1
|
Wurl A, Ott M, Schwieger C, Ferreira TM. Crystallization of n-Alkanes under Anisotropic Nanoconfinement in Lipid Bilayers. J Phys Chem B 2025; 129:435-446. [PMID: 39696749 PMCID: PMC11726633 DOI: 10.1021/acs.jpcb.4c04332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024]
Abstract
Understanding crystallization behavior is integral to the design of pharmaceutical compounds for which the pharmacological properties depend on the crystal forms achieved. Very often, these crystals are based on hydrophobic molecules. One method for delivering crystal-forming hydrophobic drugs is by means of lipid nanoparticle carriers. However, so far, a characterization of the potential crystallization of fully hydrophobic molecules in a lipid environment has never been reported. In this work we investigate the crystallization behavior of two model hydrophobic chains, n-eicosane (C20) and n-triacontane (C30), in phospholipid bilayers. We combine static 2H nuclear magnetic resonance (NMR) spectroscopy and differential scanning calorimetry (DSC) and show that C30 molecules can indeed crystallize inside DMPC and POPC bilayers. The phase transition temperatures of C30 are slightly reduced inside DMPC, and rotator phase formation becomes a two-step process: Preorganized n-alkane chains assemble in rotator-phase crystallites just as fast as bulk C30, but further addition of molecules is notably slower. Under the same isothermal conditions, different crystal forms can be obtained by crystallization in the membrane and in bulk. In excess water conditions, homogeneous nucleation of C30 is observed. The initial anisotropic molecular arrangement of C30 molecules in the membrane is readily recovered upon reheating, showing reversibility. The shorter C20 molecules on the other hand become trapped in the DMPC membrane gel-phase upon cooling and do not crystallize. This work marks the first observation of the crystallization of hydrophobic chains inside a lipid bilayer environment. As such, it defines a fundamental starting point for studying the crystallization characteristics of various hydrophobic molecules in lipid membranes.
Collapse
Affiliation(s)
- Anika Wurl
- NMR
Group—Institute for Physics, Martin
Luther University Halle-Wittenberg, Halle 06120, Germany
| | - Maria Ott
- Department
of Biotechnology and Biochemistry, Martin
Luther University Halle-Wittenberg, Halle 06120, Germany
| | - Christian Schwieger
- Institute
of Chemistry, Martin Luther University Halle-Wittenberg, Halle 06120, Germany
| | - Tiago M. Ferreira
- NMR
Group—Institute for Physics, Martin
Luther University Halle-Wittenberg, Halle 06120, Germany
- CiQUS
and Department of Physical Chemistry, University
of Santiago de Compostela, Santiago
de Compostela 15705, Spain
| |
Collapse
|
2
|
Lee H, Kang S, Choi SQ. Lipid Droplet Surface Promotes 3D Morphological Evolution of Non-Rhomboidal Cholesterol Crystals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409201. [PMID: 39513471 PMCID: PMC11714234 DOI: 10.1002/advs.202409201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/24/2024] [Indexed: 11/15/2024]
Abstract
Cholesterol crystals, which cause inflammation and various diseases, predominantly grow in a platy, rhomboid structure on the plasma membranes but exhibit an uneven three-dimensional (3D) architecture intracellularly. Here, it is demonstrated how cholesterol crystallizes in a non-rhomboidal shape on the surface of lipid droplets and develops into 3D sheet-like agglomerates using an in vitro lipid droplet reconstitution system with stereoscopic fluorescence imaging. The findings reveal that interfacial cholesterol transport on the lipid droplet surface and unique lipid droplet components significantly influence the nucleation-and-growth dynamics of cholesterol crystals, leading to crystal growth in various polygonal shapes. Furthermore, cholesterol crystals readily agglomerate to form large, curved sheet structures on the confined, spherical surfaces of lipid droplets. This discovery enhances the understanding of the volumetric morphological growth of intracellular cholesterol crystals.
Collapse
Affiliation(s)
- Hyun‐Ro Lee
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Seunghan Kang
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Siyoung Q. Choi
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- Advanced Battery CenterKAIST Institute for the NanoCenturyKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| |
Collapse
|
3
|
Dias Araújo AR, Bello AA, Bigay J, Franckhauser C, Gautier R, Cazareth J, Kovács D, Brau F, Fuggetta N, Čopič A, Antonny B. Surface tension-driven sorting of human perilipins on lipid droplets. J Cell Biol 2024; 223:e202403064. [PMID: 39297796 PMCID: PMC11413419 DOI: 10.1083/jcb.202403064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
Perilipins (PLINs), the most abundant proteins on lipid droplets (LDs), display similar domain organization including amphipathic helices (AH). However, the five human PLINs bind different LDs, suggesting different modes of interaction. We established a minimal system whereby artificial LDs covered with defined polar lipids were transiently deformed to promote surface tension. Binding of purified PLIN3 and PLIN4 AH was strongly facilitated by tension but was poorly sensitive to phospholipid composition and to the presence of diacylglycerol. Accordingly, LD coverage by PLIN3 increased as phospholipid coverage decreased. In contrast, PLIN1 bound readily to LDs fully covered by phospholipids; PLIN2 showed an intermediate behavior between PLIN1 and PLIN3. In human adipocytes, PLIN3/4 were found in a soluble pool and relocated to LDs upon stimulation of fast triglyceride synthesis, whereas PLIN1 and PLIN2 localized to pre-existing LDs, consistent with the large difference in LD avidity observed in vitro. We conclude that the PLIN repertoire is adapted to handling LDs with different surface properties.
