1
|
Li S, Chen J. Driving Forces of RNA Condensation Revealed through Coarse-Grained Modeling with Explicit Mg 2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.17.624048. [PMID: 39605385 PMCID: PMC11601354 DOI: 10.1101/2024.11.17.624048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
RNAs are major drivers of phase separation in the formation of biomolecular condensates, and can undergo protein-free phase separation in the presence of divalent ions or crowding agents. Much remains to be understood regarding how the complex interplay of base stacking, base pairing, electrostatics, ion interactions, and particularly structural propensities governs RNA phase behavior. Here we develop an intermediate resolution model for condensates of RNAs (iConRNA) that can capture key local and long-range structure features of dynamic RNAs and simulate their spontaneous phase transitions with Mg2+. Representing each nucleotide using 6-7 beads, iConRNA accurately captures base stacking and pairing and includes explicit Mg2+. The model does not only reproduce major conformational properties of poly(rA) and poly(rU), but also correctly folds small structured RNAs and predicts their melting temperatures. With an effective model of explicit Mg2+, iConRNA successfully recapitulates experimentally observed lower critical solution temperature phase separation of poly(rA) and triplet repeats, and critically, the nontrivial dependence of phase transitions on RNA sequence, length, concentration, and Mg2+ level. Further mechanistic analysis reveals a key role of RNA folding in modulating phase separation as well as its temperature and ion dependence, besides other driving forces such as Mg2+-phosphate interactions, base stacking, and base pairing. These studies also support iConRNA as a powerful tool for direct simulation of RNA-driven phase transitions, enabling molecular studies of how RNA conformational dynamics and its response to complex condensate environment control the phase behavior and condensate material properties. SIGNIFICANCE STATEMENT Dynamic RNAs and proteins are major drivers of biomolecular phase separation that has been recently discovered to underlie numerous biological processes and be involved in many human diseases. Molecular simulation has an indispensable role to play in dissecting the driving forces and regulation of biomolecular phase separation. The current work describes a high-resolution coarse-grained RNA model that is capable of describing the structure dynamics and complex sequence, concentration, temperature and ion dependent phase transitions of flexible RNAs. The study further reveals a central role of RNA folding in coordinating Mg2+-phosphate interactions, base stacking, and base pairing to drive phase separation, paving the road for studies of RNA-mediated phase separation in relevant biological contexts.
Collapse
Affiliation(s)
- Shanlong Li
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
2
|
Freko S, Nikić M, Mayer D, Weiß LJK, Simmel FC, Wolfrum B. Digital CRISPR-Powered Biosensor Concept without Target Amplification Using Single-Impact Electrochemistry. ACS Sens 2024; 9:6197-6206. [PMID: 39435883 PMCID: PMC11590096 DOI: 10.1021/acssensors.4c02060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024]
Abstract
The rapid and reliable detection and quantification of nucleic acids is crucial for various applications, including infectious disease and cancer diagnostics. While conventional methods, such as the quantitative polymerase chain reaction are widely used, they are limited to the laboratory environment due to their complexity and the requirement for sophisticated equipment. In this study, we present a novel amplification-free digital sensing strategy by combining the collateral cleavage activity of the Cas12a enzyme with single-impact electrochemistry. In doing so, we modified silver nanoparticles using a straightforward temperature-assisted cofunctionalization process to subsequently detect the collision events of particles released by the activated Cas12a as distinct current spikes on a microelectrode array. The functionalization resulted in stable DNA-AgNP conjugates, making them suitable for numerous biosensor applications. Thus, our study demonstrates the potential of clustered regularly interspaced short palindromic repeats-based diagnostics combined with impact-based digital sensing for a rapid and amplification-free quantification of nucleic acids.
Collapse
Affiliation(s)
- Sebastian Freko
- Neuroelectronics,
Munich Institute of Biomedical Engineering, Department of Electrical
Engineering, School of Computation, Information and Technology, Technical University of Munich, 85748 Garching, Germany
| | - Marta Nikić
- Neuroelectronics,
Munich Institute of Biomedical Engineering, Department of Electrical
Engineering, School of Computation, Information and Technology, Technical University of Munich, 85748 Garching, Germany
| | - Dirk Mayer
- Institute
of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Lennart J. K. Weiß
- Department
of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Friedrich C. Simmel
- Department
of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Bernhard Wolfrum
- Neuroelectronics,
Munich Institute of Biomedical Engineering, Department of Electrical
Engineering, School of Computation, Information and Technology, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
3
|
Hu G, Yu X, Li Z. Unveiling Putative Excited State and Transmission of Binding Information in the Fluoride Riboswitch. J Chem Inf Model 2024; 64:7555-7564. [PMID: 39342653 DOI: 10.1021/acs.jcim.4c00852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Riboswitches regulate downstream gene expression by binding to specific small molecules or ions with multiple mechanisms to transfer the binding information. In the case of the fluoride riboswitch, the transcription termination signal is conveyed through a transient excited state (ES). In this work, we performed conventional molecular dynamics (MD) simulations, totaling 180 μs, to obtain the ES structure and investigate the mechanism underlying information transmission in Mg2+/F- binding within the fluoride riboswitch aptamer. The Mg2+/F- binding pocket exhibits various conformations in its apo form. A series of ES structures were extracted from the MD trajectories of the apo form. The dynamics of the Mg2+/F- binding pocket influenced key pair A40-U48 in ES structures. The pathway connecting the binding pocket to the pair involves interactions between the phosphate groups of U7 and G8 and the nucleobases of G8-C47-U48. Our work presents a structural ensemble of the ES and elucidates a pathway for transferring Mg2+/F- binding information, thereby facilitating the understanding of how the holo-like apo state achieves transcriptional repression.
Collapse
Affiliation(s)
- Guodong Hu
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou 253023, China
| | - Xue Yu
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou 253023, China
| | - Zhaojun Li
- College of Computer and Information Engineering, Dezhou University, Dezhou 253023, China
| |
Collapse
|
4
|
Zheng CC, Chen YL, Dong HL, Zhang XH, Tan ZJ. Effect of ethanol on the elasticities of double-stranded RNA and DNA revealed by magnetic tweezers and simulations. J Chem Phys 2024; 161:075101. [PMID: 39145565 DOI: 10.1063/5.0211869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024] Open
Abstract
The elasticities of double-stranded (ds) DNA and RNA, which are critical to their biological functions and applications in materials science, can be significantly modulated by solution conditions such as ions and temperature. However, there is still a lack of a comprehensive understanding of the role of solvents in the elasticities of dsRNA and dsDNA in a comparative way. In this work, we explored the effect of ethanol solvent on the elasticities of dsRNA and dsDNA by magnetic tweezers and all-atom molecular dynamics simulations. We found that the bending persistence lengths and contour lengths of dsRNA and dsDNA decrease monotonically with the increase in ethanol concentration. Furthermore, the addition of ethanol weakens the positive twist-stretch coupling of dsRNA, while promotes the negative twist-stretch coupling of dsDNA. Counter-intuitively, the lower dielectric environment of ethanol causes a significant re-distribution of counterions and enhanced ion neutralization, which overwhelms the enhanced repulsion along dsRNA/dsDNA, ultimately leading to the softening in bending for dsRNA and dsDNA. Moreover, for dsRNA, ethanol causes slight ion-clamping across the major groove, which weakens the major groove-mediated twist-stretch coupling, while for dsDNA, ethanol promotes the stretch-radius correlation due to enhanced ion binding and consequently enhances the helical radius-mediated twist-stretch coupling.
Collapse
Affiliation(s)
- Chen-Chen Zheng
- School of Physics and Technology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yun-Long Chen
- School of Physics and Technology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hai-Long Dong
- School of Physics and Technology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xing-Hua Zhang
- School of Physics and Technology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhi-Jie Tan
- School of Physics and Technology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
5
|
Dong HL, Zhang C, Dai L, Zhang Y, Zhang XH, Tan ZJ. The origin of different bending stiffness between double-stranded RNA and DNA revealed by magnetic tweezers and simulations. Nucleic Acids Res 2024; 52:2519-2529. [PMID: 38321947 PMCID: PMC10954459 DOI: 10.1093/nar/gkae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/08/2024] Open
Abstract
The subtle differences in the chemical structures of double-stranded (ds) RNA and DNA lead to significant variations in their biological roles and medical implications, largely due to their distinct biophysical properties, such as bending stiffness. Although it is well known that A-form dsRNA is stiffer than B-form dsDNA under physiological salt conditions, the underlying cause of this difference remains unclear. In this study, we employ high-precision magnetic-tweezer experiments along with molecular dynamics simulations and reveal that the relative bending stiffness between dsRNA and dsDNA is primarily determined by the structure- and salt-concentration-dependent ion distribution around their helical structures. At near-physiological salt conditions, dsRNA shows a sparser ion distribution surrounding its phosphate groups compared to dsDNA, causing its greater stiffness. However, at very high monovalent salt concentrations, phosphate groups in both dsRNA and dsDNA become fully neutralized by excess ions, resulting in a similar intrinsic bending persistence length of approximately 39 nm. This similarity in intrinsic bending stiffness of dsRNA and dsDNA is coupled to the analogous fluctuations in their total groove widths and further coupled to the similar fluctuation of base-pair inclination, despite their distinct A-form and B-form helical structures.
Collapse
Affiliation(s)
- Hai-Long Dong
- School of Physics and Technology, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Chen Zhang
- School of Physics and Technology, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Liang Dai
- Department of Physics, City University of Hong Kong, Hong Kong 999077, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430072, China
| | - Xing-Hua Zhang
- School of Physics and Technology, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Zhi-Jie Tan
- School of Physics and Technology, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| |
Collapse
|
6
|
Li L, Ding Y, Xie G, Luo S, Liu X, Wang L, Shi J, Wan Y, Fan C, Ouyang X. DNA Framework-Templated Fabrication of Ultrathin Electroactive Gold Nanosheets. Angew Chem Int Ed Engl 2024; 63:e202318646. [PMID: 38231189 DOI: 10.1002/anie.202318646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/18/2024]
Abstract
Generally, two-dimensional gold nanomaterials have unique properties and functions that offer exciting application prospects. However, the crystal phases of these materials tend to be limited to the thermodynamically stable crystal structure. Herein, we report a DNA framework-templated approach for the ambient aqueous synthesis of freestanding and microscale amorphous gold nanosheets with ultrathin sub-nanometer thickness. We observe that extended single-stranded DNA on DNA nanosheets can induce site-specific metallization and enable precise modification of the metalized nanostructures at predefined positions. More importantly, the as-prepared gold nanosheets can serve as an electrocatalyst for glucose oxidase-catalyzed aerobic oxidation, exhibiting enhanced electrocatalytic activity (~3-fold) relative to discrete gold nanoclusters owing to a larger electrochemical active area and wider band gap. The proposed DNA framework-templated metallization strategy is expected to be applicable in a broad range of fields, from catalysis to new energy materials.
