1
|
Li Q, Xu L, Duan H, Yang H, Luo YB. Common and Key Differential Pathogenic Pathways in Desminopathy and Titinopathy. Int J Med Sci 2024; 21:2040-2051. [PMID: 39239540 PMCID: PMC11373559 DOI: 10.7150/ijms.97797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/16/2024] [Indexed: 09/07/2024] Open
Abstract
Myofibrillar myopathy (MFM) is a group of hereditary myopathies that mainly involves striated muscles. This study aimed to use tandem mass tag (TMT)-based proteomics to investigate the underlying pathomechanisms of two of the most common MFM subtypes, desminopathy and titinopathy. Muscles from 7 patients with desminopathy, 5 with titinopathy and 5 control individuals were included. Samples were labelled with TMT and then underwent high-resolution liquid chromatography-mass spectrometry analysis. Compared with control samples, there were 436 differentially abundant proteins (DAPs) in the desminopathy group and 269 in the titinopathy group. When comparing the desminopathy with the titinopathy group, there were 113 DAPs. In desminopathy, mitochondrial ATP production, muscle contraction, and cytoskeleton organization were significantly suppressed. Activated cellular components and pathways were mostly related to extracellular matrix (ECM). In titinopathy, mitochondrial-related pathways and the cellular component ECM were downregulated, while gluconeogenesis was activated. Direct comparison between desminopathy and titinopathy revealed hub genes that were all involved in glycolytic process. The disparity in glycolysis in the two MFM subtypes is likely due to fiber type switching. This study has revealed disorganization of cytoskeleton and mitochondrial dysfunction as the common pathophysiological processes in MFM, and glycolysis and ECM as the differential pathomechanism between desminopathy and titinopathy. This offers a future direction for targeted therapy for MFM.
Collapse
Affiliation(s)
- Qiuxiang Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Research Center for Neuroimmune and Neuromuscular disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Liqun Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Research Center for Neuroimmune and Neuromuscular disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Huiqian Duan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Research Center for Neuroimmune and Neuromuscular disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Research Center for Neuroimmune and Neuromuscular disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yue-Bei Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Research Center for Neuroimmune and Neuromuscular disorders, Xiangya Hospital, Central South University, Changsha, China
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Claeyssen C, Bulangalire N, Bastide B, Agbulut O, Cieniewski-Bernard C. Desmin and its molecular chaperone, the αB-crystallin: How post-translational modifications modulate their functions in heart and skeletal muscles? Biochimie 2024; 216:137-159. [PMID: 37827485 DOI: 10.1016/j.biochi.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/04/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023]
Abstract
Maintenance of the highly organized striated muscle tissue requires a cell-wide dynamic network through protein-protein interactions providing an effective mechanochemical integrator of morphology and function. Through a continuous and complex trans-cytoplasmic network, desmin intermediate filaments ensure this essential role in heart and in skeletal muscle. Besides their role in the maintenance of cell shape and architecture (permitting contractile activity efficiency and conferring resistance towards mechanical stress), desmin intermediate filaments are also key actors of cell and tissue homeostasis. Desmin participates to several cellular processes such as differentiation, apoptosis, intracellular signalisation, mechanotransduction, vesicle trafficking, organelle biogenesis and/or positioning, calcium homeostasis, protein homeostasis, cell adhesion, metabolism and gene expression. Desmin intermediate filaments assembly requires αB-crystallin, a small heat shock protein. Over its chaperone activity, αB-crystallin is involved in several cellular functions such as cell integrity, cytoskeleton stabilization, apoptosis, autophagy, differentiation, mitochondria function or aggresome formation. Importantly, both proteins are known to be strongly associated to the aetiology of several cardiac and skeletal muscles pathologies related to desmin filaments disorganization and a strong disturbance of desmin interactome. Note that these key proteins of cytoskeleton architecture are extensively modified by post-translational modifications that could affect their functional properties. Therefore, we reviewed in the herein paper the impact of post-translational modifications on the modulation of cellular functions of desmin and its molecular chaperone, the αB-crystallin.
