1
|
Yamamoto T, Yamazaki T, Ninomiya K, Nakagawa S, Hirose T. Biophysical Aspect of Assembly and Regulation of Nuclear Bodies Scaffolded by Architectural RNA. J Mol Biol 2025; 437:169016. [PMID: 39978724 DOI: 10.1016/j.jmb.2025.169016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/03/2025] [Accepted: 02/14/2025] [Indexed: 02/22/2025]
Abstract
A growing body of evidence suggests that nuclear bodies, condensates of RNAs and proteins within the nucleus, are assembled through liquid-liquid phase separation. Some nuclear bodies, such as paraspeckles, are scaffolded by a class of RNAs known as architectural RNAs. From a materials science perspective, RNAs are categorized as polymers, which have been extensively studied in soft matter physics. While soft matter physics has the potential to provide significant insights, it is not directly applicable because transcription and other biochemical processes differentiate RNAs from other polymers studied in this field. Therefore, an interdisciplinary research fusing molecular biology and soft matter physics offers a powerful approach to studying nuclear bodies. This review introduces the biophysical insights provided by such interdisciplinary research in the assembly and regulation of nuclear bodies.
Collapse
Affiliation(s)
- Tetsuya Yamamoto
- Institute for Chemical Reaction Design and Discovery, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo 001-0021, Japan.
| | - Tomohiro Yamazaki
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Japan
| | - Kensuke Ninomiya
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Japan
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Japan; Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Japan
| |
Collapse
|
2
|
Wang H, Hoffmann C, Tromm JV, Su X, Elliott J, Wang H, Deng M, McClenaghan C, Baum J, Pang ZP, Milovanovic D, Shi Z. Live-cell quantification reveals viscoelastic regulation of synapsin condensates by α-synuclein. SCIENCE ADVANCES 2025; 11:eads7627. [PMID: 40249817 PMCID: PMC12007584 DOI: 10.1126/sciadv.ads7627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 03/12/2025] [Indexed: 04/20/2025]
Abstract
Synapsin and α-synuclein represent a growing list of condensate-forming proteins where the material states of condensates are directly linked to cellular functions (e.g., neurotransmission) and pathology (e.g., neurodegeneration). However, quantifying condensate material properties in living systems has been a substantial challenge. Here, we develop micropipette aspiration and whole-cell patch-clamp (MAPAC), a platform that allows direct material quantification of condensates in live cells. We find 10,000-fold variations in the viscoelasticity of synapsin condensates, regulated by the partitioning of α-synuclein, a marker for synucleinopathies. Through in vitro reconstitutions, we identify multiple molecular factors that distinctly regulate the viscosity, interfacial tension, and maturation of synapsin condensates, confirming the cellular roles of α-synuclein. Overall, our study provides unprecedented quantitative insights into the material properties of neuronal condensates and reveals a crucial role of α-synuclein in regulating condensate viscoelasticity. Furthermore, we envision MAPAC applicable to study a broad range of condensates in vivo.
Collapse
Affiliation(s)
- Huan Wang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Christian Hoffmann
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), Berlin 10117, Germany
| | - Johannes V. Tromm
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), Berlin 10117, Germany
| | - Xiao Su
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Jordan Elliott
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Han Wang
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), Berlin 10117, Germany
| | - Mengying Deng
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Conor McClenaghan
- Center for Advanced Biotechnology and Medicine, and Departments of Pharmacology and Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Jean Baum
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Zhiping P. Pang
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), Berlin 10117, Germany
- Einstein Center for Neuroscience, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin and Berlin Institute of Health, Berlin 10117, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn 53127, Germany
| | - Zheng Shi
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
- Cancer Pharmacology Research Program, Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
3
|
Dall'Agnese G, Hannett NM, Overholt KJ, Platt JM, Henninger JE, Marcos-Vidal A, Othman Z, Salgado G, Antoniali G, Tell G. APE1 condensation in nucleoli of non-cancer cells depends on rRNA transcription and forming G-quadruplex RNA structures. Nucleic Acids Res 2025; 53:gkaf168. [PMID: 40103231 PMCID: PMC11915510 DOI: 10.1093/nar/gkaf168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 02/14/2025] [Accepted: 02/20/2025] [Indexed: 03/20/2025] Open
Abstract
APE1 [apurinic/apyrimidinic (AP) endodeoxyribonuclease 1] is the main endonuclease of the base excision repair pathway acting on abasic (AP) sites in DNA. APE1 is an abundant nuclear protein, and improper expression or localization of this factor could lead to the accumulation of toxic DNA intermediates. Altered APE1 subcellular distribution and expression are associated with cancer development, suggesting the importance of a fine-tuning mechanism for APE1 activities. Recent works highlighted the presence of APE1 within nucleoli of cancer cells and the ability of APE1 to form biomolecular condensate. However, whether secondary structures of ribosomal RNA (rRNA) influence the nucleolar localization of APE1 remains poorly understood. Since protein overexpression can result in artificial nucleolar accumulation, it is imperative to have appropriate cellular models to study APE1 trafficking under physiological conditions. To address this issue, we generated a murine embryonic stem cell line expressing endogenous fluorescent-tagged APE1. Live-cell imaging demonstrates that APE1 nucleolar accumulation requires active rRNA transcription and is modulated by different genotoxicants. In vitro experiments showed that APE1 condensate formation depends on RNA-forming G-quadruplex structures and relies on critical lysine residues. This study sheds light on the mechanisms underlying APE1 trafficking to the nucleolus and the formation of RNA-dependent APE1 nucleolar condensates.
Collapse
Affiliation(s)
- Giuseppe Dall'Agnese
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, 33100 Udine, Italy
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, United States
| | - Nancy M Hannett
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, United States
| | - Kalon J Overholt
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Jesse M Platt
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, United States
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Jonathan E Henninger
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, United States
| | - Asier Marcos-Vidal
- W.M. Keck Imaging Facility, Whitehead Institute for Biomedical Research, Cambridge, MA 02142, United States
| | - Zahraa Othman
- ARNA Laboratory-Inserm U1212-CNRS UMR 5320, Bordeaux Biologie Santé-Université de Bordeaux, 146 Rue Léo Saignant, 33076 Bordeaux, France
| | - Gilmar Salgado
- ARNA Laboratory-Inserm U1212-CNRS UMR 5320, Bordeaux Biologie Santé-Université de Bordeaux, 146 Rue Léo Saignant, 33076 Bordeaux, France
| | - Giulia Antoniali
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, 33100 Udine, Italy
| |
Collapse
|
4
|
Oh HJ, Lee Y, Hwang H, Hong K, Choi H, Kang JY, Jung Y. Size-controlled assembly of phase separated protein condensates with interfacial protein cages. Nat Commun 2025; 16:1009. [PMID: 39856105 PMCID: PMC11760349 DOI: 10.1038/s41467-025-56391-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Phase separation of specific proteins into liquid-like condensates is a key mechanism for forming membrane-less organelles, which organize diverse cellular processes in space and time. These protein condensates hold immense potential as biomaterials capable of containing specific sets of biomolecules with high densities and dynamic liquid properties. Despite their appeal, methods to manipulate protein condensate materials remain largely unexplored. Here, we present a one-pot assembly method to assemble coalescence-resistant protein condensates, ranging from a few μm to 100 nm in sizes, with surface-stabilizing protein cages. We discover that large protein cages (~30 nm), finely tuned to interact with condensates, efficiently localize on condensate surfaces and prevent the merging (coalescence) of condensates during phase separation. We precisely control condensate diameters by modulating condensate/cage ratios. In addition, the 3D structures of intact protein condensates with interfacial cages are visualized with cryo-electron tomography (ET). This work offers a versatile platform for designing size-controlled, surface-engineered protein condensate materials.