Collapse
Affiliation(s)
- Le Li
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, P. R. China
| | - Yawen Ding
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, P. R. China
| | - Gang Xie
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, P. R. China
| | - Shihua Luo
- Department of Traumatology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Lihua Wang
- Institute of Materials Biology, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, China
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Jiye Shi
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Ying Wan
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiangyuan Ouyang
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, P. R. China
| |
Collapse
|
7
|
Arteaga S, Dolenz BJ, Znosko BM. Competitive Influence of Alkali Metals in the Ion Atmosphere on Nucleic Acid Duplex Stability. ACS OMEGA 2024; 9:1287-1297. [PMID: 38222622 PMCID: PMC10785066 DOI: 10.1021/acsomega.3c07563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 01/16/2024]
Abstract
The nonspecific atmosphere around nucleic acids, often termed the ion atmosphere, encompasses a collection of weak ion-nucleic acid interactions. Although nonspecific, the ion atmosphere has been shown to influence nucleic acid folding and structural stability. Studies investigating the composition of the ion atmosphere have shown competitive occupancy of the atmosphere between metal ions in the same solution. Many studies have investigated single ion effects on nucleic acid secondary structure stability; however, no comprehensive studies have investigated how the competitive occupancy of mixed ions in the ion atmosphere influences nucleic acid secondary structure stability. Here, six oligonucleotides were optically melted in buffers containing molar quantities, or mixtures, of either XCl (X = Li, K, Rb, or Cs) or NaCl. A correction factor was developed to better predict RNA duplex stability in solutions containing mixed XCl/NaCl. For solutions containing a 1:1 mixture of XCl/NaCl, one alkali metal chloride contributed more to duplex stability than the other. Overall, there was a 54% improvement in predictive capabilities with the correction factor compared with the standard 1.0 M NaCl nearest-neighbor models. This correction factor can be used in models to better predict RNA secondary structure in solutions containing mixed XCl/NaCl.
Collapse
Affiliation(s)
- Sebastian
J. Arteaga
- Department of Chemistry, Saint Louis University, Saint
Louis, Missouri 63103, United States
| | - Bruce J. Dolenz
- Department of Chemistry, Saint Louis University, Saint
Louis, Missouri 63103, United States
| | - Brent M. Znosko
- Department of Chemistry, Saint Louis University, Saint
Louis, Missouri 63103, United States
| |
Collapse
|
8
|
Alston JJ, Soranno A. Condensation Goes Viral: A Polymer Physics Perspective. J Mol Biol 2023; 435:167988. [PMID: 36709795 PMCID: PMC10368797 DOI: 10.1016/j.jmb.2023.167988] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
The past decade has seen a revolution in our understanding of how the cellular environment is organized, where an incredible body of work has provided new insights into the role played by membraneless organelles. These rapid advancements have been made possible by an increasing awareness of the peculiar physical properties that give rise to such bodies and the complex biology that enables their function. Viral infections are not extraneous to this. Indeed, in host cells, viruses can harness existing membraneless compartments or, even, induce the formation of new ones. By hijacking the cellular machinery, these intracellular bodies can assist in the replication, assembly, and packaging of the viral genome as well as in the escape of the cellular immune response. Here, we provide a perspective on the fundamental polymer physics concepts that may help connect and interpret the different observed phenomena, ranging from the condensation of viral genomes to the phase separation of multicomponent solutions. We complement the discussion of the physical basis with a description of biophysical methods that can provide quantitative insights for testing and developing theoretical and computational models.
Collapse
Affiliation(s)
- Jhullian J Alston
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 St Euclid Ave, 63110 Saint Louis, MO, USA; Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130 Saint Louis, MO, USA
| | - Andrea Soranno
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 St Euclid Ave, 63110 Saint Louis, MO, USA; Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130 Saint Louis, MO, USA.
| |
Collapse
|
9
|
Wang X, Yu S, Lou E, Tan YL, Tan ZJ. RNA 3D Structure Prediction: Progress and Perspective. Molecules 2023; 28:5532. [PMID: 37513407 PMCID: PMC10386116 DOI: 10.3390/molecules28145532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Ribonucleic acid (RNA) molecules play vital roles in numerous important biological functions such as catalysis and gene regulation. The functions of RNAs are strongly coupled to their structures or proper structure changes, and RNA structure prediction has been paid much attention in the last two decades. Some computational models have been developed to predict RNA three-dimensional (3D) structures in silico, and these models are generally composed of predicting RNA 3D structure ensemble, evaluating near-native RNAs from the structure ensemble, and refining the identified RNAs. In this review, we will make a comprehensive overview of the recent advances in RNA 3D structure modeling, including structure ensemble prediction, evaluation, and refinement. Finally, we will emphasize some insights and perspectives in modeling RNA 3D structures.
Collapse
Affiliation(s)
- Xunxun Wang
- Department of Physics, Key Laboratory of Artificial Micro & Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Shixiong Yu
- Department of Physics, Key Laboratory of Artificial Micro & Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - En Lou
- Department of Physics, Key Laboratory of Artificial Micro & Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Ya-Lan Tan
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, China
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences, Wuhan Textile University, Wuhan 430200, China
| | - Zhi-Jie Tan
- Department of Physics, Key Laboratory of Artificial Micro & Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
10
|
Mu ZC, Tan YL, Liu J, Zhang BG, Shi YZ. Computational Modeling of DNA 3D Structures: From Dynamics and Mechanics to Folding. Molecules 2023; 28:4833. [PMID: 37375388 DOI: 10.3390/molecules28124833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
DNA carries the genetic information required for the synthesis of RNA and proteins and plays an important role in many processes of biological development. Understanding the three-dimensional (3D) structures and dynamics of DNA is crucial for understanding their biological functions and guiding the development of novel materials. In this review, we discuss the recent advancements in computer methods for studying DNA 3D structures. This includes molecular dynamics simulations to analyze DNA dynamics, flexibility, and ion binding. We also explore various coarse-grained models used for DNA structure prediction or folding, along with fragment assembly methods for constructing DNA 3D structures. Furthermore, we also discuss the advantages and disadvantages of these methods and highlight their differences.
Collapse
Affiliation(s)
- Zi-Chun Mu
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan 430073, China
- School of Computer Science and Artificial Intelligence, Wuhan Textile University, Wuhan 430073, China
| | - Ya-Lan Tan
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan 430073, China
| | - Jie Liu
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan 430073, China
| | - Ben-Gong Zhang
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan 430073, China
| | - Ya-Zhou Shi
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan 430073, China
| |
Collapse
|
11
|
Wang X, Tan YL, Yu S, Shi YZ, Tan ZJ. Predicting 3D structures and stabilities for complex RNA pseudoknots in ion solutions. Biophys J 2023; 122:1503-1516. [PMID: 36924021 PMCID: PMC10147842 DOI: 10.1016/j.bpj.2023.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/05/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
RNA pseudoknots are a kind of important tertiary motif, and the structures and stabilities of pseudoknots are generally critical to the biological functions of RNAs with the motifs. In this work, we have carefully refined our previously developed coarse-grained model with salt effect through involving a new coarse-grained force field and a replica-exchange Monte Carlo algorithm, and employed the model to predict structures and stabilities of complex RNA pseudoknots in ion solutions beyond minimal H-type pseudoknots. Compared with available experimental data, the newly refined model can successfully predict 3D structures from sequences for the complex RNA pseudoknots including SARS-CoV-2 programming-1 ribosomal frameshifting element and Zika virus xrRNA, and can reliably predict the thermal stabilities of RNA pseudoknots with various sequences and lengths over broad ranges of monovalent/divalent salts. In addition, for complex pseudoknots including SARS-CoV-2 frameshifting element, our analyses show that their thermally unfolding pathways are mainly dependent on the relative stabilities of unfolded intermediate states, in analogy to those of minimal H-type pseudoknots.
Collapse
Affiliation(s)
- Xunxun Wang
- Department of Physics and Key Laboratory of Artificial Micro & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Ya-Lan Tan
- Research Center of Nonlinear Science and School of Mathematical and Physical Sciences, Wuhan Textile University, Wuhan, China
| | - Shixiong Yu
- Department of Physics and Key Laboratory of Artificial Micro & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Ya-Zhou Shi
- Research Center of Nonlinear Science and School of Mathematical and Physical Sciences, Wuhan Textile University, Wuhan, China
| | - Zhi-Jie Tan
- Department of Physics and Key Laboratory of Artificial Micro & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China.
| |
Collapse
|
12
|
Muniz MI, Bustos AH, Slott S, Astakhova K, Weber G. Cation valence dependence of hydrogen bond and stacking potentials in DNA mesoscopic models. Biophys Chem 2023; 294:106949. [PMID: 36706510 DOI: 10.1016/j.bpc.2022.106949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022]
Abstract
Monovalent and divalent cations play a crucial role in living cells and for molecular techniques such as PCR. Here we evaluate DNA melting temperatures in magnesium (Mg2+) and magnesium‑potassium (Mg2++ K+) buffers with a mesoscopic model that allows us to estimate hydrogen bonds and stacking interaction potentials. The Mg2+ and Mg2++ K+ results are compared to previous calculations for sodium ions (Na+), in terms of equivalent sodium concentration and ionic strength. Morse potentials, related to hydrogen bonding, were found to be essentially constant and unaffected by cation conditions. However, for stacking interactions we find a clear dependence with ionic strength and cation valence. The highest ionic strength variations, for both hydrogen bonds and stacking interactions, was found at the sequence terminals. This suggests that end-to-end interactions in DNA will be strongly dependent on cation valence and ionic strength.
Collapse
Affiliation(s)
- Maria Izabel Muniz
- Departamento de Física, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Adrian H Bustos
- Department of Chemistry, Technical University of Denmark, 206-207 Kemitorvet, 2800 Kongens Lyngby, Denmark
| | - Sofie Slott
- Department of Chemistry, Technical University of Denmark, 206-207 Kemitorvet, 2800 Kongens Lyngby, Denmark
| | - Kira Astakhova
- Department of Chemistry, Technical University of Denmark, 206-207 Kemitorvet, 2800 Kongens Lyngby, Denmark
| | - Gerald Weber
- Departamento de Física, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil.
| |
Collapse
|
13
|
Arteaga SJ, Adams MS, Meyer NL, Richardson KE, Hoener S, Znosko BM. Thermodynamic determination of RNA duplex stability in magnesium solutions. Biophys J 2023; 122:565-576. [PMID: 36540026 PMCID: PMC9941723 DOI: 10.1016/j.bpj.2022.12.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The prediction of RNA secondary structure and thermodynamics from sequence relies on free energy minimization and nearest neighbor parameters. Currently, algorithms used to make these predictions are based on parameters from optical melting studies performed in 1 M NaCl. However, many physiological and biochemical buffers containing RNA include much lower concentrations of monovalent cations and the presence of divalent cations. In order to improve these algorithms, thermodynamic data was previously collected for RNA duplexes in solutions containing 71, 121, 221, and 621 mM Na+. From this data, correction factors for free energy (ΔG°37) and melting temperature (Tm) were derived. Despite these newly derived correction factors for sodium, the stabilizing effects of magnesium have been ignored. Here, the same RNA duplexes were melted in solutions containing 0.5, 1.5, 3.0, and 10.0 mM Mg2+ in the absence of monovalent cations. Correction factors for Tm and ΔG°37 were derived to scale the current parameters to a range of magnesium concentrations. The Tm correction factor predicts the melting temperature within 1.2°C, and the ΔG°37 correction factor predicts the free energy within 0.30 kcalmol. These newly derived magnesium correction factors can be incorporated into algorithms that predict RNA secondary structure and stability from sequence.