Collapse
Affiliation(s)
- Ana Rita Dias Araújo
- Université Côte d’Azur, CNRS and Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Sophia Antipolis, France
| | - Abdoul Akim Bello
- Université Côte d’Azur, CNRS and Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Sophia Antipolis, France
| | - Joëlle Bigay
- Université Côte d’Azur, CNRS and Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Sophia Antipolis, France
| | - Céline Franckhauser
- Centre de Recherche en Biologie Cellulaire de Montpellier-CRBM, Université de Montpellier, CNRS, UMR 5237, Montpellier, France
| | - Romain Gautier
- Université Côte d’Azur, CNRS and Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Sophia Antipolis, France
| | - Julie Cazareth
- Université Côte d’Azur, CNRS and Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Sophia Antipolis, France
| | - Dávid Kovács
- Université Côte d’Azur, CNRS and Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Sophia Antipolis, France
| | - Frédéric Brau
- Université Côte d’Azur, CNRS and Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Sophia Antipolis, France
| | - Nicolas Fuggetta
- Centre de Recherche en Biologie Cellulaire de Montpellier-CRBM, Université de Montpellier, CNRS, UMR 5237, Montpellier, France
| | - Alenka Čopič
- Centre de Recherche en Biologie Cellulaire de Montpellier-CRBM, Université de Montpellier, CNRS, UMR 5237, Montpellier, France
| | - Bruno Antonny
- Université Côte d’Azur, CNRS and Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Sophia Antipolis, France
| |
Collapse
|
4
|
Li B, Han C, Feng G, Guo J, Wan Z, Yang X. Enhanced creaminess of plant-based milk via enrichment of papain hydrolyzed oleosomes. Food Res Int 2024; 198:115322. [PMID: 39643379 DOI: 10.1016/j.foodres.2024.115322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/19/2024] [Accepted: 11/06/2024] [Indexed: 12/09/2024]
Abstract
There is an increased consumer demand for plant-based milk in substituting dairy milk due to the ethical, health concerns and environmentally-friendly choice. However, perceived creaminess as dominant attributes present a big challenge in consumer acceptance for those milk alternatives. In this study, we developed a novel and easily scalable strategy to enhance the creaminess of soy milk via enrichment of oleosomes. The soybean oleosome creams were extracted and hydrolyzed with papain, resulting in formation of oil droplets with more phospholipid and less protein at the surface, which significantly reduce friction coefficient in the presence of saliva (from 0.15 to 0.03 at a speed around 50 mm/s). Moreover, blending papain-hydrolyzed oleosome creams with raw soy milk enables the creation of a plant-based milk that matches the nutritional profile, lubrication properties, and creaminess of full-fat dairy milk. QCM-D and passive microrheology were employed to characterize hydration of oleosomes into the mucin layer and relevant viscosity change, suggesting that papain hydrolyzed oleosome might decrease friction coefficient via hydration lubrication mechanism. This approach could be applied to enhance the creaminess mouthfeel and nutritional profile of plant-based milk.
Collapse
Affiliation(s)
- Biao Li
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chuanwu Han
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Guangxin Feng
- Laboratory of Marin Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Jian Guo
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhili Wan
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaoquan Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
5
|
Niessink T, Jansen TL, Kleinherenbrink M, Janssen M, Otto C. Synovial fluid analysis with compensated polarization light microscopy: a physics approach to quantitative understanding of birefringence, polarization, and Maltese crosses. Clin Rheumatol 2024; 43:3597-3602. [PMID: 39412712 DOI: 10.1007/s10067-024-07185-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 11/22/2024]
Affiliation(s)
- Tom Niessink
- Personalized Diagnostics and Therapeutics, Techmed Centre, University of Twente, Drienerlolaan 5, 7522NB, Enschede, the Netherlands.
- Department of Rheumatology, VieCuri Medical Centre, Venlo, the Netherlands.
| | - Tim L Jansen
- Department of Rheumatology, VieCuri Medical Centre, Venlo, the Netherlands
| | | | - Matthijs Janssen
- Department of Rheumatology, VieCuri Medical Centre, Venlo, the Netherlands
| | - Cees Otto
- Personalized Diagnostics and Therapeutics, Techmed Centre, University of Twente, Drienerlolaan 5, 7522NB, Enschede, the Netherlands
| |
Collapse
|
6
|
Corbo JH, Chung J. Mechanisms of lipid droplet degradation. Curr Opin Cell Biol 2024; 90:102402. [PMID: 39053179 DOI: 10.1016/j.ceb.2024.102402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
Lipid droplets (LDs) are subcellular organelles that play an integral role in lipid metabolism by regulating the storage and release of fatty acids, which are essential for energy production and various cellular processes. Lipolysis and lipophagy are the two major LD degradation pathways that mediate the utilization of lipids stored in these organelles. Recent studies have further uncovered alternative pathways, including direct lysosomal LD degradation and LD exocytosis. Here, we highlight recent findings that dissect the molecular basis of these diverse LD degradation pathways. Then, we discuss speculations on the crosstalk among these pathways and the potential unconventional roles of LD degradation.
Collapse
Affiliation(s)
- J H Corbo
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - J Chung
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
7
|
Kim S. All-Atom Membrane Builder via Multiscale Simulation. J Chem Inf Model 2024. [PMID: 39250520 DOI: 10.1021/acs.jcim.4c01059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
I present an automated and flexible tool designed for constructing bilayer membranes at all-atom (AA) resolution. The builder initiates the construction and equilibration of bilayer membranes at Martini coarse-grained (CG) resolution, followed by resolution enhancement to the atomic level using the accompanying backmapping tool. Notably, this tool enables users to create bilayer membranes with user-defined lipid compositions and protein structures, while also offering the flexibility to accommodate new lipid types. To assess the simplicity and robustness of the tool, I demonstrate the construction of several membranes incorporating protein structures. The tool is freely available at github.com/ksy141/mstool.
