1
|
Achimovich AM, Yan T, Gahlmann A. Dimerization of iLID optogenetic proteins observed using 3D single-molecule tracking in live E. coli. Biophys J 2023; 122:3254-3267. [PMID: 37421134 PMCID: PMC10465707 DOI: 10.1016/j.bpj.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/25/2023] [Accepted: 07/05/2023] [Indexed: 07/09/2023] Open
Abstract
3D single-molecule tracking microscopy has enabled measurements of protein diffusion in living cells, offering information about protein dynamics and cellular environments. For example, different diffusive states can be resolved and assigned to protein complexes of different size and composition. However, substantial statistical power and biological validation, often through genetic deletion of binding partners, are required to support diffusive state assignments. When investigating cellular processes, real-time perturbations to protein spatial distributions is preferable to permanent genetic deletion of an essential protein. For example, optogenetic dimerization systems can be used to manipulate protein spatial distributions that could offer a means to deplete specific diffusive states observed in single-molecule tracking experiments. Here, we evaluate the performance of the iLID optogenetic system in living E. coli cells using diffraction-limited microscopy and 3D single-molecule tracking. We observed a robust optogenetic response in protein spatial distributions after 488 nm laser activation. Surprisingly, 3D single-molecule tracking results indicate activation of the optogenetic response when illuminating with high-intensity light with wavelengths at which there is minimal photon absorbance by the LOV2 domain. The preactivation can be minimized through the use of iLID system mutants, and titration of protein expression levels.
Collapse
Affiliation(s)
- Alecia M Achimovich
- Department of Molecular Physiology & Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Ting Yan
- Department of Chemistry, University of Virginia, Charlottesville, Virginia
| | - Andreas Gahlmann
- Department of Molecular Physiology & Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia; Department of Chemistry, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
2
|
Prindle JR, de Cuba OIC, Gahlmann A. Single-molecule tracking to determine the abundances and stoichiometries of freely-diffusing protein complexes in living cells: Past applications and future prospects. J Chem Phys 2023; 159:071002. [PMID: 37589409 PMCID: PMC10908566 DOI: 10.1063/5.0155638] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/06/2023] [Indexed: 08/18/2023] Open
Abstract
Most biological processes in living cells rely on interactions between proteins. Live-cell compatible approaches that can quantify to what extent a given protein participates in homo- and hetero-oligomeric complexes of different size and subunit composition are therefore critical to advance our understanding of how cellular physiology is governed by these molecular interactions. Biomolecular complex formation changes the diffusion coefficient of constituent proteins, and these changes can be measured using fluorescence microscopy-based approaches, such as single-molecule tracking, fluorescence correlation spectroscopy, and fluorescence recovery after photobleaching. In this review, we focus on the use of single-molecule tracking to identify, resolve, and quantify the presence of freely-diffusing proteins and protein complexes in living cells. We compare and contrast different data analysis methods that are currently employed in the field and discuss experimental designs that can aid the interpretation of the obtained results. Comparisons of diffusion rates for different proteins and protein complexes in intracellular aqueous environments reported in the recent literature reveal a clear and systematic deviation from the Stokes-Einstein diffusion theory. While a complete and quantitative theoretical explanation of why such deviations manifest is missing, the available data suggest the possibility of weighing freely-diffusing proteins and protein complexes in living cells by measuring their diffusion coefficients. Mapping individual diffusive states to protein complexes of defined molecular weight, subunit stoichiometry, and structure promises to provide key new insights into how protein-protein interactions regulate protein conformational, translational, and rotational dynamics, and ultimately protein function.