Collapse
Affiliation(s)
- Hyeok Jin Oh
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Yongsuk Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Haerang Hwang
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Kibeom Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Hyeongjoo Choi
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jin Young Kang
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Yongwon Jung
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
5
|
Lambert GS, Maldonado RJK, Parent LJ. Role of the Psi Packaging Signal and Dimerization Initiation Sequence in the Organization of Rous Sarcoma Virus Gag-gRNA Co-Condensates. Viruses 2025; 17:97. [PMID: 39861886 PMCID: PMC11769450 DOI: 10.3390/v17010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/31/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Retroviral genome selection and virion assembly remain promising targets for novel therapeutic intervention. Recent studies have demonstrated that the Gag proteins of Rous sarcoma virus (RSV) and human immunodeficiency virus type-1 (HIV-1) undergo nuclear trafficking, colocalize with nascent genomic viral RNA (gRNA) at transcription sites, may interact with host transcription factors, and display biophysical properties characteristic of biomolecular condensates. In the present work, we utilized a controlled in vitro condensate assay and advanced imaging approaches to investigate the effects of interactions between RSV Gag condensates and viral and nonviral RNAs on condensate abundance and organization. We observed that the psi (Ψ) packaging signal and the dimerization initiation sequence (DIS) had stabilizing effects on RSV Gag condensates, while RNAs lacking these features promoted or antagonized condensation, depending on local protein concentration and condensate architecture. An RNA containing Ψ, DIS, and the dimerization linkage structure (DLS) that is capable of stable dimer formation was observed to act as a bridge between RSV Gag condensates. These observations suggest additional, condensate-related roles for Gag-Ψ binding, gRNA dimerization, and Gag dimerization/multimerization in gRNA selection and packaging, representing a significant step forward in our understanding of how these interactions collectively facilitate efficient genome packaging.
Collapse
Affiliation(s)
- Gregory S. Lambert
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA; (G.S.L.); (R.J.K.M.)
| | - Rebecca J. Kaddis Maldonado
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA; (G.S.L.); (R.J.K.M.)
- Department of Microbiology and Immunology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Leslie J. Parent
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA; (G.S.L.); (R.J.K.M.)
- Department of Microbiology and Immunology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| |
Collapse
|
6
|
Safieddine A, Benassy MN, Bonte T, Slimani F, Pourcelot O, Kress M, Ernoult-Lange M, Courel M, Coleno E, Imbert A, Laine A, Godebert AM, Vinit A, Blugeon C, Chevreux G, Gautheret D, Walter T, Bertrand E, Bénard M, Weil D. Cell-cycle-dependent mRNA localization in P-bodies. Mol Cell 2024; 84:4191-4208.e7. [PMID: 39368464 DOI: 10.1016/j.molcel.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 07/05/2024] [Accepted: 09/10/2024] [Indexed: 10/07/2024]
Abstract
Understanding the dynamics of RNA targeting to membraneless organelles is essential to disentangle their functions. Here, we investigate how P-bodies (PBs) evolve during cell-cycle progression in HEK293 cells. PB purification across the cell cycle uncovers widespread changes in their RNA content, partly uncoupled from cell-cycle-dependent changes in RNA expression. Single-molecule fluorescence in situ hybridization (FISH) shows various mRNA localization patterns in PBs peaking in G1, S, or G2, with examples illustrating the timely capture of mRNAs in PBs when their encoded protein becomes dispensable. Rather than directly reflecting absence of translation, cyclic mRNA localization in PBs can be controlled by RBPs, such as HuR in G2, and by RNA features. Indeed, while PB mRNAs are AU rich at all cell-cycle phases, they are specifically longer in G1, possibly related to post-mitotic PB reassembly. Altogether, our study supports a model where PBs are more than a default location for excess untranslated mRNAs.
Collapse
Affiliation(s)
- Adham Safieddine
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine (IBPS), Laboratoire de Biologie du Développement, 75005 Paris, France.
| | - Marie-Noëlle Benassy
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine (IBPS), Laboratoire de Biologie du Développement, 75005 Paris, France
| | - Thomas Bonte
- Centre for Computational Biology (CBIO), Mines Paris, PSL University, 75006 Paris, France; Institut Curie, PSL University, 75005 Paris, France; INSERM, U900, 75005 Paris, France
| | - Floric Slimani
- Institut de Génétique Humaine, University of Montpellier, CNRS, 34090 Montpellier, France
| | - Oriane Pourcelot
- Institut de Génétique Humaine, University of Montpellier, CNRS, 34090 Montpellier, France
| | - Michel Kress
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine (IBPS), Laboratoire de Biologie du Développement, 75005 Paris, France
| | - Michèle Ernoult-Lange
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine (IBPS), Laboratoire de Biologie du Développement, 75005 Paris, France
| | - Maïté Courel
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine (IBPS), Laboratoire de Biologie du Développement, 75005 Paris, France
| | - Emeline Coleno
- Institut de Génétique Humaine, University of Montpellier, CNRS, 34090 Montpellier, France
| | - Arthur Imbert
- Centre for Computational Biology (CBIO), Mines Paris, PSL University, 75006 Paris, France
| | - Antoine Laine
- Institute for Integrative Biology of the Cell, UMR 9198, CEA, CNRS, Université Paris-Saclay, 91190 Gif-Sur-Yvette, France
| | - Annie Munier Godebert
- Research Center Saint-Antoine (CRSA), CISA Flow Cytometry Facility, UMRS 938, Sorbonne University, F-75012 Paris, France
| | - Angelique Vinit
- Research Center Saint-Antoine (CRSA), CISA Flow Cytometry Facility, UMRS 938, Sorbonne University, F-75012 Paris, France
| | - Corinne Blugeon
- GenomiqueENS, Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Guillaume Chevreux
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Daniel Gautheret
- Institute for Integrative Biology of the Cell, UMR 9198, CEA, CNRS, Université Paris-Saclay, 91190 Gif-Sur-Yvette, France
| | - Thomas Walter
- Centre for Computational Biology (CBIO), Mines Paris, PSL University, 75006 Paris, France; Institut Curie, PSL University, 75005 Paris, France; INSERM, U900, 75005 Paris, France
| | - Edouard Bertrand
- Institut de Génétique Humaine, University of Montpellier, CNRS, 34090 Montpellier, France
| | - Marianne Bénard
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine (IBPS), Laboratoire de Biologie du Développement, 75005 Paris, France
| | - Dominique Weil
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine (IBPS), Laboratoire de Biologie du Développement, 75005 Paris, France.
