1
|
Detrés D, Camacho-Badillo A, Calo E. A pH-Centric Model of Nucleolar Activity and Regulation. J Mol Biol 2025; 437:169136. [PMID: 40216015 DOI: 10.1016/j.jmb.2025.169136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 04/05/2025] [Accepted: 04/07/2025] [Indexed: 04/27/2025]
Abstract
The nucleolus is essential for the efficient and accurate production of ribosomal subunits, which are crucial for assembling ribosomes-the cellular machinery responsible for protein synthesis. Emerging insights into its liquid-like nature have shed new light on the role of its unique biophysical properties in the activity and regulation of this organelle. In this perspective, we examine recent insights into nucleolar biophysical homeostasis, with a focus on its regulation as an acidic biomolecular condensate. We review current evidence on how nucleolar composition and biochemical activities could generate and maintain a proton gradient. Additionally, we propose an integrative model explaining how nucleolar acidity contributes to homeostasis at a molecular level, providing a unified framework for its role in health and disease.
Collapse
Affiliation(s)
- Diego Detrés
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Adriana Camacho-Badillo
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Eliezer Calo
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| |
Collapse
|
2
|
Fossat MJ. MEDOC: A Fast, Scalable, and Mathematically Exact Algorithm for the Site-Specific Prediction of the Protonation Degree in Large Disordered Proteins. J Chem Inf Model 2025; 65:873-881. [PMID: 39817437 PMCID: PMC11776046 DOI: 10.1021/acs.jcim.4c01860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/07/2025] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
Intrinsically disordered regions are found in most eukaryotic proteins and are enriched with positively and negatively charged residues. While it is often convenient to assume that these residues follow their model-compound pKa values, recent work has shown that local charge effects (charge regulation) can upshift or downshift side chain pKa values with major consequences for molecular function. Despite this, charge regulation is rarely considered when investigating disordered regions. The number of potential charge microstates that can be populated through acid/base regulation of a given number of ionizable residues in a sequence, N, scales as ∼2N. This exponential scaling makes the assessment of the full charge landscape of most proteins computationally intractable. To address this problem, we developed "multisite extent of deprotonation originating from context" (MEDOC) to determine the degree of protonation of a protein based on the local sequence context of each ionizable residue. We show that we can drastically reduce the number of parameters necessary to determine the full, analytical Boltzmann partition function of the charge landscape at both global and site-specific levels. Our algorithm applies the structure of the q-canonical ensemble, combined with novel strategies to rapidly obtain the minimal set of parameters, thereby circumventing the combinatorial explosion of the number of charge microstates even for proteins containing a large number of ionizable amino acids. We apply MEDOC to several sequences, including a global analysis of the distribution of pKa values across the entire DisProt database. Our results show differences in the distribution of predicted pKa values for different amino acids and good agreement with NMR-measured pKa values in proteins.
Collapse
Affiliation(s)
- Martin J. Fossat
- Max-Planck-Institut für Immunbiologie
und Epigenetik (MPI-IE), Stübeweg 51, 79108 Freiburg im Breisgau, Germany
| |
Collapse
|
3
|
Notarmuzi D, Bianchi E. Liquid-liquid phase separation driven by charge heterogeneity. COMMUNICATIONS PHYSICS 2024; 7:412. [PMID: 39802629 PMCID: PMC11721519 DOI: 10.1038/s42005-024-01875-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/14/2024] [Indexed: 01/16/2025]
Abstract
Despite the intrinsic charge heterogeneity of proteins plays a crucial role in the liquid-liquid phase separation (LLPS) of a broad variety of protein systems, our understanding of the effects of their electrostatic anisotropy is still in its early stages. We approach this issue by means of a coarse-grained model based on a robust mean-field description that extends the DLVO theory to non-uniformly charged particles. We numerically investigate the effect of surface charge patchiness and net particle charge on varying these features independently and with the use of a few parameters only. The effect of charge anisotropy on the LLPS critical point is rationalized via a thermodynamic-independent parameter based on orientationally averaged pair properties, that estimates the particle connectivity and controls the propensity of the liquid phase to condensate. We show that, even though directional attraction alone is able to lower the particle bonding valence-thus shifting the critical point towards lower temperatures and densities-directional repulsion significantly and systematically diminishes the particle functionality, thus further reducing the critical parameters. This electrostatically-driven shift can be understood in terms of the additional morphological constraints introduced by the directional repulsion, that hinder the condensation of dense aggregates.
Collapse
Affiliation(s)
- Daniele Notarmuzi
- Institut für Theoretische Physik, TU Wien, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria
| | - Emanuela Bianchi
- Institut für Theoretische Physik, TU Wien, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria
- CNR-ISC, Uos Sapienza, Piazzale A. Moro 2, 00185 Roma, Italy
| |
Collapse
|
4
|
Usher ET, Fossat MJ, Holehouse AS. Phosphorylation of disordered proteins tunes local and global intramolecular interactions. Biophys J 2024; 123:4082-4096. [PMID: 39539017 PMCID: PMC11628823 DOI: 10.1016/j.bpj.2024.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/16/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Protein post-translational modifications, such as phosphorylation, are important regulatory signals for diverse cellular functions. In particular, intrinsically disordered protein regions (IDRs) are subject to phosphorylation as a means to modulate their interactions and functions. Toward understanding the relationship between phosphorylation in IDRs and specific functional outcomes, we must consider how phosphorylation affects the IDR conformational ensemble. Various experimental techniques are suited to interrogate the features of IDR ensembles; molecular simulations can provide complementary insights and even illuminate ensemble features that may be experimentally inaccessible. Therefore, we sought to expand the tools available to study phosphorylated IDRs by all-atom Monte Carlo simulations. To this end, we implemented parameters for phosphoserine (pSer) and phosphothreonine (pThr) into the OPLS version of the continuum solvent model, ABSINTH, and assessed their performance in all-atom simulations compared with published findings. We simulated short (<20 residues) and long (>80 residues) phospho-IDRs that, collectively, survey both local and global phosphorylation-induced changes to the ensemble. Our simulations of four well-studied phospho-IDRs show near-quantitative agreement with published findings for these systems via metrics including changes to radius of gyration, transient helicity, and persistence length. We also leveraged the inherent advantage of sequence control in molecular simulations to explore the conformational effects of diverse combinations of phospho-sites in two multiphosphorylated IDRs. Our results support and expand on previous observations that connect phosphorylation to changes in the IDR conformational ensemble. Herein, we describe phosphorylation as a means to alter sequence chemistry, net charge and charge patterning, and intramolecular interactions, which can collectively modulate the local and global IDR ensemble features.