Collapse
Affiliation(s)
- Joshua Robert Prindle
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Olivia Isabella Christiane de Cuba
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22903, USA
| | | |
Collapse
|
3
|
Prindle JR, Wang Y, Rocha JM, Diepold A, Gahlmann A. Distinct Cytosolic Complexes Containing the Type III Secretion System ATPase Resolved by Three-Dimensional Single-Molecule Tracking in Live Yersinia enterocolitica. Microbiol Spectr 2022; 10:e0174422. [PMID: 36354362 PMCID: PMC9769973 DOI: 10.1128/spectrum.01744-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/20/2022] [Indexed: 11/12/2022] Open
Abstract
The membrane-embedded injectisome, the structural component of the virulence-associated type III secretion system (T3SS), is used by Gram-negative bacterial pathogens to inject species-specific effector proteins into eukaryotic host cells. The cytosolic injectisome proteins are required for export of effectors and display both stationary, injectisome-bound populations and freely diffusing cytosolic populations. How the cytosolic injectisome proteins interact with each other in the cytosol and associate with membrane-embedded injectisomes remains unclear. Here, we utilized three-dimensional (3D) single-molecule tracking to resolve distinct cytosolic complexes of injectisome proteins in living Yersinia enterocolitica cells. Tracking of the enhanced yellow fluorescent protein (eYFP)-labeled ATPase YeSctN and its regulator, YeSctL, revealed that these proteins form a cytosolic complex with each other and then further with YeSctQ. YeSctNL and YeSctNLQ complexes can be observed both in wild-type cells and in ΔsctD mutants, which cannot assemble injectisomes. In ΔsctQ mutants, the relative abundance of the YeSctNL complex is considerably increased. These data indicate that distinct cytosolic complexes of injectisome proteins can form prior to injectisome binding, which has important implications for how injectisomes are functionally regulated. IMPORTANCE Injectisomes are membrane-embedded, multiprotein assemblies used by bacterial pathogens to inject virulent effector proteins into eukaryotic host cells. Protein secretion is regulated by cytosolic proteins that dynamically bind and unbind at injectisomes. However, how these regulatory proteins interact with each other remains unknown. By measuring the diffusion rates of single molecules in living cells, we show that cytosolic injectisome proteins form distinct oligomeric complexes with each other prior to binding to injectisomes. We additionally identify the molecular compositions of these complexes and quantify their relative abundances. Quantifying to what extent cytosolic proteins exist as part of larger complexes in living cells has important implications for deciphering the complexity of biomolecular mechanisms. The results and methods reported here are thus relevant for advancing our understanding of how injectisomes and related multiprotein assemblies, such as bacterial flagellar motors, are functionally regulated.
Collapse
Affiliation(s)
- Joshua R. Prindle
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Yibo Wang
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Julian M. Rocha
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Andreas Diepold
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Andreas Gahlmann
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology & Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
4
|
Cassaro CJ, Uphoff S. Super-Resolution Microscopy and Tracking of DNA-Binding Proteins in Bacterial Cells. Methods Mol Biol 2022; 2476:191-208. [PMID: 35635706 DOI: 10.1007/978-1-0716-2221-6_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The ability to detect individual fluorescent molecules inside living cells has enabled a range of powerful microscopy techniques that resolve biological processes on the molecular scale. These methods have also transformed the study of bacterial cell biology, which was previously obstructed by the limited spatial resolution of conventional microscopy. In the case of DNA-binding proteins, super-resolution microscopy can visualize the detailed spatial organization of DNA replication, transcription, and repair processes by reconstructing a map of single-molecule localizations. Furthermore, DNA-binding activities can be observed directly by tracking protein movement in real time. This allows identifying subpopulations of DNA-bound and diffusing proteins, and can be used to measure DNA-binding times in vivo. This chapter provides a detailed protocol for super-resolution microscopy and tracking of DNA-binding proteins in Escherichia coli cells. The protocol covers the genetic engineering and fluorescent labeling of strains and describes data acquisition and analysis procedures, such as super-resolution image reconstruction, mapping single-molecule tracks, computing diffusion coefficients to identify molecular subpopulations with different mobility, and analysis of DNA-binding kinetics. While the focus is on the study of bacterial chromosome biology, these approaches are generally applicable to other molecular processes and cell types.
