1
|
Jung Y, Nakajima R, Ahn SM, Frankiv N, Lee H, Im M, Song YK, Baker BJ. Mapping Synaptic Activity at the Population and Cellular Levels with Genetically Encoded Voltage Indicators (GEVIs). Methods Mol Biol 2025; 2910:239-251. [PMID: 40220103 DOI: 10.1007/978-1-0716-4446-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
In this chapter, we provide examples of using genetically encoded voltage indicators (GEVIs) to monitor neuronal intercellular communications at the population level (hippocampus of CA1 region) and individual cell level (retinal ganglion cells). Providing an optical readout for voltage transients, GEVIs enable the reporting of synaptic activity, both activation and inhibition, from chemical and electrical synapses. With the added flexibility of restricting expression of the GEVI to distinct cell types, GEVIs are becoming a powerful tool for interrogating neuronal activity.
Collapse
Affiliation(s)
- Younginha Jung
- Bioimaging Data Curation Center, Ewha Womans University, Seoul, Republic of Korea
| | - Ryuichi Nakajima
- Brain Science Division, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Sung Min Ahn
- Brain Science Division, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Nazarii Frankiv
- Brain Science Division, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Haeun Lee
- Brain Science Division, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Maesoon Im
- Brain Science Division, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Yoon-Kyu Song
- Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Bradley J Baker
- Brain Science Division, Korea Institute of Science and Technology, Seoul, Republic of Korea.
- Division of Bio-Medical Science and Technology, Korea University of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
2
|
Ohmori H, Hirai Y, Matsui R, Watanabe D. High resolution recording of local field currents simultaneously with sound-evoked calcium signals by a photometric patch electrode in the auditory cortex field L of the chick. J Neurosci Methods 2023; 392:109863. [PMID: 37075913 DOI: 10.1016/j.jneumeth.2023.109863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/06/2023] [Accepted: 04/15/2023] [Indexed: 04/21/2023]
Abstract
BACKGROUND Functioning of the brain is based on both electrical and metabolic activity of neural ensembles. Accordingly, it would be useful to measure intracellular metabolic signaling simultaneously with electrical activity in the brain in vivo. NEW METHOD We innovated a PhotoMetric-patch-Electrode (PME) recording system that has a high temporal resolution incorporating a photomultiplier tube as a light detector. The PME is fabricated from a quartz glass capillary to transmit light as a light guide, and it can detect electrical signals as a patch electrode simultaneously with a fluorescence signal. RESULTS We measured the sound-evoked Local Field Current (LFC) and fluorescence Ca2+ signal from neurons labeled with Ca2+-sensitive dye Oregon Green BAPTA1 in field L, the avian auditory cortex. Sound stimulation evoked multi-unit spike bursts and Ca2+ signals, and enhanced the fluctuation of LFC. After a brief sound stimulation, the cross-correlation between LFC and Ca2+ signal was prolonged. D-AP5 (antagonist for NMDA receptors) suppressed the sound-evoked Ca2+ signal when applied locally by pressure from the tip of PME. COMPARISON WITH EXISTING METHODS In contrast to existing multiphoton imaging or optical fiber recording methods, the PME is a patch electrode pulled simply from a quartz glass capillary and can measure fluorescence signals at the tip simultaneously with electrical signal at any depth of the brain structure. CONCLUSION The PME is devised to record electrical and optical signals simultaneously with high temporal resolution. Moreover, it can inject chemical agents dissolved in the tip-filling medium locally by pressure, allowing manipulation of neural activity pharmacologically.
Collapse
Affiliation(s)
- Harunori Ohmori
- Department of Physiology & Neurobiology, Faculty of Medicine, Kyoto University, Kyoto, Japan.
| | - Yasuharu Hirai
- Department of Physiology & Neurobiology, Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Ryosuke Matsui
- Department of Biological Sciences, Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Dai Watanabe
- Department of Biological Sciences, Faculty of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Lawson J, LaVancher E, DeAlmeida M, Black BJ. Electrically-evoked oscillating calcium transients in mono- and co-cultures of iPSC glia and sensory neurons. Front Cell Neurosci 2023; 17:1094070. [PMID: 37006467 PMCID: PMC10060658 DOI: 10.3389/fncel.2023.1094070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/17/2023] [Indexed: 03/18/2023] Open
Abstract
Activated glia are known to exhibit either neuroprotective or neurodegenerative effects, depending on their phenotype, while participating in chronic pain regulation. Until recently, it has been believed that satellite glial cells and astrocytes are electrically slight and process stimuli only through intracellular calcium flux that triggers downstream signaling mechanisms. Though glia do not exhibit action potentials, they do express both voltage- and ligand-gated ion channels that facilitate measurable calcium transients, a measure of their own phenotypic excitability, and support and modulate sensory neuron excitability through ion buffering and secretion of excitatory or inhibitory neuropeptides (i.e., paracrine signaling). We recently developed a model of acute and chronic nociception using co-cultures of iPSC sensory neurons (SN) and spinal astrocytes on microelectrode arrays (MEAs). Until recently, only neuronal extracellular activity has been recorded using MEAs with a high signal-to-noise ratio and in a non-invasive manner. Unfortunately, this method has limited compatibility with simultaneous calcium transient imaging techniques, which is the most common method for monitoring the phenotypic activity of astrocytes. Moreover, both dye-based and genetically encoded calcium indicator imaging rely on calcium chelation, affecting the culture's long-term physiology. Therefore, it would be ideal to allow continuous and simultaneous direct phenotypic monitoring of both SNs and astrocytes in a high-to-moderate throughput non-invasive manner and would significantly advance the field of electrophysiology. Here, we characterize astrocytic oscillating calcium transients (OCa2+Ts) in mono- and co-cultures of iPSC astrocytes as well as iPSC SN-astrocyte co-cultures on 48 well plate MEAs. We demonstrate that astrocytes exhibit OCa2+Ts in an electrical stimulus amplitude- and duration-dependent manner. We show that OCa2+Ts can be pharmacologically inhibited with the gap junction antagonist, carbenoxolone (100 μM). Most importantly, we demonstrate that both neurons and glia can be phenotypically characterized in real time, repeatedly, over the duration of the culture. In total, our findings suggest that calcium transients in glial populations may serve as a stand-alone or supplemental screening technique for identifying potential analgesics or compounds targeting other glia-mediated pathologies.