Collapse
Affiliation(s)
- Emery T Usher
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri; Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, Missouri
| | - Martin J Fossat
- Department of Biological Physics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri; Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, Missouri.
| |
Collapse
|
5
|
Abstract
In higher eukaryotes, the nucleolus harbors at least three sub-phases that facilitate multiple functionalities including ribosome biogenesis. The three prominent coexisting sub-phases are the fibrillar center (FC), the dense fibrillar component (DFC), and the granular component (GC). Here, we review recent efforts in profiling sub-phase compositions that shed light on the types of physicochemical properties that emerge from compositional biases and territorial organization of specific types of macromolecules. We highlight roles played by molecular grammars which refers to protein sequence features including the substrate binding domains, the sequence features of intrinsically disordered regions, and the multivalence of these distinct types of domains / regions. We introduce the concept of a barcode of emergent physicochemical properties of nucleoli. Although our knowledge of the full barcode remains incomplete, we hope that the concept prompts investigations into undiscovered emergent properties and engenders an appreciation for how and why unique microenvironments control biochemical reactions.
Collapse
Affiliation(s)
- Matthew R. King
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Campus, MO, USA
| | - Kiersten M. Ruff
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Campus, MO, USA
| | - Rohit V. Pappu
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Campus, MO, USA
| |
Collapse
|
6
|
Sun Y, Hsieh T, Lin C, Shao W, Lin Y, Huang J. A Few Charged Residues in Galectin-3's Folded and Disordered Regions Regulate Phase Separation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402570. [PMID: 39248370 PMCID: PMC11538691 DOI: 10.1002/advs.202402570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/25/2024] [Indexed: 09/10/2024]
Abstract
Proteins with intrinsically disordered regions (IDRs) often undergo phase separation to control their functions spatiotemporally. Changing the pH alters the protonation levels of charged sidechains, which in turn affects the attractive or repulsive force for phase separation. In a cell, the rupture of membrane-bound compartments, such as lysosomes, creates an abrupt change in pH. However, how proteins' phase separation reacts to different pH environments remains largely unexplored. Here, using extensive mutagenesis, NMR spectroscopy, and biophysical techniques, it is shown that the assembly of galectin-3, a widely studied lysosomal damage marker, is driven by cation-π interactions between positively charged residues in its folded domain with aromatic residues in the IDR in addition to π-π interaction between IDRs. It is also found that the sole two negatively charged residues in its IDR sense pH changes for tuning the condensation tendency. Also, these two residues may prevent this prion-like IDR domain from forming rapid and extensive aggregates. These results demonstrate how cation-π, π-π, and electrostatic interactions can regulate protein condensation between disordered and structured domains and highlight the importance of sparse negatively charged residues in prion-like IDRs.
Collapse
Affiliation(s)
- Yung‐Chen Sun
- Institute of Biochemistry and Molecular BiologyNational Yang Ming Chiao Tung UniversityNo. 155, Sec. 2, Linong St.Taipei112304Taiwan
- Taiwan International Graduate Program in Molecular MedicineNational Yang Ming Chiao Tung University and Academia SinicaTaipeiTaiwan
| | - Tsung‐Lun Hsieh
- Institute of Biochemistry and Molecular BiologyNational Yang Ming Chiao Tung UniversityNo. 155, Sec. 2, Linong St.Taipei112304Taiwan
| | - Chia‐I Lin
- Institute of Biochemistry and Molecular BiologyNational Yang Ming Chiao Tung UniversityNo. 155, Sec. 2, Linong St.Taipei112304Taiwan
| | - Wan‐Yu Shao
- Department of Life Sciences and Institute of Genome SciencesNational Yang Ming Chiao Tung UniversityNo. 155, Sec. 2, Linong St.Taipei112304Taiwan
| | - Yu‐Hao Lin
- Institute of Biochemistry and Molecular BiologyNational Yang Ming Chiao Tung UniversityNo. 155, Sec. 2, Linong St.Taipei112304Taiwan
- Taiwan International Graduate Program in Molecular MedicineNational Yang Ming Chiao Tung University and Academia SinicaTaipeiTaiwan
| | - Jie‐rong Huang
- Institute of Biochemistry and Molecular BiologyNational Yang Ming Chiao Tung UniversityNo. 155, Sec. 2, Linong St.Taipei112304Taiwan
- Department of Life Sciences and Institute of Genome SciencesNational Yang Ming Chiao Tung UniversityNo. 155, Sec. 2, Linong St.Taipei112304Taiwan
- Institute of Biomedical InformaticsNational Yang Ming Chiao Tung UniversityNo. 155, Sec. 2, Linong St.Taipei112304Taiwan
| |
Collapse
|
7
|
Posey AE, Bremer A, Erkamp NA, Pant A, Knowles TPJ, Dai Y, Mittag T, Pappu RV. Biomolecular Condensates are Characterized by Interphase Electric Potentials. J Am Chem Soc 2024; 146:28268-28281. [PMID: 39356108 DOI: 10.1021/jacs.4c08946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Biomolecular condensates form via processes that combine phase separation and reversible associations of multivalent macromolecules. Condensates can be two- or multiphase systems defined by coexisting dense and dilute phases. Here, we show that solution ions partition asymmetrically across coexisting phases defined by condensates formed by intrinsically disordered proteins or homopolymeric RNA molecules. Our findings were enabled by direct measurements of the activities of cations and anions within coexisting phases of protein and RNA condensates. Asymmetries in ion partitioning between coexisting phases vary with protein sequence, macromolecular composition, salt concentration, and ion type. The Donnan equilibrium set up by the asymmetrical partitioning of solution ions generates interphase electric potentials known as Donnan and Nernst potentials. Our measurements show that the interphase potentials of condensates are of the same order of magnitude as membrane potentials of membrane-bound organelles. Interphase potentials quantify the degree to which microenvironments of coexisting phases are different from one another. Importantly, and based on condensate-specific interphase electric potentials, we reason that condensates are akin to capacitors that store charge. Interphase potentials should lead to electric double layers at condensate interfaces, thereby explaining recent observations of condensate interfaces being electrochemically active.
