1
|
Moreno N, Korneev K, Semenov A, Topuz A, John T, Lettinga MP, Ellero M, Wagner C, Fedosov DA. Aggregation and disaggregation of red blood cells: Depletion versus bridging. Biophys J 2025; 124:1285-1297. [PMID: 40087863 PMCID: PMC12044398 DOI: 10.1016/j.bpj.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/12/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025] Open
Abstract
The aggregation of red blood cells (RBCs) is a complex phenomenon that strongly impacts blood flow and tissue perfusion. Despite extensive research for more than 50 years, physical mechanisms that govern RBC aggregation are still under debate. Two proposed mechanisms are based on bridging and depletion interactions between RBCs due to the presence of macromolecules in blood plasma. The bridging hypothesis assumes the formation of bonds between RBCs through adsorbing macromolecules, while the depletion mechanism results from the exclusion of macromolecules from the intercellular space, leading to effective attraction. Existing experimental studies generally cannot differentiate between these two aggregation mechanisms, although several recent investigations suggest concurrent involvement of the both mechanisms. We explore dynamic aggregation and disaggregation of two RBCs using three simulation models: a potential-based model mimicking depletion interactions, a bridging model with immobile bonds, and a new bridging model with mobile bonds that can slide along RBC membranes. Simulation results indicate that dynamic aggregation of RBCs primarily arises from depletion interactions, while disaggregation of RBCs involves both mechanisms. The bridging model with mobile bonds reproduces well the corresponding experimental data, offering insights into the interplay between bridging and depletion interactions and providing a framework for studying similar interactions between other biological cells.
Collapse
Affiliation(s)
- Nicolas Moreno
- Basque Center for Applied Mathematics (BCAM), Bilbao, Spain.
| | - Kirill Korneev
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Alexey Semenov
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Alper Topuz
- Theoretical Physics of Living Matter, Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany
| | - Thomas John
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Minne Paul Lettinga
- Institute of Biological Information Processing IBI-4, Forschungszentrum Jülich, Jülich, Germany
| | - Marco Ellero
- Basque Center for Applied Mathematics (BCAM), Bilbao, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Complex Fluids Research Group, Department of Chemical Engineering, Swansea University, Swansea, United Kingdom
| | - Christian Wagner
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, Saarbrücken, Germany; Department of Physics and Materials Science, University of Luxembourg, Luxembourg, Luxembourg
| | - Dmitry A Fedosov
- Theoretical Physics of Living Matter, Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
2
|
Alexandrova-Watanabe A, Abadjieva E, Gartcheva L, Langari A, Ivanova M, Guenova M, Tiankov T, Strijkova V, Krumova S, Todinova S. The Impact of Targeted Therapies on Red Blood Cell Aggregation in Patients with Chronic Lymphocytic Leukemia Evaluated Using Software Image Flow Analysis. MICROMACHINES 2025; 16:95. [PMID: 39858750 PMCID: PMC11767778 DOI: 10.3390/mi16010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025]
Abstract
Chronic lymphocytic leukemia (CLL), the most common type of leukemia, remains incurable with conventional therapy. Despite advances in therapies targeting Bruton's tyrosine kinase and anti-apoptotic protein BCL-2, little is known about their effect on red blood cell (RBC) aggregation in blood flow. In this study, we applied a microfluidic device and a newly developed Software Image Flow Analysis to assess the extent of RBC aggregation in CLL patients and to elucidate the hemorheological effects of the commonly applied therapeutics Obinutuzumab/Venetoclax and Ibrutinib. The results revealed that, in RBC samples from untreated CLL patients, complex 3D clusters of large RBC aggregates are formed, and their number is significantly increased compared to healthy control samples. The application of the Obinutuzumab/Venetoclax combination did not affect this aspect of RBCs' rheological behavior. In contrast, targeted therapy with Ibrutinib preserves the aggregation state of CLL RBCs to levels seen in healthy controls, demonstrating that Ibrutinib mitigates the alterations in the rheological properties of RBCs associated with CLL. Our findings highlight the alterations in RBC aggregation in CLL and the impact of different targeted therapies on RBCs' rheological properties, which is critical for predicting the potential complications and side effects of CLL treatments, particularly concerning blood flow dynamics.
Collapse
Affiliation(s)
- Anika Alexandrova-Watanabe
- Institute of Mechanics, Bulgarian Academy of Sciences, “Acad. G. Bontchev” Str. 4, 1113 Sofia, Bulgaria; (A.A.-W.); (E.A.); (T.T.)
- Center of Competence at Mechatronics and Clean Technologies—MIRACle, “Acad. G. Bontchev” Str. 4, 1113 Sofia, Bulgaria;
| | - Emilia Abadjieva
- Institute of Mechanics, Bulgarian Academy of Sciences, “Acad. G. Bontchev” Str. 4, 1113 Sofia, Bulgaria; (A.A.-W.); (E.A.); (T.T.)
- Center of Competence at Mechatronics and Clean Technologies—MIRACle, “Acad. G. Bontchev” Str. 4, 1113 Sofia, Bulgaria;
| | - Lidia Gartcheva
- National Specialized Hospital for Active Treating of Hematological Diseases, Zdrave Str. 2, 1756 Sofia, Bulgaria; (L.G.); (M.G.)
| | - Ariana Langari
- Center of Competence at Mechatronics and Clean Technologies—MIRACle, “Acad. G. Bontchev” Str. 4, 1113 Sofia, Bulgaria;
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. G. Bontchev” Str. 21, 1113 Sofia, Bulgaria; (M.I.); (S.K.)
| | - Miroslava Ivanova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. G. Bontchev” Str. 21, 1113 Sofia, Bulgaria; (M.I.); (S.K.)
| | - Margarita Guenova
- National Specialized Hospital for Active Treating of Hematological Diseases, Zdrave Str. 2, 1756 Sofia, Bulgaria; (L.G.); (M.G.)
| | - Tihomir Tiankov
- Institute of Mechanics, Bulgarian Academy of Sciences, “Acad. G. Bontchev” Str. 4, 1113 Sofia, Bulgaria; (A.A.-W.); (E.A.); (T.T.)
- Center of Competence at Mechatronics and Clean Technologies—MIRACle, “Acad. G. Bontchev” Str. 4, 1113 Sofia, Bulgaria;
| | - Velichka Strijkova
- Institute of Optical Materials and Technologies “Acad. Yordan Malinovski”, Bulgarian Academy of Sciences, “Acad. G. Bontchev” Str. 109, 1113 Sofia, Bulgaria;
| | - Sashka Krumova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. G. Bontchev” Str. 21, 1113 Sofia, Bulgaria; (M.I.); (S.K.)
| | - Svetla Todinova
- Center of Competence at Mechatronics and Clean Technologies—MIRACle, “Acad. G. Bontchev” Str. 4, 1113 Sofia, Bulgaria;
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. G. Bontchev” Str. 21, 1113 Sofia, Bulgaria; (M.I.); (S.K.)