Collapse
Affiliation(s)
| | - Miranda S Adams
- Department of Chemistry, Saint Louis University, Saint Louis, Missouri
| | - Nicole L Meyer
- Department of Chemistry, Saint Louis University, Saint Louis, Missouri
| | | | - Scott Hoener
- Department of Chemistry, Saint Louis University, Saint Louis, Missouri
| | - Brent M Znosko
- Department of Chemistry, Saint Louis University, Saint Louis, Missouri.
| |
Collapse
|
14
|
Zhao XC, Dong HL, Li XL, Yang HY, Chen XF, Dai L, Wu WQ, Tan ZJ, Zhang XH. 5-Methyl-cytosine stabilizes DNA but hinders DNA hybridization revealed by magnetic tweezers and simulations. Nucleic Acids Res 2022; 50:12344-12354. [PMID: 36477372 PMCID: PMC9757033 DOI: 10.1093/nar/gkac1122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
5-Methyl-cytosine (5mC) is one of the most important DNA modifications and plays versatile biological roles. It is well known that 5mC stabilizes DNA duplexes. However, it remains unclear how 5mC affects the kinetics of DNA melting and hybridization. Here, we studied the kinetics of unzipping and rezipping using a 502-bp DNA hairpin by single-molecule magnetic tweezers. Under constant loading rates, 5mC increases the unzipping force but counterintuitively decreases the rezipping force at various salt and temperature conditions. Under constant forces, the non-methylated DNA hops between metastable states during unzipping and rezipping, which implies low energy barriers. Surprisingly, the 5mC DNA can't rezip after fully unzipping unless much lower forces are applied, where it rezips stochastically in a one-step manner, which implies 5mC kinetically hinders DNA hybridization and high energy barriers in DNA hybridization. All-atom molecular dynamics simulations reveal that the 5mC kinetically hinders DNA hybridization due to steric effects rather than electrostatic effects caused by the additional methyl groups of cytosines. Considering the possible high speed of DNA unzipping and zipping during replication and transcription, our findings provide new insights into the biological roles of 5mC.
Collapse
Affiliation(s)
| | | | - Xiao-Lu Li
- The Institute for Advanced Studies, College of Life Sciences, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Hong-Yu Yang
- The Institute for Advanced Studies, College of Life Sciences, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Xue-Feng Chen
- The Institute for Advanced Studies, College of Life Sciences, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Liang Dai
- Department of Physics, City University of Hong Kong, Hong Kong 999077, China
| | - Wen-Qiang Wu
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, Henan University, Kaifeng 475001, China
| | - Zhi-Jie Tan
- Correspondence may also be addressed to Zhi-Jie Tan. Tel: +86 15827627809; Fax: +86 02768752569;
| | - Xing-Hua Zhang
- To whom correspondence should be addressed. Tel: +86 15827632615; Fax: +86 02768753780;
| |
Collapse
|
15
|
Zhang J, Fakharzadeh A, Roland C, Sagui C. RNA as a Major-Groove Ligand: RNA-RNA and RNA-DNA Triplexes Formed by GAA and UUC or TTC Sequences. ACS OMEGA 2022; 7:38728-38743. [PMID: 36340174 PMCID: PMC9631886 DOI: 10.1021/acsomega.2c04358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Friedreich's ataxia is associated with noncanonical nucleic acid structures that emerge when GAA:TTC repeats in the first intron of the FXN gene expand beyond a critical number of repeats. Specifically, the noncanonical repeats are associated with both triplexes and R-loops. Here, we present an in silico investigation of all possible triplexes that form by attaching a third RNA strand to an RNA:RNA or DNA:DNA duplex, complementing previous DNA-based triplex studies. For both new triplexes results are similar. For a pyridimine UUC+ third strand, the parallel orientation is stable while its antiparallel counterpart is unstable. For a neutral GAA third strand, the parallel conformation is stable. A protonated GA+A third strand is stable in both parallel and antiparallel orientations. We have also investigated Na+ and Mg2+ ion distributions around the triplexes. The presence of Mg2+ ions helps stabilize neutral, antiparallel GAA triplexes. These results (along with previous DNA-based studies) allow for the emergence of a complete picture of the stability and structural characteristics of triplexes based on the GAA and TTC/UUC sequences, thereby contributing to the field of trinucleotide repeats and the associated unusual structures that trigger expansion.
Collapse
|
16
|
Computational Studies on Selected Macrolides Active against Escherichia coli Combined with the NMR Study of Tylosin A in Deuterated Chloroform. Molecules 2022; 27:molecules27217280. [PMID: 36364103 PMCID: PMC9654277 DOI: 10.3390/molecules27217280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/17/2022] [Accepted: 10/22/2022] [Indexed: 11/25/2022] Open
Abstract
Although many antibiotics are active against Gram-positive bacteria, fewer also show activity against Gram-negative bacteria. Here, we present a combination of in silico (electron ion-interaction potential, molecular docking, ADMET), NMR, and microbiological investigations of selected macrolides (14-membered, 15-membered, and 16-membered), aiming to discover the pattern of design for macrolides active against Gram-negative bacteria. Although the conformational studies of 14-membered and 15-membered macrolides are abundant in the literature, 16-membered macrolides, and their most prominent representative tylosin A, have received relatively little research attention. We therefore report the complete 1H and 13C NMR assignment of tylosin A in deuterated chloroform, as well as its 3D solution structure determined through molecular modelling (conformational search) and 2D ROESY NMR. Additionally, due to the degradation of tylosin A in deuterated chloroform, other species were also detected in 1D and 2D NMR spectra. We additionally studied the anti-bacterial activity of tylosin A and B against selected Gram-positive and Gram-negative bacteria.
Collapse
|
17
|
Trojanowicz R, Vestri A, Rippa M, Zyss J, Matczyszyn K, Petti L. DNA Antiadhesive Layer for Reusable Plasmonic Sensors: Nanostructure Pitch Effect. ACS OMEGA 2022; 7:31682-31690. [PMID: 36120011 PMCID: PMC9475616 DOI: 10.1021/acsomega.2c01370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A long-term reusable sensor that provides the opportunity to easily regenerate the active surface and minimize the occurrence of undesired absorption events is an appealing solution that helps to cut down the costs and improve the device performances. Impressive advances have been made in the past years concerning the development of novel cutting-edge sensors, but the reusability can currently represent a challenge. Direct shielding of the sensor surface is not always applicable, because it can impact the device performance. This study reports an antiadhesive layer (AAL) made of 90 mg/mL DNA sodium salt from salmon testes (ssstDNA) for passivating gold plasmonic sensor surfaces. Our gold two-dimensional (2D) nanostructured plasmonic metasurfaces modified with AAL were used for DNA quantification. AAL is thin enough that the plasmonic sensor remains sensitive to subsequent deposition of DNA, which serves as an analyte. AAL protects the gold surface from unwanted nonspecific adsorption by enabling wash-off of the deposited analyte after analysis and thus recovery of the LSPR peak position (rLSPR). The calibration curve obtained on a single nanostructure (Achiral Octupolar, 100 nm pitch) gave an LOD = 105 ng/mL and an extraordinary dynamic range, performances comparable or superior to those of commercial UV-vis spectrometers for acid nucleic dosage. Two different analytes were tested: ssstDNA (∼2000 bp) in deionized water and double-strand DNA (dsDNA) of 546-1614 bp in 100 mM Tris buffer and 10 mM MgCl2. The two nanostructures (Achiral Octupolar 25 and 100) were found to have the same sensitivity to DNA in deionized water but different sensitivity to DNA in a salt/buffer solution, opening a potential for solute discrimination. To the best of our knowledge, this is the first report on the use of AAL made of several kilobase-pairs-long dsDNA to produce a reusable plasmonic sensor. The working principle and limitations are drawn based on the LSPR and SERS study.
Collapse
Affiliation(s)
- Remigiusz
K. Trojanowicz
- Advanced
Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Ambra Vestri
- Institute
of Applied Sciences and Intelligent Systems “E. Caianiello”
of CNR, 80072 Pozzuoli, Italy
| | - Massimo Rippa
- Institute
of Applied Sciences and Intelligent Systems “E. Caianiello”
of CNR, 80072 Pozzuoli, Italy
| | - Joseph Zyss
- LUMIN
Laboratory and Institut d’Alembert, Ecole Normale Supérieure
Paris-Saclay, CNRS, Université Paris-Saclay, 4, avenue des Sciences, 91190 Gif-sur-Yvette, France
| | - Katarzyna Matczyszyn
- Advanced
Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Lucia Petti
- Institute
of Applied Sciences and Intelligent Systems “E. Caianiello”
of CNR, 80072 Pozzuoli, Italy
| |
Collapse
|
18
|
Meng J, Zhang Q, Ma M, Shi H, He G. Persistence of avian influenza virus (H9N2) on plastic surface. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155355. [PMID: 35460779 DOI: 10.1016/j.scitotenv.2022.155355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Plastics have been found to be colonized with pathogens and may become vectors for transmission of diseases. In this study, we evaluated the persistence of H9N2 avian influenza virus (AIV) on the surfaces of various plastics (PP, PE, PS, PET, PVC, PMMA) under different environmental conditions using glass and stainless steel for comparison. Our results showed that the RNA abundance of AIV on plastics was decreased over time but still detectable 14 days after AIV had been dropped on plastic surfaces. Low temperature (4 °C) was more favorable for AIV RNA preservation and infectivity maintenance. The abundance of AIV RNA was significantly greater on polyethylene terephthalate (PET) than that on glass and stainless steel at higher temperature (i.e., 25 °C and 37 °C) and lower humidity (<20% and 40-60%) (p < 0.05). Infectivity assay showed that AIV infectivity was only maintained at 4 °C after 24 h of incubation. Taken together, the persistence of AIV was more affected by environmental factors than material types. Plastics were able to preserve viral RNA more effectively in relatively high-temperature or low-humidity environments. Our study indicates that environmental factors should be taken into consideration when we evaluate the capacity of plastics to spread viruses.
Collapse
Affiliation(s)
- Jian Meng
- Institute of Eco-Chongming, East China Normal University, Shanghai 200162, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| | - Qun Zhang
- Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, School of Ecological and Environmental Sciences; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Min Ma
- Laboratory of Wildlife Epidemic Diseases, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Huahong Shi
- Institute of Eco-Chongming, East China Normal University, Shanghai 200162, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| | - Guimei He
- Institute of Eco-Chongming, East China Normal University, Shanghai 200162, China; Laboratory of Wildlife Epidemic Diseases, School of Life Sciences, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
19
|
Kolev SK, St. Petkov P, Milenov TI, Vayssilov GN. Sodium and Magnesium Ion Location at the Backbone and at the Nucleobase of RNA: Ab Initio Molecular Dynamics in Water Solution. ACS OMEGA 2022; 7:23234-23244. [PMID: 35847262 PMCID: PMC9280761 DOI: 10.1021/acsomega.2c01327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The interactions between Na+ or Mg2+ ions with different parts of single-stranded RNA molecules, namely, the oxygen atoms from the phosphate groups or the guanine base, in water solution have been studied using first-principles molecular dynamics. Sodium ions were found to be much more mobile than Mg2+ ions and readily underwent transitions between a state directly bonded to RNA oxygen atoms and a completely solvated state. The inner solvation shell of Na+ ions fluctuated stochastically at a femtosecond timescale coordinating on average 5 oxygen atoms for bonded Na+ ions and 5.5 oxygen atoms for solvated Na+ ions. In contrast, the inner solvation shell of Mg2+ ions was stable in both RNA-bonded and completely solvated states. In both cases, Mg2+ ions coordinated 6 oxygen atoms from the inner solvation shell. Consistent with their stable solvation shells, Mg2+ ions were more effective than Na+ ions in stabilizing the RNA backbone conformation. The exclusion zones between the first and second solvation shells, solvation shell widths, and angles for binding to carbonyl oxygen of guanine for solvated Na+ or Mg2+ ions exhibited a number of quantitative differences when compared with RNA crystallographic data. The presented results support the distinct capacity of Mg2+ ions to support the RNA structure not only in the crystal phase but also in the dynamic water environment both on the side of the phosphate moiety and on the side of the nucleobase.