Collapse
Affiliation(s)
- Chloé J Cassaro
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Stephan Uphoff
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
Bellotto N, Agudo-Canalejo J, Colin R, Golestanian R, Malengo G, Sourjik V. Dependence of diffusion in Escherichia coli cytoplasm on protein size, environmental conditions, and cell growth. eLife 2022; 11:82654. [PMID: 36468683 PMCID: PMC9810338 DOI: 10.7554/elife.82654] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Inside prokaryotic cells, passive translational diffusion typically limits the rates with which cytoplasmic proteins can reach their locations. Diffusion is thus fundamental to most cellular processes, but the understanding of protein mobility in the highly crowded and non-homogeneous environment of a bacterial cell is still limited. Here, we investigated the mobility of a large set of proteins in the cytoplasm of Escherichia coli, by employing fluorescence correlation spectroscopy (FCS) combined with simulations and theoretical modeling. We conclude that cytoplasmic protein mobility could be well described by Brownian diffusion in the confined geometry of the bacterial cell and at the high viscosity imposed by macromolecular crowding. We observed similar size dependence of protein diffusion for the majority of tested proteins, whether native or foreign to E. coli. For the faster-diffusing proteins, this size dependence is well consistent with the Stokes-Einstein relation once taking into account the specific dumbbell shape of protein fusions. Pronounced subdiffusion and hindered mobility are only observed for proteins with extensive interactions within the cytoplasm. Finally, while protein diffusion becomes markedly faster in actively growing cells, at high temperature, or upon treatment with rifampicin, and slower at high osmolarity, all of these perturbations affect proteins of different sizes in the same proportions, which could thus be described as changes of a well-defined cytoplasmic viscosity.
Collapse
Affiliation(s)
- Nicola Bellotto
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| | | | - Remy Colin
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-OrganizationGöttingenGermany,Rudolf Peierls Centre for Theoretical Physics, University of OxfordOxfordUnited Kingdom
| | - Gabriele Malengo
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| |
Collapse
|
6
|
Vink JNA, Brouns SJJ, Hohlbein J. Extracting Transition Rates in Particle Tracking Using Analytical Diffusion Distribution Analysis. Biophys J 2020; 119:1970-1983. [PMID: 33086040 DOI: 10.1016/j.bpj.2020.09.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 10/23/2022] Open
Abstract
Single-particle tracking is an important technique in the life sciences to understand the kinetics of biomolecules. The analysis of apparent diffusion coefficients in vivo, for example, enables researchers to determine whether biomolecules are moving alone, as part of a larger complex, or are bound to large cellular components such as the membrane or chromosomal DNA. A remaining challenge has been to retrieve quantitative kinetic models, especially for molecules that rapidly switch between different diffusional states. Here, we present analytical diffusion distribution analysis (anaDDA), a framework that allows for extracting transition rates from distributions of apparent diffusion coefficients calculated from short trajectories that feature less than 10 localizations per track. Under the assumption that the system is Markovian and diffusion is purely Brownian, we show that theoretically predicted distributions accurately match simulated distributions and that anaDDA outperforms existing methods to retrieve kinetics, especially in the fast regime of 0.1-10 transitions per imaging frame. AnaDDA does account for the effects of confinement and tracking window boundaries. Furthermore, we added the option to perform global fitting of data acquired at different frame times to allow complex models with multiple states to be fitted confidently. Previously, we have started to develop anaDDA to investigate the target search of CRISPR-Cas complexes. In this work, we have optimized the algorithms and reanalyzed experimental data of DNA polymerase I diffusing in live Escherichia coli. We found that long-lived DNA interaction by DNA polymerase are more abundant upon DNA damage, suggesting roles in DNA repair. We further revealed and quantified fast DNA probing interactions that last shorter than 10 ms. AnaDDA pushes the boundaries of the timescale of interactions that can be probed with single-particle tracking and is a mathematically rigorous framework that can be further expanded to extract detailed information about the behavior of biomolecules in living cells.