Collapse
Affiliation(s)
- Ammon E Posey
- Department of Biomedical Engineering, Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130-4899, United States
| | - Anne Bremer
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38103, United States
| | - Nadia A Erkamp
- Department of Biomedical Engineering, Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130-4899, United States
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Avnika Pant
- Department of Biomedical Engineering, Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130-4899, United States
| | - Tuomas P J Knowles
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
- Cavendish Laboratory, Department of Physics, University of Cambridge, J. J. Thomson Ave, Cambridge CB3 0HE, U.K
| | - Yifan Dai
- Department of Biomedical Engineering, Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130-4899, United States
| | - Tanja Mittag
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38103, United States
| | - Rohit V Pappu
- Department of Biomedical Engineering, Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130-4899, United States
| |
Collapse
|
8
|
Fossat MJ. MEDOC: A fast, scalable and mathematically exact algorithm for the site-specific prediction of the protonation degree in large disordered proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617153. [PMID: 39416064 PMCID: PMC11482746 DOI: 10.1101/2024.10.08.617153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Intrinsically disordered regions are found in most eukaryotic proteins and are enriched in positively and negatively charged residues. While it is often convenient to assume these residues follow their model-compound pKa values, recent work has shown that local charge effects (charge regulation) can upshift or downshift sidechain pKa values with major consequences for molecular function. Despite this, charge regulation is rarely considered when investigating disordered regions. The number of potential charge microstates that can be populated through acid/base regulation of a given number of ionizable residues in a sequence, N , scales as~ 2 N . This exponential scaling makes the assessment of the full charge landscape of most proteins computationally intractable. To address this problem, we developed MEDOC (Multisite Extent of Deprotonation Originating from Context) to determine the degree of protonation of a protein based on the local sequence context of each ionizable residue. We show that we can drastically reduce the number of parameters necessary to determine the full, analytic, Boltzmann partition function of the charge landscape at both global and site-specific levels. Our algorithm applies the structure of the q-canonical ensemble, combined with novel strategies to rapidly obtain the minimal set of parameters, thereby circumventing the combinatorial explosion of the number of charge microstates even for proteins containing a large number of ionizable amino acids. We apply MEDOC to several sequences, including a global analysis of the distribution of pKa values across the entire DisProt database. Our results show differences in the distribution of predicted pKa values for different amino acids, in agreement with NMR-measured distributions in proteins.
Collapse
Affiliation(s)
- Martin J Fossat
- Max-Planck-Institut für Immunbiologie und Epigenetik (MPI-IE) Stübeweg 51, 79108 Freiburg im Breisgau, Germany
| |
Collapse
|
9
|
Phillips M, Muthukumar M, Ghosh K. Beyond monopole electrostatics in regulating conformations of intrinsically disordered proteins. PNAS NEXUS 2024; 3:pgae367. [PMID: 39253398 PMCID: PMC11382291 DOI: 10.1093/pnasnexus/pgae367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024]
Abstract
Conformations and dynamics of an intrinsically disordered protein (IDP) depend on its composition of charged and uncharged amino acids, and their specific placement in the protein sequence. In general, the charge (positive or negative) on an amino acid residue in the protein is not a fixed quantity. Each of the ionizable groups can exist in an equilibrated distribution of fully ionized state (monopole) and an ion-pair (dipole) state formed between the ionizing group and its counterion from the background electrolyte solution. The dipole formation (counterion condensation) depends on the protein conformation, which in turn depends on the distribution of charges and dipoles on the molecule. Consequently, effective charges of ionizable groups in the IDP backbone may differ from their chemical charges in isolation-a phenomenon termed charge-regulation. Accounting for the inevitable dipolar interactions, that have so far been ignored, and using a self-consistent procedure, we present a theory of charge-regulation as a function of sequence, temperature, and ionic strength. The theory quantitatively agrees with both charge reduction and salt-dependent conformation data of Prothymosin-alpha and makes several testable predictions. We predict charged groups are less ionized in sequences where opposite charges are well mixed compared to sequences where they are strongly segregated. Emergence of dipolar interactions from charge-regulation allows spontaneous coexistence of two phases having different conformations and charge states, sensitively depending on the charge patterning. These findings highlight sequence dependent charge-regulation and its potential exploitation by biological regulators such as phosphorylation and mutations in controlling protein conformation and function.
Collapse
Affiliation(s)
- Michael Phillips
- Department of Physics and Astronomy, University of Denver, Denver, CO 80208, USA
| | - Murugappan Muthukumar
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003, USA
| | - Kingshuk Ghosh
- Department of Physics and Astronomy, University of Denver, Denver, CO 80208, USA
- Molecular and Cellular Biophysics, University of Denver, Denver, CO 80208, USA
| |
Collapse
|
10
|
Posey AE, Bremer A, Erkamp NA, Pant A, Knowles TPJ, Dai Y, Mittag T, Pappu RV. Biomolecular condensates are characterized by interphase electric potentials. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601783. [PMID: 39005320 PMCID: PMC11245003 DOI: 10.1101/2024.07.02.601783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Biomolecular condensates form via processes that combine phase separation and reversible associations of multivalent macromolecules. Condensates can be two- or multi-phase systems defined by coexisting dense and dilute phases. Here, we show that solution ions can partition asymmetrically across coexisting phases defined by condensates formed by intrinsically disordered proteins or homopolymeric RNA molecules. Our findings were enabled by direct measurements of the activities of cations and anions within coexisting phases of protein and RNA condensates. Asymmetries in ion partitioning between coexisting phases vary with protein sequence, condensate type, salt concentration, and ion type. The Donnan equilibrium set up by asymmetrical partitioning of solution ions generates interphase electric potentials known as Donnan and Nernst potentials. Our measurements show that the interphase potentials of condensates are of the same order of magnitude as membrane potentials of membrane-bound organelles. Interphase potentials quantify the degree to which microenvironments of coexisting phases are different from one another. Importantly, and based on condensate-specific interphase electric potentials, which are membrane-like potentials of membraneless bodies, we reason that condensates are mesoscale capacitors that store charge. Interphase potentials lead to electric double layers at condensate interfaces. This helps explain recent observations of condensate interfaces being electrochemically active.