Collapse
Affiliation(s)
| | | | | | - Bryan James Black
- Department of Biomedical Engineering, Francis College of Engineering, University of Massachusetts Lowell, Lowell, MA, United States
| |
Collapse
|
4
|
Al Abed A, Wei Y, Almasri RM, Lei X, Wang H, Firth J, Chen Y, Gouailhardou N, Silvestri L, Lehmann T, Ladouceur F, Lovell NH. Liquid crystal electro-optical transducers for electrophysiology sensing applications. J Neural Eng 2022; 19. [DOI: 10.1088/1741-2552/ac8ed6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/01/2022] [Indexed: 11/06/2022]
Abstract
Abstract
Objective. Biomedical instrumentation and clinical systems for electrophysiology rely on electrodes and wires for sensing and transmission of bioelectric signals. However, this electronic approach constrains bandwidth, signal conditioning circuit designs, and the number of channels in invasive or miniature devices. This paper demonstrates an alternative approach using light to sense and transmit the electrophysiological signals. Approach. We develop a sensing, passive, fluorophore-free optrode based on the birefringence property of liquid crystals (LCs) operating at the microscale. Main results. We show that these optrodes can have the appropriate linearity (µ ± s.d.: 99.4 ± 0.5%, n = 11 devices), relative responsivity (µ ± s.d.: 57 ± 12%V−1, n = 5 devices), and bandwidth (µ ± s.d.: 11.1 ± 0.7 kHz, n = 7 devices) for transducing electrophysiology signals into the optical domain. We report capture of rabbit cardiac sinoatrial electrograms and stimulus-evoked compound action potentials from the rabbit sciatic nerve. We also demonstrate miniaturisation potential by fabricating multi-optrode arrays, by developing a process that automatically matches each transducer element area with that of its corresponding biological interface. Significance. Our method of employing LCs to convert bioelectric signals into the optical domain will pave the way for the deployment of high-bandwidth optical telecommunications techniques in ultra-miniature clinical diagnostic and research laboratory neural and cardiac interfaces.
Collapse
|
5
|
Tan Y, Hu X, Hou Y, Chu Z. Emerging Diamond Quantum Sensing in Bio-Membranes. MEMBRANES 2022; 12:957. [PMID: 36295716 PMCID: PMC9609316 DOI: 10.3390/membranes12100957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Bio-membranes exhibit complex but unique mechanical properties as communicative regulators in various physiological and pathological processes. Exposed to a dynamic micro-environment, bio-membranes can be seen as an intricate and delicate system. The systematical modeling and detection of their local physical properties are often difficult to achieve, both quantitatively and precisely. The recent emerging diamonds hosting quantum defects (i.e., nitrogen-vacancy (NV) center) demonstrate intriguing optical and spin properties, together with their outstanding photostability and biocompatibility, rendering them ideal candidates for biological applications. Notably, the extraordinary spin-based sensing enable the measurements of localized nanoscale physical quantities such as magnetic fields, electrical fields, temperature, and strain. These nanoscale signals can be optically read out precisely by simple optical microscopy systems. Given these exclusive properties, NV-center-based quantum sensors can be widely applied in exploring bio-membrane-related features and the communicative chemical reaction processes. This review mainly focuses on NV-based quantum sensing in bio-membrane fields. The attempts of applying NV-based quantum sensors in bio-membranes to investigate diverse physical and chemical events such as membrane elasticity, phase change, nanoscale bio-physical signals, and free radical formation are fully overviewed. We also discuss the challenges and future directions of this novel technology to be utilized in bio-membranes.
Collapse
Affiliation(s)
- Yayin Tan
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong 999077, China
| | - Xinhao Hu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong 999077, China
| | - Yong Hou
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong 999077, China
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong 999077, China
- Joint Appointment with School of Biomedical Sciences, The University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
6
|
Chen PJ, Li Y, Lee CH. Calcium Imaging of Neural Activity in Fly Photoreceptors. Cold Spring Harb Protoc 2022; 2022:Pdb.top107800. [PMID: 35641092 DOI: 10.1101/pdb.top107800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Functional imaging methodologies allow researchers to simultaneously monitor the neural activities of all single neurons in a population, and this ability has led to great advances in neuroscience research. Taking advantage of a genetically tractable model organism, functional imaging in Drosophila provides opportunities to probe scientific questions that were previously unanswerable by electrophysiological recordings. Here, we introduce comprehensive protocols for two-photon calcium imaging in fly visual neurons. We also discuss some challenges in applying optical imaging techniques to study visual systems and consider the best practices for making comparisons between different neuron groups.
Collapse
Affiliation(s)
- Pei-Ju Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan, Republic of China
| | - Yan Li
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan, Republic of China
| | - Chi-Hon Lee
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan, Republic of China
| |
Collapse
|
7
|
Sepehri Rad M, Cohen LB, Baker BJ. Conserved Amino Acids Residing Outside the Voltage Field Can Shift the Voltage Sensitivity and Increase the Signal Speed and Size of Ciona Based GEVIs. Front Cell Dev Biol 2022; 10:868143. [PMID: 35784472 PMCID: PMC9243531 DOI: 10.3389/fcell.2022.868143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/13/2022] [Indexed: 11/19/2022] Open
Abstract
To identify potential regions of the voltage-sensing domain that could shift the voltage sensitivity of Ciona intestinalis based Genetically Encoded Voltage Indicators (GEVIs), we aligned the amino acid sequences of voltage-gated sodium channels from different organisms. Conserved polar residues were identified at multiple transmembrane/loop junctions in the voltage sensing domain. Similar conservation of polar amino acids was found in the voltage-sensing domain of the voltage-sensing phosphatase gene family. These conserved residues were mutated to nonpolar or oppositely charged amino acids in a GEVI that utilizes the voltage sensing domain of the voltage sensing phosphatase from Ciona fused to the fluorescent protein, super ecliptic pHluorin (A227D). Different mutations shifted the voltage sensitivity to more positive or more negative membrane potentials. Double mutants were then created by selecting constructs that shifted the optical signal to a more physiologically relevant voltage range. Introduction of these mutations into previously developed GEVIs resulted in Plos6-v2 which improved the dynamic range to 40% ΔF/F/100 mV, a 25% increase over the parent, ArcLight. The onset time constant of Plos6-v2 is also 50% faster than ArcLight. Thus, Plos6-v2 appears to be the GEVI of choice.
