1
|
Zheng Z, Qiu Z, Xiong X, Nie A, Zhou W, Qiu H, Zhao H, Wu H, Guo J. Co-activation of NMDAR and mGluRs controls protein nanoparticle-induced osmotic pressure in neurotoxic edema. Biomed Pharmacother 2023; 169:115917. [PMID: 38006617 DOI: 10.1016/j.biopha.2023.115917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND Glutamate stimuli and hyperactivation of its receptor are predominant determinants of ischemia-induced cytotoxic cerebral edema, which is closely associated with protein nanoparticle (PN)-induced increases in osmotic pressure. Herein, we investigated the electrochemical and mechanical mechanisms underlying the neuron swelling induced by PNs via the co-activation of N-methyl-D-aspartate receptor subunit (NMDAR) and excitatory metabotropic glutamate receptors (mGluRs). RESULTS We observed that co-activation of ionic glutamate receptor NMDAR and Group I metabotropic mGluRs promoted alteration of PN-induced membrane potential and increased intracellular osmosis, which was closely associated with calcium and voltage-dependent ion channels. In addition, activation of NMDAR-induced calmodulin (CaM) and mGluR downstream diacylglycerol (DAG)/protein kinase C α (PKCα) were observed to play crucial roles in cytotoxic hyperosmosis. The crosstalk between CaM and PKCα could upregulate the sensitivity and sustained opening of sulfonylurea receptor 1 (SUR1)-transient receptor potential cation channel subfamily M member 4 (TRPM4) and transmembrane protein 16 A (TMEM16A) channels, respectively, maintaining the massive Na+/Cl- influx, and the resultant neuron hyperosmosis and swelling. Intracellular PNs and Na+/Cl- influx were found to be as potential targets for cerebral edema treatment, using the neurocyte osmosis system and a cerebral ischemic rat model. CONCLUSIONS This study highlights PNs as a key factor in "electrochemistry-tension" signal transduction controlling Na+/Cl- ion channels and increased osmotic pressure in ischemia-induced cytotoxic edema. Moreover, enhanced sensitivity in both Na+ and Cl- ion channels also has a crucial role in cerebral edema.
Collapse
Affiliation(s)
- Zihui Zheng
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Zhaoshun Qiu
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Xiyu Xiong
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Aobo Nie
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Wenzhao Zhou
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Huimin Qiu
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Huanhuan Zhao
- Basic Medical Experiment Center, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Huiwen Wu
- Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China.
| | - Jun Guo
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
2
|
Kolmogorov V, Erofeev A, Vaneev A, Gorbacheva L, Kolesov D, Klyachko N, Korchev Y, Gorelkin P. Scanning Ion-Conductance Microscopy for Studying Mechanical Properties of Neuronal Cells during Local Delivery of Glutamate. Cells 2023; 12:2428. [PMID: 37887273 PMCID: PMC10604991 DOI: 10.3390/cells12202428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023] Open
Abstract
Mechanical properties of neuronal cells have a key role for growth, generation of traction forces, adhesion, migration, etc. Mechanical properties are regulated by chemical signaling, neurotransmitters, and neuronal ion exchange. Disturbance of chemical signaling is accompanied by several diseases such as ischemia, trauma, and neurodegenerative diseases. It is known that the disturbance of chemical signaling, like that caused by glutamate excitotoxicity, leads to the structural reorganization of the cytoskeleton of neuronal cells and the deviation of native mechanical properties. Thus, to investigate the mechanical properties of living neuronal cells in the presence of glutamate, it is crucial to use noncontact and low-stress methods, which are the advantages of scanning ion-conductance microscopy (SICM). Moreover, a nanopipette may be used for the local delivery of small molecules as well as for a probe. In this work, SICM was used as an advanced technique for the simultaneous local delivery of glutamate and investigation of living neuronal cell morphology and mechanical behavior caused by an excitotoxic effect of glutamate.