Collapse
Affiliation(s)
- Stefan K. Kolev
- Institute
of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., Sofia 1784, Bulgaria
| | - Petko St. Petkov
- Faculty
of Chemistry and Pharmacy, University of
Sofia, Boulevard James
Bouchier 1, Sofia 1126, Bulgaria
| | - Teodor I. Milenov
- Institute
of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., Sofia 1784, Bulgaria
| | - Georgi N. Vayssilov
- Faculty
of Chemistry and Pharmacy, University of
Sofia, Boulevard James
Bouchier 1, Sofia 1126, Bulgaria
| |
Collapse
|
20
|
Wang A, Levi M, Mohanty U, Whitford PC. Diffuse Ions Coordinate Dynamics in a Ribonucleoprotein Assembly. J Am Chem Soc 2022; 144:9510-9522. [PMID: 35593477 DOI: 10.1021/jacs.2c04082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Proper ionic concentrations are required for the functional dynamics of RNA and ribonucleoprotein (RNP) assemblies. While experimental and computational techniques have provided many insights into the properties of chelated ions, less is known about the energetic contributions of diffuse ions to large-scale conformational rearrangements. To address this, we present a model that is designed to quantify the influence of diffuse monovalent and divalent ions on the dynamics of biomolecular assemblies. This model employs all-atom (non-H) resolution and explicit ions, where effective potentials account for hydration effects. We first show that the model accurately predicts the number of excess Mg2+ ions for prototypical RNA systems, at a level comparable to modern coarse-grained models. We then apply the model to a complete ribosome and show how the balance between diffuse Mg2+ and K+ ions can control the dynamics of tRNA molecules during translation. The model predicts differential effects of diffuse ions on the free-energy barrier associated with tRNA entry and the energy of tRNA binding to the ribosome. Together, this analysis reveals the direct impact of diffuse ions on the dynamics of an RNP assembly.
Collapse
Affiliation(s)
- Ailun Wang
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States.,Center for Theoretical Biological Physics, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Mariana Levi
- Department of Physics, Northeastern University, Dana Research Center 111, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Udayan Mohanty
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Paul C Whitford
- Center for Theoretical Biological Physics, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States.,Department of Physics, Northeastern University, Dana Research Center 111, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
21
|
Wilson KA, Jeong YER, Wetmore SD. Multiscale computational investigations of the translesion synthesis bypass of tobacco-derived DNA adducts: critical insights that complement experimental biochemical studies. Phys Chem Chem Phys 2022; 24:10667-10683. [PMID: 35502640 DOI: 10.1039/d2cp00481j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Among the numerous agents that damage DNA, tobacco products remain one of the most lethal and result in the most diverse set of DNA lesions. This perspective aims to provide an overview of computational work conducted to complement experimental biochemical studies on the mutagenicity of adducts derived from the most potent tobacco carcinogen, namely 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (nicotine-derived nitrosaminoketone or NNK). Lesions ranging from the smallest methylated thymine derivatives to the larger, flexible pyridyloxobutyl (POB) guanine adducts are considered. Insights are obtained from density functional theory (DFT) calculations and molecular dynamics (MD) simulations into the damaged nucleobase and nucleoside structures, the accommodation of the lesions in the active site of key human polymerases, the intrinsic base pairing potentials of the adducts, and dNTP incorporation opposite the lesions. Overall, the computational data provide atomic level information that can rationalize the differential mutagenic properties of tobacco-derived lesions and uncover important insights into the impact of adduct size, nucleobase, position, and chemical composition of the bulky moiety.
Collapse
Affiliation(s)
- Katie A Wilson
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute (ARRTI) and Southern Alberta Genome Sciences Center (SAGSC), University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K 3M4, Canada.
| | - Ye Eun Rebecca Jeong
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute (ARRTI) and Southern Alberta Genome Sciences Center (SAGSC), University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K 3M4, Canada.
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute (ARRTI) and Southern Alberta Genome Sciences Center (SAGSC), University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K 3M4, Canada.
| |
Collapse
|
22
|
Behjatian A, Krishnan M. Electrostatic free energies carry structural information on nucleic acid molecules in solution. J Chem Phys 2022; 156:134201. [DOI: 10.1063/5.0080008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Over the last several decades, a range of experimental techniques from x-ray crystallography and atomic force microscopy to nuclear magnetic resonance and small angle x-ray scattering have probed nucleic acid structure and conformation with high resolution both in the condensed state and in solution. We present a computational study that examines the prospect of using electrostatic free energy measurements to detect 3D conformational properties of nucleic acid molecules in solution. As an example, we consider the conformational difference between A- and B-form double helices whose structures differ in the values of two key parameters—the helical radius and rise per basepair. Mapping the double helix onto a smooth charged cylinder reveals that electrostatic free energies for molecular helices can, indeed, be described by two parameters: the axial charge spacing and the radius of a corresponding equivalent cylinder. We show that electrostatic free energies are also sensitive to the local structure of the molecular interface with the surrounding electrolyte. A free energy measurement accuracy of 1%, achievable using the escape time electrometry (ET e) technique, could be expected to offer a measurement precision on the radius of the double helix of approximately 1 Å. Electrostatic free energy measurements may, therefore, not only provide information on the structure and conformation of biomolecules but could also shed light on the interfacial hydration layer and the size and arrangement of counterions at the molecular interface in solution.
Collapse
Affiliation(s)
- Ali Behjatian
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Madhavi Krishnan
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
23
|
Qiang XW, Zhang C, Dong HL, Tian FJ, Fu H, Yang YJ, Dai L, Zhang XH, Tan ZJ. Multivalent Cations Reverse the Twist-Stretch Coupling of RNA. PHYSICAL REVIEW LETTERS 2022; 128:108103. [PMID: 35333091 DOI: 10.1103/physrevlett.128.108103] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
When stretched, both DNA and RNA duplexes change their twist angles through twist-stretch coupling. The coupling is negative for DNA but positive for RNA, which is not yet completely understood. Here, our magnetic tweezers experiments show that the coupling of RNA reverses from positive to negative by multivalent cations. Combining with the previously reported tension-induced negative-to-positive coupling reversal of DNA, we propose a unified mechanism of the couplings of both RNA and DNA based on molecular dynamics simulations. Two deformation pathways are competing when stretched: shrinking the radius causes positive couplings but widening the major groove causes negative couplings. For RNA whose major groove is clamped by multivalent cations and canonical DNA, their radii shrink when stretched, thus exhibiting positive couplings. For elongated DNA whose radius already shrinks to the minimum and canonical RNA, their major grooves are widened when stretched, thus exhibiting negative couplings.
Collapse
Affiliation(s)
- Xiao-Wei Qiang
- Department of Physics and Key Laboratory of Artificial Micro & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Chen Zhang
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Hai-Long Dong
- Department of Physics and Key Laboratory of Artificial Micro & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Fu-Jia Tian
- Department of Physics, City University of Hong Kong, Hong Kong 999077, China
| | - Hang Fu
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Ya-Jun Yang
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Liang Dai
- Department of Physics, City University of Hong Kong, Hong Kong 999077, China
| | - Xing-Hua Zhang
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Zhi-Jie Tan
- Department of Physics and Key Laboratory of Artificial Micro & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
24
|
Fingerhut BP, Schauss J, Kundu A, Elsaesser T. Contact pairs of RNA with magnesium ions-electrostatics beyond the Poisson-Boltzmann equation. Biophys J 2021; 120:5322-5332. [PMID: 34715079 PMCID: PMC8715182 DOI: 10.1016/j.bpj.2021.10.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/24/2021] [Accepted: 10/22/2021] [Indexed: 11/18/2022] Open
Abstract
The electrostatic interaction of RNA with its aqueous environment is most relevant for defining macromolecular structure and biological function. The attractive interaction of phosphate groups in the RNA backbone with ions in the water environment leads to the accumulation of positively charged ions in the first few hydration layers around RNA. Electrostatics of this ion atmosphere and the resulting ion concentration profiles have been described by solutions of the nonlinear Poisson-Boltzmann equation and atomistic molecular dynamics (MD) simulations. Much less is known on contact pairs of RNA phosphate groups with ions at the RNA surface, regarding their abundance, molecular geometry, and role in defining RNA structure. Here, we present a combined theoretical and experimental study of interactions of a short RNA duplex with magnesium (Mg2+) ions. MD simulations covering a microsecond time range give detailed hydration geometries as well as electrostatics and spatial arrangements of phosphate-Mg2+ pairs, including both pairs in direct contact and separated by a single water layer. The theoretical predictions are benchmarked by linear infrared absorption and nonlinear two-dimensional infrared spectra of the asymmetric phosphate stretch vibration which probes both local interaction geometries and electric fields. Contact pairs of phosphate groups and Mg2+ ions are identified via their impact on the vibrational frequency position and line shape. A quantitative analysis of infrared spectra for a range of Mg2+-excess concentrations and comparison with fluorescence titration measurements shows that on average 20-30% of the Mg2+ ions interacting with the RNA duplex form contact pairs. The experimental and MD results are in good agreement. In contrast, calculations based on the nonlinear Poisson-Boltzmann equation fail in describing the ion arrangement, molecular electrostatic potential, and local electric field strengths correctly. Our results underline the importance of local electric field mapping and molecular-level simulations to correctly account for the electrostatics at the RNA-water interface.
Collapse
|
25
|
Fingerhut BP. The mutual interactions of RNA, counterions and water - quantifying the electrostatics at the phosphate-water interface. Chem Commun (Camb) 2021; 57:12880-12897. [PMID: 34816825 PMCID: PMC8640580 DOI: 10.1039/d1cc05367a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/01/2021] [Indexed: 11/25/2022]
Abstract
The structure and dynamics of polyanionic biomolecules, like RNA, are decisively determined by their electric interactions with the water molecules and the counterions in the environment. The solvation dynamics of the biomolecules involves a subtle balance of non-covalent and many-body interactions with structural fluctuations due to thermal motion occurring in a femto- to subnanosecond time range. This complex fluctuating many particle scenario is crucial in defining the properties of biological interfaces with far reaching significance for the folding of RNA structures and for facilitating RNA-protein interactions. Given the inherent complexity, suited model systems, carefully calibrated and benchmarked by experiments, are required to quantify the relevant interactions of RNA with the aqueous environment. In this feature article we summarize our recent progress in the understanding of the electrostatics at the biological interface of double stranded RNA (dsRNA) and transfer RNA (tRNA). Dimethyl phosphate (DMP) is introduced as a viable and rigorously accessible model system allowing the interaction strength with water molecules and counterions, their relevant fluctuation timescales and the spatial reach of interactions to be established. We find strong (up to ≈90 MV cm-1) interfacial electric fields with fluctuations extending up to ≈20 THz and demonstrate how the asymmetric stretching vibration νAS(PO2)- of the polarizable phosphate group can serve as the most sensitive probe for interfacial interactions, establishing a rigorous link between simulations and experiment. The approach allows for the direct interfacial observation of interactions of biologically relevant Mg2+ counterions with phosphate groups in contact pair geometries via the rise of a new absorption band imposed by exchange repulsion interactions at short interatomic distances. The systematic extension to RNA provides microscopic insights into the changes of the hydration structure that accompany the temperature induced melting of the dsRNA double helix and quantify the ionic interactions in the folded tRNA. The results show that pairs of negatively charged phosphate groups and Mg2+ ions represent a key structural feature of RNA embedded in water. They highlight the importance of binding motifs made of contact pairs in the electrostatic stabilization of RNA structures that have a strong impact on the surface potential and enable the fine tuning of the local electrostatic properties which are expected to be relevant for mediating the interactions between biomolecules.