Collapse
Affiliation(s)
- Siyoung Kim
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
8
|
Gee S, Glover KJ, Wittenberg NJ, Im W. CHARMM-GUI Membrane Builder for Lipid Droplet Modeling and Simulation. Chempluschem 2024; 89:e202400013. [PMID: 38600039 PMCID: PMC11324394 DOI: 10.1002/cplu.202400013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/12/2024]
Abstract
Lipid droplets (LDs) are organelles that are necessary for eukaryotic and prokaryotic metabolism and energy storage. They have a unique structure consisting of a spherical phospholipid monolayer encasing neutral lipids such as triacylglycerol (TAG). LDs have garnered increased interest for their implications in disease and for drug delivery applications. Consequently, there is an increased need for tools to study their structure, composition, and dynamics in biological contexts. In this work, we utilize CHARMM-GUI Membrane Builder to simulate and analyze LDs with and without a plant LD protein, oleosin. The results show that Membrane Builder can generate biologically relevant all-atom LD systems with relatively short equilibration times using a new TAG library having optimized headgroup parameters. TAG molecules originally inserted into a lipid bilayer aggregate in the membrane center, forming a TAG-only core flanked by two monolayers. The TAG-only core thickness stably grows with increasing TAG mole fraction. A 70 % TAG system has a core that is thick enough to house oleosin without its interactions with the distal leaflet or disruption of its secondary structure. We hope that Membrane Builder can aid in the future study of LD systems, including their structure and dynamics with and without proteins.
Collapse
Affiliation(s)
- Stephen Gee
- Departments of Biological Sciences and Bioengineering, Lehigh University, 111 Research Dr., Bethlehem, Pennsylvania, United States, 18015
| | - Kerney Jebrell Glover
- Department of Chemistry, Lehigh University, 6 E. Packer Ave, Bethlehem, Pennsylvania, United States, 18015
| | - Nathan J Wittenberg
- Department of Chemistry, Lehigh University, 6 E. Packer Ave, Bethlehem, Pennsylvania, United States, 18015
| | - Wonpil Im
- Departments of Biological Sciences and Bioengineering, Lehigh University, 111 Research Dr., Bethlehem, Pennsylvania, United States, 18015
- Department of Chemistry, Lehigh University, 6 E. Packer Ave, Bethlehem, Pennsylvania, United States, 18015
| |
Collapse
|
9
|
Dhiman R, Perera RS, Poojari CS, Wiedemann HTA, Kappl R, Kay CWM, Hub JS, Schrul B. Hairpin protein partitioning from the ER to lipid droplets involves major structural rearrangements. Nat Commun 2024; 15:4504. [PMID: 38802378 PMCID: PMC11130287 DOI: 10.1038/s41467-024-48843-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024] Open
Abstract
Lipid droplet (LD) function relies on proteins partitioning between the endoplasmic reticulum (ER) phospholipid bilayer and the LD monolayer membrane to control cellular adaptation to metabolic changes. It has been proposed that these hairpin proteins integrate into both membranes in a similar monotopic topology, enabling their passive lateral diffusion during LD emergence at the ER. Here, we combine biochemical solvent-accessibility assays, electron paramagnetic resonance spectroscopy and intra-molecular crosslinking experiments with molecular dynamics simulations, and determine distinct intramembrane positionings of the ER/LD protein UBXD8 in ER bilayer and LD monolayer membranes. UBXD8 is deeply inserted into the ER bilayer with a V-shaped topology and adopts an open-shallow conformation in the LD monolayer. Major structural rearrangements are required to enable ER-to-LD partitioning. Free energy calculations suggest that such structural transition is unlikely spontaneous, indicating that ER-to-LD protein partitioning relies on more complex mechanisms than anticipated and providing regulatory means for this trans-organelle protein trafficking.
Collapse
Affiliation(s)
- Ravi Dhiman
- Medical Biochemistry and Molecular Biology, Center for Molecular Signaling (PZMS), Faculty of Medicine, Saarland University, 66421, Homburg/Saar, Germany
| | - Rehani S Perera
- Medical Biochemistry and Molecular Biology, Center for Molecular Signaling (PZMS), Faculty of Medicine, Saarland University, 66421, Homburg/Saar, Germany
| | - Chetan S Poojari
- Theoretical Physics and Center for Biophysics, Saarland University, 66123, Saarbrücken, Germany
| | - Haakon T A Wiedemann
- Physical Chemistry and Chemistry Education, Saarland University, 66123, Saarbrücken, Germany
| | - Reinhard Kappl
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), Faculty of Medicine, Saarland University, 66421, Homburg/Saar, Germany
| | - Christopher W M Kay
- Physical Chemistry and Chemistry Education, Saarland University, 66123, Saarbrücken, Germany
- London Centre for Nanotechnology, University College London, WC1H 0AH, London, UK
| | - Jochen S Hub
- Theoretical Physics and Center for Biophysics, Saarland University, 66123, Saarbrücken, Germany
| | - Bianca Schrul
- Medical Biochemistry and Molecular Biology, Center for Molecular Signaling (PZMS), Faculty of Medicine, Saarland University, 66421, Homburg/Saar, Germany.
| |
Collapse
|
10
|
Sapia J, Vanni S. Molecular dynamics simulations of intracellular lipid droplets: a new tool in the toolbox. FEBS Lett 2024; 598:1143-1153. [PMID: 38627196 DOI: 10.1002/1873-3468.14879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/14/2024] [Accepted: 03/25/2024] [Indexed: 05/25/2024]
Abstract
Lipid droplets (LDs) are ubiquitous intracellular organelles with a central role in multiple lipid metabolic pathways. However, identifying correlations between their structural properties and their biological activity has proved challenging, owing to their unique physicochemical properties as compared with other cellular membranes. In recent years, molecular dynamics (MD) simulations, a computational methodology allowing the accurate description of molecular assemblies down to their individual components, have been demonstrated to be a useful and powerful approach for studying LD structural and dynamical properties. In this short review, we attempt to highlight, as comprehensively as possible, how MD simulations have contributed to our current understanding of multiple molecular mechanisms involved in LD biology.