Collapse
|
11
|
Usher ET, Fossat MJ, Holehouse AS. Phosphorylation of disordered proteins tunes local and global intramolecular interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598315. [PMID: 38915510 PMCID: PMC11195077 DOI: 10.1101/2024.06.10.598315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Protein post-translational modifications, such as phosphorylation, are important regulatory signals for diverse cellular functions. In particular, intrinsically disordered protein regions (IDRs) are subject to phosphorylation as a means to modulate their interactions and functions. Toward understanding the relationship between phosphorylation in IDRs and specific functional outcomes, we must consider how phosphorylation affects the IDR conformational ensemble. Various experimental techniques are suited to interrogate the features of IDR ensembles; molecular simulations can provide complementary insights and even illuminate ensemble features that may be experimentally inaccessible. Therefore, we sought to expand the tools available to study phosphorylated IDRs by all-atom Monte Carlo simulations. To this end, we implemented parameters for phosphoserine (pSer) and phosphothreonine (pThr) into the OPLS version of the continuum solvent model, ABSINTH, and assessed their performance in all-atom simulations compared to published findings. We simulated short (< 20 residues) and long (> 80 residues) phospho-IDRs that, collectively, survey both local and global phosphorylation-induced changes to the ensemble. Our simulations of four well-studied phospho-IDRs show near-quantitative agreement with published findings for these systems via metrics including changes to radius of gyration, transient helicity, and persistence length. We also leveraged the inherent advantage of sequence control in molecular simulations to explore the conformational effects of diverse combinations of phospho-sites in two multi-phosphorylated IDRs. Our results support and expand on prior observations that connect phosphorylation to changes in the IDR conformational ensemble. Herein, we describe phosphorylation as a means to alter sequence chemistry, net charge and charge patterning, and intramolecular interactions, which can collectively modulate the local and global IDR ensemble features.
Collapse
Affiliation(s)
- Emery T. Usher
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO, USA
| | - Martin J. Fossat
- Department of Biological Physics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Alex S. Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
12
|
Ginell GM, Emenecker RJ, Lotthammer JM, Usher ET, Holehouse AS. Direct prediction of intermolecular interactions driven by disordered regions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597104. [PMID: 38895487 PMCID: PMC11185574 DOI: 10.1101/2024.06.03.597104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Intrinsically disordered regions (IDRs) are critical for a wide variety of cellular functions, many of which involve interactions with partner proteins. Molecular recognition is typically considered through the lens of sequence-specific binding events. However, a growing body of work has shown that IDRs often interact with partners in a manner that does not depend on the precise order of the amino acid order, instead driven by complementary chemical interactions leading to disordered bound-state complexes. Despite this emerging paradigm, we lack tools to describe, quantify, predict, and interpret these types of structurally heterogeneous interactions from the underlying amino acid sequences. Here, we repurpose the chemical physics developed originally for molecular simulations to develop an approach for predicting intermolecular interactions between IDRs and partner proteins. Our approach enables the direct prediction of phase diagrams, the identification of chemically-specific interaction hotspots on IDRs, and a route to develop and test mechanistic hypotheses regarding IDR function in the context of molecular recognition. We use our approach to examine a range of systems and questions to highlight its versatility and applicability.
Collapse
Affiliation(s)
- Garrett M. Ginell
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
- Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO
| | - Ryan. J Emenecker
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
- Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO
| | - Jeffrey M. Lotthammer
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
- Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO
| | - Emery T. Usher
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
- Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO
| | - Alex S. Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
- Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
13
|
King MR, Ruff KM, Lin AZ, Pant A, Farag M, Lalmansingh JM, Wu T, Fossat MJ, Ouyang W, Lew MD, Lundberg E, Vahey MD, Pappu RV. Macromolecular condensation organizes nucleolar sub-phases to set up a pH gradient. Cell 2024; 187:1889-1906.e24. [PMID: 38503281 PMCID: PMC11938373 DOI: 10.1016/j.cell.2024.02.029] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/02/2024] [Accepted: 02/22/2024] [Indexed: 03/21/2024]
Abstract
Nucleoli are multicomponent condensates defined by coexisting sub-phases. We identified distinct intrinsically disordered regions (IDRs), including acidic (D/E) tracts and K-blocks interspersed by E-rich regions, as defining features of nucleolar proteins. We show that the localization preferences of nucleolar proteins are determined by their IDRs and the types of RNA or DNA binding domains they encompass. In vitro reconstitutions and studies in cells showed how condensation, which combines binding and complex coacervation of nucleolar components, contributes to nucleolar organization. D/E tracts of nucleolar proteins contribute to lowering the pH of co-condensates formed with nucleolar RNAs in vitro. In cells, this sets up a pH gradient between nucleoli and the nucleoplasm. By contrast, juxta-nucleolar bodies, which have different macromolecular compositions, featuring protein IDRs with very different charge profiles, have pH values that are equivalent to or higher than the nucleoplasm. Our findings show that distinct compositional specificities generate distinct physicochemical properties for condensates.