Collapse
Affiliation(s)
- Masoud Sepehri Rad
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Department of Neuroscience, University of Wisconsin, Madison, WI, United States
| | - Lawrence B. Cohen
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, United States
- *Correspondence: Lawrence B. Cohen, ; Bradley J. Baker,
| | - Bradley J. Baker
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, South Korea
- *Correspondence: Lawrence B. Cohen, ; Bradley J. Baker,
| |
Collapse
|
8
|
Fiala T, Mosharov EV, Wang J, Mendieta AM, Choi SJ, Fialova E, Hwu C, Sulzer D, Sames D. Chemical Targeting of Rhodol Voltage-Sensitive Dyes to Dopaminergic Neurons. ACS Chem Neurosci 2022; 13:1251-1262. [PMID: 35400149 DOI: 10.1021/acschemneuro.1c00862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Optical imaging of changes in the membrane potential of living cells can be achieved by means of fluorescent voltage-sensitive dyes (VSDs). A particularly challenging task is to efficiently deliver these highly lipophilic probes to specific neuronal subpopulations in brain tissue. We have tackled this task by designing a solubilizing, hydrophilic polymer platform that carries a high-affinity ligand for a membrane protein marker of interest and a fluorescent VSD. Here, we disclose an improved design of polymer-supported probes for chemical, nongenetic targeting of voltage sensors to axons natively expressing the dopamine transporter in ex vivo mouse brain tissue. We first show that for negatively charged rhodol VSDs functioning on the photoinduced electron transfer principle, poly(ethylene glycol) as a carrier enables targeting with higher selectivity than the polysaccharide dextran in HEK cell culture. In the same experimental setting, we also demonstrate that incorporation of an azetidine ring into the rhodol chromophore substantially increases the brightness and voltage sensitivity of the respective VSD. We show that the superior properties of the optimized sensor are transferable to recording of electrically evoked activity from dopaminergic axons in mouse striatal slices after averaging of multiple trials. Finally, we suggest the next milestones for the field to achieve single-scan recordings with nongenetically targeted VSDs in native brain tissue.
Collapse
Affiliation(s)
- Tomas Fiala
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Eugene V. Mosharov
- Department of Neurology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Jihang Wang
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Adriana M. Mendieta
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Se Joon Choi
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Eva Fialova
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Christopher Hwu
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - David Sulzer
- Department of Neurology, Columbia University Irving Medical Center, New York, New York 10032, United States
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York 10032, United States
- Department of Pharmacology, Columbia University Irving Medical Center, New York, New York 10032, United States
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York 10032, United States
| | - Dalibor Sames
- Department of Chemistry, Columbia University, New York, New York 10027, United States
- NeuroTechnology Center at Columbia University, New York, New York 10027, United States
| |
Collapse
|
9
|
Tognolina M, Monteverdi A, D’Angelo E. Discovering Microcircuit Secrets With Multi-Spot Imaging and Electrophysiological Recordings: The Example of Cerebellar Network Dynamics. Front Cell Neurosci 2022; 16:805670. [PMID: 35370553 PMCID: PMC8971197 DOI: 10.3389/fncel.2022.805670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/25/2022] [Indexed: 12/02/2022] Open
Abstract
The cerebellar cortex microcircuit is characterized by a highly ordered neuronal architecture having a relatively simple and stereotyped connectivity pattern. For a long time, this structural simplicity has incorrectly led to the idea that anatomical considerations would be sufficient to understand the dynamics of the underlying circuitry. However, recent experimental evidence indicates that cerebellar operations are much more complex than solely predicted by anatomy, due to the crucial role played by neuronal and synaptic properties. To be able to explore neuronal and microcircuit dynamics, advanced imaging, electrophysiological techniques and computational models have been combined, allowing us to investigate neuronal ensembles activity and to connect microscale to mesoscale phenomena. Here, we review what is known about cerebellar network organization, neural dynamics and synaptic plasticity and point out what is still missing and would require experimental assessments. We consider the available experimental techniques that allow a comprehensive assessment of circuit dynamics, including voltage and calcium imaging and extracellular electrophysiological recordings with multi-electrode arrays (MEAs). These techniques are proving essential to investigate the spatiotemporal pattern of activity and plasticity in the cerebellar network, providing new clues on how circuit dynamics contribute to motor control and higher cognitive functions.
Collapse
Affiliation(s)
| | - Anita Monteverdi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Brain Connectivity Center, Pavia, Italy
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Brain Connectivity Center, Pavia, Italy
| |
Collapse
|
10
|
Uzelac I, Crowley CJ, Iravanian S, Kim TY, Cho HC, Fenton FH. Methodology for Cross-Talk Elimination in Simultaneous Voltage and Calcium Optical Mapping Measurements With Semasbestic Wavelengths. Front Physiol 2022; 13:812968. [PMID: 35222080 PMCID: PMC8874316 DOI: 10.3389/fphys.2022.812968] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/03/2022] [Indexed: 02/04/2023] Open
Abstract
Most cardiac arrhythmias at the whole heart level result from alteration of cell membrane ionic channels and intracellular calcium concentration ([Ca2+] i ) cycling with emerging spatiotemporal behavior through tissue-level coupling. For example, dynamically induced spatial dispersion of action potential duration, QT prolongation, and alternans are clinical markers for arrhythmia susceptibility in regular and heart-failure patients that originate due to changes of the transmembrane voltage (V m) and [Ca2+] i . We present an optical-mapping methodology that permits simultaneous measurements of the V m - [Ca2+] i signals using a single-camera without cross-talk, allowing quantitative characterization of favorable/adverse cell and tissue dynamical effects occurring from remodeling and/or drugs in heart failure. We demonstrate theoretically and experimentally in six different species the existence of a family of excitation wavelengths, we termed semasbestic, that give no change in signal for one dye, and thus can be used to record signals from another dye, guaranteeing zero cross-talk.
Collapse
Affiliation(s)
- Ilija Uzelac
- School of Physics, Georgia Institute of Technology, Atlanta, GA, United States
| | | | - Shahriar Iravanian
- Division of Cardiology, Section of Electrophysiology, Emory University Hospital, Atlanta, GA, United States
| | - Tae Yun Kim
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Hee Cheol Cho
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Department of Biomedical Engineering, Emory University School of Medicine, Atlanta, GA, United States
- The Sibley Heart Center, Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Flavio H. Fenton
- School of Physics, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
11
|
Voltage imaging in the olfactory bulb using transgenic mouse lines expressing the genetically encoded voltage indicator ArcLight. Sci Rep 2022; 12:1875. [PMID: 35115567 PMCID: PMC8813909 DOI: 10.1038/s41598-021-04482-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/09/2021] [Indexed: 01/06/2023] Open
Abstract
Genetically encoded voltage indicators (GEVIs) allow optical recordings of membrane potential changes in defined cell populations. Transgenic reporter animals that facilitate precise and repeatable targeting with high expression levels would further the use of GEVIs in the in vivo mammalian brain. However, the literature on developing and applying transgenic mouse lines as vehicles for GEVI expression is limited. Here we report the first in vivo experiments using a transgenic reporter mouse for the GEVI ArcLight, which utilizes a Cre/tTA dependent expression system (TIGRE 1.0). We developed two mouse lines with ArcLight expression restricted to either olfactory receptor neurons, or a subpopulation of interneurons located in the granule and glomerular layers in the olfactory bulb. The ArcLight expression in these lines was sufficient for in vivo imaging of odorant responses in single trials using epifluorescence and 2-photon imaging. The voltage responses were odor-specific and concentration-dependent, which supported earlier studies about perceptual transformations carried out by the bulb that used calcium sensors of neural activity. This study demonstrates that the ArcLight transgenic line is a flexible genetic tool that can be used to record the neuronal electrical activity of different cell types with a signal-to-noise ratio that is comparable to previous reports using viral transduction.