| |
Collapse
|
3
|
Singh Y, Ahmad R, Raza A, Warsi MS, Mustafa M, Khan H, Hassan MI, Khan R, Moinuddin, Habib S. Exploring the effects of 4-chloro-o-phenylenediamine on human fibrinogen: A comprehensive investigation via biochemical, biophysical and computational approaches. Int J Biol Macromol 2024; 280:135825. [PMID: 39313050 DOI: 10.1016/j.ijbiomac.2024.135825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/28/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
Fibrinogen (Fg), an essential plasma glycoprotein involved in the coagulation cascade, undergoes structural alterations upon exposure to various chemicals, impacting its functionality and contributing to pathological conditions. This research article explored the effects of 4-Chloro-o-phenylenediamine (4-Cl-o-PD), a common hair dye component (IUPAC = 1-Chloro-3,4-diaminobenzene), on human fibrinogen through comprehensive computational, biophysical, and biochemical approaches. The formation of a stable ligand-protein complex is confirmed through molecular docking and molecular dynamics simulations, revealing possible interaction having a favorable -4.8 kcal/mol binding energy. Biophysical results, including UV-vis and fluorescence spectroscopies, corroborated with the computational findings, whereas Fourier transform infrared spectroscopy (FT-IR) and circular dichroism spectroscopy (CD) provide insights into the alterations of secondary structures upon interaction with 4-Cl-o-PD. Anilinonaphthalene-sulfonic acid (ANS) fluorescence showed a partially unfolded protein, with enhanced α to β-sheet transition as evidenced by thioflavin T (ThT) spectroscopy and microscopy. Moreover, biochemical assays confirmed the formation of carbonyl compounds that may be responsible for the oxidation of methionine residues in fibrinogen. Electrophoresis and electron microscopy confirmed the formation of aggregates. Our findings elucidate the interaction pattern of 4-Cl-o-PD with Fg, leading to structural perturbation, which may have potential implications for fibrinogen misfolding or its aggregation. Protein aggregation or its misfolded products affect peripheral tissues and the central nervous system. Many chronic progressive diseases, like type II diabetes mellitus, Alzheimer's disease, Parkison's disease, and Creutzfeldt-Jakob disease are associated with intrinsically aberrant disordered proteins. Understanding these interactions may offer new perspectives on the safety and biocompatibility of dye compounds, which may contribute to developing improved strategies for acquired amyloidogenesis.
Collapse
Affiliation(s)
- Yogendra Singh
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Rizwan Ahmad
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Ali Raza
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Mohd Sharib Warsi
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Mohd Mustafa
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Hamda Khan
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Md Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ruhi Khan
- Department of Medicine, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Moinuddin
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Safia Habib
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.
| |
Collapse
|
4
|
Li H, Qiang Y, Li X, Brugnara C, Buffet PA, Dao M, Karniadakis GE, Suresh S. Biomechanics of phagocytosis of red blood cells by macrophages in the human spleen. Proc Natl Acad Sci U S A 2024; 121:e2414437121. [PMID: 39453740 PMCID: PMC11536160 DOI: 10.1073/pnas.2414437121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/17/2024] [Indexed: 10/27/2024] Open
Abstract
The clearance of senescent and altered red blood cells (RBCs) in the red pulp of the human spleen involves sequential processes of prefiltration, filtration, and postfiltration. While prior work has elucidated the mechanisms underlying the first two processes, biomechanical processes driving the postfiltration phagocytosis of RBCs retained at interendothelial slits (IES) are still poorly understood. We present here a unique computational model of macrophages to study the role of cell biomechanics in modulating the kinetics of phagocytosis of aged and diseased RBCs retained in the spleen. After validating the macrophage model using in vitro phagocytosis experiments, we employ it to probe the mechanisms underlying the kinetics of phagocytosis of mechanically altered RBCs, such as heated RBCs and abnormal RBCs in hereditary spherocytosis (HS) and sickle cell disease (SCD). Our simulations show pronounced deformation of the flexible and healthy RBCs in contrast to minimal shape changes in altered RBCs. Simulations also show that less deformable RBCs are engulfed faster and at lower adhesive strength than flexible RBCs, consistent with our experimental measurements. This efficient sensing and engulfment by macrophages of stiff RBCs retained at IES are expected to temper splenic congestion, a common pathogenic process in malaria, HS, and SCD. Altogether, our combined computational and in vitro experimental studies suggest that mechanical alterations of retained RBCs may suffice to enhance their phagocytosis, thereby adapting the kinetics of their elimination to the kinetics of their mechanical retention, an equilibrium essential for adequately cleaning the splenic filter to preserve its function.
Collapse
Affiliation(s)
- He Li
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens30602, Georgia
| | - Yuhao Qiang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Xuejin Li
- Department of Engineering Mechanics and Center for X-Mechanics, Zhejiang University, Hangzhou310027, China
| | - Carlo Brugnara
- Department of Laboratory Medicine, Boston Children’s Hospital, Boston, MA02115
| | - Pierre A. Buffet
- Université Paris Cité, INSERM, Biologie Intégrée du Globule Rouge, Paris75015, France
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - George E. Karniadakis
- Division of Applied Mathematics, Brown University, Providence, RI02912
- School of Engineering, Brown University, Providence, RI02912
| | - Subra Suresh
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- School of Engineering, Brown University, Providence, RI02912
| |
Collapse
|
5
|
Cui F, Shen S, Ma X, Fan D. Light-Operated Transient Unilateral Adhesive Hydrogel for Comprehensive Prevention of Postoperative Adhesions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403626. [PMID: 38924679 PMCID: PMC11348232 DOI: 10.1002/advs.202403626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/03/2024] [Indexed: 06/28/2024]
Abstract
Dislocation of anti-adhesion materials, non-specific tissue adhesion, and the induction of secondary fibrinolysis disorders are the main challenges faced by postoperative anti-adhesion materials. Herein, a self-leveling transient unilateral adhesive hydrogel is custom-designed to conquer these challenges with a theoretically calculated and dual-step tailored gellan gum (GG) as the sole agent. First, the maximum gelation temperature of GG is lowered from 42-25 °C through controlled perturbation of intra- and inter-molecular hydrogen bonds, which is achieved by employing the methacrylic anhydride as a "hydrogen bond's perturbator" to form methacrylate GG (MeGG). Second, the "self-leveling" injectability and wound shape adaptably are endowed by the formation of borate-diol complexed MeGG (BMeGG). Finally, the transient unilateral tissue-adhesive hydrogel (BMeGG-H) barrier is prepared through photo-controlled cross-linking of reactive alkenyl groups. This degradable hydrogel demonstrates favorable rheological properties, light-controlled unilateral adhesion properties, biocompatibility, anti-fibrin adhesion, and anti-cell adhesion properties in vitro. Comprehensive regulation of the fibrinolysis balance toward non-adhesion is conformed in a rat model after intra-abdominal surgery via anti-autoinflammatory response, intestinal wall integrity repair, and Tissue plasminogen activator (t-PA) and plasminogen activator inhibitor-1 (PAI-1) balance adjustment. Notably, the 14th day anti-adhesion effective rate is 100%, indicating its significant potential in clinical applications for postoperative anti-adhesion.
Collapse
Affiliation(s)
- Furong Cui
- Engineering Research Center of Western Resource Innovation Medicine Green ManufacturingMinistry of EducationSchool of Chemical EngineeringNorthwest UniversityXi'an710069China
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation EngineeringSchool of Chemical EngineeringNorthwest UniversityXi'an710069China
- Biotech. & Biomed. Research InstituteNorthwest UniversityXi'an710069China
| | - Shihong Shen
- Engineering Research Center of Western Resource Innovation Medicine Green ManufacturingMinistry of EducationSchool of Chemical EngineeringNorthwest UniversityXi'an710069China
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation EngineeringSchool of Chemical EngineeringNorthwest UniversityXi'an710069China
- Biotech. & Biomed. Research InstituteNorthwest UniversityXi'an710069China
| | - Xiaoxuan Ma
- Engineering Research Center of Western Resource Innovation Medicine Green ManufacturingMinistry of EducationSchool of Chemical EngineeringNorthwest UniversityXi'an710069China
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation EngineeringSchool of Chemical EngineeringNorthwest UniversityXi'an710069China
- Biotech. & Biomed. Research InstituteNorthwest UniversityXi'an710069China
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green ManufacturingMinistry of EducationSchool of Chemical EngineeringNorthwest UniversityXi'an710069China
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation EngineeringSchool of Chemical EngineeringNorthwest UniversityXi'an710069China
- Biotech. & Biomed. Research InstituteNorthwest UniversityXi'an710069China
| |
Collapse
|
6
|
Rakshak R, Bhatt S, Sharma S, Agharkar R, Bodakhe S, Srivastava R. Characterizing morphological alterations in blood related disorders through Atomic Force Microscopy. Nanotheranostics 2024; 8:330-343. [PMID: 38577323 PMCID: PMC10988212 DOI: 10.7150/ntno.93206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/25/2024] [Indexed: 04/06/2024] Open
Abstract
Atomic Force Microscopy (AFM) is a very flexible method that can create topographical images from a range of materials and image surfaces. Significantly, AFM has emerged as an invaluable tool for dissecting the morphology and biochemical aspects of body cells and tissues. The high-resolution imaging capabilities of AFM enable researchers to discern alterations in cell morphology and understand the underlying mechanisms of diseases. It contributes to understanding disease etiology and progression. In the context of this review, our focus will be directed towards elucidating the pivotal role of AFM in analysis of blood related disorders. Through detailed comparisons with normal cells, we delve into the alterations in size, shape, and surface characteristics induced by conditions such as cancer, diabetes, anaemia, and infections caused by pathogens. In essence, various work described in this article highlights to bridge the gap between traditional microscopy and in-depth analysis of blood-related pathologies, which in turn offers valuable perspectives for both research and clinical applications in the field.