Collapse
Affiliation(s)
- Matthew R King
- Department of Biomedical Engineering, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Kiersten M Ruff
- Department of Biomedical Engineering, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Andrew Z Lin
- Department of Biomedical Engineering, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Avnika Pant
- Department of Biomedical Engineering, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Mina Farag
- Department of Biomedical Engineering, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Jared M Lalmansingh
- Department of Biomedical Engineering, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Tingting Wu
- Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA; Department of Electrical and Systems Engineering, James F. McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Martin J Fossat
- Department of Biomedical Engineering, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Wei Ouyang
- Department of Bioengineering, Schools of Engineering and Medicine, Stanford University, Stanford, CA, USA; Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA; Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Matthew D Lew
- Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA; Department of Electrical and Systems Engineering, James F. McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Emma Lundberg
- Department of Bioengineering, Schools of Engineering and Medicine, Stanford University, Stanford, CA, USA; Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA; Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Michael D Vahey
- Department of Biomedical Engineering, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Rohit V Pappu
- Department of Biomedical Engineering, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
14
|
Hoffmann C, Murastov G, Tromm JV, Moog JB, Aslam MA, Matkovic A, Milovanovic D. Electric Potential at the Interface of Membraneless Organelles Gauged by Graphene. NANO LETTERS 2023; 23:10796-10801. [PMID: 37862690 PMCID: PMC10722609 DOI: 10.1021/acs.nanolett.3c02915] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/15/2023] [Indexed: 10/22/2023]
Abstract
Eukaryotic cells contain membrane-bound and membrane-less organelles that are often in contact with each other. How the interface properties of membrane-less organelles regulate their interactions with membranes remains challenging to assess. Here, we employ graphene-based sensors to investigate the electrostatic properties of synapsin 1, a major synaptic phosphoprotein, either in a single phase or after undergoing phase separation to form synapsin condensates. Using these graphene-based sensors, we discover that synapsin condensates generate strong electrical responses that are otherwise absent when synapsin is present as a single phase. By introducing atomically thin dielectric barriers, we show that the electrical response originates in an electric double layer whose formation governs the interaction between synapsin condensates and graphene. Our data indicate that the interface properties of the same protein are substantially different when the protein is in a single phase versus within a biomolecular condensate, unraveling that condensates can harbor ion potential differences at their interface.
Collapse
Affiliation(s)
- Christian Hoffmann
- Laboratory
of Molecular Neuroscience, German Center
for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Gennadiy Murastov
- Chair
of Physics, Department Physics, Mechanics and Electrical Engineering, Montanuniversität Leoben, 8700 Leoben, Austria
| | - Johannes Vincent Tromm
- Laboratory
of Molecular Neuroscience, German Center
for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Jean-Baptiste Moog
- Laboratory
of Molecular Neuroscience, German Center
for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Muhammad Awais Aslam
- Chair
of Physics, Department Physics, Mechanics and Electrical Engineering, Montanuniversität Leoben, 8700 Leoben, Austria
| | - Aleksandar Matkovic
- Chair
of Physics, Department Physics, Mechanics and Electrical Engineering, Montanuniversität Leoben, 8700 Leoben, Austria
| | - Dragomir Milovanovic
- Laboratory
of Molecular Neuroscience, German Center
for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| |
Collapse
|
15
|
Moses D, Ginell GM, Holehouse AS, Sukenik S. Intrinsically disordered regions are poised to act as sensors of cellular chemistry. Trends Biochem Sci 2023; 48:1019-1034. [PMID: 37657994 PMCID: PMC10840941 DOI: 10.1016/j.tibs.2023.08.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 09/03/2023]
Abstract
Intrinsically disordered proteins and protein regions (IDRs) are abundant in eukaryotic proteomes and play a wide variety of essential roles. Instead of folding into a stable structure, IDRs exist in an ensemble of interconverting conformations whose structure is biased by sequence-dependent interactions. The absence of a stable 3D structure, combined with high solvent accessibility, means that IDR conformational biases are inherently sensitive to changes in their environment. Here, we argue that IDRs are ideally poised to act as sensors and actuators of cellular physicochemistry. We review the physical principles that underlie IDR sensitivity, the molecular mechanisms that translate this sensitivity to function, and recent studies where environmental sensing by IDRs may play a key role in their downstream function.
Collapse
Affiliation(s)
- David Moses
- Department of Chemistry and Biochemistry, University of California, Merced, CA, USA
| | - Garrett M Ginell
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA; Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA; Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO, USA.
| | - Shahar Sukenik
- Department of Chemistry and Biochemistry, University of California, Merced, CA, USA; Quantitative Systems Biology Program, University of California, Merced, CA, USA.
| |
Collapse
|
16
|
Celora GL, Blossey R, Münch A, Wagner B. Counterion-controlled phase equilibria in a charge-regulated polymer solution. J Chem Phys 2023; 159:184902. [PMID: 37942872 DOI: 10.1063/5.0169610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023] Open
Abstract
We study phase equilibria in a minimal model of charge-regulated polymer solutions. Our model consists of a single polymer species whose charge state arises from protonation-deprotonation processes in the presence of a dissolved acid, whose anions serve as screening counterions. We explicitly account for variability in the polymers' charge states. Homogeneous equilibria in this model system are characterised by the total concentration of polymers, the concentration of counter-ions and the charge distributions of polymers which can be computed with the help of analytical approximations. We use these analytical results to characterise how parameter values and solution acidity influence equilibrium charge distributions and identify for which regimes uni-modal and multi-modal charge distributions arise. We then study the interplay between charge regulation, solution acidity and phase separation. We find that charge regulation has a significant impact on polymer solubility and allows for non-linear responses to the solution acidity: Re-entrant phase behaviour is possible in response to increasing solution acidity. Moreover, we show that phase separation can yield to the coexistence of local environments characterised by different charge distributions.