Collapse
|
12
|
Ochmann SE, Joshi H, Büber E, Franquelim HG, Stegemann P, Saccà B, Keyser UF, Aksimentiev A, Tinnefeld P. DNA Origami Voltage Sensors for Transmembrane Potentials with Single-Molecule Sensitivity. NANO LETTERS 2021; 21:8634-8641. [PMID: 34662130 DOI: 10.1021/acs.nanolett.1c02584] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Signal transmission in neurons goes along with changes in the transmembrane potential. To report them, different approaches, including optical voltage-sensing dyes and genetically encoded voltage indicators, have evolved. Here, we present a DNA nanotechnology-based system and demonstrated its functionality on liposomes. Using DNA origami, we incorporated and optimized different properties such as membrane targeting and voltage sensing modularly. As a sensing unit, we used a hydrophobic red dye anchored to the membrane and an anionic green dye at the DNA to connect the nanostructure and the membrane dye anchor. Voltage-induced displacement of the anionic donor unit was read out by fluorescence resonance energy transfer (FRET) changes of single sensors attached to liposomes. A FRET change of ∼5% for ΔΨ = 100 mV was observed. The working mechanism of the sensor was rationalized by molecular dynamics simulations. Our approach holds potential for an application as nongenetically encoded membrane sensors.
Collapse
Affiliation(s)
- Sarah E Ochmann
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, 81377 München, Germany
| | - Himanshu Joshi
- Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois 61820, United States
| | - Ece Büber
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, 81377 München, Germany
| | | | - Pierre Stegemann
- Center of Medical Biotechnology (ZMB) and Center for Nano Integration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45117 Essen, Germany
| | - Barbara Saccà
- Center of Medical Biotechnology (ZMB) and Center for Nano Integration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45117 Essen, Germany
| | - Ulrich F Keyser
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, United Kingdom
| | - Aleksei Aksimentiev
- Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois 61820, United States
| | - Philip Tinnefeld
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, 81377 München, Germany
| |
Collapse
|
13
|
Miller ADC, Ozbakir HF, Mukherjee A. Calcium-responsive contrast agents for functional magnetic resonance imaging. ACTA ACUST UNITED AC 2021; 2:021301. [PMID: 34085055 DOI: 10.1063/5.0041394] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/15/2021] [Indexed: 02/07/2023]
Abstract
Calcium ions represent one of the key second messengers accompanying neural activity and synaptic signaling. Accordingly, dynamic imaging of calcium fluctuations in living organisms represents a cornerstone technology for discovering neural mechanisms that underlie memory, determine behavior, and modulate emotional states as well as how these mechanisms are perturbed by neurological disease and brain injury. While optical technologies are well established for high resolution imaging of calcium dynamics, physical limits on light penetration hinder their application for whole-brain imaging in intact vertebrates. Unlike optics, magnetic resonance imaging (MRI) enables noninvasive large-scale imaging across vertebrates of all sizes. This has motivated the development of several sensors that leverage innovative physicochemical mechanisms to sensitize MRI contrast to intracellular and extracellular changes in calcium. Here, we review the current state-of-the-art in MRI-based calcium sensors, focusing on fundamental aspects of sensor performance, in vivo applications, and challenges related to sensitivity. We also highlight how innovations at the intersection of reporter gene technology and gene delivery open potential opportunities for mapping calcium activity in genetically targeted cells, complementing the benefits of small molecule probes and nanoparticle sensors.
Collapse
Affiliation(s)
- Austin D C Miller
- Biomolecular Science and Engineering, University of California, Santa Barbara, California 93106, USA
| | - Harun F Ozbakir
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | | |
Collapse
|
14
|
Forro C, Caron D, Angotzi GN, Gallo V, Berdondini L, Santoro F, Palazzolo G, Panuccio G. Electrophysiology Read-Out Tools for Brain-on-Chip Biotechnology. MICROMACHINES 2021; 12:124. [PMID: 33498905 PMCID: PMC7912435 DOI: 10.3390/mi12020124] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023]
Abstract
Brain-on-Chip (BoC) biotechnology is emerging as a promising tool for biomedical and pharmaceutical research applied to the neurosciences. At the convergence between lab-on-chip and cell biology, BoC couples in vitro three-dimensional brain-like systems to an engineered microfluidics platform designed to provide an in vivo-like extrinsic microenvironment with the aim of replicating tissue- or organ-level physiological functions. BoC therefore offers the advantage of an in vitro reproduction of brain structures that is more faithful to the native correlate than what is obtained with conventional cell culture techniques. As brain function ultimately results in the generation of electrical signals, electrophysiology techniques are paramount for studying brain activity in health and disease. However, as BoC is still in its infancy, the availability of combined BoC-electrophysiology platforms is still limited. Here, we summarize the available biological substrates for BoC, starting with a historical perspective. We then describe the available tools enabling BoC electrophysiology studies, detailing their fabrication process and technical features, along with their advantages and limitations. We discuss the current and future applications of BoC electrophysiology, also expanding to complementary approaches. We conclude with an evaluation of the potential translational applications and prospective technology developments.
Collapse
Affiliation(s)
- Csaba Forro
- Tissue Electronics, Fondazione Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci, 53-80125 Naples, Italy; (C.F.); (F.S.)
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Davide Caron
- Enhanced Regenerative Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego, 30-16163 Genova, Italy; (D.C.); (V.G.)
| | - Gian Nicola Angotzi
- Microtechnology for Neuroelectronics, Fondazione Istituto Italiano di Tecnologia, Via Morego, 30-16163 Genova, Italy; (G.N.A.); (L.B.)
| | - Vincenzo Gallo
- Enhanced Regenerative Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego, 30-16163 Genova, Italy; (D.C.); (V.G.)
| | - Luca Berdondini
- Microtechnology for Neuroelectronics, Fondazione Istituto Italiano di Tecnologia, Via Morego, 30-16163 Genova, Italy; (G.N.A.); (L.B.)
| | - Francesca Santoro
- Tissue Electronics, Fondazione Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci, 53-80125 Naples, Italy; (C.F.); (F.S.)
| | - Gemma Palazzolo
- Enhanced Regenerative Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego, 30-16163 Genova, Italy; (D.C.); (V.G.)
| | - Gabriella Panuccio
- Enhanced Regenerative Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego, 30-16163 Genova, Italy; (D.C.); (V.G.)