Collapse
Affiliation(s)
| | | | | | | | | | - Rohit Srivastava
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Bombay, India
| |
Collapse
|
7
|
Obeagu EI. Red blood cells as biomarkers and mediators in complications of diabetes mellitus: A review. Medicine (Baltimore) 2024; 103:e37265. [PMID: 38394525 PMCID: PMC11309633 DOI: 10.1097/md.0000000000037265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Red blood cells (RBCs), traditionally recognized for their oxygen transport role, have garnered increasing attention for their significance as crucial contributors to the pathophysiology of diabetes mellitus. In this comprehensive review, we elucidate the multifaceted roles of RBCs as both biomarkers and mediators in diabetes mellitus. Amidst the intricate interplay of altered metabolic pathways and the diabetic milieu, RBCs manifest distinct alterations in their structure, function, and lifespan. The chronic exposure to hyperglycemia induces oxidative stress, leading to modifications in RBC physiology and membrane integrity. These modifications, including glycation of hemoglobin (HbA1c), establish RBCs as invaluable biomarkers for assessing glycemic control over extended periods. Moreover, RBCs serve as mediators in the progression of diabetic complications. Their involvement in vascular dysfunction, hemorheological changes, and inflammatory pathways contributes significantly to diabetic microangiopathy and associated complications. Exploring the therapeutic implications, this review addresses potential interventions targeting RBC abnormalities to ameliorate diabetic complications. In conclusion, comprehending the nuanced roles of RBCs as biomarkers and mediators in diabetes mellitus offers promising avenues for enhanced diagnostic precision, therapeutic interventions, and improved patient outcomes. This review consolidates the current understanding and emphasizes the imperative need for further research to harness the full potential of RBC-related insights in the realm of diabetes mellitus.
Collapse
|
8
|
Ermolinskiy PB, Maksimov MK, Muravyov AV, Lugovtsov AE, Scheglovitova ON, Priezzhev AV. Forces of interaction of red blood cells and endothelial cells at different concentrations of fibrinogen: Measurements with laser tweezers in vitro. Clin Hemorheol Microcirc 2024; 86:303-312. [PMID: 37927250 DOI: 10.3233/ch-231941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Blood microrheology depends on the constituents of blood plasma, the interaction between blood cells resulting in red blood cell (RBC) and platelets aggregation, and adhesion of RBC, platelets and leukocytes to vascular endothelium. The main plasma protein molecule -actuator of RBC aggregation is fibrinogen. In this paper the effect of interaction between the endothelium and RBC at different fibrinogen concentrations on the RBC microrheological properties was investigated in vitro. Laser tweezers were used to measure the RBC-endothelium interaction forces. It was shown for the first time that the interaction forces between RBC and endothelium are comparable with the RBC aggregation forces, they increase with fibrinogen concentration and reach the saturation level of about 4 pN at the concentration of 4 mg/ml. These results are important for better understanding the mechanisms of RBC and endothelium interaction and developing the novel therapeutic protocols of the microrheology correction in different pathologies.
Collapse
Affiliation(s)
- Petr B Ermolinskiy
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Matvey K Maksimov
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Alexey V Muravyov
- K.D. Ushinsky Yaroslavl State Pedagogical University, Yaroslavl, Russia
| | - Andrei E Lugovtsov
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Olga N Scheglovitova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Moscow, Russia
| | | |
Collapse
|
9
|
Li G, Qiang Y, Li H, Li X, Buffet PA, Dao M, Karniadakis GE. A combined computational and experimental investigation of the filtration function of splenic macrophages in sickle cell disease. PLoS Comput Biol 2023; 19:e1011223. [PMID: 38091361 PMCID: PMC10752522 DOI: 10.1371/journal.pcbi.1011223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/27/2023] [Accepted: 11/03/2023] [Indexed: 12/26/2023] Open
Abstract
Being the largest lymphatic organ in the body, the spleen also constantly controls the quality of red blood cells (RBCs) in circulation through its two major filtration components, namely interendothelial slits (IES) and red pulp macrophages. In contrast to the extensive studies in understanding the filtration function of IES, fewer works investigate how the splenic macrophages retain the aged and diseased RBCs, i.e., RBCs in sickle cell disease (SCD). Herein, we perform a computational study informed by companion experiments to quantify the dynamics of RBCs captured and retained by the macrophages. We first calibrate the parameters in the computational model based on microfluidic experimental measurements for sickle RBCs under normoxia and hypoxia, as those parameters are not available in the literature. Next, we quantify the impact of key factors expected to dictate the RBC retention by the macrophages in the spleen, namely, blood flow conditions, RBC aggregation, hematocrit, RBC morphology, and oxygen levels. Our simulation results show that hypoxic conditions could enhance the adhesion between the sickle RBCs and macrophages. This, in turn, increases the retention of RBCs by as much as four-fold, which could be a possible cause of RBC congestion in the spleen of patients with SCD. Our study on the impact of RBC aggregation illustrates a 'clustering effect', where multiple RBCs in one aggregate can make contact and adhere to the macrophages, leading to a higher retention rate than that resulting from RBC-macrophage pair interactions. Our simulations of sickle RBCs flowing past macrophages for a range of blood flow velocities indicate that the increased blood velocity could quickly attenuate the function of the red pulp macrophages on detaining aged or diseased RBCs, thereby providing a possible rationale for the slow blood flow in the open circulation of the spleen. Furthermore, we quantify the impact of RBC morphology on their tendency to be retained by the macrophages. We find that the sickle and granular-shaped RBCs are more likely to be filtered by macrophages in the spleen. This finding is consistent with the observation of low percentages of these two forms of sickle RBCs in the blood smear of SCD patients. Taken together, our experimental and simulation results aid in our quantitative understanding of the function of splenic macrophages in retaining the diseased RBCs and provide an opportunity to combine such knowledge with the current knowledge of the interaction between IES and traversing RBCs to apprehend the complete filtration function of the spleen in SCD.