Collapse
Affiliation(s)
- Jennifer Sapia
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
- Swiss National Center for Competence in Research (NCCR) Bio-inspired Materials, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
11
|
Wölk M, Fedorova M. The lipid droplet lipidome. FEBS Lett 2024; 598:1215-1225. [PMID: 38604996 DOI: 10.1002/1873-3468.14874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
Lipid droplets (LDs) are intracellular organelles with a hydrophobic core formed by neutral lipids surrounded by a phospholipid monolayer harboring a variety of regulatory and enzymatically active proteins. Over the last few decades, our understanding of LD biology has evolved significantly. Nowadays, LDs are appreciated not just as passive energy storage units, but rather as active players in the regulation of lipid metabolism and quality control machineries. To fulfill their functions in controlling cellular metabolic states, LDs need to be highly dynamic and responsive organelles. A large body of evidence supports a dynamic nature of the LD proteome and its contact sites with other organelles. However, much less is known about the lipidome of LDs. Numerous examples clearly indicate the intrinsic link between LD lipids and proteins, calling for a deeper characterization of the LD lipidome in various physiological and pathological settings. Here, we reviewed the current state of knowledge in the field of the LD lipidome, providing a brief overview of the lipid classes and their molecular species present within the neutral core and phospholipid monolayer.
Collapse
Affiliation(s)
- Michele Wölk
- Center of Membrane Biochemistry and Lipid Research, University Hospital Carl Gustav Carus and Faculty of Medicine of TU Dresden, Germany
| | - Maria Fedorova
- Center of Membrane Biochemistry and Lipid Research, University Hospital Carl Gustav Carus and Faculty of Medicine of TU Dresden, Germany
| |
Collapse
|
12
|
Griseti E, Bello AA, Bieth E, Sabbagh B, Iacovoni JS, Bigay J, Laurell H, Čopič A. Molecular mechanisms of perilipin protein function in lipid droplet metabolism. FEBS Lett 2024; 598:1170-1198. [PMID: 38140813 DOI: 10.1002/1873-3468.14792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/27/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Perilipins are abundant lipid droplet (LD) proteins present in all metazoans and also in Amoebozoa and fungi. Humans express five perilipins, which share a similar domain organization: an amino-terminal PAT domain and an 11-mer repeat region, which can fold into amphipathic helices that interact with LDs, followed by a structured carboxy-terminal domain. Variations of this organization that arose during vertebrate evolution allow for functional specialization between perilipins in relation to the metabolic needs of different tissues. We discuss how different features of perilipins influence their interaction with LDs and their cellular targeting. PLIN1 and PLIN5 play a direct role in lipolysis by regulating the recruitment of lipases to LDs and LD interaction with mitochondria. Other perilipins, particularly PLIN2, appear to protect LDs from lipolysis, but the molecular mechanism is not clear. PLIN4 stands out with its long repetitive region, whereas PLIN3 is most widely expressed and is used as a nascent LD marker. Finally, we discuss the genetic variability in perilipins in connection with metabolic disease, prominent for PLIN1 and PLIN4, underlying the importance of understanding the molecular function of perilipins.
Collapse
Affiliation(s)
- Elena Griseti
- Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), France
| | - Abdoul Akim Bello
- Institut de Pharmacologie Moléculaire et Cellulaire - IPMC, Université Côte d'Azur, CNRS, Valbonne, France
| | - Eric Bieth
- Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), France
- Departement de Génétique Médicale, Centre Hospitalier Universitaire de Toulouse, France
| | - Bayane Sabbagh
- Centre de Recherche en Biologie Cellulaire de Montpellier - CRBM, Université de Montpellier, CNRS, France
| | - Jason S Iacovoni
- Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), France
| | - Joëlle Bigay
- Institut de Pharmacologie Moléculaire et Cellulaire - IPMC, Université Côte d'Azur, CNRS, Valbonne, France
| | - Henrik Laurell
- Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), France
| | - Alenka Čopič
- Centre de Recherche en Biologie Cellulaire de Montpellier - CRBM, Université de Montpellier, CNRS, France
| |
Collapse
|
13
|
Kinard TC, Wrenn SP. Triglycerides Stabilize Water/Organic Interfaces of Changing Area via Conformational Flexibility. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2500-2509. [PMID: 38284535 DOI: 10.1021/acs.langmuir.3c02473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
The role of triglycerides (TGs) in both natural and synthetic biological membranes has long been the subject of study, involving metabolism, disease, and colloidal synthesis. TGs have been found to be critical components for successful liposomal encapsulation via a water/oil/water double emulsion, which this work endeavors to explain. TGs can occupy multiple positions in biological membranes. The glycerol backbone can reside at the water/organic interface, adjacent to phospholipid headgroups ("m" conformation), typically with relatively low (<3%) solubility. The glycerol backbone can also occupy hydrophobic regions, where it is isolated from water ("h" or "oil" conformation). This can occur in either midmembrane positions or phospholipid-coated lipid droplets (LDs). These conformations can be distinguished using 13C-nuclear magnetic resonance spectroscopy (NMR), which determines the degree of hydration of the TG backbone. Using this method, it was revealed that TGs transition from "m" to "h" conformation as the organic solvent is removed via evaporation. A new transitional TG backbone position has been identified with a level of hydration between "m" and "h". These results suggest that TGs can temporarily coat and stabilize the large water/organic interfaces present after emulsification. As the organic solvent is removed and interfaces shrink, the TGs recede into midmembrane spaces or bud off into LDs, which are confirmed via transmission electron microscopy (TEM) and can be removed via centrifugation. Encapsulation efficiency is found to be inversely related to both the saturation and length of the TG acyl chains, indicating that membrane fluidization is a key property arising from the presence of TGs. Beyond clarification of a mechanism for high-efficiency liposomal encapsulation, these results implicate TGs as components that are able to stabilize biological membrane transitions involving a changing interfacial area and curvature. This role for TGs may be of use in the formulation of drug delivery systems as well as in the investigation of membrane transitions in life sciences.