| |
Collapse
|
7
|
Joshi A, Walimbe A, Sarkar S, Arora L, Kaur G, Jhandai P, Chatterjee D, Banerjee I, Mukhopadhyay S. Intermolecular energy migration via homoFRET captures the modulation in the material property of phase-separated biomolecular condensates. Nat Commun 2024; 15:9215. [PMID: 39455581 PMCID: PMC11511825 DOI: 10.1038/s41467-024-53494-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Physical properties of biomolecular condensates formed via phase separation of proteins and nucleic acids are associated with cell physiology and disease. Condensate properties can be regulated by several cellular factors including post-translational modifications. Here, we introduce an application of intermolecular energy migration via homo-FRET (Förster resonance energy transfer), a nanometric proximity ruler, to study the modulation in short- and long-range protein-protein interactions leading to the changes in the physical properties of condensates of fluorescently-tagged FUS (Fused in Sarcoma) that is associated with the formation of cytoplasmic and nuclear membraneless organelles. We show that homoFRET captures modulations in condensate properties of FUS by RNA, ATP, and post-translational arginine methylation. We also extend the homoFRET methodology to study the in-situ formation of cytoplasmic stress granules in mammalian cells. Our studies highlight the broad applicability of homoFRET as a potent generic tool for studying intracellular phase transitions involved in function and disease.
Collapse
Affiliation(s)
- Ashish Joshi
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
| | - Anuja Walimbe
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
| | - Snehasis Sarkar
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
| | - Lisha Arora
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
| | - Gaganpreet Kaur
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
| | - Prince Jhandai
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
- Department of Physiological Sciences, Oklahoma State University, Oklahoma, OK, USA
| | - Dhruba Chatterjee
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
| | - Indranil Banerjee
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
| | - Samrat Mukhopadhyay
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India.
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India.
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India.
| |
Collapse
|
8
|
Hodgson RE, Rayment JA, Huang WP, Sanchez Avila A, Ellis BC, Lin YH, Soni N, Hautbergue GM, Shelkovnikova TA. C9orf72 poly-PR forms anisotropic condensates causative of nuclear TDP-43 pathology. iScience 2024; 27:110937. [PMID: 39391721 PMCID: PMC11465050 DOI: 10.1016/j.isci.2024.110937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/05/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024] Open
Abstract
Proteinaceous inclusions formed by C9orf72-derived dipeptide-repeat (DPR) proteins are a histopathological hallmark in ∼50% of familial amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD) cases. However, DPR aggregation/inclusion formation could not be efficiently recapitulated in cell models for four out of five DPRs. In this study, using optogenetics, we achieved chemical-free poly-PR condensation/aggregation in cultured cells including human motor neurons, with spatial and temporal control. Strikingly, nuclear poly-PR condensates had anisotropic, hollow-center appearance, resembling TDP-43 anisosomes, and their growth was limited by RNA. These condensates induced abnormal TDP-43 granulation in the nucleus without stress response activation. Cytoplasmic poly-PR aggregates forming under prolonged opto-stimulation were more persistent than its nuclear condensates, selectively sequestered TDP-43 in a demixed state and surrounded spontaneous stress granules. Thus, poly-PR condensation accompanied by nuclear TDP-43 dysfunction may constitute an early pathological event in C9-ALS/FTD. Anisosome-type condensates of disease-linked proteins may represent a common molecular species in neurodegenerative disease.
Collapse
Affiliation(s)
- Rachel E. Hodgson
- Sheffield Institute for Translational Neuroscience and Neuroscience Institute, University of Sheffield, Sheffield S10 2HQ, UK
| | - Jessica A. Rayment
- Sheffield Institute for Translational Neuroscience and Neuroscience Institute, University of Sheffield, Sheffield S10 2HQ, UK
| | - Wan-Ping Huang
- Sheffield Institute for Translational Neuroscience and Neuroscience Institute, University of Sheffield, Sheffield S10 2HQ, UK
| | - Anna Sanchez Avila
- Sheffield Institute for Translational Neuroscience and Neuroscience Institute, University of Sheffield, Sheffield S10 2HQ, UK
| | - Brittany C.S. Ellis
- Sheffield Institute for Translational Neuroscience and Neuroscience Institute, University of Sheffield, Sheffield S10 2HQ, UK
| | - Ya-Hui Lin
- Sheffield Institute for Translational Neuroscience and Neuroscience Institute, University of Sheffield, Sheffield S10 2HQ, UK
| | - Nikita Soni
- Sheffield Institute for Translational Neuroscience and Neuroscience Institute, University of Sheffield, Sheffield S10 2HQ, UK
| | - Guillaume M. Hautbergue
- Sheffield Institute for Translational Neuroscience and Neuroscience Institute, University of Sheffield, Sheffield S10 2HQ, UK
| | - Tatyana A. Shelkovnikova
- Sheffield Institute for Translational Neuroscience and Neuroscience Institute, University of Sheffield, Sheffield S10 2HQ, UK
| |
Collapse
|
9
|
Hernandez-Armendariz A, Sorichetti V, Hayashi Y, Koskova Z, Brunner A, Ellenberg J, Šarić A, Cuylen-Haering S. A liquid-like coat mediates chromosome clustering during mitotic exit. Mol Cell 2024; 84:3254-3270.e9. [PMID: 39153474 DOI: 10.1016/j.molcel.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 06/04/2024] [Accepted: 07/24/2024] [Indexed: 08/19/2024]
Abstract
The individualization of chromosomes during early mitosis and their clustering upon exit from cell division are two key transitions that ensure efficient segregation of eukaryotic chromosomes. Both processes are regulated by the surfactant-like protein Ki-67, but how Ki-67 achieves these diametric functions has remained unknown. Here, we report that Ki-67 radically switches from a chromosome repellent to a chromosome attractant during anaphase in human cells. We show that Ki-67 dephosphorylation during mitotic exit and the simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface. Experiments and coarse-grained simulations support a model in which the coalescence of chromosome surfaces, driven by co-condensation of Ki-67 and RNA, promotes clustering of chromosomes. Our study reveals how the switch of Ki-67 from a surfactant to a liquid-like condensed phase can generate mechanical forces during genome segregation that are required for re-establishing nuclear-cytoplasmic compartmentalization after mitosis.