Collapse
Affiliation(s)
- Guansheng Li
- Division of Applied Mathematics, Brown University, Providence, Rhode Island, United States of America
| | - Yuhao Qiang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - He Li
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia, United States of America
| | - Xuejin Li
- Department of Engineering Mechanics and Center for X-Mechanics, Zhejiang University, Hangzhou, Zhejiang, China
| | - Pierre A. Buffet
- Université Paris Cité and Université des Antilles, Inserm, Biologie Intégrée du Globule Rouge, Paris, France
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - George Em Karniadakis
- Division of Applied Mathematics, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
10
|
Charansonney OL, Al-Dandachi G, Plaisance P, Vicaut E. Evaluation of a new point-of-care diagnostic test measuring inflammation in emergency settings. Sci Rep 2023; 13:19551. [PMID: 37945629 PMCID: PMC10636126 DOI: 10.1038/s41598-023-46347-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
Erythrocyte aggregation kinetics is accelerated in diseases with a strong inflammation component. This study aimed to evaluate whether, in an emergency setting, a new point-of-care test measuring erythrocyte aggregation kinetics (EAK) can identify patients with underlying inflammation. Patients visiting an emergency department and needing a blood exam were successively included. EAK was measured at the point-of-care in 20 s directly on the blood samples collected in regular tubes without any manipulation. The primary measure was EAK's half-life during the first 5 s (EAK5s). Each patient's inflammation status was assessed blind to the EAK test results. Receiver Operating Characteristic (ROC) curves for inflammation status were built. 268 patients had their EAK5s measured, and a clear inflammation status was determined for 214 patients (65 had inflammation). Mean EAK5s were 2.18 s and 1.75 s for no inflammation and inflammation groups respectively (p < 0.001). EAK5s appears to be a better inflammation marker than C-Reactive protein (CRP), with an area under the ROC curve of 0.845 compared to 0.806 for CRP (p < 0.0001). The Youden threshold for prediction of inflammation was 1.86 s with 84.6% (78.5-89.9%) specificity and 70.8% (60-81.5%) sensitivity. Point-of-care EAK is an easily measured, immediately available marker of inflammation with a better predictive power than CRP's.
Collapse
Affiliation(s)
- Olivier L Charansonney
- Cardiology Department, Centre Hospitalier Sud-Francilien (CHSF), Corbeil-Essonnes, France.
- Clinical Physiology Department, Hôpital Lariboisière, Paris, France.
| | | | | | - Eric Vicaut
- Clinical Research Unit, Hôpital Fernand-Widal, Paris, France
| |
Collapse
|
11
|
Williams A, Bissinger R, Shamaa H, Patel S, Bourne L, Artunc F, Qadri SM. Pathophysiology of Red Blood Cell Dysfunction in Diabetes and Its Complications. PATHOPHYSIOLOGY 2023; 30:327-345. [PMID: 37606388 PMCID: PMC10443300 DOI: 10.3390/pathophysiology30030026] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/23/2023] Open
Abstract
Diabetes Mellitus (DM) is a complex metabolic disorder associated with multiple microvascular complications leading to nephropathy, retinopathy, and neuropathy. Mounting evidence suggests that red blood cell (RBC) alterations are both a cause and consequence of disturbances related to DM-associated complications. Importantly, a significant proportion of DM patients develop varying degrees of anemia of confounding etiology, leading to increased morbidity. In chronic hyperglycemia, RBCs display morphological, enzymatic, and biophysical changes, which in turn prime them for swift phagocytic clearance from circulation. A multitude of endogenous factors, such as oxidative and dicarbonyl stress, uremic toxins, extracellular hypertonicity, sorbitol accumulation, and deranged nitric oxide metabolism, have been implicated in pathological RBC changes in DM. This review collates clinical laboratory findings of changes in hematology indices in DM patients and discusses recent reports on the putative mechanisms underpinning shortened RBC survival and disturbed cell membrane architecture within the diabetic milieu. Specifically, RBC cell death signaling, RBC metabolism, procoagulant RBC phenotype, RBC-triggered endothelial cell dysfunction, and changes in RBC deformability and aggregation in the context of DM are discussed. Understanding the mechanisms of RBC alterations in DM provides valuable insights into the clinical significance of the crosstalk between RBCs and microangiopathy in DM.
Collapse
Affiliation(s)
- Alyssa Williams
- Faculty of Science, Ontario Tech University, Oshawa, ON L1G 0C5, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Rosi Bissinger
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Hala Shamaa
- Faculty of Health Sciences, Ontario Tech University, Oshawa, ON L1G 0C5, Canada
| | - Shivani Patel
- Faculty of Health Sciences, Ontario Tech University, Oshawa, ON L1G 0C5, Canada
| | - Lavern Bourne
- Faculty of Health Sciences, Ontario Tech University, Oshawa, ON L1G 0C5, Canada
| | - Ferruh Artunc
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany
- Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, 72076 Tübingen, Germany
- German Center for Diabetes Research at the University of Tübingen, 72076 Tübingen, Germany
| | - Syed M. Qadri
- Faculty of Health Sciences, Ontario Tech University, Oshawa, ON L1G 0C5, Canada
| |
Collapse
|
12
|
Dorken-Gallastegi A, Lee Y, Li G, Li H, Naar L, Li X, Ye T, Van Cott E, Rosovsky R, Gregory D, Tompkins R, Karniadakis G, Kaafarani HMA, Velmahos GC, Lee J, Frydman GH. Circulating cellular clusters are associated with thrombotic complications and clinical outcomes in COVID-19. iScience 2023; 26:107202. [PMID: 37485375 PMCID: PMC10290732 DOI: 10.1016/j.isci.2023.107202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/28/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
We sought to study the role of circulating cellular clusters (CCC) -such as circulating leukocyte clusters (CLCs), platelet-leukocyte aggregates (PLA), and platelet-erythrocyte aggregates (PEA)- in the immunothrombotic state induced by COVID-19. Forty-six blood samples from 37 COVID-19 patients and 12 samples from healthy controls were analyzed with imaging flow cytometry. Patients with COVID-19 had significantly higher levels of PEAs (p value<0.001) and PLAs (p value = 0.015) compared to healthy controls. Among COVID-19 patients, CLCs were correlated with thrombotic complications (p value = 0.016), vasopressor need (p value = 0.033), acute kidney injury (p value = 0.027), and pneumonia (p value = 0.036), whereas PEAs were associated with positive bacterial cultures (p value = 0.033). In predictive in silico simulations, CLCs were more likely to result in microcirculatory obstruction at low flow velocities (≤1 mm/s) and at higher branching angles. Further studies on the cellular component of hyperinflammatory prothrombotic states may lead to the identification of novel biomarkers and drug targets for inflammation-related thrombosis.
Collapse
Affiliation(s)
- Ander Dorken-Gallastegi
- Division of Trauma, Emergency Surgery, and Surgical Critical Care, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Yao Lee
- Center for Biomedical Engineering & Division of Comparative Medicine, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02039, USA
| | - Guansheng Li
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
| | - He Li
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI 02912, USA
| | - Leon Naar
- Division of Trauma, Emergency Surgery, and Surgical Critical Care, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Xuejin Li
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Ting Ye
- Information and Computational Mathematics, Ji Lin University, Changchun, China
| | - Elizabeth Van Cott
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Rachel Rosovsky
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David Gregory
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ronald Tompkins
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - George Karniadakis
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - Haytham MA. Kaafarani
- Division of Trauma, Emergency Surgery, and Surgical Critical Care, Massachusetts General Hospital, Boston, MA 02114, USA
| | - George C. Velmahos
- Division of Trauma, Emergency Surgery, and Surgical Critical Care, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jarone Lee
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Galit H. Frydman
- Division of Trauma, Emergency Surgery, and Surgical Critical Care, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Biomedical Engineering & Division of Comparative Medicine, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02039, USA
| |
Collapse
|
13
|
Li G, Qiang Y, Li H, Li X, Buffet PA, Dao M, Karniadakis GE. A combined computational and experimental investigation of the filtration function of splenic macrophages in sickle cell disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.543007. [PMID: 37398427 PMCID: PMC10312537 DOI: 10.1101/2023.05.31.543007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Being the largest lymphatic organ in the body, the spleen also constantly controls the quality of red blood cells (RBCs) in circulation through its two major filtration components, namely interendothelial slits (IES) and red pulp macrophages. In contrast to the extensive studies in understanding the filtration function of IES, there are relatively fewer works on investigating how the splenic macrophages retain the aged and diseased RBCs, i.e., RBCs in sickle cell disease (SCD). Herein, we perform a computational study informed by companion experiments to quantify the dynamics of RBCs captured and retained by the macrophages. We first calibrate the parameters in the computational model based on microfluidic experimental measurements for sickle RBCs under normoxia and hypoxia, as those parameters are not available in the literature. Next, we quantify the impact of a set of key factors that are expected to dictate the RBC retention by the macrophages in the spleen, namely, blood flow conditions, RBC aggregation, hematocrit, RBC morphology, and oxygen levels. Our simulation results show that hypoxic conditions could enhance the adhesion between the sickle RBCs and macrophages. This, in turn, increases the retention of RBCs by as much as five-fold, which could be a possible cause of RBC congestion in the spleen of patients with SCD. Our study on the impact of RBC aggregation illustrates a 'clustering effect', where multiple RBCs in one aggregate can make contact and adhere to the macrophages, leading to a higher retention rate than that resulting from RBC-macrophage pair interactions. Our simulations of sickle RBCs flowing past macrophages for a range of blood flow velocities indicate that the increased blood velocity could quickly attenuate the function of the red pulp macrophages on detaining aged or diseased RBCs, thereby providing a possible rationale for the slow blood flow in the open circulation of the spleen. Furthermore, we quantify the impact of RBC morphology on their tendency to be retained by the macrophages. We find that the sickle and granular-shaped RBCs are more likely to be filtered by macrophages in the spleen. This finding is consistent with the observation of low percentages of these two forms of sickle RBCs in the blood smear of SCD patients. Taken together, our experimental and simulation results aid in our quantitative understanding of the function of splenic macrophages in retaining the diseased RBCs and provide an opportunity to combine such knowledge with the current knowledge of the interaction between IES and traversing RBCs to apprehend the complete filtration function of the spleen in SCD.