Collapse
Affiliation(s)
- Vasilii Kolmogorov
- Research Laboratory of Biophysics, National University of Science and Technology “MISIS”, Moscow 119049, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander Erofeev
- Research Laboratory of Biophysics, National University of Science and Technology “MISIS”, Moscow 119049, Russia
| | - Alexander Vaneev
- Research Laboratory of Biophysics, National University of Science and Technology “MISIS”, Moscow 119049, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Lyubov Gorbacheva
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
- Faculty of Biomedicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Dmitry Kolesov
- Research Laboratory of SPM, Moscow Polytechnic University, Moscow 107023, Russia
| | - Natalia Klyachko
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Yuri Korchev
- Department of Medicine, Imperial College London, London SW7 2BX, UK
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Petr Gorelkin
- Research Laboratory of Biophysics, National University of Science and Technology “MISIS”, Moscow 119049, Russia
| |
Collapse
|
3
|
Li D, Li J, Hu J, Tang M, Xiu P, Guo Y, Chen T, Mu N, Wang L, Zhang X, Liang G, Wang H, Fan C. Nanomechanical Profiling of Aβ42 Oligomer-Induced Biological Changes in Single Hippocampus Neurons. ACS NANO 2023; 17:5517-5527. [PMID: 36881017 DOI: 10.1021/acsnano.2c10861] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Understanding how Aβ42 oligomers induce changes in neurons from a mechanobiological perspective has important implications in neuronal dysfunction relevant to neurodegenerative diseases. However, it remains challenging to profile the mechanical responses of neurons and correlate the mechanical signatures to the biological properties of neurons given the structural complexity of cells. Here, we quantitatively investigate the nanomechanical properties of primary hippocampus neurons upon exposure to Aβ42 oligomers at the single neuron level by using atomic force microscopy (AFM). We develop a method termed heterogeneity-load-unload nanomechanics (HLUN), which exploits the AFM force spectra in the whole loading-unloading cycle, allowing comprehensive profiling of the mechanical properties of living neurons. We extract four key nanomechanical parameters, including the apparent Young's modulus, cell spring constant, normalized hysteresis, and adhesion work, that serve as the nanomechanical signatures of neurons treated with Aβ42 oligomers. These parameters are well-correlated with neuronal height increase, cortical actin filament strengthening, and calcium concentration elevation. Thus, we establish an HLUN method-based AFM nanomechanical analysis tool for single neuron study and build an effective correlation between the nanomechanical profile of the single neurons and the biological effects triggered by Aβ42 oligomers. Our finding provides useful information on the dysfunction of neurons from the mechanobiological perspective.
Collapse
Affiliation(s)
- Dandan Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, China
- Center of Super-resolution Optics and Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Jiang Li
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Jiao Hu
- Center of Super-resolution Optics and Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Mingjie Tang
- Center of Super-resolution Optics and Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Peng Xiu
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Yunchang Guo
- Yihuang (Wuxi) Spectrum Measurement & Control Co., Ltd., Wuxi 214024, Jiangsu, China
| | - Tunan Chen
- Department of Neurosurgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Ning Mu
- Department of Neurosurgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Lihua Wang
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Xuehua Zhang
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton T6G1H9, Alberta, Canada
| | - Guizhao Liang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Huabin Wang
- Center of Super-resolution Optics and Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200024, China
| |
Collapse
|
4
|
Murashko AV, Frolova AA, Akovantseva AA, Kotova SL, Timashev PS, Efremov YM. The cell softening as a universal indicator of cell damage during cytotoxic effects. Biochim Biophys Acta Gen Subj 2023; 1867:130348. [PMID: 36977439 DOI: 10.1016/j.bbagen.2023.130348] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/03/2023] [Accepted: 03/20/2023] [Indexed: 03/28/2023]
Abstract
Cytotoxicity assays are essential tests in studies on the safety and biocompatibility of various substances and on the efficiency of anticancer drugs. The most frequently used assays commonly require application of externally added labels and read only collective response of cells. Recent studies show that the internal biophysical parameters of cells can be associated with the cellular damage. Therefore, using atomic force microscopy, we assessed the changes in the viscoelastic parameters of cells treated with eight different common cytotoxic agents to gain a more systematic view of the occurring mechanical changes. With the robust statistical analysis to account for both the cell-level variability and the experimental reproducibility, we have found that cell softening is a common response after each treatment. More precisely, the combined changes in the viscoelastic parameters of power-law rheology model led to a significant decrease of the apparent elastic modulus. The comparison with the morphological parameters (cytoskeleton and cell shape) demonstrated a higher sensitivity of the mechanical parameters versus the morphological ones. The obtained results support the idea of cell mechanics-based cytotoxicity tests and suggest a common way of a cell responding to damaging actions by softening.
Collapse
|
5
|
Bakaeva Z, Lizunova N, Tarzhanov I, Boyarkin D, Petrichuk S, Pinelis V, Fisenko A, Tuzikov A, Sharipov R, Surin A. Lipopolysaccharide From E. coli Increases Glutamate-Induced Disturbances of Calcium Homeostasis, the Functional State of Mitochondria, and the Death of Cultured Cortical Neurons. Front Mol Neurosci 2022; 14:811171. [PMID: 35069113 PMCID: PMC8767065 DOI: 10.3389/fnmol.2021.811171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Lipopolysaccharide (LPS), a fragment of the bacterial cell wall, specifically interacting with protein complexes on the cell surface, can induce the production of pro-inflammatory and apoptotic signaling molecules, leading to the damage and death of brain cells. Similar effects have been noted in stroke and traumatic brain injury, when the leading factor of death is glutamate (Glu) excitotoxicity too. But being an amphiphilic molecule with a significant hydrophobic moiety and a large hydrophilic region, LPS can also non-specifically bind to the plasma membrane, altering its properties. In the present work, we studied the effect of LPS from Escherichia coli alone and in combination with the hyperstimulation of Glu-receptors on the functional state of mitochondria and Ca2+ homeostasis, oxygen consumption and the cell survival in primary cultures from the rats brain cerebellum and cortex. In both types of cultures, LPS (0.1–10 μg/ml) did not change the intracellular free Ca2+ concentration ([Ca2+]i) in resting neurons but slowed down the median of the decrease in [Ca2+]i on 14% and recovery of the mitochondrial potential (ΔΨm) after Glu removal. LPS did not affect the basal oxygen consumption rate (OCR) of cortical neurons; however, it did decrease the acute OCR during Glu and LPS coapplication. Evaluation of the cell culture survival using vital dyes and the MTT assay showed that LPS (10 μg/ml) and Glu (33 μM) reduced jointly and separately the proportion of live cortical neurons, but there was no synergism or additive action. LPS-effects was dependent on the type of culture, that may be related to both the properties of neurons and the different ratio between neurons and glial cells in cultures. The rapid manifestation of these effects may be the consequence of the direct effect of LPS on the rheological properties of the cell membrane.