Collapse
Affiliation(s)
- Alberto Hernandez-Armendariz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Valerio Sorichetti
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Yuki Hayashi
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Zuzana Koskova
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Andreas Brunner
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Jan Ellenberg
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Anđela Šarić
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Sara Cuylen-Haering
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany.
| |
Collapse
|
10
|
Wang H, Hoffmann C, Tromm JV, Su X, Elliott J, Wang H, Baum J, Pang ZP, Milovanovic D, Shi Z. Live-Cell Quantification Reveals Viscoelastic Regulation of Synapsin Condensates by α-Synuclein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.28.605529. [PMID: 39211102 PMCID: PMC11361170 DOI: 10.1101/2024.07.28.605529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Synapsin and α-synuclein represent a growing list of condensate-forming proteins where the material states of condensates are directly linked to cellular functions (e.g., neurotransmission) and pathology (e.g., neurodegeneration). However, quantifying condensate material properties in living systems has been a significant challenge. To address this, we develop MAPAC (micropipette aspiration and whole-cell patch clamp), a platform that allows direct material quantification of condensates in live cells. We find 10,000-fold variations in the viscoelasticity of synapsin condensates, regulated by the partitioning of α-synuclein, a marker for synucleinopathies. Through in vitro reconstitutions, we identify 4 molecular factors that distinctly regulate the viscosity and interfacial tension of synapsin condensates, verifying the cellular effects of α-synuclein. Overall, our study provides unprecedented quantitative insights into the material properties of neuronal condensates and reveals a crucial role of α-synuclein in regulating condensate viscoelasticity. Furthermore, we envision MAPAC applicable to study a broad range of condensates in vivo. .
Collapse
|
11
|
Xie Y, Shu T, Liu T, Spindler MC, Mahamid J, Hocky GM, Gresham D, Holt LJ. Polysome collapse and RNA condensation fluidize the cytoplasm. Mol Cell 2024; 84:2698-2716.e9. [PMID: 39059370 PMCID: PMC11539954 DOI: 10.1016/j.molcel.2024.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 03/25/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
The cell interior is packed with macromolecules of mesoscale size, and this crowded milieu significantly influences cellular physiology. Cellular stress responses almost universally lead to inhibition of translation, resulting in polysome collapse and release of mRNA. The released mRNA molecules condense with RNA-binding proteins to form ribonucleoprotein (RNP) condensates known as processing bodies and stress granules. Here, we show that polysome collapse and condensation of RNA transiently fluidize the cytoplasm, and coarse-grained molecular dynamic simulations support this as a minimal mechanism for the observed biophysical changes. Increased mesoscale diffusivity correlates with the efficient formation of quality control bodies (Q-bodies), membraneless organelles that compartmentalize misfolded peptides during stress. Synthetic, light-induced RNA condensation also fluidizes the cytoplasm. Together, our study reveals a functional role for stress-induced translation inhibition and formation of RNP condensates in modulating the physical properties of the cytoplasm to enable efficient response of cells to stress conditions.
Collapse
Affiliation(s)
- Ying Xie
- Institute for Systems Genetics, New York University Langone Medical Center, New York, NY, USA; Department of Biology, New York University, New York, NY, USA
| | - Tong Shu
- Institute for Systems Genetics, New York University Langone Medical Center, New York, NY, USA
| | - Tiewei Liu
- Institute for Systems Genetics, New York University Langone Medical Center, New York, NY, USA; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Marie-Christin Spindler
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany; Cell Biology and Biophysics Unit, EMBL, Heidelberg, Germany
| | - Glen M Hocky
- Department of Chemistry and Simons Center for Computational Physical Chemistry, New York University, New York, NY, USA
| | - David Gresham
- Department of Biology, New York University, New York, NY, USA.
| | - Liam J Holt
- Institute for Systems Genetics, New York University Langone Medical Center, New York, NY, USA.
| |
Collapse
|
12
|
Ramachandran V, Potoyan DA. Atomistic insights into the reentrant phase-transitions in polyuracil and polylysine mixtures. J Chem Phys 2024; 161:015101. [PMID: 38949285 PMCID: PMC11378353 DOI: 10.1063/5.0206190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/10/2024] [Indexed: 07/02/2024] Open
Abstract
The phase separation of protein and RNA mixtures underpins the assembly and regulation of numerous membraneless organelles in cells. The ubiquity of protein-RNA condensates in cellular regulatory processes is in part due to their sensitivity to RNA concentration, which affects their physical properties and stability. Recent experiments with poly-cationic peptide-RNA mixtures have revealed closed-loop phase diagrams featuring lower and upper critical solution temperatures. These diagrams indicate reentrant phase transitions shaped by biomolecular interactions and entropic forces such as solvent and ion reorganization. We employed atomistic simulations to study mixtures with various RNA-polylysine stoichiometries and temperatures to elucidate the microscopic driving forces behind reentrant phase transitions in protein-RNA mixtures. Our findings reveal an intricate interplay between hydration, ion condensation, and specific RNA-polylysine hydrogen bonding, resulting in distinct stoichiometry-dependent phase equilibria governing stabilities and structures of the condensate phase. Our simulations show that reentrant transitions are accompanied by desolvation around the phosphate groups of RNA, with increased contacts between phosphate and lysine side chains. In RNA-rich systems at lower temperatures, RNA molecules can form an extensive pi-stacking and hydrogen bond network, leading to percolation. In protein-rich systems, no such percolation-induced transitions are observed. Furthermore, we assessed the performance of three prominent water force fields-Optimal Point Charge (OPC), TIP4P-2005, and TIP4P-D-in capturing reentrant phase transitions. OPC provided a superior balance of interactions, enabling effective capture of reentrant transitions and accurate characterization of changes in solvent reorganization. This study offers atomistic insights into the nature of reentrant phase transitions using simple model peptide and nucleotide mixtures. We believe that our results are broadly applicable to larger classes of peptide-RNA mixtures exhibiting reentrant phase transitions.