Collapse
|
26
|
Bhadra PK, Magwaza RN, Nirmalan N, Freeman S, Barber J, Arsic B. Selected Derivatives of Erythromycin B- In Silico and Anti-Malarial Studies. MATERIALS 2021; 14:ma14226980. [PMID: 34832380 PMCID: PMC8618316 DOI: 10.3390/ma14226980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 12/01/2022]
Abstract
Erythromycin A is an established anti-bacterial agent against Gram-positive bacteria, but it is unstable to acid. This led to an evaluation of erythromycin B and its derivatives because these have improved acid stability. These compounds were investigated for their anti-malarial activities, by their in silico molecular docking into segments of the exit tunnel of the apicoplast ribosome from Plasmodium falciparum. This is believed to be the target of the erythromycin A derivative, azithromycin, which has mild anti-malarial activity. The erythromycin B derivatives were evaluated on the multi-drug (chloroquine, pyrimethamine, and sulfadoxine)-resistant strain K1 of P. falciparum for asexual growth inhibition on asynchronous culture. The erythromycin B derivatives were identified as active in vitro inhibitors of asexual growth of P. falciparum with low micro-molar IC50 values after a 72 h cycle. 5-Desosaminyl erythronolide B ethyl succinate showed low IC50 of 68.6 µM, d-erythromycin B 86.8 µM, and erythromycin B 9-oxime 146.0 µM on the multi-drug-resistant K1 of P. falciparum. Based on the molecular docking, it seems that a small number of favourable interactions or the presence of unfavourable interactions of investigated derivatives of erythromycin B with in silico constructed segment from the exit tunnel from the apicoplast of P. falciparum is the reason for their weak in vitro anti-malarial activities.
Collapse
Affiliation(s)
- Pranab K. Bhadra
- Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK; (P.K.B.); (R.N.M.); (S.F.); (J.B.)
| | - Rachael N. Magwaza
- Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK; (P.K.B.); (R.N.M.); (S.F.); (J.B.)
| | - Niroshini Nirmalan
- School of Science, Engineering & Environment, University of Salford, Manchester M5 4WT, UK;
| | - Sally Freeman
- Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK; (P.K.B.); (R.N.M.); (S.F.); (J.B.)
| | - Jill Barber
- Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK; (P.K.B.); (R.N.M.); (S.F.); (J.B.)
| | - Biljana Arsic
- Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK; (P.K.B.); (R.N.M.); (S.F.); (J.B.)
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Nis, Visegradska 33, 18000 Nis, Serbia
- Correspondence: or
| |
Collapse
|
27
|
Matreux T, Le Vay K, Schmid A, Aikkila P, Belohlavek L, Çalışkanoğlu AZ, Salibi E, Kühnlein A, Springsklee C, Scheu B, Dingwell DB, Braun D, Mutschler H, Mast CB. Heat flows in rock cracks naturally optimize salt compositions for ribozymes. Nat Chem 2021; 13:1038-1045. [PMID: 34446924 DOI: 10.1038/s41557-021-00772-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 07/13/2021] [Indexed: 11/09/2022]
Abstract
Catalytic nucleic acids, such as ribozymes, are central to a variety of origin-of-life scenarios. Typically, they require elevated magnesium concentrations for folding and activity, but their function can be inhibited by high concentrations of monovalent salts. Here we show that geologically plausible high-sodium, low-magnesium solutions derived from leaching basalt (rock and remelted glass) inhibit ribozyme catalysis, but that this activity can be rescued by selective magnesium up-concentration by heat flow across rock fissures. In contrast to up-concentration by dehydration or freezing, this system is so far from equilibrium that it can actively alter the Mg:Na salt ratio to an extent that enables key ribozyme activities, such as self-replication and RNA extension, in otherwise challenging solution conditions. The principle demonstrated here is applicable to a broad range of salt concentrations and compositions, and, as such, highly relevant to various origin-of-life scenarios.
Collapse
Affiliation(s)
- T Matreux
- Systems Biophysics, Ludwig Maximilians University Munich, Munich, Germany
| | - K Le Vay
- MPI für Biochemie, Biomimetische Systeme, Martinsried, Germany
| | - A Schmid
- Systems Biophysics, Ludwig Maximilians University Munich, Munich, Germany
| | - P Aikkila
- Systems Biophysics, Ludwig Maximilians University Munich, Munich, Germany
| | - L Belohlavek
- Earth and Environmental Sciences, Ludwig Maximilians University Munich, Munich, Germany
| | - A Z Çalışkanoğlu
- Earth and Environmental Sciences, Ludwig Maximilians University Munich, Munich, Germany
| | - E Salibi
- MPI für Biochemie, Biomimetische Systeme, Martinsried, Germany
| | - A Kühnlein
- Systems Biophysics, Ludwig Maximilians University Munich, Munich, Germany
| | - C Springsklee
- Earth and Environmental Sciences, Ludwig Maximilians University Munich, Munich, Germany
| | - B Scheu
- Earth and Environmental Sciences, Ludwig Maximilians University Munich, Munich, Germany
| | - D B Dingwell
- Earth and Environmental Sciences, Ludwig Maximilians University Munich, Munich, Germany
| | - D Braun
- Systems Biophysics, Ludwig Maximilians University Munich, Munich, Germany
| | | | - C B Mast
- Systems Biophysics, Ludwig Maximilians University Munich, Munich, Germany.
| |
Collapse
|
28
|
Chen J, Li N, Wang X, Chen J, Zhang JZH, Zhu T. Molecular mechanism related to the binding of fluorophores to Mango-II revealed by multiple-replica molecular dynamics simulations. Phys Chem Chem Phys 2021; 23:10636-10649. [PMID: 33904542 DOI: 10.1039/d0cp06438f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recently, RNA aptamers activating small-molecule fluorophores have been successfully applied to tag and track RNAs in vivo. It is of significance to investigate the molecular mechanism of the fluorophore-RNA aptamer bindings at the atomic level to seek a possible pathway to enhance the fluorescence efficiency of fluorophores. In this work, multiple replica molecular dynamics (MRMD) simulations, essential dynamics (ED) analysis, and hierarchical clustering analysis were coupled to probe the effect of A22U mutation on the binding of two fluorophores, TO1-Biotin (TO1) and TO3-Biotin (TO3), to the Mango-II RNA aptamer (Mango-II). ED analysis reveals that A22U induces alterations in the binding pocket and sites of TO1 and TO3 to the Mango-II, which in turn tunes the fluorophore-RNA interface and changes the interactions of TO1 and TO3 with separate nucleotides of Mango-II. Dynamics analyses also uncover that A22U exerts the opposite impact on the molecular surface areas of the Mango-II and sugar puckers of nucleotides 22 and 23 in Mango-II complexed with TO1 and TO3. Moreover, the calculations of binding free energies suggest that A22U strengthens the binding ability of TO1 to the mutated Mango-II but weakens TO3 to the mutated Mango-II when compared with WT. These findings imply that point mutation in nucleotides possibly tune the fluorescence of fluorophores binding to RNA aptamers, providing a possible scheme to enhance the fluorescence of fluorophores.
Collapse
Affiliation(s)
- Junxiao Chen
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, People's Republic of China. and School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan, 250353, People's Republic of China
| | - Na Li
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, People's Republic of China.
| | - Xingyu Wang
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, People's Republic of China
| | - Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan 250357, People's Republic of China.
| | - John Z H Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, People's Republic of China. and NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, People's Republic of China
| | - Tong Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, People's Republic of China. and NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, People's Republic of China and Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| |
Collapse
|
29
|
Lin C, Qiang X, Dong HL, Huo J, Tan ZJ. Multivalent Ion-Mediated Attraction between Like-Charged Colloidal Particles: Nonmonotonic Dependence on the Particle Charge. ACS OMEGA 2021; 6:9876-9886. [PMID: 33869968 PMCID: PMC8047654 DOI: 10.1021/acsomega.1c00613] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Ion-mediated effective interactions are important for the structure and stability of charged particles such as colloids and nucleic acids. It has been known that the intrinsic electrostatic repulsion between like-charged particles can be modulated into effective attraction by multivalent ions. In this work, we examined the dependence of multivalent ion-mediated attraction between like-charged colloidal particles on the particle charge in a wide range by extensive Monte Carlo simulations. Our calculations show that for both divalent and trivalent salts, the effective attraction between like-charged colloidal particles becomes stronger with the increase of the particle charge, whereas it gradually becomes weakened when the particle charge exceeds a "critical" value. Correspondingly, as the particle charge is increased, the driving force for such effective attraction transits from an attractive electrostatic force to an attractive depletion force, and the attraction weakening by high particle charges is attributed to the transition of electrostatic force from attraction to repulsion. Our analyses suggest that the attractive depletion force and the repulsive electrostatic force at high particle charges result from the Coulomb depletion which suppresses the counterion condensation in the limited region between two like-charged colloidal particles. Moreover, our extensive calculations indicate that the "critical" particle charge decreases apparently for larger ions and smaller colloidal particles due to stronger Coulomb depletion and decreases slightly at higher salt concentrations due to the slightly enhanced Coulomb depletion in the intervening space between colloidal particles. Encouragingly, we derived an analytical formula for the "critical" particle charge based on the Lindemann melting law.
Collapse
Affiliation(s)
- Cheng Lin
- Center
for Theoretical Physics and Key Laboratory of Artificial Micro &
Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xiaowei Qiang
- Center
for Theoretical Physics and Key Laboratory of Artificial Micro &
Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Hai-Long Dong
- Center
for Theoretical Physics and Key Laboratory of Artificial Micro &
Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Jie Huo
- Center
for Theoretical Physics and Key Laboratory of Artificial Micro &
Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
- School
of Physics and Electronic-Electrical Engineering, Ningxia University, Yinchuan 750021, China
| | - Zhi-Jie Tan
- Center
for Theoretical Physics and Key Laboratory of Artificial Micro &
Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
30
|
Ferreira I, Amarante TD, Weber G. Salt dependent mesoscopic model for RNA at multiple strand concentrations. Biophys Chem 2021; 271:106551. [PMID: 33662903 DOI: 10.1016/j.bpc.2021.106551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 12/12/2022]
Abstract
Mesoscopic models can be used for the description of the thermodynamic properties of RNA duplexes. With the use of experimental melting temperatures, its parametrization can provide important insights into its hydrogen bonds and stacking interactions as has been done for high sodium concentrations. However, the RNA parametrization for lower salt concentrations is still missing due to the limited amount of published melting temperature data. While the Peyrard-Bishop (PB) parametrization was found to be largely independent of strand concentrations, it requires that all temperatures are provided at the same strand concentrations. Here we adapted the PB model to handle multiple strand concentrations and in this way we were able to make use of an experimental set of temperatures to model the hydrogen bond and stacking interactions at low and intermediate sodium concentrations. For the parametrizations we make a distinction between terminal and internal base pairs, and the resulting potentials were qualitatively similar as we obtained previously for DNA. The main difference from DNA parameters, was the Morse potentials at low sodium concentrations for terminal r(AU) which is stronger than d(AT), suggesting higher hydrogen bond strength.
Collapse
Affiliation(s)
- Izabela Ferreira
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Programa Interunidades de Pós-Graduação em Bioinformática, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Tauanne D Amarante
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Gerald Weber
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
31
|
Banerjee D, Tateishi-Karimata H, Ohyama T, Ghosh S, Endoh T, Takahashi S, Sugimoto N. Improved nearest-neighbor parameters for the stability of RNA/DNA hybrids under a physiological condition. Nucleic Acids Res 2020; 48:12042-12054. [PMID: 32663294 PMCID: PMC7708073 DOI: 10.1093/nar/gkaa572] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
The stability of Watson–Crick paired RNA/DNA hybrids is important for designing optimal oligonucleotides for ASO (Antisense Oligonucleotide) and CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)–Cas9 techniques. Previous nearest-neighbour (NN) parameters for predicting hybrid stability in a 1 M NaCl solution, however, may not be applicable for predicting stability at salt concentrations closer to physiological condition (e.g. ∼100 mM Na+ or K+ in the presence or absence of Mg2+). Herein, we report measured thermodynamic parameters of 38 RNA/DNA hybrids at 100 mM NaCl and derive new NN parameters to predict duplex stability. Predicted ΔG°37 and Tm values based on the established NN parameters agreed well with the measured values with 2.9% and 1.1°C deviations, respectively. The new results can also be used to make precise predictions for duplexes formed in 100 mM KCl or 100 mM NaCl in the presence of 1 mM Mg2+, which can mimic an intracellular and extracellular salt condition, respectively. Comparisons of the predicted thermodynamic parameters with published data using ASO and CRISPR–Cas9 may allow designing shorter oligonucleotides for these techniques that will diminish the probability of non-specific binding and also improve the efficiency of target gene regulation.