Collapse
Affiliation(s)
- Giulia L Celora
- Department of Mathematics, University College London, 25 Gordon Street, London WC1H 0AY, United Kingdom
| | - Ralf Blossey
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Andreas Münch
- Mathematical Institute, University of Oxford, Andrew Wiles Building, Woodstock Road, Oxford OX2 6GG, United Kingdom
| | - Barbara Wagner
- Weierstrass Institute, Mohrenstr. 39, 10117 Berlin, Germany
| |
Collapse
|
17
|
Chowdhury A, Borgia A, Ghosh S, Sottini A, Mitra S, Eapen RS, Borgia MB, Yang T, Galvanetto N, Ivanović MT, Łukijańczuk P, Zhu R, Nettels D, Kundagrami A, Schuler B. Driving forces of the complex formation between highly charged disordered proteins. Proc Natl Acad Sci U S A 2023; 120:e2304036120. [PMID: 37796987 PMCID: PMC10576128 DOI: 10.1073/pnas.2304036120] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/22/2023] [Indexed: 10/07/2023] Open
Abstract
Highly disordered complexes between oppositely charged intrinsically disordered proteins present a new paradigm of biomolecular interactions. Here, we investigate the driving forces of such interactions for the example of the highly positively charged linker histone H1 and its highly negatively charged chaperone, prothymosin α (ProTα). Temperature-dependent single-molecule Förster resonance energy transfer (FRET) experiments and isothermal titration calorimetry reveal ProTα-H1 binding to be enthalpically unfavorable, and salt-dependent affinity measurements suggest counterion release entropy to be an important thermodynamic driving force. Using single-molecule FRET, we also identify ternary complexes between ProTα and H1 in addition to the heterodimer at equilibrium and show how they contribute to the thermodynamics observed in ensemble experiments. Finally, we explain the observed thermodynamics quantitatively with a mean-field polyelectrolyte theory that treats counterion release explicitly. ProTα-H1 complex formation resembles the interactions between synthetic polyelectrolytes, and the underlying principles are likely to be of broad relevance for interactions between charged biomolecules in general.
Collapse
Affiliation(s)
- Aritra Chowdhury
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
| | - Alessandro Borgia
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
| | - Souradeep Ghosh
- Department of Physical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur741246, India
| | - Andrea Sottini
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
| | - Soumik Mitra
- Department of Physical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur741246, India
| | - Rohan S. Eapen
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
| | | | - Tianjin Yang
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
| | - Nicola Galvanetto
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
- Department of Physics, University of Zurich, Zurich8057, Switzerland
| | - Miloš T. Ivanović
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
| | - Paweł Łukijańczuk
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
| | - Ruijing Zhu
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
| | - Daniel Nettels
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
| | - Arindam Kundagrami
- Department of Physical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur741246, India
| | - Benjamin Schuler
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
- Department of Physics, University of Zurich, Zurich8057, Switzerland
| |
Collapse
|
18
|
Triandafillou CG, Pan RW, Dinner AR, Drummond DA. Pervasive, conserved secondary structure in highly charged protein regions. PLoS Comput Biol 2023; 19:e1011565. [PMID: 37844070 PMCID: PMC10602382 DOI: 10.1371/journal.pcbi.1011565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 10/26/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023] Open
Abstract
Understanding how protein sequences confer function remains a defining challenge in molecular biology. Two approaches have yielded enormous insight yet are often pursued separately: structure-based, where sequence-encoded structures mediate function, and disorder-based, where sequences dictate physicochemical and dynamical properties which determine function in the absence of stable structure. Here we study highly charged protein regions (>40% charged residues), which are routinely presumed to be disordered. Using recent advances in structure prediction and experimental structures, we show that roughly 40% of these regions form well-structured helices. Features often used to predict disorder-high charge density, low hydrophobicity, low sequence complexity, and evolutionarily varying length-are also compatible with solvated, variable-length helices. We show that a simple composition classifier predicts the existence of structure far better than well-established heuristics based on charge and hydropathy. We show that helical structure is more prevalent than previously appreciated in highly charged regions of diverse proteomes and characterize the conservation of highly charged regions. Our results underscore the importance of integrating, rather than choosing between, structure- and disorder-based approaches.
Collapse
Affiliation(s)
- Catherine G. Triandafillou
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rosalind Wenshan Pan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Aaron R. Dinner
- Department of Chemistry, University of Chicago, Chicago, Illinois, United States of America
| | - D. Allan Drummond
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, United States of America
- Department of Medicine, Section of Genetic Medicine, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
19
|
Basalla JL, Mak CA, Byrne JA, Ghalmi M, Hoang Y, Vecchiarelli AG. Dissecting the phase separation and oligomerization activities of the carboxysome positioning protein McdB. eLife 2023; 12:e81362. [PMID: 37668016 PMCID: PMC10554743 DOI: 10.7554/elife.81362] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/01/2023] [Indexed: 09/06/2023] Open
Abstract
Across bacteria, protein-based organelles called bacterial microcompartments (BMCs) encapsulate key enzymes to regulate their activities. The model BMC is the carboxysome that encapsulates enzymes for CO2 fixation to increase efficiency and is found in many autotrophic bacteria, such as cyanobacteria. Despite their importance in the global carbon cycle, little is known about how carboxysomes are spatially regulated. We recently identified the two-factor system required for the maintenance of carboxysome distribution (McdAB). McdA drives the equal spacing of carboxysomes via interactions with McdB, which associates with carboxysomes. McdA is a ParA/MinD ATPase, a protein family well studied in positioning diverse cellular structures in bacteria. However, the adaptor proteins like McdB that connect these ATPases to their cargos are extremely diverse. In fact, McdB represents a completely unstudied class of proteins. Despite the diversity, many adaptor proteins undergo phase separation, but functional roles remain unclear. Here, we define the domain architecture of McdB from the model cyanobacterium Synechococcus elongatus PCC 7942, and dissect its mode of biomolecular condensate formation. We identify an N-terminal intrinsically disordered region (IDR) that modulates condensate solubility, a central coiled-coil dimerizing domain that drives condensate formation, and a C-terminal domain that trimerizes McdB dimers and provides increased valency for condensate formation. We then identify critical basic residues in the IDR, which we mutate to glutamines to solubilize condensates. Finally, we find that a condensate-defective mutant of McdB has altered association with carboxysomes and influences carboxysome enzyme content. The results have broad implications for understanding spatial organization of BMCs and the molecular grammar of protein condensates.
Collapse
Affiliation(s)
- Joseph L Basalla
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Claudia A Mak
- Department of Biological Chemistry, University of Michigan-Ann ArborAnn ArborUnited States
| | - Jordan A Byrne
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Maria Ghalmi
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Y Hoang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Anthony G Vecchiarelli
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| |
Collapse
|
20
|
Abstract
Multivalent proteins and nucleic acids, collectively referred to as multivalent associative biomacromolecules, provide the driving forces for the formation and compositional regulation of biomolecular condensates. Here, we review the key concepts of phase transitions of aqueous solutions of associative biomacromolecules, specifically proteins that include folded domains and intrinsically disordered regions. The phase transitions of these systems come under the rubric of coupled associative and segregative transitions. The concepts underlying these processes are presented, and their relevance to biomolecular condensates is discussed.