Collapse
Affiliation(s)
| | - Davit A Potoyan
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
13
|
Zacco E, Broglia L, Kurihara M, Monti M, Gustincich S, Pastore A, Plath K, Nagakawa S, Cerase A, Sanchez de Groot N, Tartaglia GG. RNA: The Unsuspected Conductor in the Orchestra of Macromolecular Crowding. Chem Rev 2024; 124:4734-4777. [PMID: 38579177 PMCID: PMC11046439 DOI: 10.1021/acs.chemrev.3c00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 04/07/2024]
Abstract
This comprehensive Review delves into the chemical principles governing RNA-mediated crowding events, commonly referred to as granules or biological condensates. We explore the pivotal role played by RNA sequence, structure, and chemical modifications in these processes, uncovering their correlation with crowding phenomena under physiological conditions. Additionally, we investigate instances where crowding deviates from its intended function, leading to pathological consequences. By deepening our understanding of the delicate balance that governs molecular crowding driven by RNA and its implications for cellular homeostasis, we aim to shed light on this intriguing area of research. Our exploration extends to the methodologies employed to decipher the composition and structural intricacies of RNA granules, offering a comprehensive overview of the techniques used to characterize them, including relevant computational approaches. Through two detailed examples highlighting the significance of noncoding RNAs, NEAT1 and XIST, in the formation of phase-separated assemblies and their influence on the cellular landscape, we emphasize their crucial role in cellular organization and function. By elucidating the chemical underpinnings of RNA-mediated molecular crowding, investigating the role of modifications, structures, and composition of RNA granules, and exploring both physiological and aberrant phase separation phenomena, this Review provides a multifaceted understanding of the intriguing world of RNA-mediated biological condensates.
Collapse
Affiliation(s)
- Elsa Zacco
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Laura Broglia
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Misuzu Kurihara
- RNA
Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Michele Monti
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Stefano Gustincich
- Central
RNA Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Annalisa Pastore
- UK
Dementia Research Institute at the Maurice Wohl Institute of King’s
College London, London SE5 9RT, U.K.
| | - Kathrin Plath
- Department
of Biological Chemistry, David Geffen School
of Medicine at the University of California Los Angeles, Los Angeles, California 90095, United States
| | - Shinichi Nagakawa
- RNA
Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Andrea Cerase
- Blizard
Institute,
Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, U.K.
- Unit
of Cell and developmental Biology, Department of Biology, Università di Pisa, 56123 Pisa, Italy
| | - Natalia Sanchez de Groot
- Unitat
de Bioquímica, Departament de Bioquímica i Biologia
Molecular, Universitat Autònoma de
Barcelona, 08193 Barcelona, Spain
| | - Gian Gaetano Tartaglia
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
- Catalan
Institution for Research and Advanced Studies, ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
14
|
Zheng H, Zhang H. More than a bystander: RNAs specify multifaceted behaviors of liquid-liquid phase-separated biomolecular condensates. Bioessays 2024; 46:e2300203. [PMID: 38175843 DOI: 10.1002/bies.202300203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024]
Abstract
Cells contain a myriad of membraneless ribonucleoprotein (RNP) condensates with distinct compositions of proteins and RNAs. RNP condensates participate in different cellular activities, including RNA storage, mRNA translation or decay, stress response, etc. RNP condensates are assembled via liquid-liquid phase separation (LLPS) driven by multivalent interactions. Transition of RNP condensates into bodies with abnormal material properties, such as solid-like amyloid structures, is associated with the pathogenesis of various diseases. In this review, we focus on how RNAs regulate multiple aspects of RNP condensates, such as dynamic assembly and/or disassembly and biophysical properties. RNA properties - including concentration, sequence, length and structure - also determine the phase behaviors of RNP condensates. RNA is also involved in specifying autophagic degradation of RNP condensates. Unraveling the role of RNA in RNPs provides novel insights into pathological accumulation of RNPs in various diseases. This new understanding can potentially be harnessed to develop therapeutic strategies.
Collapse
Affiliation(s)
- Hui Zheng
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Hong Zhang
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, P.R. China
| |
Collapse
|
15
|
Cochard A, Safieddine A, Combe P, Benassy M, Weil D, Gueroui Z. Condensate functionalization with microtubule motors directs their nucleation in space and allows manipulating RNA localization. EMBO J 2023; 42:e114106. [PMID: 37724036 PMCID: PMC10577640 DOI: 10.15252/embj.2023114106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/20/2023] Open
Abstract
The localization of RNAs in cells is critical for many cellular processes. Whereas motor-driven transport of ribonucleoprotein (RNP) condensates plays a prominent role in RNA localization in cells, their study remains limited by the scarcity of available tools allowing to manipulate condensates in a spatial manner. To fill this gap, we reconstitute in cellula a minimal RNP transport system based on bioengineered condensates, which were functionalized with kinesins and dynein-like motors, allowing for their positioning at either the cell periphery or centrosomes. This targeting mostly occurs through the active transport of the condensate scaffolds, which leads to localized nucleation of phase-separated condensates. Then, programming the condensates to recruit specific mRNAs is able to shift the localization of these mRNAs toward the cell periphery or the centrosomes. Our method opens novel perspectives for examining the role of RNA localization as a driver of cellular functions.
Collapse
Affiliation(s)
- Audrey Cochard
- Department of Chemistry, École Normale SupérieurePSL University, Sorbonne Université, CNRSParisFrance
- Sorbonne Université, CNRS, Institut de Biologie Paris‐Seine (IBPS), Laboratoire de Biologie du DéveloppementParisFrance
| | - Adham Safieddine
- Sorbonne Université, CNRS, Institut de Biologie Paris‐Seine (IBPS), Laboratoire de Biologie du DéveloppementParisFrance
| | - Pauline Combe
- Department of Chemistry, École Normale SupérieurePSL University, Sorbonne Université, CNRSParisFrance
| | - Marie‐Noëlle Benassy
- Sorbonne Université, CNRS, Institut de Biologie Paris‐Seine (IBPS), Laboratoire de Biologie du DéveloppementParisFrance
| | - Dominique Weil
- Sorbonne Université, CNRS, Institut de Biologie Paris‐Seine (IBPS), Laboratoire de Biologie du DéveloppementParisFrance
| | - Zoher Gueroui
- Department of Chemistry, École Normale SupérieurePSL University, Sorbonne Université, CNRSParisFrance
| |
Collapse
|
16
|
Piroska L, Fenyi A, Thomas S, Plamont MA, Redeker V, Melki R, Gueroui Z. α-Synuclein liquid condensates fuel fibrillar α-synuclein growth. SCIENCE ADVANCES 2023; 9:eadg5663. [PMID: 37585526 PMCID: PMC10431715 DOI: 10.1126/sciadv.adg5663] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/13/2023] [Indexed: 08/18/2023]
Abstract
α-Synuclein (α-Syn) aggregation into fibrils with prion-like features is intimately associated with Lewy pathology and various synucleinopathies. Emerging studies suggest that α-Syn could form liquid condensates through phase separation. The role of these condensates in aggregation and disease remains elusive and the interplay between α-Syn fibrils and α-Syn condensates remains unexplored, possibly due to difficulties in triggering the formation of α-Syn condensates in cells. To address this gap, we developed an assay allowing the controlled assembly/disassembly of α-Syn condensates in cells and studied them upon exposure to preformed α-Syn fibrillar polymorphs. Fibrils triggered the evolution of liquid α-Syn condensates into solid-like structures displaying growing needle-like extensions and exhibiting pathological amyloid hallmarks. No such changes were elicited on α-Syn that did not undergo phase separation. We, therefore, propose a model where α-Syn within condensates fuels exogenous fibrillar seeds growth, thus speeding up the prion-like propagation of pathogenic aggregates.