Collapse
Affiliation(s)
- Guansheng Li
- Division of Applied Mathematics, Brown University, Providence, Rhode Island, 02906
| | - Yuhao Qiang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - He Li
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia, 30602
| | - Xuejin Li
- Department of Engineering Mechanics and Center for X-Mechanics, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Pierre A. Buffet
- Université Paris Cité and Université des Antilles, Inserm, Biologie Intégrée du Globule Rouge, 75015, Paris, France
- Laboratoire d′Excellence du Globule Rouge, 75015, Paris, France
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | | |
Collapse
|
14
|
Han K, Ma S, Sun J, Xu M, Qi X, Wang S, Li L, Li X. In silico modeling of patient-specific blood rheology in type 2 diabetes mellitus. Biophys J 2023; 122:1445-1458. [PMID: 36905122 PMCID: PMC10147843 DOI: 10.1016/j.bpj.2023.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/16/2022] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Increased blood viscosity in type 2 diabetes mellitus (T2DM) is a risk factor for the development of insulin resistance and diabetes-related vascular complications; however, individuals with T2DM exhibit heterogeneous hemorheological properties, including cell deformation and aggregation. Using a multiscale red blood cell (RBC) model with key parameters derived from patient-specific data, we present a computational study of the rheological properties of blood from individual patients with T2DM. Specifically, one key model parameter, which determines the shear stiffness of the RBC membrane (μ) is informed by the high-shear-rate blood viscosity of patients with T2DM. At the same time, the other, which contributes to the strength of the RBC aggregation interaction (D0), is derived from the low-shear-rate blood viscosity of patients with T2DM. The T2DM RBC suspensions are simulated at different shear rates, and the predicted blood viscosity is compared with clinical laboratory-measured data. The results show that the blood viscosity obtained from clinical laboratories and computational simulations are in agreement at both low and high shear rates. These quantitative simulation results demonstrate that the patient-specific model has truly learned the rheological behavior of T2DM blood by unifying the mechanical and aggregation factors of the RBCs, which provides an effective way to extract quantitative predictions of the rheological properties of the blood of individual patients with T2DM.
Collapse
Affiliation(s)
- Keqin Han
- State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Engineering Mechanics, and Center for X-Mechanics, Zhejiang University, Hangzhou, China
| | - Shuhao Ma
- State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Engineering Mechanics, and Center for X-Mechanics, Zhejiang University, Hangzhou, China
| | - Jiehui Sun
- Department of Endocrinology and Metabolism, Ningbo First Hospital, Ningbo, China
| | - Miao Xu
- Department of Endocrinology and Metabolism, Ningbo First Hospital, Ningbo, China
| | - Xiaojing Qi
- State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Engineering Mechanics, and Center for X-Mechanics, Zhejiang University, Hangzhou, China
| | - Shuo Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Engineering Mechanics, and Center for X-Mechanics, Zhejiang University, Hangzhou, China
| | - Li Li
- Department of Endocrinology and Metabolism, Ningbo First Hospital, Ningbo, China.
| | - Xuejin Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Engineering Mechanics, and Center for X-Mechanics, Zhejiang University, Hangzhou, China; The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
15
|
Dludla PV, Mabhida SE, Ziqubu K, Nkambule BB, Mazibuko-Mbeje SE, Hanser S, Basson AK, Pheiffer C, Kengne AP. Pancreatic β-cell dysfunction in type 2 diabetes: Implications of inflammation and oxidative stress. World J Diabetes 2023; 14:130-146. [PMID: 37035220 PMCID: PMC10075035 DOI: 10.4239/wjd.v14.i3.130] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/26/2022] [Accepted: 02/28/2023] [Indexed: 03/15/2023] Open
Abstract
Insulin resistance and pancreatic β-cell dysfunction are major pathological mechanisms implicated in the development and progression of type 2 diabetes (T2D). Beyond the detrimental effects of insulin resistance, inflammation and oxidative stress have emerged as critical features of T2D that define β-cell dysfunction. Predominant markers of inflammation such as C-reactive protein, tumor necrosis factor alpha, and interleukin-1β are consistently associated with β-cell failure in preclinical models and in people with T2D. Similarly, important markers of oxidative stress, such as increased reactive oxygen species and depleted intracellular antioxidants, are consistent with pancreatic β-cell damage in conditions of T2D. Such effects illustrate a pathological relationship between an abnormal inflammatory response and generation of oxidative stress during the progression of T2D. The current review explores preclinical and clinical research on the patho-logical implications of inflammation and oxidative stress during the development of β-cell dysfunction in T2D. Moreover, important molecular mechanisms and relevant biomarkers involved in this process are discussed to divulge a pathological link between inflammation and oxidative stress during β-cell failure in T2D. Underpinning the clinical relevance of the review, a systematic analysis of evidence from randomized controlled trials is covered, on the potential therapeutic effects of some commonly used antidiabetic agents in modulating inflammatory makers to improve β-cell function.
Collapse
Affiliation(s)
- Phiwayinkosi V Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town 7505, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3880, South Africa
| | - Sihle E Mabhida
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town 7505, South Africa
| | - Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | - Bongani B Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | | | - Sidney Hanser
- Department of Physiology and Environmental Health, University of Limpopo, Sovenga 0727, South Africa
| | - Albert Kotze Basson
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3880, South Africa
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town 7505, South Africa
| | - Andre Pascal Kengne
- Department of Medicine, University of Cape Town, Cape Town 7500, South Africa
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Tygerberg 7505, South Africa
| |
Collapse
|
16
|
A mathematical model of fibrinogen-mediated erythrocyte-erythrocyte adhesion. Commun Biol 2023; 6:192. [PMID: 36801914 PMCID: PMC9938206 DOI: 10.1038/s42003-023-04560-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
Erythrocytes are deformable cells that undergo progressive biophysical and biochemical changes affecting the normal blood flow. Fibrinogen, one of the most abundant plasma proteins, is a primary determinant for changes in haemorheological properties, and a major independent risk factor for cardiovascular diseases. In this study, the adhesion between human erythrocytes is measured by atomic force microscopy (AFM) and its effect observed by micropipette aspiration technique, in the absence and presence of fibrinogen. These experimental data are then used in the development of a mathematical model to examine the biomedical relevant interaction between two erythrocytes. Our designed mathematical model is able to explore the erythrocyte-erythrocyte adhesion forces and changes in erythrocyte morphology. AFM erythrocyte-erythrocyte adhesion data show that the work and detachment force necessary to overcome the adhesion between two erythrocytes increase in the presence of fibrinogen. The changes in erythrocyte morphology, the strong cell-cell adhesion and the slow separation of the two cells are successfully followed in the mathematical simulation. Erythrocyte-erythrocyte adhesion forces and energies are quantified and matched with experimental data. The changes observed on erythrocyte-erythrocyte interactions may give important insights about the pathophysiological relevance of fibrinogen and erythrocyte aggregation in hindering microcirculatory blood flow.