Collapse
Affiliation(s)
- Dipanwita Banerjee
- FIBER (Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Hisae Tateishi-Karimata
- FIBER (Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Tatsuya Ohyama
- FIBER (Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Saptarshi Ghosh
- FIBER (Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Tamaki Endoh
- FIBER (Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Shuntaro Takahashi
- FIBER (Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Naoki Sugimoto
- FIBER (Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.,FIRST (Graduate School of Frontiers of Innovative Research in Science and Technology), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
32
|
Zheng Y, Lin C, Zhang JS, Tan ZJ. Ion-mediated interactions between like-charged polyelectrolytes with bending flexibility. Sci Rep 2020; 10:21586. [PMID: 33299024 PMCID: PMC7726156 DOI: 10.1038/s41598-020-78684-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022] Open
Abstract
Ion-mediated interactions between polyelectrolytes (PEs) are crucial to the properties of flexible biopolymers such as nucleic acids and proteins but the effect of PE flexibility on such interactions has not been explicitly addressed until now. In this work, the potentials of mean force (PMFs) between like-charged PEs with different bending flexibility have been investigated by Monte Carlo simulations and a cylindrical confinement around each PE was involved to model two PEs in an array. We found that in the absence of trivalent salt, the PMFs between like-charged PEs in an array are apparently repulsive while the bending flexibility can visibly decrease the repulsive PMFs. With the addition of high trivalent salt, the PMFs become significantly attractive whereas the attractive PMFs can be apparently weakened by the bending flexibility. Our analyses reveal that the effect of bending flexibility is attributed to the increased PE conformational space, which allows the PEs to fluctuate away to decrease the monovalent ion-mediated repulsion or to weaken the trivalent ion-mediated attraction through disrupting trivalent ion-bridging configuration. Additionally, our further calculations show that the effect of bending flexibility on the ion-mediated interactions is less apparent for PEs without cylindrical confinement.
Collapse
Affiliation(s)
- Yitong Zheng
- Hongyi Honor School, Wuhan University, Wuhan, 430072, China
- Department of Physics and Key Laboratory of Artificial Micro and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Cheng Lin
- Department of Physics and Key Laboratory of Artificial Micro and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Jin-Si Zhang
- College of Electrical and Photoelectronic Engineering, West Anhui University, Lu'an, 237012, China
| | - Zhi-Jie Tan
- Department of Physics and Key Laboratory of Artificial Micro and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
33
|
Kognole AA, MacKerell AD. Contributions and competition of Mg 2+ and K + in folding and stabilization of the Twister ribozyme. RNA (NEW YORK, N.Y.) 2020; 26:1704-1715. [PMID: 32769092 PMCID: PMC7566569 DOI: 10.1261/rna.076851.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
Native folded and compact intermediate states of RNA typically involve tertiary structures in the presence of divalent ions such as Mg2+ in a background of monovalent ions. In a recent study, we have shown how the presence of Mg2+ impacts the transition from partially unfolded to folded states through a "push-pull" mechanism where the ion both favors and disfavors the sampling of specific phosphate-phosphate interactions. To further understand the ion atmosphere of RNA in folded and partially folded states results from atomistic umbrella sampling and oscillating chemical potential grand canonical Monte Carlo/molecular dynamics (GCMC/MD) simulations are used to obtain atomic-level details of the distributions of Mg2+ and K+ ions around Twister RNA. Results show the presence of 100 mM Mg2+ to lead to increased charge neutralization over that predicted by counterion condensation theory. Upon going from partially unfolded to folded states, overall charge neutralization increases at all studied ion concentrations that, while associated with an increase in the number of direct ion-phosphate interactions, is fully accounted for by the monovalent K+ ions. Furthermore, K+ preferentially interacts with purine N7 atoms of helical regions in partially unfolded states, thereby potentially stabilizing the helical regions. Thus, both secondary helical structures and formation of tertiary structures leads to increased counterion condensation, thereby stabilizing those structural features of Twister. Notably, it is shown that K+ can act as a surrogate for Mg2+ by participating in specific interactions with nonsequential phosphate pairs that occur in the folded state, explaining the ability of Twister to self-cleave at submillimolar Mg2+ concentrations.
Collapse
Affiliation(s)
- Abhishek A Kognole
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, USA
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, USA
| |
Collapse
|
34
|
Liu YF, Ran SY. Divalent metal ions and intermolecular interactions facilitate DNA network formation. Colloids Surf B Biointerfaces 2020; 194:111117. [PMID: 32512310 DOI: 10.1016/j.colsurfb.2020.111117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 02/08/2023]
Abstract
The interactions between divalent metal ions and DNA are crucial for basic life processes. These interactions are also important in advanced technological products such as DNA-based ion sensors. Current polyelectrolyte theories cannot describe these interactions well and do not consider the corresponding dynamics. In this study, we report the single-molecule dynamics of the binding of divalent metal ions to a single DNA molecule and the morphology characterization of the complex. We found that most of the divalent metal ions (Mn2+, Zn2+, Co2+, Ni2+, and Cd2+), except Mg2+ and Ca2+, could cause monomolecular DNA condensation. For transition metal ions, different ionic strengths were required to induce the compaction, and different shortening speeds were displayed in the dynamics, indicating ionic specificity. Atomic force microscopy revealed that the morphologies of the metal ion-DNA complexes were affected by the ionic strength of the metal ion, DNA chain length, and DNA concentration. At low metal ion concentration, DNA tended to adopt a random coil conformation. Increasing the ionic strength led to network-like condensed structures, suggesting that divalent metal ions can induce attraction between DNA molecules. Furthermore, higher DNA concentration and longer chain length enhanced intermolecular interactions and consequently resulted in network structures with a higher degree of interconnectivity.
Collapse
Affiliation(s)
- Yin-Feng Liu
- Department of Physics, Wenzhou University, Wenzhou 325035, China
| | - Shi-Yong Ran
- Department of Physics, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
35
|
Cruz-León S, Schwierz N. Hofmeister Series for Metal-Cation-RNA Interactions: The Interplay of Binding Affinity and Exchange Kinetics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5979-5989. [PMID: 32366101 PMCID: PMC7304902 DOI: 10.1021/acs.langmuir.0c00851] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A large variety of physicochemical properties involving RNA depends on the type of metal cation present in solution. In order to gain microscopic insight into the origin of these ion specific effects, we apply molecular dynamics simulations to describe the interactions of metal cations and RNA. For the three most common ion binding sites on RNA, we calculate the binding affinities and exchange rates of eight different mono- and divalent metal cations. Our results reveal that binding sites involving phosphate groups preferentially bind metal cations with high charge density (such as Mg2+) in inner-sphere conformations while binding sites involving N7 or O6 atoms preferentially bind cations with low charge density (such as K+). The binding affinity therefore follows a direct Hofmeister series at the backbone but is reversed at the nucleobases leading to a high selectivity of ion binding sites on RNA. In addition, the exchange rates for cation binding cover almost 5 orders of magnitude, leading to a vastly different time scale for the lifetimes of contact pairs. Taken together, the site-specific binding affinities and the specific lifetime of contact pairs provide the microscopic explanation of ion specific effects observed in a wide variety of macroscopic RNA properties. Finally, combining the results from atomistic simulations with extended Poisson-Boltzmann theory allows us to predict the distribution of metal cations around double-stranded RNA at finite concentrations and to reproduce the results of ion counting experiments with good accuracy.
Collapse
|
36
|
Tsunehiro M, Sasaki K, Kinoshita-Kikuta E, Kinoshita E, Koike T. Phos-tag-based micropipette-tip method for analysis of phosphomonoester-type impurities in synthetic oligonucleotides. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1151:122198. [PMID: 32512534 DOI: 10.1016/j.jchromb.2020.122198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 11/22/2022]
Abstract
Various chromatographic techniques, combined with mass spectrometry, have been developed for the analysis of impurities in oligonucleotide drugs, but those methods have generally been less focused on possible phosphomonoester-type compounds. Here, we introduce a simple method for separating terminally phosphorylated impurities from parent oligonucleotides by using a phosphate-affinity micropipette tip (Phos-tag tip). All steps for the phosphate-affinity separation (binding, washing, and elution) are conducted in aqueous buffers at neutral pH. The entire separation protocol requires less than 30 min per sample. In practical examples, we demonstrated that phosphorylated impurities in natural-type and chemically modified oligonucleotides can be efficiently separated by the Phos-tag tip method and subsequently characterized by using ion-pairing reversed-phase liquid chromatography mass spectrometry (IP-RPLC-MS). Thus, a combination of the Phos-tag tip method and IP-RPLC-MS is useful for characterizing and identifying phosphomonoester-type impurities in oligonucleotide drugs.
Collapse
Affiliation(s)
- Masaya Tsunehiro
- Department of Functional Molecular Science, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; Analytical Research Department, Production Technology and Supply Chain Management Division, Mitsubishi Tanabe Pharma Corporation, Osaka, Japan
| | - Kenji Sasaki
- Analytical Research Department, Production Technology and Supply Chain Management Division, Mitsubishi Tanabe Pharma Corporation, Osaka, Japan
| | - Emiko Kinoshita-Kikuta
- Department of Functional Molecular Science, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Eiji Kinoshita
- Department of Functional Molecular Science, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Tohru Koike
- Department of Functional Molecular Science, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
37
|
Stellwagen E, Stellwagen NC. Electrophoretic Mobility of DNA in Solutions of High Ionic Strength. Biophys J 2020; 118:2783-2789. [PMID: 32445623 DOI: 10.1016/j.bpj.2020.02.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/06/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022] Open
Abstract
The free-solution mobilities of small single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) have been measured by capillary electrophoresis in solutions containing 0.01-1.0 M sodium acetate. The mobility of dsDNA is greater than that of ssDNA at all ionic strengths because of the greater charge density of dsDNA. The mobilities of both ssDNA and dsDNA decrease with increasing ionic strength until approaching plateau values at ionic strengths greater than ∼0.6 M. Hence, ssDNA and dsDNA appear to interact in a similar manner with the ions in the background electrolyte. For dsDNA, the mobilities predicted by the Manning electrophoresis equation are reasonably close to the observed mobilities, using no adjustable parameters, if the average distance between phosphate residues (the b parameter) is taken to be 1.7 Å. For ssDNA, the predicted mobilities are close to the observed mobilities at ionic strengths ≤0.01 M if the b-value is taken to be 4.1 Å. The predicted and observed mobilities diverge strongly at higher ionic strengths unless the b-value is reduced significantly. The results suggest that ssDNA strands exist as an ensemble of relatively compact conformations at high ionic strengths, with b-values corresponding to the relatively short phosphate-phosphate distances through space.