Collapse
Affiliation(s)
- Rohit V. Pappu
- Department of Biomedical Engineering, Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Samuel R. Cohen
- Department of Biomedical Engineering, Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO 63130, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Furqan Dar
- Department of Biomedical Engineering, Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Mina Farag
- Department of Biomedical Engineering, Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Mrityunjoy Kar
- Max Planck Institute of Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
21
|
Pesce F, Lindorff-Larsen K. Combining Experiments and Simulations to Examine the Temperature-Dependent Behavior of a Disordered Protein. J Phys Chem B 2023. [PMID: 37433228 DOI: 10.1021/acs.jpcb.3c01862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Intrinsically disordered proteins are a class of proteins that lack stable folded conformations and instead adopt a range of conformations that determine their biochemical functions. The temperature-dependent behavior of such disordered proteins is complex and can vary depending on the specific protein and environment. Here, we have used molecular dynamics simulations and previously published experimental data to investigate the temperature-dependent behavior of histatin 5, a 24-residue-long polypeptide. We examined the hypothesis that histatin 5 undergoes a loss of polyproline II (PPII) structure with increasing temperature, leading to more compact conformations. We found that the conformational ensembles generated by the simulations generally agree with small-angle X-ray scattering data for histatin 5, but show some discrepancies with the hydrodynamic radius as probed by pulsed-field gradient NMR spectroscopy, and with the secondary structure information derived from circular dichroism. We attempted to reconcile these differences by reweighting the conformational ensembles against the scattering and NMR data. By doing so, we were in part able to capture the temperature-dependent behavior of histatin 5 and to link the observed decrease in hydrodynamic radius with increasing temperature to a loss of PPII structure. We were, however, unable to achieve agreement with both the scattering and NMR data within experimental errors. We discuss different possible reasons for this including inaccuracies in the force field, differences in conditions of the NMR and scattering experiments, and issues related to the calculation of the hydrodynamic radius from conformational ensembles. Our study highlights the importance of integrating multiple types of experimental data when modeling conformational ensembles of disordered proteins and how environmental factors such as the temperature influence them.
Collapse
Affiliation(s)
- Francesco Pesce
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
22
|
Lang A, Fernández A, Diaz-Lobo M, Vilanova M, Cárdenas F, Gairí M, Pons M. Modulation of Functional Phosphorylation Sites by Basic Residues in the Unique Domain of c-Src. Molecules 2023; 28:4686. [PMID: 37375241 DOI: 10.3390/molecules28124686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
In contrast to the well-studied canonical regulatory mechanisms, the way by which the recently discovered Src N-terminal regulatory element (SNRE) modulates Src activity is not yet well understood. Phosphorylation of serine and threonine residues modulates the charge distribution along the disordered region of the SNRE and may affect a fuzzy complex with the SH3 domain that is believed to act as an information transduction element. The pre-existing positively charged sites can interact with the newly introduced phosphate groups by modulating their acidity, introducing local conformational restrictions, or by coupling various phosphosites into a functional unit. In this paper, we use pH-dependent NMR measurements combined with single point mutations to identify the interactions of basic residues with physiologically important phosphorylated residues and to characterize the effect of these interactions in neighbor residues, thus providing insight into the electrostatic network in the isolated disordered regions and in the entire SNRE. From a methodological point of view, the linear relationships observed between the mutation-induced pKa changes of the phosphate groups of phosphoserine and phosphothreonine and the pH-induced chemical shifts of the NH groups of these residues provide a very convenient alternative to identify interacting phosphate groups without the need to introduce point mutations on specific basic residues.
Collapse
Affiliation(s)
- Andras Lang
- BioNMR Laboratory, Departament de Química Inorgànica i Orgànica, Universitat de Barcelona (UB), Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Alejandro Fernández
- BioNMR Laboratory, Departament de Química Inorgànica i Orgànica, Universitat de Barcelona (UB), Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Mireia Diaz-Lobo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Mar Vilanova
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Francisco Cárdenas
- Centres Científics i Tecnològics de la Universitat de Barcelona (CCiTUB), Universitat de Barcelona (UB), Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Margarida Gairí
- Centres Científics i Tecnològics de la Universitat de Barcelona (CCiTUB), Universitat de Barcelona (UB), Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Miquel Pons
- BioNMR Laboratory, Departament de Química Inorgànica i Orgànica, Universitat de Barcelona (UB), Baldiri Reixac 10-12, 08028 Barcelona, Spain
| |
Collapse
|
23
|
Fossat MJ, Posey AE, Pappu RV. Uncovering the Contributions of Charge Regulation to the Stability of Single Alpha Helices. Chemphyschem 2023; 24:e202200746. [PMID: 36599672 PMCID: PMC10734359 DOI: 10.1002/cphc.202200746] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/07/2022] [Indexed: 01/06/2023]
Abstract
The single alpha helix (SAH) is a recurring motif in biology. The consensus sequence has a di-block architecture that includes repeats of four consecutive glutamate residues followed by four consecutive lysine residues. Measurements show that the overall helicity of sequences with consensus E4 K4 repeats is insensitive to a wide range of pH values. Here, we use the recently introduced q-canonical ensemble, which allows us to decouple measurements of charge state and conformation, to explain the observed insensitivity of SAH helicity to pH. We couple the outputs from separate measurements of charge and conformation with atomistic simulations to derive residue-specific quantifications of preferences for being in an alpha helix and for the ionizable residues to be charged vs. uncharged. We find a clear preference for accommodating uncharged Glu residues within internal positions of SAH-forming sequences. The stabilities of alpha helical conformations increase with the number of E4 K4 repeats and so do the numbers of accessible charge states that are compatible with forming conformations of high helical content. There is conformational buffering whereby charge state heterogeneity buffers against large-scale conformational changes thus making the overall helicity insensitive to large changes in pH. Further, the results clearly argue against a single, rod-like alpha helical conformation being the only or even dominant conformation in the ensembles of so-called SAH sequences.