Collapse
|
17
|
Semenov AN, Gvozdev DA, Moysenovich AM, Zlenko DV, Parshina EY, Baizhumanov AA, Budylin GS, Maksimov EG. Probing Red Blood Cell Membrane Microviscosity Using Fluorescence Anisotropy Decay Curves of the Lipophilic Dye PKH26. Int J Mol Sci 2022; 23:ijms232415767. [PMID: 36555408 PMCID: PMC9781149 DOI: 10.3390/ijms232415767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/01/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
Red blood cell (RBC) aggregation and deformation are governed by the molecular processes occurring on the membrane. Since several social important diseases are accompanied by alterations in RBC aggregation and deformability, it is important to develop a diagnostic parameter of RBC membrane structural integrity and stability. In this work, we propose membrane microviscosity assessed by time-resolved fluorescence anisotropy of the lipophilic PKH26 fluorescent probe as a diagnostic parameter. We measured the fluorescence decay curves of the PKH26 probe in the RBC membrane to establish the optimal parameters of the developed fluorescence assay. We observed a complex biphasic profile of the fluorescence anisotropy decay characterized by two correlation times corresponding to the rotational diffusion of free PKH26, and membrane-bounded molecules of the probe. The developed assay allowed us to estimate membrane microviscosity ηm in the range of 100-500 cP depending on the temperature, which paves the way for assessing RBC membrane properties in clinical applications as predictors of blood microrheological abnormalities.
Collapse
Affiliation(s)
- Alexey N. Semenov
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory Str., 119991 Moscow, Russia
| | - Daniil A. Gvozdev
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory Str., 119991 Moscow, Russia
| | - Anastasia M. Moysenovich
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory Str., 119991 Moscow, Russia
| | - Dmitry V. Zlenko
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory Str., 119991 Moscow, Russia
| | - Evgenia Yu. Parshina
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory Str., 119991 Moscow, Russia
| | - Adil A. Baizhumanov
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory Str., 119991 Moscow, Russia
| | - Gleb S. Budylin
- Laboratory of Clinical Biophotonics, Biomedical Science and Technology Park, I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya Str., 119991 Moscow, Russia
| | - Eugene G. Maksimov
- Interdisciplinary Scientific and Educational School, Molecular Technologies of the Living Systems and Synthetic Biology, M.V. Lomonosov Moscow State University, 1 Leninskie Gory Str., 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
18
|
Fang Z. A High-Efficient Hybrid Physics-Informed Neural Networks Based on Convolutional Neural Network. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; 33:5514-5526. [PMID: 33848251 DOI: 10.1109/tnnls.2021.3070878] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this article, we develop a hybrid physics-informed neural network (hybrid PINN) for partial differential equations (PDEs). We borrow the idea from the convolutional neural network (CNN) and finite volume methods. Unlike the physics-informed neural network (PINN) and its variations, the method proposed in this article uses an approximation of the differential operator to solve the PDEs instead of automatic differentiation (AD). The approximation is given by a local fitting method, which is the main contribution of this article. As a result, our method has been proved to have a convergent rate. This will also avoid the issue that the neural network gives a bad prediction, which sometimes happened in PINN. To the author's best knowledge, this is the first work that the machine learning PDE's solver has a convergent rate, such as in numerical methods. The numerical experiments verify the correctness and efficiency of our algorithm. We also show that our method can be applied in inverse problems and surface PDEs, although without proof.
Collapse
|
19
|
Javadi E, Li H, Gallastegi AD, Frydman GH, Jamali S, Karniadakis GE. Circulating cell clusters aggravate the hemorheological abnormalities in COVID-19. Biophys J 2022; 121:3309-3319. [PMID: 36028998 PMCID: PMC9420024 DOI: 10.1016/j.bpj.2022.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/14/2022] [Accepted: 08/22/2022] [Indexed: 11/02/2022] Open
Abstract
Microthrombi and circulating cell clusters are common microscopic findings in patients with coronavirus disease 2019 (COVID-19) at different stages in the disease course, implying that they may function as the primary drivers in disease progression. Inspired by a recent flow imaging cytometry study of the blood samples from patients with COVID-19, we perform computational simulations to investigate the dynamics of different types of circulating cell clusters, namely white blood cell (WBC) clusters, platelet clusters, and red blood cell clusters, over a range of shear flows and quantify their impact on the viscosity of the blood. Our simulation results indicate that the increased level of fibrinogen in patients with COVID-19 can promote the formation of red blood cell clusters at relatively low shear rates, thereby elevating the blood viscosity, a mechanism that also leads to an increase in viscosity in other blood diseases, such as sickle cell disease and type 2 diabetes mellitus. We further discover that the presence of WBC clusters could also aggravate the abnormalities of local blood rheology. In particular, the extent of elevation of the local blood viscosity is enlarged as the size of the WBC clusters grows. On the other hand, the impact of platelet clusters on the local rheology is found to be negligible, which is likely due to the smaller size of the platelets. The difference in the impact of WBC and platelet clusters on local hemorheology provides a compelling explanation for the clinical finding that the number of WBC clusters is significantly correlated with thrombotic events in COVID-19 whereas platelet clusters are not. Overall, our study demonstrates that our computational models based on dissipative particle dynamics can serve as a powerful tool to conduct quantitative investigation of the mechanism causing the pathological alterations of hemorheology and explore their connections to the clinical manifestations in COVID-19.
Collapse
Affiliation(s)
- Elahe Javadi
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts
| | - He Li
- School of Engineering, Brown University, Providence, Rhode Island; School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia.
| | - Ander Dorken Gallastegi
- Division of Trauma, Emergency Surgery and Surgical Critical Care at the Massachusetts General Hospital, Boston, Massachusetts
| | - Galit H Frydman
- Division of Trauma, Emergency Surgery and Surgical Critical Care at the Massachusetts General Hospital, Boston, Massachusetts; Department of Biological Engineering at the Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Safa Jamali
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts.
| | - George Em Karniadakis
- School of Engineering, Brown University, Providence, Rhode Island; Division of Applied Mathematics and School of Engineering, Brown University, Providence, Rhode Island.
| |
Collapse
|
20
|
Label-free multi-step microfluidic device for mechanical characterization of blood cells: Diabetes type II. MICRO AND NANO ENGINEERING 2022. [DOI: 10.1016/j.mne.2022.100149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Sun J, Han K, Xu M, Li L, Qian J, Li L, Li X. Blood Viscosity in Subjects With Type 2 Diabetes Mellitus: Roles of Hyperglycemia and Elevated Plasma Fibrinogen. Front Physiol 2022; 13:827428. [PMID: 35283762 PMCID: PMC8914209 DOI: 10.3389/fphys.2022.827428] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/20/2022] [Indexed: 12/21/2022] Open
Abstract
The viscosity of blood is an indicator in the understanding and treatment of disease. An elevated blood viscosity has been demonstrated in patients with Type 2 Diabetes Mellitus (T2DM), which might represent a risk factor for cardiovascular complications. However, the roles of glycated hemoglobin (HbA1c) and plasma fibrinogen levels on the elevated blood viscosity in subjects with T2DM at different chronic glycemic conditions are still not clear. Here, we evaluate the relationship between the blood viscosity and HbA1c as well as plasma fibrinogen levels in patients with T2DM. The experimental data show that the mean values of the T2DM blood viscosity are higher in groups with higher HbA1c levels, but the correlation between the T2DM blood viscosity and the HbA1c level is not obvious. Instead, when we investigate the influence of plasma fibrinogen level on the blood viscosity in T2DM subjects, we find that the T2DM blood viscosity is significantly and positively correlated with the plasma fibrinogen level. Further, to probe the combined effects of multiple factors (including the HbA1c and plasma fibrinogen levels) on the altered blood viscosity in T2DM, we regroup the experimental data based on the T2DM blood viscosity values at both the low and high shear rates, and our results suggest that the influence of the elevated HbA1c level on blood viscosity is quite limited, although it is an important indicator of glycemic control in T2DM patients. Instead, the elevated blood hematocrit, the enhanced red blood cell (RBC) aggregation induced by the increased plasma fibrinogen level, and the reduced RBC deformation play key roles in the determination of blood viscosity in T2DM. Together, these experimental results are helpful in identifying the key determinants for the altered T2DM blood viscosity, which can be used in future studies of the hemorheological disturbances of T2DM patients.