Collapse
Affiliation(s)
- Thomas C Kinard
- Department of Chemical Engineering, Virginia Tech, 635 Prices Fork Road, Blacksburg, Virginia 24060, United States
- Department of Chemical and Biological Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Steven P Wrenn
- Department of Chemical Engineering, Virginia Tech, 635 Prices Fork Road, Blacksburg, Virginia 24060, United States
- Department of Chemical and Biological Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
14
|
Speer NO, Braun RJ, Reynolds EG, Brudnicka A, Swanson JM, Henne WM. Tld1 is a regulator of triglyceride lipolysis that demarcates a lipid droplet subpopulation. J Cell Biol 2024; 223:e202303026. [PMID: 37889293 PMCID: PMC10609110 DOI: 10.1083/jcb.202303026] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/09/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
Cells store lipids in the form of triglyceride (TG) and sterol ester (SE) in lipid droplets (LDs). Distinct pools of LDs exist, but a pervasive question is how proteins localize to and convey functions to LD subsets. Here, we show that the yeast protein YDR275W/Tld1 (for TG-associated LD protein 1) localizes to a subset of TG-containing LDs and reveal it negatively regulates lipolysis. Mechanistically, Tld1 LD targeting requires TG, and it is mediated by two distinct hydrophobic regions (HRs). Molecular dynamics simulations reveal that Tld1's HRs interact with TG on LDs and adopt specific conformations on TG-rich LDs versus SE-rich LDs in yeast and human cells. Tld1-deficient yeast display no defect in LD biogenesis but exhibit elevated TG lipolysis dependent on lipase Tgl3. Remarkably, overexpression of Tld1, but not LD protein Pln1/Pet10, promotes TG accumulation without altering SE pools. Finally, we find that Tld1-deficient cells display altered LD mobilization during extended yeast starvation. We propose that Tld1 senses TG-rich LDs and regulates lipolysis on LD subpopulations.
Collapse
Affiliation(s)
- Natalie Ortiz Speer
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - R. Jay Braun
- Department of Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Emma Grace Reynolds
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alicja Brudnicka
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - W. Mike Henne
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
15
|
Wurl A, M. Ferreira T. Atomistic MD Simulations of
n
‐Alkanes in a Phospholipid Bilayer: CHARMM36 versus Slipids. MACROMOL THEOR SIMUL 2023. [DOI: 10.1002/mats.202200078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Anika Wurl
- NMR group ‐ Institute for Physics Martin Luther University Halle‐Wittenberg Betty‐Heimann‐Str. 7 06120 Halle (Saale) Germany
| | - Tiago M. Ferreira
- NMR group ‐ Institute for Physics Martin Luther University Halle‐Wittenberg Betty‐Heimann‐Str. 7 06120 Halle (Saale) Germany
| |
Collapse
|
16
|
Campbell LE, Anderson AM, Chen Y, Johnson SM, McMahon CE, Liu J. Identification of motifs and mechanisms for lipid droplet targeting of the lipolytic inhibitors G0S2 and HIG2. J Cell Sci 2022; 135:285951. [PMID: 36420951 PMCID: PMC10112975 DOI: 10.1242/jcs.260236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
G0S2 and HIG2 are two selective inhibitors of ATGL (also known as PNPLA2), the key enzyme for intracellular lipolysis. Whereas G0S2 regulates triglyceride (TG) mobilization in adipocytes and hepatocytes, HIG2 functions to enhance intracellular TG accumulation under hypoxic conditions. A homologous hydrophobic domain (HD) is shared by G0S2 and HIG2 (also known as HILPDA) for binding to ATGL. However, the determinants of their lipid droplet (LD) localization are unknown. Here, we study how G0S2 and HIG2 are targeted to LDs, and identify both ATGL-independent and -dependent mechanisms. Structural prediction and studies in cells reveal that ATGL-independent localization of G0S2 to both the endoplasmic reticulum (ER) and LDs is mediated by a hairpin structure consisting of two hydrophobic sequences. Positively charged residues in the hinge region play a crucial role in sorting G0S2, which initially localizes to ER, to LDs. Interestingly, the role of these positive charges becomes dispensable when ATGL is co-expressed. In comparison, HIG2, which lacks a similar hairpin structure, is dependent on ATGL for its full LD targeting. Thus, our studies identify specific structural features and mechanisms for mediating accumulation of these two ATGL inhibitors on LDs.
Collapse
Affiliation(s)
- Latoya E Campbell
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine & Science, Rochester, MN 55905, USA.,College of Health Solutions, Arizona State University, Tempe, AZ 85281, USA
| | - Aaron M Anderson
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine & Science, Rochester, MN 55905, USA.,Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Yongbin Chen
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine & Science, Rochester, MN 55905, USA
| | - Scott M Johnson
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine & Science, Rochester, MN 55905, USA.,Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
| | - Cailin E McMahon
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine & Science, Rochester, MN 55905, USA
| | - Jun Liu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine & Science, Rochester, MN 55905, USA.,Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic in Rochester, Rochester, MN 55905, USA
| |
Collapse
|
17
|
Braun RJ, Swanson JMJ. Capturing the Liquid-Crystalline Phase Transformation: Implications for Protein Targeting to Sterol Ester-Rich Lipid Droplets. MEMBRANES 2022; 12:949. [PMID: 36295707 PMCID: PMC9607156 DOI: 10.3390/membranes12100949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Lipid droplets are essential organelles that store and traffic neutral lipids. The phospholipid monolayer surrounding their neutral lipid core engages with a highly dynamic proteome that changes according to cellular and metabolic conditions. Recent work has demonstrated that when the abundance of sterol esters increases above a critical concentration, such as under conditions of starvation or high LDL exposure, the lipid droplet core can undergo an amorphous to liquid-crystalline phase transformation. Herein, we study the consequences of this transformation on the physical properties of lipid droplets that are thought to regulate protein association. Using simulations of different sterol-ester concentrations, we have captured the liquid-crystalline phase transformation at the molecular level, highlighting the alignment of sterol esters in alternating orientations to form concentric layers. We demonstrate how ordering in the core permeates into the neutral lipid/phospholipid interface, changing the magnitude and nature of neutral lipid intercalation and inducing ordering in the phospholipid monolayer. Increased phospholipid packing is concomitant with altered surface properties, including smaller area per phospholipid and substantially reduced packing defects. Additionally, the ordering of sterol esters in the core causes less hydration in more ordered regions. We discuss these findings in the context of their expected consequences for preferential protein recruitment to lipid droplets under different metabolic conditions.