| |
Collapse
|
15
|
Functional interrogation of neural circuits with virally transmitted optogenetic tools. J Neurosci Methods 2020; 345:108905. [PMID: 32795553 DOI: 10.1016/j.jneumeth.2020.108905] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022]
Abstract
The vertebrate brain comprises a plethora of cell types connected by intertwined pathways. Optogenetics enriches the neuroscientific tool set for disentangling these neuronal circuits in a manner which exceeds the spatio-temporal precision of previously existing techniques. Technically, optogenetics can be divided in three types of optical and genetic combinations: (1) it is primarily understood as the manipulation of the activity of genetically modified cells (typically neurons) with light, i.e. optical actuators. (2) A second combination refers to visualizing the activity of genetically modified cells (again typically neurons), i.e. optical sensors. (3) A completely different interpretation of optogenetics refers to the light activated expression of a genetically induced construct. Here, we focus on the first two types of optogenetics, i.e. the optical actuators and sensors in an attempt to give an overview into the topic. We first cover methods to express opsins into neurons and introduce strategies of targeting specific neuronal populations in different animal species. We then summarize combinations of optogenetics with behavioral read out and neuronal imaging. Finally, we give an overview of the current state-of-the-art and an outlook on future perspectives.
Collapse
|
16
|
Fiala T, Wang J, Dunn M, Šebej P, Choi SJ, Nwadibia EC, Fialova E, Martinez DM, Cheetham CE, Fogle KJ, Palladino MJ, Freyberg Z, Sulzer D, Sames D. Chemical Targeting of Voltage Sensitive Dyes to Specific Cells and Molecules in the Brain. J Am Chem Soc 2020; 142:9285-9301. [PMID: 32395989 DOI: 10.1021/jacs.0c00861] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Voltage sensitive fluorescent dyes (VSDs) are important tools for probing signal transduction in neurons and other excitable cells. The impact of these highly lipophilic sensors has, however, been limited due to the lack of cell-specific targeting methods in brain tissue or living animals. We address this key challenge by introducing a nongenetic molecular platform for cell- and molecule-specific targeting of synthetic VSDs in the brain. We employ a dextran polymer particle to overcome the inherent lipophilicity of VSDs by dynamic encapsulation and high-affinity ligands to target the construct to specific neuronal cells utilizing only native components of the neurotransmission machinery at physiological expression levels. Dichloropane, a monoamine transporter ligand, enables targeting of dense dopaminergic axons in the mouse striatum and sparse noradrenergic axons in the mouse cortex in acute brain slices. PFQX in conjunction with ligand-directed acyl imidazole chemistry enables covalent labeling of AMPA-type glutamate receptors in the same brain regions. Probe variants bearing either a classical electrochromic ANEP dye or state-of-the-art VoltageFluor-type dye respond to membrane potential changes in a similar manner to the parent dyes, as shown by whole-cell patch recording. We demonstrate the feasibility of optical voltage recording with our probes in brain tissue with one-photon and two-photon fluorescence microscopy and define the signal limits of optical voltage imaging with synthetic sensors under a low photon budget determined by the native expression levels of the target proteins. This work demonstrates the feasibility of a chemical targeting approach and expands the possibilities of cell-specific imaging and pharmacology.
Collapse
Affiliation(s)
- Tomas Fiala
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Jihang Wang
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Matthew Dunn
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Peter Šebej
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Se Joon Choi
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York 10027, United States
| | - Ekeoma C Nwadibia
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Eva Fialova
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Diana M Martinez
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York 10027, United States
| | - Claire E Cheetham
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Keri J Fogle
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.,Pittsburgh Institute of Neurodegenerative Diseases (PIND), University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael J Palladino
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.,Pittsburgh Institute of Neurodegenerative Diseases (PIND), University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States.,Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - David Sulzer
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York 10027, United States.,Department of Psychiatry, Columbia University Irving Medical Center, New York, New York 10027, United States.,Department of Pharmacology, Columbia University Irving Medical Center, New York, New York 10027, United States.,Department of Molecular Therapeutics, New York Psychiatric Institute, New York, New York 10032, United States
| | - Dalibor Sames
- Department of Chemistry, Columbia University, New York, New York 10027, United States.,NeuroTechnology Center at Columbia University, New York, New York 10027, United States
| |
Collapse
|
17
|
Guet-McCreight A, Skinner FK. Computationally going where experiments cannot: a dynamical assessment of dendritic ion channel currents during in vivo-like states. F1000Res 2020; 9:180. [PMID: 32595950 PMCID: PMC7309567 DOI: 10.12688/f1000research.22584.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/08/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Despite technological advances, how specific cell types are involved in brain function remains shrouded in mystery. Further, little is known about the contribution of different ion channel currents to cell excitability across different neuronal subtypes and their dendritic compartments
in vivo. The picture that we do have is largely based on somatic recordings performed
in vitro. Uncovering
dendritic ion channel current contributions in neuron subtypes that represent a minority of the neuronal population is not currently a feasible task using purely experimental means. Methods: We employ two morphologically-detailed multi-compartment models of a specific type of inhibitory interneuron, the oriens lacunosum moleculare (OLM) cell. The OLM cell is a well-studied cell type in CA1 hippocampus that is important in gating sensory and contextual information. We create
in vivo-like states for these cellular models by including levels of synaptic bombardment that would occur
in vivo. Using visualization tools and analyses we assess the ion channel current contribution profile across the different somatic and dendritic compartments of the models. Results: We identify changes in dendritic excitability, ion channel current contributions and co-activation patterns between
in vitro and
in vivo-like states. Primarily, we find that the relative timing between ion channel currents are mostly invariant between states, but exhibit changes in magnitudes and decreased propagation across dendritic compartments. We also find enhanced dendritic hyperpolarization-activated cyclic nucleotide-gated channel (h-channel) activation during
in vivo-like states, which suggests that dendritically located h-channels are functionally important in altering signal propagation in the behaving animal. Conclusions: Overall, we have demonstrated, using computational modelling, the dynamical changes that can occur to ion channel mechanisms governing neuronal spiking. Simultaneous access to dendritic compartments during simulated
in vivo states shows that the magnitudes of some ion channel current contributions are differentially altered during
in vivo-like states relative to
in vitro.
Collapse
Affiliation(s)
- Alexandre Guet-McCreight
- Krembil Research Institute, University Health Network, Toronto, ON, M5T 0S8, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Frances K Skinner
- Krembil Research Institute, University Health Network, Toronto, ON, M5T 0S8, Canada.,Departments of Medicine (Neurology) and Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
18
|
Optical voltage imaging in neurons: moving from technology development to practical tool. Nat Rev Neurosci 2019; 20:719-727. [PMID: 31705060 DOI: 10.1038/s41583-019-0231-4] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2019] [Indexed: 12/13/2022]
Abstract
A central goal in neuroscience is to determine how the brain's neuronal circuits generate perception, cognition and emotions and how these lead to appropriate behavioural actions. A methodological platform based on genetically encoded voltage indicators (GEVIs) that enables the monitoring of large-scale circuit dynamics has brought us closer to this ambitious goal. This Review provides an update on the current state of the art and the prospects of emerging optical GEVI imaging technologies.