Collapse
Affiliation(s)
- Charlotte Claeyssen
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France
| | - Nathan Bulangalire
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France; Université de Lille, CHU Lille, F-59000 Lille, France
| | - Bruno Bastide
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France
| | - Onnik Agbulut
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 75005, Paris, France
| | - Caroline Cieniewski-Bernard
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France.
| |
Collapse
|
3
|
Liboz M, Allard A, Malo M, Lamour G, Letort G, Thiébot B, Labdi S, Pelta J, Campillo C. Using Adhesive Micropatterns and AFM to Assess Cancer Cell Morphology and Mechanics. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43403-43413. [PMID: 37682772 DOI: 10.1021/acsami.3c07785] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
The mechanical properties of living cells reflect their physiological and pathological state. In particular, cancer cells undergo cytoskeletal modifications that typically make them softer than healthy cells, a property that could be used as a diagnostic tool. However, this is challenging because cells are complex structures displaying a broad range of morphologies when cultured in standard 2D culture dishes. Here, we use adhesive micropatterns to impose the cell geometry and thus standardize the mechanics and morphologies of cancer cells, which we measure by atomic force microscopy (AFM), mechanical nanomapping, and membrane nanotube pulling. We show that micropatterning cancer cells leads to distinct morphological and mechanical changes for different cell lines. Micropatterns did not systematically lower the variability in cell elastic modulus distribution. These effects emerge from a variable cell spreading rate associated with differences in the organization of the cytoskeleton, thus providing detailed insights into the structure-mechanics relationship of cancer cells cultured on micropatterns. Combining AFM with micropatterns reveals new mechanical and morphological observables applicable to cancer cells and possibly other cell types.
Collapse
Affiliation(s)
- Maxime Liboz
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry-Courcouronnes, France
| | - Antoine Allard
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry-Courcouronnes, France
- Department of Physics, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, U.K
| | - Michel Malo
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry-Courcouronnes, France
| | - Guillaume Lamour
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry-Courcouronnes, France
| | - Gaelle Letort
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, 75231 Paris, France
| | - Bénédicte Thiébot
- CY Cergy Paris Université, Université d'Evry, Université Paris-Saclay, CNRS, LAMBE, F-95000 Cergy, France
| | - Sid Labdi
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry-Courcouronnes, France
| | - Juan Pelta
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry-Courcouronnes, France
| | - Clément Campillo
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry-Courcouronnes, France
- Institut Universitaire de France (IUF), 75231 Paris, France
| |
Collapse
|
4
|
Sukhareva KS, Smolina NA, Churkina AI, Kalugina KK, Zhuk SV, Khudiakov AA, Khodot AA, Faggian G, Luciani GB, Sejersen T, Kostareva AA. Desmin mutations impact the autophagy flux in C2C12 cell in mutation-specific manner. Cell Tissue Res 2023; 393:357-375. [PMID: 37277577 PMCID: PMC10406715 DOI: 10.1007/s00441-023-03790-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 05/12/2023] [Indexed: 06/07/2023]
Abstract
Desmin is the main intermediate filament of striated and smooth muscle cells and plays a crucial role in maintaining the stability of muscle fiber during contraction and relaxation cycles. Being a component of Z-disk area, desmin integrates autophagic pathways, and the disturbance of Z-disk proteins' structure negatively affects chaperone-assisted selective autophagy (CASA). In the present study, we focused on alteration of autophagy flux in myoblasts expressing various Des mutations. We applied Western blotting, immunocytochemistry, RNA sequencing, and shRNA approach to demonstrate that DesS12F, DesA357P, DesL345P, DesL370P, and DesD399Y mutations. Mutation-specific effect on autophagy flux being most severe in aggregate-prone Des mutations such as DesL345P, DesL370P, and DesD399Y. RNA sequencing data confirmed the most prominent effect of these mutations on expression profile and, in particular, on autophagy-related genes. To verify CASA contribution to desmin aggregate formation, we suppressed CASA by knocking down Bag3 and demonstrated that it promoted aggregate formation and lead to downregulation of Vdac2 and Vps4a and upregulation of Lamp, Pink1, and Prkn. In conclusion, Des mutations showed a mutation-specific effect on autophagy flux in C2C12 cells with either a predominant impact on autophagosome maturation or on degradation and recycling processes. Aggregate-prone desmin mutations lead to the activation of basal autophagy level while suppressing the CASA pathway by knocking down Bag3 can promote desmin aggregate formation.