Collapse
|
38
|
Wang Y, Liu T, Yu T, Tan ZJ, Zhang W. Salt effect on thermodynamics and kinetics of a single RNA base pair. RNA (NEW YORK, N.Y.) 2020; 26:470-480. [PMID: 31988191 PMCID: PMC7075264 DOI: 10.1261/rna.073882.119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/11/2020] [Indexed: 05/09/2023]
Abstract
Due to the polyanionic nature of RNAs, the structural folding of RNAs are sensitive to solution salt conditions, while there is still lack of a deep understanding of the salt effect on the thermodynamics and kinetics of RNAs at a single base-pair level. In this work, the thermodynamic and the kinetic parameters for the base-pair AU closing/opening at different salt concentrations were calculated by 3-µsec all-atom molecular dynamics (MD) simulations at different temperatures. It was found that for the base-pair formation, the enthalpy change [Formula: see text] is nearly independent of salt concentration, while the entropy change [Formula: see text] exhibits a linear dependence on the logarithm of salt concentration, verifying the empirical assumption based on thermodynamic experiments. Our analyses revealed that such salt concentration dependence of the entropy change mainly results from the dependence of ion translational entropy change for the base pair closing/opening on salt concentration. Furthermore, the closing rate increases with the increasing of salt concentration, while the opening rate is nearly independent of salt concentration. Additionally, our analyses revealed that the free energy surface for describing the base-pair opening and closing dynamics becomes more rugged with the decrease of salt concentration.
Collapse
Affiliation(s)
- Yujie Wang
- Department of Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei, 430072, P.R. China
- Department of Physics and Telecommunication Engineering, Zhoukou Normal University, Zhoukou, Henan, 466001, P.R. China
| | - Taigang Liu
- Department of Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei, 430072, P.R. China
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan, 453003, P.R. China
| | - Ting Yu
- Department of Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| | - Zhi-Jie Tan
- Department of Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| | - Wenbing Zhang
- Department of Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| |
Collapse
|
39
|
Nayek U, Unnikrishnan VK, Abdul Salam AA, Chidangil S, Mathur D. Thermal Energy Electrons and OH-Radicals Induce Strand Breaks in DNA in an Aqueous Environment: Some Salts Offer Protection Against Strand Breaks. J Phys Chem A 2020; 124:1508-1514. [PMID: 32040313 DOI: 10.1021/acs.jpca.0c00009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Electrons and •OH-radicals have been generated by using low-energy laser pulses of 6 ns duration (1064 nm wavelength) to create plasma in a suspension of plasmid DNA (pUC19) in water. Upon thermalization, these particles induce single and double strand breakages in DNA along with possible base oxidation/base degradation. The time-evolution of the ensuing structural modifications has been measured; damage to DNA is seen to occur within 30 s of laser irradiation. The time-evolution is also measured upon addition of physiologically relevant concentrations of salts containing monovalent, divalent, or trivalent alkali ions. It is shown that some alkali ions can significantly inhibit strand breakages while some do not. The inhibition is due to electrostatic shielding of DNA, but significantly, the extent of such shielding is seen to depend on how each alkali ion binds to DNA. Results of experiments on strand breakages induced by thermalized particles produced upon plasma-induced photolysis of water, and their inhibition, suggest implications beyond studies of DNA; they open new vistas for utilizing simple nanosecond lasers to explore the effect of ultralow energy radiation on living matter under physiologically relevant conditions.
Collapse
Affiliation(s)
- Upendra Nayek
- Department of Atomic and Molecular Physics , Manipal Academy of Higher Education , Manipal 576 104 , India.,Centre for Applied Nanosciences, Department of Atomic and Molecular Physics , Manipal Academy of Higher Education , Manipal 576 104 , India
| | - V K Unnikrishnan
- Department of Atomic and Molecular Physics , Manipal Academy of Higher Education , Manipal 576 104 , India.,Centre for Biophotonics, Department of Atomic and Molecular Physics , Manipal Academy of Higher Education , Manipal 576 104 , India
| | - Abdul Ajees Abdul Salam
- Department of Atomic and Molecular Physics , Manipal Academy of Higher Education , Manipal 576 104 , India.,Centre for Applied Nanosciences, Department of Atomic and Molecular Physics , Manipal Academy of Higher Education , Manipal 576 104 , India
| | - Santhosh Chidangil
- Department of Atomic and Molecular Physics , Manipal Academy of Higher Education , Manipal 576 104 , India.,Centre for Biophotonics, Department of Atomic and Molecular Physics , Manipal Academy of Higher Education , Manipal 576 104 , India
| | - Deepak Mathur
- Department of Atomic and Molecular Physics , Manipal Academy of Higher Education , Manipal 576 104 , India
| |
Collapse
|
40
|
Fu H, Zhang C, Qiang XW, Yang YJ, Dai L, Tan ZJ, Zhang XH. Opposite Effects of High-Valent Cations on the Elasticities of DNA and RNA Duplexes Revealed by Magnetic Tweezers. PHYSICAL REVIEW LETTERS 2020; 124:058101. [PMID: 32083903 DOI: 10.1103/physrevlett.124.058101] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
We report that trivalent cobalt hexammine cations decrease the persistence length, stretching modulus, helical density, and size of plectonemes formed under torque of DNA but increase those of RNA. Divalent magnesium cations, however, decrease the persistence lengths, contour lengths, and sizes of plectonemes while increasing the helical densities of both DNA and RNA. The experimental results are explained by different binding modes of the cations on DNA and RNA in our all-atom molecular dynamics simulations. The significant variations of the helical densities and structures of DNA and RNA duplexes induced by high-valent cations may affect interactions of the duplexes with proteins.
Collapse
Affiliation(s)
- Hang Fu
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Chen Zhang
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Xiao-Wei Qiang
- Center for Theoretical Physics and Key Laboratory of Artificial Micro & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Ya-Jun Yang
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Liang Dai
- Department of Physics, City University of Hong Kong, Hong Kong 999077, China
| | - Zhi-Jie Tan
- Center for Theoretical Physics and Key Laboratory of Artificial Micro & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xing-Hua Zhang
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| |
Collapse
|
41
|
Jin L, Tan YL, Wu Y, Wang X, Shi YZ, Tan ZJ. Structure folding of RNA kissing complexes in salt solutions: predicting 3D structure, stability, and folding pathway. RNA (NEW YORK, N.Y.) 2019; 25:1532-1548. [PMID: 31391217 PMCID: PMC6795135 DOI: 10.1261/rna.071662.119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/02/2019] [Indexed: 05/08/2023]
Abstract
RNA kissing complexes are essential for genomic RNA dimerization and regulation of gene expression, and their structures and stability are critical to their biological functions. In this work, we used our previously developed coarse-grained model with an implicit structure-based electrostatic potential to predict three-dimensional (3D) structures and stability of RNA kissing complexes in salt solutions. For extensive RNA kissing complexes, our model shows great reliability in predicting 3D structures from their sequences, and our additional predictions indicate that the model can capture the dependence of 3D structures of RNA kissing complexes on monovalent/divalent ion concentrations. Moreover, the comparisons with extensive experimental data show that the model can make reliable predictions on the stability for various RNA kissing complexes over wide ranges of monovalent/divalent ion concentrations. Notably, for RNA kissing complexes, our further analyses show the important contribution of coaxial stacking to the 3D structures and stronger stability than the corresponding kissing-interface duplexes at high salts. Furthermore, our comprehensive analyses for RNA kissing complexes reveal that the thermally folding pathway for a complex sequence is mainly determined by the relative stability of two possible folded states of kissing complex and extended duplex, which can be significantly modulated by its sequence.
Collapse
Affiliation(s)
- Lei Jin
- Center for Theoretical Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Ya-Lan Tan
- Center for Theoretical Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Yao Wu
- Center for Theoretical Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xunxun Wang
- Center for Theoretical Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Ya-Zhou Shi
- Research Center of Nonlinear Science, School of Mathematics and Computer Science, Wuhan Textile University, Wuhan 430073, China
| | - Zhi-Jie Tan
- Center for Theoretical Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
42
|
Zhang BG, Qiu HH, Jiang J, Liu J, Shi YZ. 3D structure stability of the HIV-1 TAR RNA in ion solutions: A coarse-grained model study. J Chem Phys 2019; 151:165101. [PMID: 31675878 DOI: 10.1063/1.5126128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
As an extremely common structural motif, RNA hairpins with bulge loops [e.g., the human immunodeficiency virus type 1 (HIV-1) transactivation response (TAR) RNA] can play essential roles in normal cellular processes by binding to proteins and small ligands, which could be very dependent on their three-dimensional (3D) structures and stability. Although the structures and conformational dynamics of the HIV-1 TAR RNA have been extensively studied, there are few investigations on the thermodynamic stability of the TAR RNA, especially in ion solutions, and the existing studies also have some divergence on the unfolding process of the RNA. Here, we employed our previously developed coarse-grained model with implicit salt to predict the 3D structure, stability, and unfolding pathway for the HIV-1 TAR RNA over a wide range of ion concentrations. As compared with the extensive experimental/theoretical results, the present model can give reliable predictions on the 3D structure stability of the TAR RNA from the sequence. Based on the predictions, our further comprehensive analyses on the stability of the TAR RNA as well as its variants revealed that the unfolding pathway of an RNA hairpin with a bulge loop is mainly determined by the relative stability between different states (folded state, intermediate state, and unfolded state) and the strength of the coaxial stacking between two stems in folded structures, both of which can be apparently modulated by the ion concentrations as well as the sequences.
Collapse
Affiliation(s)
- Ben-Gong Zhang
- Research Center of Nonlinear Science, School of Mathematics and Computer Science, Wuhan Textile University, Wuhan, China
| | - Hua-Hai Qiu
- Research Center of Nonlinear Science, School of Mathematics and Computer Science, Wuhan Textile University, Wuhan, China
| | - Jian Jiang
- Research Center of Nonlinear Science, School of Mathematics and Computer Science, Wuhan Textile University, Wuhan, China
| | - Jie Liu
- Research Center of Nonlinear Science, School of Mathematics and Computer Science, Wuhan Textile University, Wuhan, China
| | - Ya-Zhou Shi
- Research Center of Nonlinear Science, School of Mathematics and Computer Science, Wuhan Textile University, Wuhan, China
| |
Collapse
|
43
|
Lin C, Zhang X, Qiang X, Zhang JS, Tan ZJ. Apparent repulsion between equally and oppositely charged spherical polyelectrolytes in symmetrical salt solutions. J Chem Phys 2019; 151:114902. [PMID: 31542010 DOI: 10.1063/1.5120756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ion-mediated interactions are very important for the properties of colloids and biomacromolecules such as nucleic acids and proteins. In this work, the ion-mediated interactions between equally and oppositely charged spherical polyelectrolytes (SPEs) in symmetrical divalent electrolytes have been investigated by Monte Carlo simulations, and an unexpected apparent repulsion was observed at high divalent salt concentration. Our investigations also show that the effective repulsion becomes more pronounced for SPEs with higher charge densities and for counterions with larger sizes and was found to be tightly accompanied with the over-neutralization to SPEs by condensed counterions and their release upon the approach of SPEs. Such attractive interaction can be reproduced by our proposed modified Poisson-Boltzmann model and is mainly attributed to the increase in the electrostatic repulsion between on charged SPE and the over-neutralized counterions around the other oppositely SPE with the approach of the two SPEs.