Collapse
|
18
|
Hegaard FV, Klenow MB, Simonsen AC. Lens Nucleation and Droplet Budding in a Membrane Model for Lipid Droplet Biogenesis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9247-9256. [PMID: 35849366 DOI: 10.1021/acs.langmuir.2c01014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lipid droplet biogenesis comprises the emergence of cytosolic lipid droplets with a typical diameter 0.1-5 μm via synthesis of fat in the endoplasmatic reticulum, the formation of membrane-embedded lenses, and the eventual budding of lenses into solution as droplets. Lipid droplets in cells are increasingly being viewed as highly dynamic organelles with multiple functions in cell physiology. However, the mechanism of droplet formation in cells remains poorly understood, partly because their formation involves the rapid transformation of transient lipid structures that are difficult to capture. Thus, the development of controlled experimental systems that model lipid biogenesis is highly relevant for an enhanced mechanistic understanding. Here we prepare and characterize triolein (TO) lenses in a multilamellar spin-coated phosphatidylcholine (POPC) film and determine the lens nucleation threshold to 0.25-0.5% TO. The TO lens shapes are characterized by atomic force microscopy (AFM) including their mean cap angle ⟨α⟩ = 27.3° and base radius ⟨a⟩ = 152.7 nm. A cross-correlation analysis of corresponding AFM and fluorescence images confirms that TO is localized to lenses. Hydration of the lipid/lens film induces the gel to fluid membrane phase transition and makes the lenses more mobile. The budding of free droplets into solution from membrane lenses is detected by observing a change in motion from confined wiggling to ballistic motion of droplets in solution. The results confirm that droplet budding can occur spontaneously without being facilitated by proteins. The developed model system provides a controlled platform for testing mechanisms of lipid droplet biogenesis in vitro and addressing questions related to lens formation and droplet budding by quantitative image analysis.
Collapse
Affiliation(s)
- Frederik Viktor Hegaard
- Department of Physics, Chemistry and Pharmacy (FKF), PhyLife - Physical LifeScience, University of Southern Denmark (SDU), Campusvej 55, 5230 Odense M, Denmark
| | - Martin Berg Klenow
- Department of Physics, Chemistry and Pharmacy (FKF), PhyLife - Physical LifeScience, University of Southern Denmark (SDU), Campusvej 55, 5230 Odense M, Denmark
| | - Adam Cohen Simonsen
- Department of Physics, Chemistry and Pharmacy (FKF), PhyLife - Physical LifeScience, University of Southern Denmark (SDU), Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
19
|
Kim S, Swanson JMJ, Voth GA. Computational Studies of Lipid Droplets. J Phys Chem B 2022; 126:2145-2154. [PMID: 35263109 PMCID: PMC8957551 DOI: 10.1021/acs.jpcb.2c00292] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/26/2022] [Indexed: 02/05/2023]
Abstract
Lipid droplets (LDs) are intracellular organelles whose primary function is energy storage. Known to emerge from the endoplasmic reticulum (ER) bilayer, LDs have a unique structure with a core consisting of neutral lipids, triacylglycerol (TG) or sterol esters (SE), surrounded by a phospholipid (PL) monolayer and decorated by proteins that come and go throughout their complex lifecycle. In this Feature Article, we review recent developments in computational studies of LDs, a rapidly growing area of research. We highlight how molecular dynamics (MD) simulations have provided valuable molecular-level insight into LD targeting and LD biogenesis. Additionally, we review the physical properties of TG from different force fields compared with experimental data. Possible future directions and challenges are discussed.
Collapse
Affiliation(s)
- Siyoung Kim
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Jessica M. J. Swanson
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Gregory A. Voth
- Department
of Chemistry, Chicago Center for Theoretical Chemistry, James Franck
Institute, and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
20
|
Smith NA, Wardak AZ, Cowan AD, Colman PM, Czabotar PE, Smith BJ. The Bak core dimer focuses triacylglycerides in the membrane. Biophys J 2022; 121:347-360. [PMID: 34973947 PMCID: PMC8822611 DOI: 10.1016/j.bpj.2021.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/15/2021] [Accepted: 12/28/2021] [Indexed: 02/03/2023] Open
Abstract
Apoptosis, the intrinsic programmed cell death process, is mediated by the Bcl-2 family members Bak and Bax. Activation via formation of symmetric core dimers and oligomerization on the mitochondrial outer membrane (MOM) leads to permeabilization and cell death. Although this process is linked to the MOM, the role of the membrane in facilitating such pores is poorly understood. We recently described Bak core domain dimers, revealing lipid binding sites and an initial role of lipids in oligomerization. Here we describe simulations that identified localized clustering and interaction of triacylglycerides (TAGs) with a minimized Bak dimer construct. Coalescence of TAGs occurred beneath this Bak dimer, mitigating dimer-induced local membrane thinning and curvature in representative coarse-grain MOM and model membrane systems. Furthermore, the effects observed as a result of coarse-grain TAG cluster formation was concentration dependent, scaling from low physiological MOM concentrations to those found in other organelles. We find that increasing the TAG concentration in liposomes mimicking the MOM decreased the ability of activated Bak to permeabilize these liposomes. These results suggest that the presence of TAGs within a Bak-lipid membrane preserves membrane integrity and is associated with reduced membrane stress, suggesting a possible role of TAGs in Bak-mediated apoptosis.