Collapse
Affiliation(s)
- K S Sukhareva
- Institute of Molecular Biology and Genetics, Almazov National Medical Research Centre, Saint-Petersburg, Russia.
- Graduate School of Life and Health Science, University of Verona, Verona, Italy.
| | - N A Smolina
- Institute of Molecular Biology and Genetics, Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - A I Churkina
- Institute of Molecular Biology and Genetics, Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - K K Kalugina
- Institute of Molecular Biology and Genetics, Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - S V Zhuk
- Institute of Molecular Biology and Genetics, Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - A A Khudiakov
- Institute of Molecular Biology and Genetics, Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - A A Khodot
- Institute of Molecular Biology and Genetics, Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - G Faggian
- Graduate School of Life and Health Science, University of Verona, Verona, Italy
| | - G B Luciani
- Graduate School of Life and Health Science, University of Verona, Verona, Italy
| | - T Sejersen
- Department of Women's and Children's Health, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
- Department of Neuropaediatrics, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - A A Kostareva
- Institute of Molecular Biology and Genetics, Almazov National Medical Research Centre, Saint-Petersburg, Russia
- Department of Women's and Children's Health, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Expression patterns and correlation analyses of muscle-specific genes in the process of sheep myoblast differentiation. In Vitro Cell Dev Biol Anim 2022; 58:798-809. [PMID: 36178582 DOI: 10.1007/s11626-022-00721-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/05/2022] [Indexed: 11/05/2022]
Abstract
The purpose of this study was to establish a system for the isolation, culture, and differentiation of sheep myoblasts, and to explore the expression patterns as well as mutual relationships of muscle-specific genes. Sheep fetal myoblasts (SFMs) were isolated by two-step enzymatic digestion, purified by differential adhesion and identified using immunofluorescence techniques. Two percent horse serum was used to induce differentiation in SFMs. Real-time quantitative and Western blot analyses were respectively used to detect the mRNA and protein expressions of muscle-specific genes including MyoD, MyoG, Myf5, Myf6, PAX3, PAX7, myomaker, desmin, MYH1, MYH2, MYH4, MYH7, and MSTN during the differentiation of SFMs. Finally, the correlation between muscle-specific genes was analyzed by the Pearson correlation coefficient method. The results showed that the isolated and purified SFMs could form myotubes after the induction for differentiation. The marker factors including MyoD, MyoG, myomaker, desmin, and MyHC were positively stained in SFMs. The mRNA expressions of MyoD, MyoG, and myomaker increased and then decreased, while Myf5, PAX3, and PAX7 decreased; Myf6, desmin, MYH1, MYH2, MYH4, and MYH7 increased; and MSTN fluctuated up and down during the differentiation of SFMs. The expression patterns of protein were basically consistent with those of mRNA except MSTN. There existed significant or highly significant correlations at mRNA or protein level among some genes. Some transcription factor proteins (MyoD, Myf5, Myf6, PAX3, PAX7) showed significant or highly significant correlations with the mRNA level of some other genes and/or themselves. In conclusion, SFMs with good myogenic differentiation ability were successfully isolated, and the expression patterns and correlations of muscle-specific genes during SFM differentiation were revealed, which laid an important foundation for elucidating the gene regulation mechanism of sheep myogenesis.