Collapse
Affiliation(s)
- Leonard Piroska
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Alexis Fenyi
- Institut Francois Jacob (MIRCen), CEA, CNRS, Fontenay-aux-Roses, France
| | - Scott Thomas
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Marie-Aude Plamont
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Virginie Redeker
- Institut Francois Jacob (MIRCen), CEA, CNRS, Fontenay-aux-Roses, France
| | - Ronald Melki
- Institut Francois Jacob (MIRCen), CEA, CNRS, Fontenay-aux-Roses, France
| | - Zoher Gueroui
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
17
|
Dash S, Lamb MC, Lange JJ, McKinney MC, Tsuchiya D, Guo F, Zhao X, Corbin TJ, Kirkman M, Delventhal K, Moore EL, McKinney S, Shiang R, Trainor PA. rRNA transcription is integral to phase separation and maintenance of nucleolar structure. PLoS Genet 2023; 19:e1010854. [PMID: 37639467 PMCID: PMC10513380 DOI: 10.1371/journal.pgen.1010854] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/21/2023] [Accepted: 07/03/2023] [Indexed: 08/31/2023] Open
Abstract
Transcription of ribosomal RNA (rRNA) by RNA Polymerase (Pol) I in the nucleolus is necessary for ribosome biogenesis, which is intimately tied to cell growth and proliferation. Perturbation of ribosome biogenesis results in tissue specific disorders termed ribosomopathies in association with alterations in nucleolar structure. However, how rRNA transcription and ribosome biogenesis regulate nucleolar structure during normal development and in the pathogenesis of disease remains poorly understood. Here we show that homozygous null mutations in Pol I subunits required for rRNA transcription and ribosome biogenesis lead to preimplantation lethality. Moreover, we discovered that Polr1a-/-, Polr1b-/-, Polr1c-/- and Polr1d-/- mutants exhibit defects in the structure of their nucleoli, as evidenced by a decrease in number of nucleolar precursor bodies and a concomitant increase in nucleolar volume, which results in a single condensed nucleolus. Pharmacological inhibition of Pol I in preimplantation and midgestation embryos, as well as in hiPSCs, similarly results in a single condensed nucleolus or fragmented nucleoli. We find that when Pol I function and rRNA transcription is inhibited, the viscosity of the granular compartment of the nucleolus increases, which disrupts its phase separation properties, leading to a single condensed nucleolus. However, if a cell progresses through mitosis, the absence of rRNA transcription prevents reassembly of the nucleolus and manifests as fragmented nucleoli. Taken together, our data suggests that Pol I function and rRNA transcription are required for maintaining nucleolar structure and integrity during development and in the pathogenesis of disease.
Collapse
Affiliation(s)
- Soma Dash
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Maureen C. Lamb
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Jeffrey J. Lange
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Mary C. McKinney
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Dai Tsuchiya
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Fengli Guo
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Xia Zhao
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Timothy J. Corbin
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - MaryEllen Kirkman
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Kym Delventhal
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Emma L. Moore
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Rita Shiang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Paul A. Trainor
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| |
Collapse
|
18
|
Sanchez-Burgos I, Herriott L, Collepardo-Guevara R, Espinosa JR. Surfactants or scaffolds? RNAs of varying lengths control the thermodynamic stability of condensates differently. Biophys J 2023; 122:2973-2987. [PMID: 36883003 PMCID: PMC10398262 DOI: 10.1016/j.bpj.2023.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Biomolecular condensates, thought to form via liquid-liquid phase separation of intracellular mixtures, are multicomponent systems that can include diverse types of proteins and RNAs. RNA is a critical modulator of RNA-protein condensate stability, as it induces an RNA concentration-dependent reentrant phase transition-increasing stability at low RNA concentrations and decreasing it at high concentrations. Beyond concentration, RNAs inside condensates can be heterogeneous in length, sequence, and structure. Here, we use multiscale simulations to understand how different RNA parameters interact with one another to modulate the properties of RNA-protein condensates. To do so, we perform residue/nucleotide resolution coarse-grained molecular dynamics simulations of multicomponent RNA-protein condensates containing RNAs of different lengths and concentrations, and either FUS or PR25 proteins. Our simulations reveal that RNA length regulates the reentrant phase behavior of RNA-protein condensates: increasing RNA length sensitively rises the maximum value that the critical temperature of the mixture reaches, and the maximum concentration of RNA that the condensate can incorporate before beginning to become unstable. Strikingly, RNAs of different lengths are organized heterogeneously inside condensates, which allows them to enhance condensate stability via two distinct mechanisms: shorter RNA chains accumulate at the condensate's surface acting as natural biomolecular surfactants, while longer RNA chains concentrate inside the core to saturate their bonds and enhance the density of molecular connections in the condensate. Using a patchy particle model, we additionally demonstrate that the combined impact of RNA length and concentration on condensate properties is dictated by the valency, binding affinity, and polymer length of the various biomolecules involved. Our results postulate that diversity on RNA parameters within condensates allows RNAs to increase condensate stability by fulfilling two different criteria: maximizing enthalpic gain and minimizing interfacial free energy; hence, RNA diversity should be considered when assessing the impact of RNA on biomolecular condensates regulation.
Collapse
Affiliation(s)
- Ignacio Sanchez-Burgos
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom
| | - Lara Herriott
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom
| | - Rosana Collepardo-Guevara
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom; Department of Genetics, University of Cambridge, Cambridge, United Kingdom.
| | - Jorge R Espinosa
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom; Departament of Chemical Physics, Faculty of Chemical Sciences, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
19
|
Curnutte HA, Lan X, Sargen M, Ao Ieong SM, Campbell D, Kim H, Liao Y, Lazar SB, Trcek T. Proteins rather than mRNAs regulate nucleation and persistence of Oskar germ granules in Drosophila. Cell Rep 2023; 42:112723. [PMID: 37384531 PMCID: PMC10439980 DOI: 10.1016/j.celrep.2023.112723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/24/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023] Open
Abstract
RNA granules are membraneless condensates that provide functional compartmentalization within cells. The mechanisms by which RNA granules form are under intense investigation. Here, we characterize the role of mRNAs and proteins in the formation of germ granules in Drosophila. Super-resolution microscopy reveals that the number, size, and distribution of germ granules is precisely controlled. Surprisingly, germ granule mRNAs are not required for the nucleation or the persistence of germ granules but instead control their size and composition. Using an RNAi screen, we determine that RNA regulators, helicases, and mitochondrial proteins regulate germ granule number and size, while the proteins of the endoplasmic reticulum, nuclear pore complex, and cytoskeleton control their distribution. Therefore, the protein-driven formation of Drosophila germ granules is mechanistically distinct from the RNA-dependent condensation observed for other RNA granules such as stress granules and P-bodies.