Collapse
Affiliation(s)
| | | | - Rohit V. Pappu
- Department of Biomedical Engineering and the Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130
| |
Collapse
|
24
|
Triandafillou CG, Pan RW, Dinner AR, Drummond DA. Pervasive, conserved secondary structure in highly charged protein regions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528637. [PMID: 36824805 PMCID: PMC9949069 DOI: 10.1101/2023.02.15.528637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Understanding how protein sequences confer function remains a defining challenge in molecular biology. Two approaches have yielded enormous insight yet are often pursued separately: structure-based, where sequence-encoded structures mediate function, and disorder-based, where sequences dictate physicochemical and dynamical properties which determine function in the absence of stable structure. Here we study highly charged protein regions (>40% charged residues), which are routinely presumed to be disordered. Using recent advances in structure prediction and experimental structures, we show that roughly 40% of these regions form well-structured helices. Features often used to predict disorder-high charge density, low hydrophobicity, low sequence complexity, and evolutionarily varying length-are also compatible with solvated, variable-length helices. We show that a simple composition classifier predicts the existence of structure far better than well-established heuristics based on charge and hydropathy. We show that helical structure is more prevalent than previously appreciated in highly charged regions of diverse proteomes and characterize the conservation of highly charged regions. Our results underscore the importance of integrating, rather than choosing between, structure- and disorder-based approaches.
Collapse
Affiliation(s)
| | - Rosalind Wenshan Pan
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | | | - D. Allan Drummond
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL
| |
Collapse
|
25
|
The biophysics of disordered proteins from the point of view of single-molecule fluorescence spectroscopy. Essays Biochem 2022; 66:875-890. [PMID: 36416865 PMCID: PMC9760427 DOI: 10.1042/ebc20220065] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022]
Abstract
Intrinsically disordered proteins (IDPs) and regions (IDRs) have emerged as key players across many biological functions and diseases. Differently from structured proteins, disordered proteins lack stable structure and are particularly sensitive to changes in the surrounding environment. Investigation of disordered ensembles requires new approaches and concepts for quantifying conformations, dynamics, and interactions. Here, we provide a short description of the fundamental biophysical properties of disordered proteins as understood through the lens of single-molecule fluorescence observations. Single-molecule Förster resonance energy transfer (FRET) and fluorescence correlation spectroscopy (FCS) provides an extensive and versatile toolbox for quantifying the characteristics of conformational distributions and the dynamics of disordered proteins across many different solution conditions, both in vitro and in living cells.
Collapse
|
26
|
Mittag T, Pappu RV. A conceptual framework for understanding phase separation and addressing open questions and challenges. Mol Cell 2022; 82:2201-2214. [PMID: 35675815 PMCID: PMC9233049 DOI: 10.1016/j.molcel.2022.05.018] [Citation(s) in RCA: 354] [Impact Index Per Article: 118.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/04/2022] [Accepted: 05/13/2022] [Indexed: 12/11/2022]
Abstract
Macromolecular phase separation is being recognized for its potential importance and relevance as a driver of spatial organization within cells. Here, we describe a framework based on synergies between networking (percolation or gelation) and density (phase separation) transitions. Accordingly, the phase transitions in question are referred to as phase separation coupled to percolation (PSCP). The condensates that result from PSCP are viscoelastic network fluids. Such systems have sequence-, composition-, and topology-specific internal network structures that give rise to time-dependent interplays between viscous and elastic properties. Unlike pure phase separation, the process of PSCP gives rise to sequence-, chemistry-, and structure-specific distributions of clusters that can form at concentrations that lie well below the threshold concentration for phase separation. PSCP, influenced by specific versus solubility-determining interactions, also provides a bridge between different observations and helps answer questions and address challenges that have arisen regarding the role of macromolecular phase separation in biology.
Collapse
Affiliation(s)
- Tanja Mittag
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
27
|
Zeng X, Ruff KM, Pappu RV. Competing interactions give rise to two-state behavior and switch-like transitions in charge-rich intrinsically disordered proteins. Proc Natl Acad Sci U S A 2022; 119:e2200559119. [PMID: 35512095 PMCID: PMC9171777 DOI: 10.1073/pnas.2200559119] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/12/2022] [Indexed: 11/18/2022] Open
Abstract
The most commonly occurring intrinsically disordered proteins (IDPs) are polyampholytes, which are defined by the duality of low net charge per residue and high fractions of charged residues. Recent experiments have uncovered nuances regarding sequence–ensemble relationships of model polyampholytic IDPs. These include differences in conformational preferences for sequences with lysine vs. arginine and the suggestion that well-mixed sequences form a range of conformations, including globules, conformations with ensemble averages that are reminiscent of ideal chains, or self-avoiding walks. Here, we explain these observations by analyzing results from atomistic simulations. We find that polyampholytic IDPs generally sample two distinct stable states, namely, globules and self-avoiding walks. Globules are favored by electrostatic attractions between oppositely charged residues, whereas self-avoiding walks are favored by favorable free energies of hydration of charged residues. We find sequence-specific temperatures of bistability at which globules and self-avoiding walks can coexist. At these temperatures, ensemble averages over coexisting states give rise to statistics that resemble ideal chains without there being an actual counterbalancing of intrachain and chain-solvent interactions. At equivalent temperatures, arginine-rich sequences tilt the preference toward globular conformations whereas lysine-rich sequences tilt the preference toward self-avoiding walks. We also identify differences between aspartate- and glutamate-containing sequences, whereby the shorter aspartate side chain engenders preferences for metastable, necklace-like conformations. Finally, although segregation of oppositely charged residues within the linear sequence maintains the overall two-state behavior, compact states are highly favored by such systems.
Collapse
Affiliation(s)
- Xiangze Zeng
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130
- Center for Science & Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO 63130
| | - Kiersten M. Ruff
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130
- Center for Science & Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO 63130
| | - Rohit V. Pappu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130
- Center for Science & Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO 63130
| |
Collapse
|