Collapse
Affiliation(s)
- Jiehui Sun
- Department of Endocrinology and Metabolism, Ningbo First Hospital, Ningbo, China
| | - Keqin Han
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Miao Xu
- Department of Endocrinology and Metabolism, Ningbo First Hospital, Ningbo, China
| | - Lujuan Li
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Jin Qian
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Li Li
- Department of Endocrinology and Metabolism, Ningbo First Hospital, Ningbo, China
| | - Xuejin Li
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
Javadi E, Jamali S. Thixotropy and rheological hysteresis in blood flow. J Chem Phys 2022; 156:084901. [DOI: 10.1063/5.0079214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Elahe Javadi
- Northeastern University, United States of America
| | - Safa Jamali
- Mechanical Engineering, Northeastern University, United States of America
| |
Collapse
|
23
|
Deng YX, Chang HY, Li H. Recent Advances in Computational Modeling of Biomechanics and Biorheology of Red Blood Cells in Diabetes. Biomimetics (Basel) 2022; 7:15. [PMID: 35076493 PMCID: PMC8788472 DOI: 10.3390/biomimetics7010015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/01/2022] [Accepted: 01/08/2022] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus, a metabolic disease characterized by chronically elevated blood glucose levels, affects about 29 million Americans and more than 422 million adults all over the world. Particularly, type 2 diabetes mellitus (T2DM) accounts for 90-95% of the cases of vascular disease and its prevalence is increasing due to the rising obesity rates in modern societies. Although multiple factors associated with diabetes, such as reduced red blood cell (RBC) deformability, enhanced RBC aggregation and adhesion to the endothelium, as well as elevated blood viscosity are thought to contribute to the hemodynamic impairment and vascular occlusion, clinical or experimental studies cannot directly quantify the contributions of these factors to the abnormal hematology in T2DM. Recently, computational modeling has been employed to dissect the impacts of the aberrant biomechanics of diabetic RBCs and their adverse effects on microcirculation. In this review, we summarize the recent advances in the developments and applications of computational models in investigating the abnormal properties of diabetic blood from the cellular level to the vascular level. We expect that this review will motivate and steer the development of new models in this area and shift the attention of the community from conventional laboratory studies to combined experimental and computational investigations, aiming to provide new inspirations for the development of advanced tools to improve our understanding of the pathogenesis and pathology of T2DM.
Collapse
Affiliation(s)
- Yi-Xiang Deng
- School of Engineering, Brown University, Providence, RI 02912, USA;
| | - Hung-Yu Chang
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA;
| | - He Li
- Center for Biomedical Engineering, Brown University, Providence, RI 02912, USA
| |
Collapse
|
24
|
Li H, Deng Y, Sampani K, Cai S, Li Z, Sun JK, Karniadakis GE. Computational investigation of blood cell transport in retinal microaneurysms. PLoS Comput Biol 2022; 18:e1009728. [PMID: 34986147 PMCID: PMC8730408 DOI: 10.1371/journal.pcbi.1009728] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 12/07/2021] [Indexed: 12/15/2022] Open
Abstract
Microaneurysms (MAs) are one of the earliest clinically visible signs of diabetic retinopathy (DR). MA leakage or rupture may precipitate local pathology in the surrounding neural retina that impacts visual function. Thrombosis in MAs may affect their turnover time, an indicator associated with visual and anatomic outcomes in the diabetic eyes. In this work, we perform computational modeling of blood flow in microchannels containing various MAs to investigate the pathologies of MAs in DR. The particle-based model employed in this study can explicitly represent red blood cells (RBCs) and platelets as well as their interaction in the blood flow, a process that is very difficult to observe in vivo. Our simulations illustrate that while the main blood flow from the parent vessels can perfuse the entire lumen of MAs with small body-to-neck ratio (BNR), it can only perfuse part of the lumen in MAs with large BNR, particularly at a low hematocrit level, leading to possible hypoxic conditions inside MAs. We also quantify the impacts of the size of MAs, blood flow velocity, hematocrit and RBC stiffness and adhesion on the likelihood of platelets entering MAs as well as their residence time inside, two factors that are thought to be associated with thrombus formation in MAs. Our results show that enlarged MA size, increased blood velocity and hematocrit in the parent vessel of MAs as well as the RBC-RBC adhesion promote the migration of platelets into MAs and also prolong their residence time, thereby increasing the propensity of thrombosis within MAs. Overall, our work suggests that computational simulations using particle-based models can help to understand the microvascular pathology pertaining to MAs in DR and provide insights to stimulate and steer new experimental and computational studies in this area.
Collapse
Affiliation(s)
- He Li
- School of Engineering, Brown University, Providence, Rhode Island, United States of America
| | - Yixiang Deng
- School of Engineering, Brown University, Providence, Rhode Island, United States of America
| | - Konstantina Sampani
- Beetham Eye Institute, Joslin Diabetes Center, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Shengze Cai
- Division of Applied Mathematics, Brown University, Providence, Rhode Island, United States of America
| | - Zhen Li
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina, United States of America
| | - Jennifer K. Sun
- Beetham Eye Institute, Joslin Diabetes Center, Boston, Massachusetts, United States of America
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - George E. Karniadakis
- School of Engineering, Brown University, Providence, Rhode Island, United States of America
- Division of Applied Mathematics, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
25
|
Beris AN, Horner JS, Jariwala S, Armstrong MJ, Wagner NJ. Recent advances in blood rheology: a review. SOFT MATTER 2021; 17:10591-10613. [PMID: 34787149 DOI: 10.1039/d1sm01212f] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Due to the potential impact on the diagnosis and treatment of various cardiovascular diseases, work on the rheology of blood has significantly expanded in the last decade, both experimentally and theoretically. Experimentally, blood has been confirmed to demonstrate a variety of non-Newtonian rheological characteristics, including pseudoplasticity, viscoelasticity, and thixotropy. New rheological experiments and the development of more controlled experimental protocols on more extensive, broadly physiologically characterized, human blood samples demonstrate the sensitivity of aspects of hemorheology to several physiological factors. For example, at high shear rates the red blood cells elastically deform, imparting viscoelasticity, while at low shear rates, they form "rouleaux" structures that impart additional, thixotropic behavior. In addition to the advances in experimental methods and validated data sets, significant advances have also been made in both microscopic simulations and macroscopic, continuum, modeling, as well as novel, multiscale approaches. We outline and evaluate the most promising of these recent developments. Although we primarily focus on human blood rheology, we also discuss recent observations on variations observed across some animal species that provide some indication on evolutionary effects.