Collapse
|
6
|
Arnold F, Muzzio N, Patnaik SS, Finol EA, Romero G. Pentagalloyl Glucose-Laden Poly(lactide- co-glycolide) Nanoparticles for the Biomechanical Extracellular Matrix Stabilization of an In Vitro Abdominal Aortic Aneurysm Model. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25771-25782. [PMID: 34030437 DOI: 10.1021/acsami.1c05344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The suppression of abdominal aortic aneurysm (AAA) growth by nonsurgical therapy is currently not an option, and AAA is considered an irreversible destructive disease. The formation and development of AAA is associated with the progressive deterioration of the aortic wall. Infiltrated macrophages and resident vascular smooth muscle cells oversecrete matrix metalloproteinases (MMPs), which cause the loss of crucial aortic extracellular matrix (ECM) components, thus weakening the aortic wall. Stabilization of the aortic ECM could enable the development of novel therapeutic options for preventing and reducing AAA progression. In the present work, we studied the biochemical and biomechanical interactions of pentagalloyl glucose (PGG) on mouse C2C12 myoblast cells. PGG is a naturally occurring ECM-stabilizing polyphenolic compound that has been studied in various applications, including vascular health, with promising results. With its known limitations of systemic administration, we also studied the administration of PGG when encapsulated within poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs). Treatment with collagenase and elastase enzymes was used to mimic a pathway of degenerative effects seen in the pathogenesis of human AAA. PGG and PLGA(PGG) NPs were added to enzyme-treated cells in either a suppressive or preventative scenario. Biomolecular interactions were analyzed through cell viability, cell adhesion, reactive oxygen species (ROS) production, and MMP-2 and MMP-9 secretion. Biomechanical properties were studied through atomic force microscopy and quartz crystal microbalance with dissipation. Our results suggest that PGG or PLGA(PGG) NPs caused minor to no cytotoxic effects on the C2C12 cells. Both PGG and PLGA(PGG) NPs showed reduction in ROS and MMP-2 secretion if administered after enzymatic ECM degradation. A quantitative comparison of Young's moduli showed a significant recovery in the elastic properties of the cells treated with PGG or PLGA(PGG) NPs after enzymatic ECM degradation. This work provides preliminary support for the use of a pharmacological therapy for AAA treatment.
Collapse
Affiliation(s)
- Frances Arnold
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Nicolas Muzzio
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Sourav S Patnaik
- Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Ender A Finol
- Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Gabriela Romero
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
7
|
Brodehl A, Gaertner-Rommel A, Milting H. Molecular insights into cardiomyopathies associated with desmin (DES) mutations. Biophys Rev 2018; 10:983-1006. [PMID: 29926427 DOI: 10.1007/s12551-018-0429-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/22/2018] [Indexed: 12/15/2022] Open
Abstract
Increasing usage of next-generation sequencing techniques pushed during the last decade cardiogenetic diagnostics leading to the identification of a huge number of genetic variants in about 170 genes associated with cardiomyopathies, channelopathies, or syndromes with cardiac involvement. Because of the biochemical and cellular complexity, it is challenging to understand the clinical meaning or even the relevant pathomechanisms of the majority of genetic sequence variants. However, detailed knowledge about the associated molecular pathomechanism is essential for the development of efficient therapeutic strategies in future and genetic counseling. Mutations in DES, encoding the muscle-specific intermediate filament protein desmin, have been identified in different kinds of cardiac and skeletal myopathies. Here, we review the functions of desmin in health and disease with a focus on cardiomyopathies. In addition, we will summarize the genetic and clinical literature about DES mutations and will explain relevant cell and animal models. Moreover, we discuss upcoming perspectives and consequences of novel experimental approaches like genome editing technology, which might open a novel research field contributing to the development of efficient and mutation-specific treatment options.
Collapse
Affiliation(s)
- Andreas Brodehl
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development, Heart and Diabetes Centre NRW, Ruhr-University Bochum, Georgstrasse 11, 32545, Bad Oeynhausen, Germany.
| | - Anna Gaertner-Rommel
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development, Heart and Diabetes Centre NRW, Ruhr-University Bochum, Georgstrasse 11, 32545, Bad Oeynhausen, Germany
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development, Heart and Diabetes Centre NRW, Ruhr-University Bochum, Georgstrasse 11, 32545, Bad Oeynhausen, Germany.