Collapse
Affiliation(s)
- Nicholas A. Smith
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Ahmad Z. Wardak
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Angus D. Cowan
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Peter M. Colman
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Peter E. Czabotar
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Brian J. Smith
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia,Corresponding author
| |
Collapse
|
21
|
Olarte MJ, Swanson JMJ, Walther TC, Farese RV. The CYTOLD and ERTOLD pathways for lipid droplet-protein targeting. Trends Biochem Sci 2022; 47:39-51. [PMID: 34583871 PMCID: PMC8688270 DOI: 10.1016/j.tibs.2021.08.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 01/03/2023]
Abstract
Lipid droplets (LDs) are the main organelles for lipid storage, and their surfaces contain unique proteins with diverse functions, including those that facilitate the deposition and mobilization of LD lipids. Among organelles, LDs have an unusual structure with an organic, hydrophobic oil phase covered by a phospholipid monolayer. The unique properties of LD monolayer surfaces require proteins to localize to LDs by distinct mechanisms. Here we review the two pathways known to mediate direct LD protein localization: the CYTOLD pathway mediates protein targeting from the cytosol toLDs, and the ERTOLD pathway functions in protein targeting from the endoplasmic reticulum toLDs. We describe the emerging principles for each targeting pathway in animal cells and highlight open questions in the field.
Collapse
Affiliation(s)
- Maria-Jesus Olarte
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Tobias C Walther
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02124, USA.
| | - Robert V Farese
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02124, USA.
| |
Collapse
|
22
|
Chorlay A, Forêt L, Thiam AR. Origin of gradients in lipid density and surface tension between connected lipid droplet and bilayer. Biophys J 2021; 120:5491-5503. [PMID: 34808099 DOI: 10.1016/j.bpj.2021.11.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/20/2021] [Accepted: 11/17/2021] [Indexed: 10/19/2022] Open
Abstract
We combined theory and experiments to depict physical parameters modulating the phospholipid (PL) density and tension equilibrium between a bilayer and an oil droplet in contiguity. This situation is encountered during a neutral lipid (NL) droplet formation in the endoplasmic reticulum. We set up macroscopic and microscopic models to uncover free parameters and the origin of molecular interactions controlling the PL densities of the droplet monolayer and the bilayer. The established physical laws and predictions agreed with experiments performed with droplet-embedded vesicles. We found that the droplet monolayer is always by a few percent (∼10%) less packed with PLs than the bilayer. Such a density gradient arises from PL-NL interactions on the droplet, which are lower than PL-PL trans interactions in the bilayer, i.e., interactions between PLs belonging to different leaflets of the bilayer. Finally, despite the pseudo-surface tension for the water/PL acyl chains in the bilayer being higher than the water/NL surface tension, the droplet monolayer always has a higher surface tension than the bilayer because of its lower PL density. Thus, a PL density gradient is mandatory to maintain the mechanical and thermodynamic equilibrium of the droplet-bilayer continuity. Our study sheds light on the origin of the molecular interactions responsible for the unique surface properties of lipid droplets compared with cellular bilayer membranes.
Collapse
Affiliation(s)
- Aymeric Chorlay
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France
| | - Lionel Forêt
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France.
| | - Abdou Rachid Thiam
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France.
| |
Collapse
|
23
|
Campomanes P, Prabhu J, Zoni V, Vanni S. Recharging your fats: CHARMM36 parameters for neutral lipids triacylglycerol and diacylglycerol. BIOPHYSICAL REPORTS 2021; 1:None. [PMID: 34939045 PMCID: PMC8651513 DOI: 10.1016/j.bpr.2021.100034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/17/2021] [Indexed: 12/03/2022]
Abstract
Neutral lipids (NLs) are an abundant class of cellular lipids. They are characterized by the total lack of charged chemical groups in their structure, and, as a consequence, they play a major role in intracellular lipid storage. NLs that carry a glycerol backbone, such as triacylglycerols (TGs) and diacylglycerols (DGs), are also involved in the biosynthetic pathway of cellular phospholipids, and they have recently been the subject of numerous structural investigations by means of atomistic molecular dynamics simulations. However, conflicting results on the physicochemical behavior of NLs were observed depending on the nature of the atomistic force field used. Here, we show that current phospholipid-derived CHARMM36 parameters for DGs and TGs cannot adequately reproduce interfacial properties of these NLs because of excessive hydrophilicity at the glycerol-ester region. By following a CHARMM36-consistent parameterization strategy, we develop improved parameters for both TGs and DGs that are compatible with both cutoff-based and particle mesh Ewald schemes for the treatment of Lennard-Jones interactions. We show that our improved parameters can reproduce interfacial properties of NLs and their behavior in more complex lipid assemblies. We discuss the implications of our findings in the context of intracellular lipid storage and NLs’ cellular activity.