Collapse
|
19
|
Brennan C, Proekt A. A quantitative model of conserved macroscopic dynamics predicts future motor commands. eLife 2019; 8:46814. [PMID: 31294689 PMCID: PMC6624016 DOI: 10.7554/elife.46814] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/22/2019] [Indexed: 12/12/2022] Open
Abstract
In simple organisms such as Caenorhabditis elegans, whole brain imaging has been performed. Here, we use such recordings to model the nervous system. Our model uses neuronal activity to predict expected time of future motor commands up to 30 s prior to the event. These motor commands control locomotion. Predictions are valid for individuals not used in model construction. The model predicts dwell time statistics, sequences of motor commands and individual neuron activation. To develop this model, we extracted loops spanned by neuronal activity in phase space using novel methodology. The model uses only two variables: the identity of the loop and the phase along it. Current values of these macroscopic variables predict future neuronal activity. Remarkably, our model based on macroscopic variables succeeds despite consistent inter-individual differences in neuronal activation. Thus, our analytical framework reconciles consistent individual differences in neuronal activation with macroscopic dynamics that operate universally across individuals. How can we go about trying to understand an object as complex as the brain? The traditional approach is to begin by studying its component parts, cells called neurons. Once we understand how individual neurons work, we can use computers to simulate the activity of networks of neurons. The result is a computer model of the brain. By comparing this model to data from real brains, we can try to make the model as similar to a real brain as possible. But whose brain should we try to reproduce? The roundworm C. elegans, for example, has just 302 neurons in total. Advances in brain imaging mean it is now possible to identify each of these neurons and compare its activity across worms. But doing so reveals that the activity of any given neuron varies greatly between individuals. This is true even among genetically identical worms performing the same behavior. Researchers trying to model the roundworm brain have attempted to model the average activity of each neuron across many worms. They hoped they could use these averages to predict the behavior of other worms from their neuronal activity. But this approach did not to work. Even in roundworms, the coordinated activity of many neurons is required to generate even simple behaviors. Averaging the activity of neurons across worms thus scrambles the information that encodes each behavior. Brennan and Proekt have now overcome this problem by developing a more abstract model that treats the nervous system as a whole. The model takes into account changes in the activity of neurons, and in the worms’ behavior, over time. A model of this type built using one set of worms can predict the behavior of another set of worms. This approach may work because in evolution natural selection acts at the level of behaviors, and not at the level of individual neurons. The activity of individual neurons can thus vary between animals, even when those neurons encode the same behavior. This means it may also be possible to model the human brain without knowing the activity of each of its billions of neurons.
Collapse
Affiliation(s)
- Connor Brennan
- Departmentof Neuroscience, University of Pennsylvania, Philadelphia, United States
| | - Alexander Proekt
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
20
|
Optogenetic approaches to study the mammalian brain. Curr Opin Struct Biol 2019; 57:157-163. [PMID: 31082625 DOI: 10.1016/j.sbi.2019.04.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/30/2019] [Accepted: 04/05/2019] [Indexed: 12/24/2022]
Abstract
Optogenetics has revolutionized neurobiological research by allowing to disentangle intricate neuronal circuits at a spatio-temporal precision unmatched by other techniques. Here, we review current advances of optogenetic applications in mammals, especially focusing on freely moving animals. State-of-the-art strategies allow the targeted expression of opsins in neuronal subpopulations, defined either by genetic cell type or neuronal projection pattern. Optogenetic manipulations of these subpopulations become particularly powerful when combined with behavioral paradigms and neurophysiological readout techniques. Thereby, specific roles can be assigned to identified cells. All-optical approaches with the opportunity to write complex three dimensional patterns into neuronal networks have recently emerged. While clinical implications of the new tool set seem tempting, we emphasize here the role of optogenetics for basic research.
Collapse
|
21
|
Economo MN, Winnubst J, Bas E, Ferreira TA, Chandrashekar J. Single‐neuron axonal reconstruction: The search for a wiring diagram of the brain. J Comp Neurol 2019; 527:2190-2199. [DOI: 10.1002/cne.24674] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 12/16/2022]
Affiliation(s)
| | - Johan Winnubst
- Janelia Research CampusHoward Hughes Medical Institute Ashburn Virginia
| | - Erhan Bas
- Janelia Research CampusHoward Hughes Medical Institute Ashburn Virginia
| | - Tiago A. Ferreira
- Janelia Research CampusHoward Hughes Medical Institute Ashburn Virginia
| | | |
Collapse
|
22
|
Quicke P, Song C, McKimm EJ, Milosevic MM, Howe CL, Neil M, Schultz SR, Antic SD, Foust AJ, Knöpfel T. Single-Neuron Level One-Photon Voltage Imaging With Sparsely Targeted Genetically Encoded Voltage Indicators. Front Cell Neurosci 2019; 13:39. [PMID: 30890919 PMCID: PMC6413708 DOI: 10.3389/fncel.2019.00039] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/24/2019] [Indexed: 11/13/2022] Open
Abstract
Voltage imaging of many neurons simultaneously at single-cell resolution is hampered by the difficulty of detecting small voltage signals from overlapping neuronal processes in neural tissue. Recent advances in genetically encoded voltage indicator (GEVI) imaging have shown single-cell resolution optical voltage recordings in intact tissue through imaging naturally sparse cell classes, sparse viral expression, soma restricted expression, advanced optical systems, or a combination of these. Widespread sparse and strong transgenic GEVI expression would enable straightforward optical access to a densely occurring cell type, such as cortical pyramidal cells. Here we demonstrate that a recently described sparse transgenic expression strategy can enable single-cell resolution voltage imaging of cortical pyramidal cells in intact brain tissue without restricting expression to the soma. We also quantify the functional crosstalk in brain tissue and discuss optimal imaging rates to inform future GEVI experimental design.