Collapse
Affiliation(s)
- Harrison A Curnutte
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Xinyue Lan
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Manuel Sargen
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Si Man Ao Ieong
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Dylan Campbell
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Hyosik Kim
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Yijun Liao
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Sarah Bailah Lazar
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Tatjana Trcek
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
20
|
Xie Y, Liu T, Gresham D, Holt LJ. mRNA condensation fluidizes the cytoplasm. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542963. [PMID: 37398029 PMCID: PMC10312499 DOI: 10.1101/2023.05.30.542963] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The intracellular environment is packed with macromolecules of mesoscale size, and this crowded milieu significantly influences cell physiology. When exposed to stress, mRNAs released after translational arrest condense with RNA binding proteins, resulting in the formation of membraneless RNA protein (RNP) condensates known as processing bodies (P-bodies) and stress granules (SGs). However, the impact of the assembly of these condensates on the biophysical properties of the crowded cytoplasmic environment remains unclear. Here, we find that upon exposure to stress, polysome collapse and condensation of mRNAs increases mesoscale particle diffusivity in the cytoplasm. Increased mesoscale diffusivity is required for the efficient formation of Q-bodies, membraneless organelles that coordinate degradation of misfolded peptides that accumulate during stress. Additionally, we demonstrate that polysome collapse and stress granule formation has a similar effect in mammalian cells, fluidizing the cytoplasm at the mesoscale. We find that synthetic, light-induced RNA condensation is sufficient to fluidize the cytoplasm, demonstrating a causal effect of RNA condensation. Together, our work reveals a new functional role for stress-induced translation inhibition and formation of RNP condensates in modulating the physical properties of the cytoplasm to effectively respond to stressful conditions.
Collapse
Affiliation(s)
- Ying Xie
- Institute for Systems Genetics, New York University Langone Medical Center, New York, New York, United States
- Department of Biology, New York University, New York, New York, United States
| | - Tiewei Liu
- Institute for Systems Genetics, New York University Langone Medical Center, New York, New York, United States
| | - David Gresham
- Department of Biology, New York University, New York, New York, United States
| | - Liam J Holt
- Institute for Systems Genetics, New York University Langone Medical Center, New York, New York, United States
| |
Collapse
|
21
|
Boeynaems S, Dorone Y, Zhuang Y, Shabardina V, Huang G, Marian A, Kim G, Sanyal A, Şen NE, Griffith D, Docampo R, Lasker K, Ruiz-Trillo I, Auburger G, Holehouse AS, Kabashi E, Lin Y, Gitler AD. Poly(A)-binding protein is an ataxin-2 chaperone that regulates biomolecular condensates. Mol Cell 2023; 83:2020-2034.e6. [PMID: 37295429 PMCID: PMC10318123 DOI: 10.1016/j.molcel.2023.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/14/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023]
Abstract
Biomolecular condensation underlies the biogenesis of an expanding array of membraneless assemblies, including stress granules (SGs), which form under a variety of cellular stresses. Advances have been made in understanding the molecular grammar of a few scaffold proteins that make up these phases, but how the partitioning of hundreds of SG proteins is regulated remains largely unresolved. While investigating the rules that govern the condensation of ataxin-2, an SG protein implicated in neurodegenerative disease, we unexpectedly identified a short 14 aa sequence that acts as a condensation switch and is conserved across the eukaryote lineage. We identify poly(A)-binding proteins as unconventional RNA-dependent chaperones that control this regulatory switch. Our results uncover a hierarchy of cis and trans interactions that fine-tune ataxin-2 condensation and reveal an unexpected molecular function for ancient poly(A)-binding proteins as regulators of biomolecular condensate proteins. These findings may inspire approaches to therapeutically target aberrant phases in disease.
Collapse
Affiliation(s)
- Steven Boeynaems
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, TX 77030, USA; Center for Alzheimer's and Neurodegenerative Diseases (CAND), Texas Children's Hospital, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center (DLDCCC), Baylor College of Medicine, Houston, TX 77030, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| | - Yanniv Dorone
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Yanrong Zhuang
- IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Centre for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Victoria Shabardina
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, Barcelona 08003 Catalonia, Spain
| | - Guozhong Huang
- Department of Cellular Biology and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Anca Marian
- Imagine Institute, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1163, Paris Descartes Université, 75015 Paris, France
| | - Garam Kim
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Anushka Sanyal
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Nesli-Ece Şen
- Experimental Neurology, Goethe-University Hospital, 60590 Frankfurt, Germany
| | - Daniel Griffith
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Biomolecular Condensates, Washington University in St Louis, St. Louis, MO 63130, USA
| | - Roberto Docampo
- Department of Cellular Biology and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Keren Lasker
- The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, Barcelona 08003 Catalonia, Spain; ICREA, Passeig Lluís Companys 23, Barcelona 08010 Catalonia, Spain
| | - Georg Auburger
- Experimental Neurology, Goethe-University Hospital, 60590 Frankfurt, Germany
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Biomolecular Condensates, Washington University in St Louis, St. Louis, MO 63130, USA
| | - Edor Kabashi
- Imagine Institute, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1163, Paris Descartes Université, 75015 Paris, France
| | - Yi Lin
- IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Centre for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Aaron D Gitler
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
22
|
Joshi A, Mukhopadhyay S. Biophysics of biomolecular condensates. Biophys J 2023; 122:737-740. [PMID: 36791720 PMCID: PMC10027443 DOI: 10.1016/j.bpj.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/15/2023] Open
Abstract
The formation of biomolecular condensates has emerged as a new biophysical principle for subcellular compartmentalization within cells to facilitate the spatiotemporal regulation of a multitude of complex biomolecular reactions. In this Research Highlight, we summarize the findings that were published in Biophysical Journal during the past two years (2021 and 2022). These papers provided biophysical insights into the formation of biomolecular condensates via phase separation of proteins with or without nucleic acids.