Collapse
Affiliation(s)
- Antony N Beris
- Center for Research in Soft Matter and Polymers, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Jeffrey S Horner
- Center for Research in Soft Matter and Polymers, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Soham Jariwala
- Center for Research in Soft Matter and Polymers, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Matthew J Armstrong
- Department of Chemistry and Life Science, Chemical Engineering Program, United States Military Academy, West Point, NY 10996, USA
| | - Norman J Wagner
- Center for Research in Soft Matter and Polymers, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
26
|
Liu ZL, Li H, Qiang Y, Buffet P, Dao M, Karniadakis GE. Computational modeling of biomechanics and biorheology of heated red blood cells. Biophys J 2021; 120:4663-4671. [PMID: 34619119 DOI: 10.1016/j.bpj.2021.09.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/26/2021] [Accepted: 09/29/2021] [Indexed: 01/20/2023] Open
Abstract
Because of their compromised deformability, heat denatured erythrocytes have been used as labeled probes to visualize spleen tissue or to assess the ability of the spleen to retain stiff red blood cells (RBCs) for over three decades, e.g., see Looareesuwan et al. N. Engl. J. Med. (1987). Despite their good accessibility, it is still an open question how heated RBCs compare to certain diseased RBCs in terms of their biomechanical and biorheological responses, which may undermine their effective usage and even lead to misleading experimental observations. To help answering this question, we perform a systematic computational study of the hemorheological properties of heated RBCs with several physiologically relevant static and hemodynamic settings, including optical-tweezers test, relaxation of prestretched RBCs, RBC traversal through a capillary-like channel and a spleen-like slit, and a viscometric rheology test. We show that our in silico RBC models agree well with existing experiments. Moreover, under static tests, heated RBCs exhibit deformability deterioration comparable to certain disease-impaired RBCs such as those in malaria. For RBC traversal under confinement (through microchannel or slit), heated RBCs show prolonged transit time or retention depending on the level of confinement and heating procedure, suggesting that carefully heat-treated RBCs may be useful for studying splenic- or vaso-occlusion in vascular pathologies. For the rheology test, we expand the existing bulk viscosity data of heated RBCs to a wider range of shear rates (1-1000 s-1) to represent most pathophysiological conditions in macro- or microcirculation. Although heated RBC suspension shows elevated viscosity comparable to certain diseased RBC suspensions under relatively high shear rates (100-1000 s-1), they underestimate the elevated viscosity (e.g., in sickle cell anemia) at low shear rates (<10 s-1). Our work provides mechanistic rationale for selective usage of heated RBC as a potentially useful model for studying the abnormal traversal dynamics and hemorheology in certain blood disorders.
Collapse
Affiliation(s)
| | - He Li
- School of Engineering, Brown University, Providence, Rhode Island.
| | - Yuhao Qiang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Pierre Buffet
- Université Paris Descartes, Institut National de la Transfusion Sanguine, Paris, France
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - George Em Karniadakis
- Division of Applied Mathematics, Brown University, Providence, Rhode Island; School of Engineering, Brown University, Providence, Rhode Island.
| |
Collapse
|
27
|
Javadi E, Jamali S. Hemorheology: the critical role of flow type in blood viscosity measurements. SOFT MATTER 2021; 17:8446-8458. [PMID: 34514478 DOI: 10.1039/d1sm00856k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The crucial role of the hemorheological characteristics of blood in a range of diagnoses, treatments and drug delivery mechanisms is widely accepted. Nonetheless, the literature on blood rheology remains inconclusive and sometimes even contradictory. This is in part due to natural variance of blood samples from one study to another, but also stems from fundamental differences in the consequences of the choice of rheometric flow employed. Here, and using a detailed and accurate computational scheme, we thoroughly study the role of flow type in measurement of blood viscosity. Performing these in silico measurements, we isolate the role of flow type and geometry at different hematocrit levels. We show that flow curves obtained in pressure-driven flows relevant to laminar circulatory flows deviate greatly from ones obtained in drag flow at the same hematocrit level. Our numerical platform also allows for the yield stress to be measured under quiescent conditions and without imposing any flow for different hematocrits. We discuss the scaling of the yield stress with the hematocrit level, and show that the differences in pressure vs. drag flows stem from the Red Blood Cell (RBC) orientation at different flow rates as well as the existence of a cell free layer close to the walls.
Collapse
Affiliation(s)
- Elahe Javadi
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA.
| | - Safa Jamali
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
28
|
Javadi E, Deng Y, Karniadakis GE, Jamali S. In silico biophysics and hemorheology of blood hyperviscosity syndrome. Biophys J 2021; 120:2723-2733. [PMID: 34087210 DOI: 10.1016/j.bpj.2021.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/01/2021] [Accepted: 05/05/2021] [Indexed: 11/25/2022] Open
Abstract
Hyperviscosity syndrome (HVS) is characterized by an increase of the blood viscosity by up to seven times the normal blood viscosity, resulting in disturbances to the circulation in the vasculature system. HVS is commonly associated with an increase of large plasma proteins and abnormalities in the properties of red blood cells, such as cell interactions, cell stiffness, and increased hematocrit. Here, we perform a systematic study of the effect of each biophysical factor on the viscosity of blood by employing the dissipative particle dynamic method. Our in silico platform enables manipulation of each parameter in isolation, providing a unique scheme to quantify and accurately investigate the role of each factor in increasing the blood viscosity. To study the effect of these four factors independently, each factor was elevated more than its values for a healthy blood while the other factors remained constant, and viscosity measurement was performed for different hematocrits and flow rates. Although all four factors were found to increase the overall blood viscosity, these increases were highly dependent on the hematocrit and the flow rates imposed. The effect of cell aggregation and cell concentration on blood viscosity were predominantly observed at low shear rates, in contrast to the more magnified role of cell rigidity and plasma viscosity at high shear rates. Additionally, cell-related factors increase the whole blood viscosity at high hematocrits compared with the relative role of plasma-related factors at lower hematocrits. Our results, mapped onto the flow rates and hematocrits along the circulatory system, provide a correlation to underpinning mechanisms for HVS findings in different blood vessels.
Collapse
Affiliation(s)
- Elahe Javadi
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts
| | - Yixiang Deng
- School of Engineering, Brown University, Providence, Rhode Island
| | - George Em Karniadakis
- School of Engineering, Brown University, Providence, Rhode Island; Division of Applied Mathematics, Brown University, Providence, Rhode Island
| | - Safa Jamali
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts.
| |
Collapse
|
29
|
Yazdani A, Deng Y, Li H, Javadi E, Li Z, Jamali S, Lin C, Humphrey JD, Mantzoros CS, Em Karniadakis G. Integrating blood cell mechanics, platelet adhesive dynamics and coagulation cascade for modelling thrombus formation in normal and diabetic blood. J R Soc Interface 2021; 18:20200834. [PMID: 33530862 PMCID: PMC8086870 DOI: 10.1098/rsif.2020.0834] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/12/2021] [Indexed: 11/12/2022] Open
Abstract
Normal haemostasis is an important physiological mechanism that prevents excessive bleeding during trauma, whereas the pathological thrombosis especially in diabetics leads to increased incidence of heart attacks and strokes as well as peripheral vascular events. In this work, we propose a new multiscale framework that integrates seamlessly four key components of blood clotting, namely transport of coagulation factors, coagulation kinetics, blood cell mechanics and platelet adhesive dynamics, to model the development of thrombi under physiological and pathological conditions. We implement this framework to simulate platelet adhesion due to the exposure of tissue factor in a three-dimensional microchannel. Our results show that our model can simulate thrombin-mediated platelet activation in the flowing blood, resulting in platelet adhesion to the injury site of the channel wall. Furthermore, we simulate platelet adhesion in diabetic blood, and our results show that both the pathological alterations in the biomechanics of blood cells and changes in the amount of coagulation factors contribute to the excessive platelet adhesion and aggregation in diabetic blood. Taken together, this new framework can be used to probe synergistic mechanisms of thrombus formation under physiological and pathological conditions, and open new directions in modelling complex biological problems that involve several multiscale processes.
Collapse
Affiliation(s)
- Alireza Yazdani
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
| | - Yixiang Deng
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - He Li
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
| | - Elahe Javadi
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| | - Zhen Li
- Department of Mechanical Engineering, Clemson University, Clemson, SC 29634, USA
| | - Safa Jamali
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| | - Chensen Lin
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Christos S. Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|