Collapse
Affiliation(s)
- Cheng Lin
- Center for Theoretical Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xi Zhang
- Center for Theoretical Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xiaowei Qiang
- Center for Theoretical Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Jin-Si Zhang
- College of Electrical and Photoelectronic Engineering, West Anhui University, Lu'an 237012, China
| | - Zhi-Jie Tan
- Center for Theoretical Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
44
|
Quantitative Studies of an RNA Duplex Electrostatics by Ion Counting. Biophys J 2019; 117:1116-1124. [PMID: 31466697 DOI: 10.1016/j.bpj.2019.08.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 01/22/2023] Open
Abstract
RNAs are one of the most charged polyelectrolytes in nature, and understanding their electrostatics is fundamental to their structure and biological functions. An effective way to characterize the electrostatic field generated by nucleic acids is to quantify interactions between nucleic acids and ions that surround the molecules. These ions form a loosely associated cloud referred to as an ion atmosphere. Although theoretical and computational studies can describe the ion atmosphere around RNAs, benchmarks are needed to guide the development of these approaches, and experiments to date that read out RNA-ion interactions are limited. Here, we present ion counting studies to quantify the number of ions surrounding well-defined model systems of RNA and DNA duplexes. We observe that the RNA duplex attracts more cations and expels fewer anions compared to the DNA duplex, and the RNA duplex interacts significantly stronger with the divalent cation Mg2+, despite their identical total charge. These experimental results suggest that the RNA duplex generates a stronger electrostatic field than DNA, as is predicted based on the structural differences between their helices. Theoretical calculations using a nonlinear Poisson-Boltzmann equation give excellent agreement with experiments for monovalent ions but underestimate Mg2+-DNA and Mg2+-RNA interactions by 20%. These studies provide needed stringent benchmarks to use against other all-atom theoretical models of RNA-ion interactions, interactions that likely must be accurately accounted for in structural, dynamic, and energetic terms to confidently model RNA structure, interactions, and function.
Collapse
|
45
|
Sun Z, Wang X, Zhang JZH, He Q. Sulfur-substitution-induced base flipping in the DNA duplex. Phys Chem Chem Phys 2019; 21:14923-14940. [PMID: 31233058 DOI: 10.1039/c9cp01989h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Base flipping is widely observed in a number of important biological processes. The genetic codes deposited inside the DNA duplex become accessible to external agents upon base flipping. The sulfur substitution of guanine leads to thioguanine, which alters the thermodynamic stability of the GC base pairs and the GT mismatches. Experimental studies conclude that the sulfur substitution decreases the lifetime of the GC base pair. In this work, under three AMBER force fields for nucleotide systems, we firstly performed equilibrium and nonequilibrium free energy simulations to investigate the variation of the thermodynamic profiles in base flipping upon sulfur substitution. It is found that the bsc0 modification, the bsc1 modification and the OL15 modification of AMBER force fields are able to qualitatively describe the sulfur-substitution dependent behavior of the thermodynamics. However, only the two last-generation AMBER force fields are able to provide quantitatively correct predictions. The second computational study on the sulfur substitutions focused on the relative stability of the S6G-C base pair and the S6G-T mismatch. Two conflicting experimental observations were reported by the same authors. One suggested that the S6G-C base pair was more stable, while the other concludes that the S6G-T mismatch was more stable. We answered this question by constructing the free energy profiles along the base flipping pathway computationally.
Collapse
Affiliation(s)
- Zhaoxi Sun
- State Key Laboratory of Precision Spectroscopy, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China and Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich, Jülich 52425, Germany.
| | - Xiaohui Wang
- State Key Laboratory of Precision Spectroscopy, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China and Institute of Computational Science, Università della Svizzera italiana (USI), Via Giuseppe Buffi 13, CH-6900, Lugano, Ticino, Switzerland
| | - John Z H Zhang
- State Key Laboratory of Precision Spectroscopy, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China and NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China and Department of Chemistry, New York University, NY, NY 10003, USA
| | - Qiaole He
- Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, Wilhelm-Johnen-Str. 1, 52425 Jülich, Germany. and State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
46
|
Liu JH, Xi K, Zhang X, Bao L, Zhang X, Tan ZJ. Structural Flexibility of DNA-RNA Hybrid Duplex: Stretching and Twist-Stretch Coupling. Biophys J 2019; 117:74-86. [PMID: 31164196 PMCID: PMC6626833 DOI: 10.1016/j.bpj.2019.05.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/25/2019] [Accepted: 05/17/2019] [Indexed: 12/21/2022] Open
Abstract
DNA-RNA hybrid (DRH) duplexes play essential roles during the replication of DNA and the reverse transcription of RNA viruses, and their flexibility is important for their biological functions. Recent experiments indicated that A-form RNA and B-form DNA have a strikingly different flexibility in stretching and twist-stretch coupling, and the structural flexibility of DRH duplex is of great interest, especially in stretching and twist-stretch coupling. In this work, we performed microsecond all-atom molecular dynamics simulations with new AMBER force fields to characterize the structural flexibility of DRH duplex in stretching and twist-stretch coupling. We have calculated all the helical parameters, stretch modulus, and twist-stretch coupling parameters for the DRH duplex. First, our analyses on structure suggest that the DRH duplex exhibits an intermediate conformation between A- and B-forms and closer to A-form, which can be attributed to the stronger rigidity of the RNA strand than the DNA strand. Second, our calculations show that the DRH duplex has the stretch modulus of 834 ± 34 pN and a very weak twist-stretch coupling. Our quantitative analyses indicate that, compared with DNA and RNA duplexes, the different flexibility of the DRH duplex in stretching and twist-stretch coupling is mainly attributed to its apparently different basepair inclination in the helical structure.
Collapse
Affiliation(s)
- Ju-Hui Liu
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Kun Xi
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Xi Zhang
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Lei Bao
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Xinghua Zhang
- College of Life Science, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China.
| | - Zhi-Jie Tan
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China.
| |
Collapse
|
47
|
Tan YL, Feng CJ, Jin L, Shi YZ, Zhang W, Tan ZJ. What is the best reference state for building statistical potentials in RNA 3D structure evaluation? RNA (NEW YORK, N.Y.) 2019; 25:793-812. [PMID: 30996105 PMCID: PMC6573789 DOI: 10.1261/rna.069872.118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 04/06/2019] [Indexed: 05/14/2023]
Abstract
Knowledge-based statistical potentials have been shown to be efficient in protein structure evaluation/prediction, and the core difference between various statistical potentials is attributed to the choice of reference states. However, for RNA 3D structure evaluation, a comprehensive examination on reference states is still lacking. In this work, we built six statistical potentials based on six reference states widely used in protein structure evaluation, including averaging, quasi-chemical approximation, atom-shuffled, finite-ideal-gas, spherical-noninteracting, and random-walk-chain reference states, and we examined the six reference states against three RNA test sets including six subsets. Our extensive examinations show that, overall, for identifying native structures and ranking decoy structures, the finite-ideal-gas and random-walk-chain reference states are slightly superior to others, while for identifying near-native structures, there is only a slight difference between these reference states. Our further analyses show that the performance of a statistical potential is apparently dependent on the quality of the training set. Furthermore, we found that the performance of a statistical potential is closely related to the origin of test sets, and for the three realistic test subsets, the six statistical potentials have overall unsatisfactory performance. This work presents a comprehensive examination on the existing reference states and statistical potentials for RNA 3D structure evaluation.
Collapse
Affiliation(s)
- Ya-Lan Tan
- Center for Theoretical Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Chen-Jie Feng
- Center for Theoretical Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Lei Jin
- Center for Theoretical Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Ya-Zhou Shi
- Research Center of Nonlinear Science, School of Mathematics and Computer Science, Wuhan Textile University, Wuhan 430073, China
| | - Wenbing Zhang
- Center for Theoretical Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Zhi-Jie Tan
- Center for Theoretical Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
48
|
Gebala M, Johnson SL, Narlikar GJ, Herschlag D. Ion counting demonstrates a high electrostatic field generated by the nucleosome. eLife 2019; 8:e44993. [PMID: 31184587 PMCID: PMC6584128 DOI: 10.7554/elife.44993] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 06/08/2019] [Indexed: 01/04/2023] Open
Abstract
In eukaryotes, a first step towards the nuclear DNA compaction process is the formation of a nucleosome, which is comprised of negatively charged DNA wrapped around a positively charged histone protein octamer. Often, it is assumed that the complexation of the DNA into the nucleosome completely attenuates the DNA charge and hence the electrostatic field generated by the molecule. In contrast, theoretical and computational studies suggest that the nucleosome retains a strong, negative electrostatic field. Despite their fundamental implications for chromatin organization and function, these opposing views of nucleosome electrostatics have not been experimentally tested. Herein, we directly measure nucleosome electrostatics and find that while nucleosome formation reduces the complex charge by half, the nucleosome nevertheless maintains a strong negative electrostatic field. Our studies highlight the importance of considering the polyelectrolyte nature of the nucleosome and its impact on processes ranging from factor binding to DNA compaction.
Collapse
Affiliation(s)
- Magdalena Gebala
- Department of BiochemistryStanford UniversityStanfordUnited States
| | - Stephanie L Johnson
- Department of Biochemistry and BiophysicsUniversity of California, San FranciscoSan FranciscoUnited States
| | - Geeta J Narlikar
- Department of Biochemistry and BiophysicsUniversity of California, San FranciscoSan FranciscoUnited States
| | - Dan Herschlag
- Department of BiochemistryStanford UniversityStanfordUnited States
- Department of ChemistryStanford UniversityStanfordUnited States
- ChEM-H InstituteStanford UniversityStanfordUnited States
| |
Collapse
|
49
|
Abstract
Noncoding RNA molecules take part in many biological processes, while metal ions play crucial roles in helping RNAs to perform their functions. However, the statics and dynamics of these metal ions around RNA molecules are still not well understood. In this work, we report a detailed molecular dynamics study of the type-I preQ_{1}-bound riboswitch aptamer domain (PRAD) at different ionic conditions (K^{+}, Na^{+}, and Mg^{2+}). The results show that the structural properties and flexibility of the PRAD molecule greatly influence the distributions and dynamics of metal ions around it. Simultaneously, Na^{+} ions show a stronger competitiveness with Mg^{2+} ions than K^{+} ions, and the three types of metal ions have different modes of interaction with the RNA molecule. Furthermore, we have also investigated specific binding sites of metal ions on the PRAD molecule and found that the dynamics and hydration structures of metal ions located at the ion-binding sites were obviously affected by the RNA structure near these ion-binding sites. These results may be useful to understand the role of the metal ions in noncoding RNA functions.
Collapse
Affiliation(s)
- Lei Bao
- Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Jun Wang
- Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Yi Xiao
- Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| |
Collapse
|
50
|
Jin L, Shi YZ, Feng CJ, Tan YL, Tan ZJ. Modeling Structure, Stability, and Flexibility of Double-Stranded RNAs in Salt Solutions. Biophys J 2018; 115:1403-1416. [PMID: 30236782 DOI: 10.1016/j.bpj.2018.08.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/10/2018] [Accepted: 08/24/2018] [Indexed: 11/16/2022] Open
Abstract
Double-stranded (ds) RNAs play essential roles in many processes of cell metabolism. The knowledge of three-dimensional (3D) structure, stability, and flexibility of dsRNAs in salt solutions is important for understanding their biological functions. In this work, we further developed our previously proposed coarse-grained model to predict 3D structure, stability, and flexibility for dsRNAs in monovalent and divalent ion solutions through involving an implicit structure-based electrostatic potential. The model can make reliable predictions for 3D structures of extensive dsRNAs with/without bulge/internal loops from their sequences, and the involvement of the structure-based electrostatic potential and corresponding ion condition can improve the predictions for 3D structures of dsRNAs in ion solutions. Furthermore, the model can make good predictions for thermal stability for extensive dsRNAs over the wide range of monovalent/divalent ion concentrations, and our analyses show that the thermally unfolding pathway of dsRNA is generally dependent on its length as well as its sequence. In addition, the model was employed to examine the salt-dependent flexibility of a dsRNA helix, and the calculated salt-dependent persistence lengths are in good accordance with experiments.
Collapse
Affiliation(s)
- Lei Jin
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nanostructures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Ya-Zhou Shi
- Research Center of Nonlinear Science, School of Mathematics and Computer Science, Wuhan Textile University, Wuhan, China
| | - Chen-Jie Feng
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nanostructures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Ya-Lan Tan
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nanostructures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Zhi-Jie Tan
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nanostructures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China.
| |
Collapse
|