Collapse
Affiliation(s)
- Pablo Campomanes
- Chemin du Musée 10, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Janak Prabhu
- Chemin du Musée 10, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Valeria Zoni
- Chemin du Musée 10, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Stefano Vanni
- Chemin du Musée 10, Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
24
|
Caruso B, Wilke N, Perillo MA. Triglyceride Lenses at the Air-Water Interface as a Model System for Studying the Initial Stage in the Biogenesis of Lipid Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10958-10970. [PMID: 34491757 DOI: 10.1021/acs.langmuir.1c01359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lipid droplets (LD) are intracellular structures consisting of an apolar lipid core, composed mainly of triglycerides (TG) and steryl esters, coated by a lipid-protein mixed monolayer. The mechanisms underlying LD biogenesis at the endoplasmic reticulum membrane are a matter of many current investigations. Although models explaining the budding-off of protuberances of phase-segregated TG inside bilayers have been proposed recently, the assumption of such initial blisters needs further empirical support. Here, we study mixtures of egg phosphatidylcholine (EPC) and TG at the air-water interface in order to describe some physical properties and topographic stability of TG bulk structures in contact with interfaces. Brewster angle microscopy images revealed the appearance of microscopic collapsed structures (CS) with highly reproducible lateral size (∼1 μm lateral radius) not varying with lateral packing changes and being highly stable at surface pressures (π) beyond collapse. By surface spectral fluorescence microscopy, we were able to characterize the solvatochromism of Nile Red both in monolayers and inside CS. This allowed to conclude that CS corresponded to a phase of liquid TG and to characterize them as lenses forming a three-phase (oil-water-air) system. Thereby, the thicknesses of the lenses could be determined, observing that they were dramatically flattened when EPC was present (6-12 nm compared to 30-50 nm for lenses on EPC/TG and TG films, respectively). Considering the shape of lenses, the interfacial tensions, and the Neumann's triangle, this experimental approach allows one to estimate the oil-water interfacial tension acting at each individual microscopic lens and at varying compression states of the surrounding monolayer. Thus, lenses formed on air-water Langmuir films can serve to assess variables of relevance to the initial step of LD biogenesis, such as the degree of dispersion of excluded-TG phase and shape, spatial distribution, and oil-water interfacial tension of lenses.
Collapse
Affiliation(s)
- B Caruso
- Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Química, Cátedra de Química BiológicaUniversidad Nacional de Córdoba, X5016GCA Córdoba, Argentina
- Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), CONICET, X5016GCA Córdoba, Argentina
| | - N Wilke
- Facultad de Ciencias Químicas,. Departamento de Química Biológica Ranwel Caputto, Universidad Nacional de Córdoba, X5016GCA Córdoba, Argentina
- Centro de Investigaciones en Quimica Biológica de Córdoba (CIQUIBIC), CONICET, X5016GCA Córdoba, Argentina
| | - M A Perillo
- Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Química, Cátedra de Química BiológicaUniversidad Nacional de Córdoba, X5016GCA Córdoba, Argentina
- Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), CONICET, X5016GCA Córdoba, Argentina
| |
Collapse
|
25
|
Kim S, Voth GA. Physical Characterization of Triolein and Implications for Its Role in Lipid Droplet Biogenesis. J Phys Chem B 2021; 125:6874-6888. [PMID: 34139844 DOI: 10.1021/acs.jpcb.1c03559] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lipid droplets (LDs) are neutral lipid-storing organelles surrounded by a phospholipid (PL) monolayer. At present, how LDs are formed in the endoplasmic reticulum (ER) bilayer is poorly understood. In this study, we present a revised all-atom (AA) triolein (TG) model, the main constituent of the LD core, and characterize its properties in a bilayer membrane to demonstrate the implications of its behavior in LD biogenesis. In bilayer simulations, TG resides at the surface, adopting PL-like conformations (denoted in this work as SURF-TG). Free energy sampling simulation results estimate the barrier for TG relocating from the bilayer surface to the bilayer center to be ∼2 kcal/mol in the absence of an oil lens. SURF-TG is able to modulate membrane properties by increasing PL ordering, decreasing bending modulus, and creating local negative curvature. The other neutral lipid, dioleoyl-glycerol (DAG), also reduces the membrane bending modulus and populates negative curvature regions. A phenomenological coarse-grained (CG) model is also developed to observe larger-scale SURF-TG-mediated membrane deformation. CG simulations confirm that TG nucleates between the bilayer leaflets at a critical concentration when SURF-TG is evenly distributed. However, when one monolayer contains more SURF-TG, the membrane bends toward the other leaflet, followed by TG nucleation if a concentration is higher than the critical threshold. The central conclusion of this study is that SURF-TG is a negative curvature inducer, as well as a membrane modulator. To this end, a model is proposed in which the accumulation of SURF-TG in the luminal leaflet bends the ER bilayer toward the cytosolic side, followed by TG nucleation.
Collapse
Affiliation(s)
- Siyoung Kim
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
26
|
Kim S, Oh MI, Swanson JMJ. Stressed Lipid Droplets: How Neutral Lipids Relieve Surface Tension and Membrane Expansion Drives Protein Association. J Phys Chem B 2021; 125:5572-5586. [PMID: 34014091 PMCID: PMC8796793 DOI: 10.1021/acs.jpcb.1c01795] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Lipid droplets (LDs) are intracellular storage organelles composed of neutral lipids, such as triacylglycerol (TG), surrounded by a phospholipid (PL) monolayer decorated with specific proteins. Herein, we investigate the mechanism of protein association during LD and bilayer membrane expansion. We find that the neutral lipids play a dynamic role in LD expansion by further intercalating with the PL monolayer to create more surface-oriented TG molecules (SURF-TG). This interplay both reduces high surface tension incurred during LD budding or growth and also creates expansion-specific surface features for protein recognition. We then show that the autoinhibitory (AI) helix of CTP:phosphocholine cytidylyltransferase, a protein known to target expanding monolayers and bilayers, preferentially associates with large packing defects in a sequence-specific manner. Despite the presence of three phenylalanines, the initial binding with bilayers is predominantly mediated by the sole tryptophan due to its preference for membrane interfaces. Subsequent association is dependent on the availability of large, neighboring defects that can accommodate the phenylalanines, which are more probable in the stressed systems. Tryptophan, once fully associated, preferentially interacts with the glycerol moiety of SURF-TG in LDs. The calculation of AI binding free energy, hydrogen bonding and depth analysis, and in silico mutation experiments support the findings. Hence, SURF-TG can both reduce surface tension and mediate protein association, facilitating class II protein recruitment during LD expansion.
Collapse
Affiliation(s)
- Siyoung Kim
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637 USA
| | - Myong In Oh
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112 USA
| | - Jessica M. J. Swanson
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112 USA
- Corresponding author: Jessica M. J. Swanson,
| |
Collapse
|