| |
Collapse
|
8
|
Charrier EE, Montel L, Asnacios A, Delort F, Vicart P, Gallet F, Batonnet-Pichon S, Hénon S. The desmin network is a determinant of the cytoplasmic stiffness of myoblasts. Biol Cell 2018; 110:77-90. [PMID: 29388701 DOI: 10.1111/boc.201700040] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 01/18/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND INFORMATION The mechanical properties of cells are essential to maintain their proper functions, and mainly rely on their cytoskeleton. A lot of attention has been paid to actin filaments, demonstrating their central role in the cells mechanical properties, but much less is known about the participation of intermediate filament (IF) networks. Indeed the contribution of IFs, such as vimentin, keratins and lamins, to cell mechanics has only been assessed recently. We study here the involvement of desmin, an IF specifically expressed in muscle cells, in the rheology of immature muscle cells. Desmin can carry mutations responsible for a class of muscle pathologies named desminopathies. RESULTS In this study, using three types of cell rheometers, we assess the consequences of expressing wild-type (WT) or mutated desmin on the rheological properties of single myoblasts. We find that the mechanical properties of the cell cortex are not correlated to the quantity, nor the quality of desmin expressed. On the contrary, the overall cell stiffness increases when the amount of WT or mutated desmin polymerised in cytoplasmic networks increases. However, myoblasts become softer when the desmin network is partially depleted by the formation of aggregates induced by the expression of a desmin mutant. CONCLUSIONS We demonstrate that desmin plays a negligible role in the mechanical properties of the cell cortex but is a determinant of the overall cell stiffness. More particularly, desmin participates to the cytoplasm viscoelasticity. SIGNIFICANCE Desminopathies are associated with muscular weaknesses attributed to a disorganisation of the structure of striated muscle that impairs the active force generation. The present study evidences for the first time the key role of desmin in the rheological properties of myoblasts, raising the hypothesis that desmin mutations could also alter the passive mechanical properties of muscles, thus participating to the lack of force build up in muscle tissue.
Collapse
Affiliation(s)
- Elisabeth E Charrier
- Université Paris Diderot, CNRS, Matière et Systèmes Complexes UMR 7057, Paris, F-75013, France.,Université Paris Diderot, CNRS, Unité de Biologie Fonctionnelle et Adaptative, UMR 8251, Paris, F-75013, France.,Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Lorraine Montel
- Université Paris Diderot, CNRS, Matière et Systèmes Complexes UMR 7057, Paris, F-75013, France.,Département de Chimie, École Normale Supérieure, PSL Research University, Paris, F-75005, France.,Sorbonne Universités, UPMC, PASTEUR, Paris, F-75005, France.,CNRS, UMR 8640 PASTEUR, Paris, F-75005, France
| | - Atef Asnacios
- Université Paris Diderot, CNRS, Matière et Systèmes Complexes UMR 7057, Paris, F-75013, France
| | - Florence Delort
- Université Paris Diderot, CNRS, Unité de Biologie Fonctionnelle et Adaptative, UMR 8251, Paris, F-75013, France
| | - Patrick Vicart
- Université Paris Diderot, CNRS, Unité de Biologie Fonctionnelle et Adaptative, UMR 8251, Paris, F-75013, France
| | - François Gallet
- Université Paris Diderot, CNRS, Matière et Systèmes Complexes UMR 7057, Paris, F-75013, France
| | - Sabrina Batonnet-Pichon
- Université Paris Diderot, CNRS, Unité de Biologie Fonctionnelle et Adaptative, UMR 8251, Paris, F-75013, France
| | - Sylvie Hénon
- Université Paris Diderot, CNRS, Matière et Systèmes Complexes UMR 7057, Paris, F-75013, France
| |
Collapse
|
9
|
Goldmann WH. Intermediate filaments and cellular mechanics. Cell Biol Int 2018; 42:132-138. [PMID: 28980752 DOI: 10.1002/cbin.10879] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/30/2017] [Indexed: 12/16/2022]
Abstract
Intermediate filaments (IFs) are one of the three types of cytoskeletal polymers that resist tensile and compressive forces in cells. They crosslink each other as well as with actin filaments and microtubules by proteins, which include desmin, filamin C, plectin, and lamin (A/C). Mutations in these proteins can lead to a wide range of pathologies, some of which exhibit mechanical failure of the skin, skeletal, or heart muscle.
Collapse
Affiliation(s)
- Wolfgang H Goldmann
- Department of Physics, Biophysics Group, Friedrich-Alexander-University Erlangen-Nuremberg, D-91052 Erlangen, Germany
| |
Collapse
|