Collapse
Affiliation(s)
- Zanda Bakaeva
- Laboratory of Neurobiology, “National Medical Research Center of Children’s Health”, Russian Ministry of Health, Moscow, Russia
- Department of General Biology and Physiology, Kalmyk State University named after B.B. Gorodovikov, Elista, Russia
- *Correspondence: Zanda Bakaeva, ,
| | - Natalia Lizunova
- Laboratory of Neurobiology, “National Medical Research Center of Children’s Health”, Russian Ministry of Health, Moscow, Russia
- Department of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Ivan Tarzhanov
- Laboratory of Neurobiology, “National Medical Research Center of Children’s Health”, Russian Ministry of Health, Moscow, Russia
- Institute of Pharmacy, The Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Dmitrii Boyarkin
- Laboratory of Neurobiology, “National Medical Research Center of Children’s Health”, Russian Ministry of Health, Moscow, Russia
| | - Svetlana Petrichuk
- Laboratory of Neurobiology, “National Medical Research Center of Children’s Health”, Russian Ministry of Health, Moscow, Russia
| | - Vsevolod Pinelis
- Laboratory of Neurobiology, “National Medical Research Center of Children’s Health”, Russian Ministry of Health, Moscow, Russia
| | - Andrey Fisenko
- Laboratory of Neurobiology, “National Medical Research Center of Children’s Health”, Russian Ministry of Health, Moscow, Russia
| | - Alexander Tuzikov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Rinat Sharipov
- Laboratory of Fundamental and Applied Problems of Pain, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Alexander Surin
- Laboratory of Neurobiology, “National Medical Research Center of Children’s Health”, Russian Ministry of Health, Moscow, Russia
- Laboratory of Fundamental and Applied Problems of Pain, Institute of General Pathology and Pathophysiology, Moscow, Russia
| |
Collapse
|
6
|
Xue B, Wen X, Kuwar R, Sun D, Zhang N. Age-dependent viscoelastic characterization of rat brain cortex. BRAIN MULTIPHYSICS 2022; 3. [DOI: 10.1016/j.brain.2022.100056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
7
|
Hyperbolic equations for neuronal membrane deformation waves accompanying an action potential. Biochem Biophys Res Commun 2021; 591:26-30. [PMID: 34995982 DOI: 10.1016/j.bbrc.2021.12.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/29/2021] [Indexed: 11/24/2022]
Abstract
Experiments show that the propagation of an action potential along an axon is accompanied by mechanical deformations. We describe the mechanisms of the effect using fluid dynamic equations, Laplace's and Hook's laws for surface tension, and Lippmann's law, which relates membrane tension to membrane potential. We derived a minimal, 1-D model, which is a hyperbolic system of equations. Our model qualitatively reproduces the membrane's mechanical deformation evoked by either the propagation of an action potential or the stepwise change of membrane potential. The understanding of the relationship between electrical activity and mechanical deformation provides guidance toward non-invasive imaging of neuronal activity.
Collapse
|
8
|
Olubowale O, Biswas S, Azom G, Prather BL, Owoso SD, Rinee KC, Marroquin K, Gates KA, Chambers MB, Xu A, Garno JC. "May the Force Be with You!" Force-Volume Mapping with Atomic Force Microscopy. ACS OMEGA 2021; 6:25860-25875. [PMID: 34660949 PMCID: PMC8515370 DOI: 10.1021/acsomega.1c03829] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/30/2021] [Indexed: 06/02/2023]
Abstract
Information of the chemical, mechanical, and electrical properties of materials can be obtained using force volume mapping (FVM), a measurement mode of scanning probe microscopy (SPM). Protocols have been developed with FVM for a broad range of materials, including polymers, organic films, inorganic materials, and biological samples. Multiple force measurements are acquired with the FVM mode within a defined 3D volume of the sample to map interactions (i.e., chemical, electrical, or physical) between the probe and the sample. Forces of adhesion, elasticity, stiffness, deformation, chemical binding interactions, viscoelasticity, and electrical properties have all been mapped at the nanoscale with FVM. Subsequently, force maps can be correlated with features of topographic images for identifying certain chemical groups presented at a sample interface. The SPM tip can be coated to investigate-specific reactions; for example, biological interactions can be probed when the tip is coated with biomolecules such as for recognition of ligand-receptor pairs or antigen-antibody interactions. This review highlights the versatility and diverse measurement protocols that have emerged for studies applying FVM for the analysis of material properties at the nanoscale.
Collapse
|