Collapse
Affiliation(s)
- Peter Quicke
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Department of Medicine, Imperial College London, London, United Kingdom
- Centre for Neurotechnology, Imperial College London, London, United Kingdom
| | - Chenchen Song
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Eric J. McKimm
- Institute for Systems Genomics, Stem Cell Institute, UConn Health, Farmington, CT, United States
| | - Milena M. Milosevic
- Institute for Systems Genomics, Stem Cell Institute, UConn Health, Farmington, CT, United States
| | - Carmel L. Howe
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Centre for Neurotechnology, Imperial College London, London, United Kingdom
| | - Mark Neil
- Centre for Neurotechnology, Imperial College London, London, United Kingdom
- Department of Physics, Imperial College London, London, United Kingdom
| | - Simon R. Schultz
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Centre for Neurotechnology, Imperial College London, London, United Kingdom
| | - Srdjan D. Antic
- Institute for Systems Genomics, Stem Cell Institute, UConn Health, Farmington, CT, United States
| | - Amanda J. Foust
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Centre for Neurotechnology, Imperial College London, London, United Kingdom
| | - Thomas Knöpfel
- Department of Medicine, Imperial College London, London, United Kingdom
- Centre for Neurotechnology, Imperial College London, London, United Kingdom
| |
Collapse
|
23
|
Siciliano CA, Tye KM. Leveraging calcium imaging to illuminate circuit dysfunction in addiction. Alcohol 2019; 74:47-63. [PMID: 30470589 PMCID: PMC7575247 DOI: 10.1016/j.alcohol.2018.05.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/08/2018] [Accepted: 05/28/2018] [Indexed: 12/28/2022]
Abstract
Alcohol and drug use can dysregulate neural circuit function to produce a wide range of neuropsychiatric disorders, including addiction. To understand the neural circuit computations that mediate behavior, and how substances of abuse may transform them, we must first be able to observe the activity of circuits. While many techniques have been utilized to measure activity in specific brain regions, these regions are made up of heterogeneous sub-populations, and assessing activity from neuronal populations of interest has been an ongoing challenge. To fully understand how neural circuits mediate addiction-related behavior, we must be able to reveal the cellular granularity within brain regions and circuits by overlaying functional information with the genetic and anatomical identity of the cells involved. The development of genetically encoded calcium indicators, which can be targeted to populations of interest, allows for in vivo visualization of calcium dynamics, a proxy for neuronal activity, thus providing an avenue for real-time assessment of activity in genetically and anatomically defined populations during behavior. Here, we highlight recent advances in calcium imaging technology, compare the current technology with other state-of-the-art approaches for in vivo monitoring of neural activity, and discuss the strengths, limitations, and practical concerns for observing neural circuit activity in preclinical addiction models.
Collapse
Affiliation(s)
- Cody A Siciliano
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| | - Kay M Tye
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; The Salk Institute for Biological Sciences, 10010 N Torrey Pines Road, La Jolla, CA 92037, United States.
| |
Collapse
|
24
|
Koizumi K, Inoue M, Chowdhury S, Bito H, Yamanaka A, Ishizuka T, Yawo H. Functional emergence of a column-like architecture in layer 5 of mouse somatosensory cortex in vivo. J Physiol Sci 2019; 69:65-77. [PMID: 29761270 PMCID: PMC10716991 DOI: 10.1007/s12576-018-0618-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/30/2018] [Indexed: 01/04/2023]
Abstract
To investigate how the functional architecture is organized in layer 5 (L5) of the somatosensory cortex of a mouse in vivo, the input-output relationship was investigated using an all-optical approach. The neural activity in L5 was optically recorded using a Ca2+ sensor, R-CaMP2, through a microprism inserted in the cortex under two-photon microscopy, while the L5 was regionally excited using optogenetics. The excitability was spread around the blue-light irradiated region, but the horizontal propagation was limited to within a certain distance (λ < 130 μm from the center of the illumination spot). When two regions were photostimulated with a short interval, the excitability of each cluster was reduced. Therefore, a column-like architecture had functionally emerged with reciprocal inhibition through a minimal number of synaptic relays. This could generate a synchronous output from a region of L5 with simultaneous enhancement of the signal-to-noise ratio by silencing of the neighboring regions.
Collapse
Affiliation(s)
- Kyo Koizumi
- Department of Developmental Biology and Neuroscience, Tohoku University Graduate School of Life Sciences, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Masatoshi Inoue
- Department of Neurochemistry, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo, Japan
| | - Srikanta Chowdhury
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo, Japan
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo, Japan
| | - Akihiro Yamanaka
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo, Japan
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Toru Ishizuka
- Department of Developmental Biology and Neuroscience, Tohoku University Graduate School of Life Sciences, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Hiromu Yawo
- Department of Developmental Biology and Neuroscience, Tohoku University Graduate School of Life Sciences, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan.
- Center for Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
25
|
Robinson JT, Pohlmeyer E, Gather MC, Kemere C, Kitching JE, Malliaras GG, Marblestone A, Shepard KL, Stieglitz T, Xie C. Developing Next-generation Brain Sensing Technologies - A Review. IEEE SENSORS JOURNAL 2019; 19:10.1109/jsen.2019.2931159. [PMID: 32116472 PMCID: PMC7047830 DOI: 10.1109/jsen.2019.2931159] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Advances in sensing technology raise the possibility of creating neural interfaces that can more effectively restore or repair neural function and reveal fundamental properties of neural information processing. To realize the potential of these bioelectronic devices, it is necessary to understand the capabilities of emerging technologies and identify the best strategies to translate these technologies into products and therapies that will improve the lives of patients with neurological and other disorders. Here we discuss emerging technologies for sensing brain activity, anticipated challenges for translation, and perspectives for how to best transition these technologies from academic research labs to useful products for neuroscience researchers and human patients.
Collapse
Affiliation(s)
- Jacob T. Robinson
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eric Pohlmeyer
- John Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
| | - Malte C. Gather
- SUPA, School of Physics & Astronomy, University of St Andrews, St Andrews KY16 9SS Scotland, UK
| | - Caleb Kemere
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - John E. Kitching
- Time and Frequency Division, NIST, 325 Broadway, Boulder, Colorado 80305, USA
| | - George G. Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge CB3 0FA, UK
| | - Adam Marblestone
- MIT Media Lab, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Kenneth L. Shepard
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| | - Thomas Stieglitz
- Institute of Microsystem Technology, Laboratory for Biomedical Microtechnology, D-79110 Freiburg, Germany
- Cluster of Excellence BrainLinks-BrainTools, University of Freiburg, 79110 Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, 79104 Freiburg, Germany
| | - Chong Xie
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
26
|
Abstract
Voltage sensitive dyes (VSDs) are used for in vitro drug screening and for imaging of patterns of electrical activity in tissue. Wide application of this technology depends on the availability of sensors with high sensitivity (percent change of fluorescence per 100 mV), high fluorescence quantum yield, and fast response kinetics. A promising approach uses a two-component system consisting of anionic membrane permeable quenchers with fluorophores labeling one side of the membrane; this produces voltage-dependent fluorescence quenching. However, the quencher must be kept at low concentrations to minimize pharmacological effects, thus limiting sensitivity. By developing tethered bichromophoric fluorophore quencher (TBFQ) dyes, where the fluorophore and quencher are covalently connected by a long hydrophobic chain, the sensitivity is maximized and is independent of VSD concentration. A series of 13 TBFQ dyes based on the aminonaphthylethenylpyridinium (ANEP) fluorophore and the dipicrylamine anion (DPA) quencher have been synthesized and tested in an artificial lipid bilayer apparatus. The best of these, TBFQ1, shows a 2.5-fold change in fluorescence per 100 mV change in membrane potential, and the response kinetics is in the 10-20 ms range. This sensitivity is an order of magnitude better than that of commonly used VSDs. However, the fluorescence quantum yield is only 1.6%, which may make this first generation of TBFQ VSDs impractical for in vivo electrical imaging. Nevertheless, the design principles established here can serve as foundation for improved TBFQ VSDs. We believe this approach promises to greatly enhance our ability to monitor electrical activity in cells and tissues.