Collapse
Affiliation(s)
- Ashish Joshi
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
| | - Samrat Mukhopadhyay
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India; Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India.
| |
Collapse
|
23
|
Dubinski A, Gagné M, Peyrard S, Gordon D, Talbot K, Vande Velde C. Stress granule assembly in vivo is deficient in the CNS of mutant TDP-43 ALS mice. Hum Mol Genet 2023; 32:319-332. [PMID: 35994036 PMCID: PMC9840205 DOI: 10.1093/hmg/ddac206] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/06/2022] [Accepted: 08/17/2022] [Indexed: 01/19/2023] Open
Abstract
Responding effectively to external stress is crucial for neurons. Defective stress granule dynamics has been hypothesized as one of the pathways that renders motor neurons in amyotrophic lateral sclerosis (ALS) more prone to early death. Specifically, it is thought that stress granules seed the cytoplasmic TDP-43 inclusions that are observed in the neurons of most ALS patients, as well as ~50% of all frontotemporal dementia (FTD) patients. In this study, we tested this hypothesis in an intact mammalian nervous system. We established an in vivo heat stress paradigm in mice that effectively triggers the eIF2α pathway and the formation of stress granules in the CNS. In non-transgenic mice, we report an age-dependent decline in the formation of heat-induced stress granules, with 18-month-old animals showing a significant impairment. Furthermore, although neuronal stress granules were robustly observed in non-transgenic mice and SOD1G93A mice, they were largely absent in age-matched TDP-43M337V animals. The observed defect in stress granule formation in TDP-43M337V mice correlated with deficits in expression of key protein components typically required for phase separation. Lastly, while TDP-43 was not localized to stress granules, we observed complete nuclear depletion of TDP-43 in a subset of neurons, with the highest proportion being in the TDP-43M337V mice. Overall, our results indicate that mutant TDP-43 expression is associated with defective stress granule assembly and increased TDP-43 nuclear depletion in the mammalian nervous system, which could be relevant to ALS/FTD pathogenesis.
Collapse
Affiliation(s)
- Alicia Dubinski
- Department of Neuroscience, Université de Montréal, Montréal, Québec H3T 1J4, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec H2X 0A9, Canada
| | - Myriam Gagné
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec H2X 0A9, Canada
- Department of Biochemistry, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Sarah Peyrard
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec H2X 0A9, Canada
| | - David Gordon
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Christine Vande Velde
- Department of Neuroscience, Université de Montréal, Montréal, Québec H3T 1J4, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec H2X 0A9, Canada
- Department of Biochemistry, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| |
Collapse
|
24
|
Alemasova EE, Lavrik OI. Poly(ADP-ribose) in Condensates: The PARtnership of Phase Separation and Site-Specific Interactions. Int J Mol Sci 2022; 23:14075. [PMID: 36430551 PMCID: PMC9694962 DOI: 10.3390/ijms232214075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
Biomolecular condensates are nonmembrane cellular compartments whose formation in many cases involves phase separation (PS). Despite much research interest in this mechanism of macromolecular self-organization, the concept of PS as applied to a live cell faces certain challenges. In this review, we discuss a basic model of PS and the role of site-specific interactions and percolation in cellular PS-related events. Using a multivalent poly(ADP-ribose) molecule as an example, which has high PS-driving potential due to its structural features, we consider how site-specific interactions and network formation are involved in the formation of phase-separated cellular condensates.
Collapse
Affiliation(s)
- Elizaveta E. Alemasova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia
| | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
25
|
Alemasova EE, Lavrik OI. A sePARate phase? Poly(ADP-ribose) versus RNA in the organization of biomolecular condensates. Nucleic Acids Res 2022; 50:10817-10838. [PMID: 36243979 PMCID: PMC9638928 DOI: 10.1093/nar/gkac866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/14/2022] [Accepted: 10/09/2022] [Indexed: 11/13/2022] Open
Abstract
Condensates are biomolecular assemblies that concentrate biomolecules without the help of membranes. They are morphologically highly versatile and may emerge via distinct mechanisms. Nucleic acids-DNA, RNA and poly(ADP-ribose) (PAR) play special roles in the process of condensate organization. These polymeric scaffolds provide multiple specific and nonspecific interactions during nucleation and 'development' of macromolecular assemblages. In this review, we focus on condensates formed with PAR. We discuss to what extent the literature supports the phase separation origin of these structures. Special attention is paid to similarities and differences between PAR and RNA in the process of dynamic restructuring of condensates during their functioning.
Collapse
Affiliation(s)
- Elizaveta E Alemasova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
26
|
Feric M, Sarfallah A, Dar F, Temiakov D, Pappu RV, Misteli T. Mesoscale structure-function relationships in mitochondrial transcriptional condensates. Proc Natl Acad Sci U S A 2022; 119:e2207303119. [PMID: 36191226 PMCID: PMC9565167 DOI: 10.1073/pnas.2207303119] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/09/2022] [Indexed: 12/14/2022] Open
Abstract
In live cells, phase separation is thought to organize macromolecules into membraneless structures known as biomolecular condensates. Here, we reconstituted transcription in condensates from purified mitochondrial components using optimized in vitro reaction conditions to probe the structure-function relationships of biomolecular condensates. We find that the core components of the mt-transcription machinery form multiphasic, viscoelastic condensates in vitro. Strikingly, the rates of condensate-mediated transcription are substantially lower than in solution. The condensate-mediated decrease in transcriptional rates is associated with the formation of vesicle-like structures that are driven by the production and accumulation of RNA during transcription. The generation of RNA alters the global phase behavior and organization of transcription components within condensates. Coarse-grained simulations of mesoscale structures at equilibrium show that the components stably assemble into multiphasic condensates and that the vesicles formed in vitro are the result of dynamical arrest. Overall, our findings illustrate the complex phase behavior of transcribing, multicomponent condensates, and they highlight the intimate, bidirectional interplay of structure and function in transcriptional condensates.
Collapse
Affiliation(s)
- Marina Feric
- National Cancer Institute, NIH, Bethesda, MD 20892
- National Institute of General Medical Sciences, NIH, Bethesda, MD 20892
| | - Azadeh Sarfallah
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Furqan Dar
- Department of Physics, Washington University in St. Louis, St. Louis, MO 63130
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130
| | - Dmitry Temiakov
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Rohit V. Pappu
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130
| | - Tom Misteli
- National Cancer Institute, NIH, Bethesda, MD 20892
| |
Collapse
|
27
|
Gouveia B, Kim Y, Shaevitz JW, Petry S, Stone HA, Brangwynne CP. Capillary forces generated by biomolecular condensates. Nature 2022; 609:255-264. [PMID: 36071192 DOI: 10.1038/s41586-022-05138-6] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 07/25/2022] [Indexed: 12/21/2022]
Abstract
Liquid-liquid phase separation and related phase transitions have emerged as generic mechanisms in living cells for the formation of membraneless compartments or biomolecular condensates. The surface between two immiscible phases has an interfacial tension, generating capillary forces that can perform work on the surrounding environment. Here we present the physical principles of capillarity, including examples of how capillary forces structure multiphase condensates and remodel biological substrates. As with other mechanisms of intracellular force generation, for example, molecular motors, capillary forces can influence biological processes. Identifying the biomolecular determinants of condensate capillarity represents an exciting frontier, bridging soft matter physics and cell biology.
Collapse
Affiliation(s)
- Bernardo Gouveia
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Yoonji Kim
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | - Sabine Petry
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, USA.
| | - Clifford P Brangwynne
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA. .,The Howard Hughes Medical Institute, Princeton, NJ, USA.
| |
Collapse
|