Collapse
Affiliation(s)
- Jochem N A Vink
- Department of Bionanoscience, Delft University of Technology, HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands
| | - Stan J J Brouns
- Department of Bionanoscience, Delft University of Technology, HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands.
| | - Johannes Hohlbein
- Laboratory of Biophysics, Wageningen University & Research, Wageningen, the Netherlands; Microspectroscopy Reasearch Facility, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|
7
|
Metal-induced sensor mobilization turns on affinity to activate regulator for metal detoxification in live bacteria. Proc Natl Acad Sci U S A 2020; 117:13248-13255. [PMID: 32467170 DOI: 10.1073/pnas.1919816117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Metal detoxification is essential for bacteria's survival in adverse environments and their pathogenesis in hosts. Understanding the underlying mechanisms is crucial for devising antibacterial treatments. In the Gram-negative bacterium Escherichia coli, membrane-bound sensor CusS and its response regulator CusR together regulate the transcription of the cus operon that plays important roles in cells' resistance to copper/silver, and they belong to the two-component systems (TCSs) that are ubiquitous across various organisms and regulate diverse cellular functions. In vitro protein reconstitution and associated biochemical/physical studies have provided significant insights into the functions and mechanisms of CusS-CusR and related TCSs. Such studies are challenging regarding multidomain membrane proteins like CusS and also lack the physiological environment, particularly the native spatial context of proteins inside a cell. Here, we use stroboscopic single-molecule imaging and tracking to probe the dynamic behaviors of both CusS and CusR in live cells, in combination with protein- or residue-specific genetic manipulations. We find that copper stress leads to a cellular protein concentration increase and a concurrent mobilization of CusS out of clustered states in the membrane. We show that the mobilized CusS has significant interactions with CusR for signal transduction and that CusS's affinity toward CusR switches on upon sensing copper at the interfacial metal-binding sites in CusS's periplasmic sensor domains, prior to ATP binding and autophosphorylation at CusS's cytoplasmic kinase domain(s). The observed CusS mobilization upon stimulation and its surprisingly early interaction with CusR likely ensure an efficient signal transduction by providing proper conformation and avoiding futile cross talks.
Collapse
|
8
|
Martens KJA, van Duynhoven J, Hohlbein J. Spatiotemporal Heterogeneity of κ-Carrageenan Gels Investigated via Single-Particle-Tracking Fluorescence Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5502-5509. [PMID: 32343144 PMCID: PMC7254830 DOI: 10.1021/acs.langmuir.0c00393] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Hydrogels made of the polysaccharide κ-carrageenan are widely used in the food and personal care industry as thickeners or gelling agents. These hydrogels feature dense regions embedded in a coarser bulk network, but the characteristic size and behavior of these regions have remained elusive. Here, we use single-particle-tracking fluorescence microscopy (sptFM) to quantitatively describe κ-carrageenan gels. Infusing fluorescent probes into fully gelated κ-carrageenan hydrogels resulted in two distinct diffusional behaviors. Obstructed self-diffusion of the probes revealed that the coarse network consists of κ-carrageenan strands with a typical diameter of 3.2 ± 0.3 nm leading to a nanoprobe diffusion coefficient of ∼1-5 × 10-12 m2/s. In the dense network regions, we found a fraction with a largely decreased diffusion coefficient of ∼1 × 10-13 m2/s. We also observed dynamic exchange between these states. The computation of spatial mobility maps from the diffusional data indicated that the dense network regions have a characteristic diameter of ∼1 μm and show mobility on the second-to-minute timescale. sptFM provides an unprecedented view of spatiotemporal heterogeneity of hydrogel networks, which we believe bears general relevance for understanding transport and release of both low- and high-molecular weight solutes.
Collapse
Affiliation(s)
- Koen J. A. Martens
- Laboratory
of Biophysics, Wageningen University and
Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Laboratory
of Bionanotechnology, Wageningen University
and Research, Bornse
Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - John van Duynhoven
- Laboratory
of Biophysics, Wageningen University and
Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Unilever
Global Foods Innovation Centre, Bronland 14, 6708 WH Wageningen, The Netherlands
| | - Johannes Hohlbein
- Laboratory
of Biophysics, Wageningen University and
Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Microspectroscopy
Research Facility, Wageningen University
and Research, Stippeneng
4, 6708 WE Wageningen, The Netherlands
- . Phone: +31 317 482 635
| |
Collapse
|