Collapse
Affiliation(s)
- Ping Yan
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
| | - Corey D. Acker
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
| | - Leslie M. Loew
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
| |
Collapse
|
27
|
Dussaux C, Szabo V, Chastagnier Y, Fodor J, Léger JF, Bourdieu L, Perroy J, Ventalon C. Fast confocal fluorescence imaging in freely behaving mice. Sci Rep 2018; 8:16262. [PMID: 30389966 PMCID: PMC6214968 DOI: 10.1038/s41598-018-34472-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/12/2018] [Indexed: 12/13/2022] Open
Abstract
Fluorescence imaging in the brain of freely behaving mice is challenging due to severe miniaturization constraints. In particular, the ability to image a large field of view at high temporal resolution and with efficient out-of-focus background rejection still raises technical difficulties. Here, we present a novel fiberscope system that provides fast (up to 200 Hz) background-free fluorescence imaging in freely behaving mice over a field of view of diameter 230 μm. The fiberscope is composed of a custom-made multipoint-scanning confocal microscope coupled to the animal with an image guide and a micro-objective. By simultaneously registering a multipoint-scanning confocal image and a conventional widefield image, we subtracted the residual out-of-focus background and provided a background-free confocal image. Illumination and detection pinholes were created using a digital micromirror device, providing high adaptability to the sample structure and imaging conditions. Using this novel imaging tool, we demonstrated fast fluorescence imaging of microvasculature up to 120 μm deep in the mouse cortex, with an out-of-focus background reduced by two orders of magnitude compared with widefield microscopy. Taking advantage of the high acquisition rate (200 Hz), we measured red blood cell velocity in the cortical microvasculature and showed an increase in awake, unrestrained mice compared with anaesthetized animals.
Collapse
Affiliation(s)
- Clara Dussaux
- Institut de biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, 46 rue d'Ulm, Paris, 75005, France
| | - Vivien Szabo
- IGF, Univ. Montpellier, CNRS, INSERM, 141 rue de la Cardonille, Montpellier, 34094, France
| | - Yan Chastagnier
- IGF, Univ. Montpellier, CNRS, INSERM, 141 rue de la Cardonille, Montpellier, 34094, France
| | - Jozsua Fodor
- Institut de biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, 46 rue d'Ulm, Paris, 75005, France
| | - Jean-François Léger
- Institut de biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, 46 rue d'Ulm, Paris, 75005, France
| | - Laurent Bourdieu
- Institut de biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, 46 rue d'Ulm, Paris, 75005, France
| | - Julie Perroy
- IGF, Univ. Montpellier, CNRS, INSERM, 141 rue de la Cardonille, Montpellier, 34094, France
| | - Cathie Ventalon
- Institut de biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, 46 rue d'Ulm, Paris, 75005, France.
| |
Collapse
|
28
|
Kang BE, Lee S, Baker BJ. Optical consequences of a genetically-encoded voltage indicator with a pH sensitive fluorescent protein. Neurosci Res 2018; 146:13-21. [PMID: 30342069 DOI: 10.1016/j.neures.2018.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/20/2018] [Accepted: 10/16/2018] [Indexed: 12/31/2022]
Abstract
Genetically-Encoded Voltage Indicators (GEVIs) are capable of converting changes in membrane potential into an optical signal. Here, we focus on recent insights into the mechanism of ArcLight-type probes and the consequences of utilizing a pH-dependent Fluorescent Protein (FP). A negative charge on the exterior of the β-can of the FP combined with a pH-sensitive FP enables voltage-dependent conformational changes to affect the fluorescence of the probe. This hypothesis implies that interaction/dimerization of the FP creates a microenvironment for the probe that is altered via conformational changes. This mechanism explains why a pH sensitive FP with a negative charge on the outside of the β-can is needed, but also suggests that pH could affect the optical signal as well. To better understand the effects of pH on the voltage-dependent signal of ArcLight, the intracellular pH (pHi) was tested at pH 6.8, 7.2, or 7.8. The resting fluorescence of ArcLight gets brighter as the pHi increases, yet only pH 7.8 significantly affected the ΔF/F. ArcLight could also simultaneously report voltage and pH changes during the acidification of a neuron firing multiple action potentials revealing different buffering capacities of the soma versus the processes of the cell.
Collapse
Affiliation(s)
- Bok Eum Kang
- Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Sungmoo Lee
- Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul, Republic of Korea; Program in Nanoscience and Technology, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University. Suwon, Republic of Korea
| | - Bradley J Baker
- Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
29
|
Verstraelen P, Van Dyck M, Verschuuren M, Kashikar ND, Nuydens R, Timmermans JP, De Vos WH. Image-Based Profiling of Synaptic Connectivity in Primary Neuronal Cell Culture. Front Neurosci 2018; 12:389. [PMID: 29997468 PMCID: PMC6028601 DOI: 10.3389/fnins.2018.00389] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 05/22/2018] [Indexed: 12/04/2022] Open
Abstract
Neurological disorders display a broad spectrum of clinical manifestations. Yet, at the cellular level, virtually all these diseases converge into a common phenotype of dysregulated synaptic connectivity. In dementia, synapse dysfunction precedes neurodegeneration and cognitive impairment by several years, making the synapse a crucial entry point for the development of diagnostic and therapeutic strategies. Whereas high-resolution imaging and biochemical fractionations yield detailed insight into the molecular composition of the synapse, standardized assays are required to quickly gauge synaptic connectivity across large populations of cells under a variety of experimental conditions. Such screening capabilities have now become widely accessible with the advent of high-throughput, high-content microscopy. In this review, we discuss how microscopy-based approaches can be used to extract quantitative information about synaptic connectivity in primary neurons with deep coverage. We elaborate on microscopic readouts that may serve as a proxy for morphofunctional connectivity and we critically analyze their merits and limitations. Finally, we allude to the potential of alternative culture paradigms and integrative approaches to enable comprehensive profiling of synaptic connectivity.
Collapse
Affiliation(s)
- Peter Verstraelen
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Michiel Van Dyck
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Marlies Verschuuren
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Rony Nuydens
- Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Winnok H. De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
- Cell Systems and Imaging, Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| |
Collapse
|