1
|
Guo J, Yang Y, Xiang Y, Zhang S, Guo X. Application of smart hydrogel materials in cartilage injury repair: A systematic review and meta-analysis. J Biomater Appl 2024; 39:96-116. [PMID: 38708775 DOI: 10.1177/08853282241248779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
OBJECTIVE Cartilage injury is a common clinical condition, and treatment approaches have evolved over time from traditional conservative and surgical methods to regenerative repair. In this context, hydrogels, as widely used biomaterials in the field of cartilage repair, have garnered significant attention. Particularly, responsive hydrogels (also known as "smart hydrogels") have shown immense potential due to their ability to respond to various physicochemical properties and environmental changes. This paper aims to review the latest research developments of hydrogels in cartilage repair, utilizing a more systematic and comprehensive meta-analysis approach to evaluate the research status and application value of responsive hydrogels. The goal is to determine whether these materials demonstrate favorable therapeutic effects for subsequent clinical applications, thereby offering improved treatment methods for patients with cartilage injuries. METHOD This study employed a systematic literature search method to summarize the research progress of responsive hydrogels by retrieving literature on the subject and review studies. The search terms included "hydrogel" and "cartilage," covering data from database inception up to October 2023. The quality of the literature was independently evaluated using Review Manager v5.4 software. Quantifiable data was statistically analyzed using the R language. RESULTS A total of 7 articles were retrieved for further meta-analysis. In the quality assessment, the studies demonstrated reliability and accuracy. The results of the meta-analysis indicated that responsive hydrogels exhibit unique advantages and effective therapeutic outcomes in the field of cartilage repair. Subgroup analysis revealed potential influences of factors such as different types of hydrogels and animal models on treatment effects. CONCLUSION Responsive hydrogels show significant therapeutic effects and substantial application potential in the field of cartilage repair. This study provides strong scientific evidence for their further clinical applications and research, with the hope of promoting advancements in the treatment of cartilage injuries.
Collapse
Affiliation(s)
- Juncheng Guo
- Central Laboratory of Haikou People's Hospital, Haikou Affiliated Hospital of Xiangya Medical College, Central South University, Haikou, P. R. China
| | - Yijun Yang
- Haikou People's Hospital, Xiangya School of Medicine, Haikou Affiliated Hospital of Central South University, Haikou, P. R. China
| | - Yang Xiang
- Haikou People's Hospital, Xiangya School of Medicine, Haikou Affiliated Hospital of Central South University, Haikou, P. R. China
| | - Shufang Zhang
- Central Laboratory, Haikou People's Hospital, Xiangya School of Medicine, Haikou Affiliated Hospital of Central South University, Haikou, P. R. China
| | - Xueyi Guo
- Central South University, Changsha, P. R. China
| |
Collapse
|
2
|
Beeren IAO, Dos Santos G, Dijkstra PJ, Mota C, Bauer J, Ferreira H, Reis RL, Neves N, Camarero-Espinosa S, Baker MB, Moroni L. A facile strategy for tuning the density of surface-grafted biomolecules for melt extrusion-based additive manufacturing applications. Biodes Manuf 2024; 7:277-291. [PMID: 38818303 PMCID: PMC11133161 DOI: 10.1007/s42242-024-00286-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 04/23/2024] [Indexed: 06/01/2024]
Abstract
Melt extrusion-based additive manufacturing (ME-AM) is a promising technique to fabricate porous scaffolds for tissue engineering applications. However, most synthetic semicrystalline polymers do not possess the intrinsic biological activity required to control cell fate. Grafting of biomolecules on polymeric surfaces of AM scaffolds enhances the bioactivity of a construct; however, there are limited strategies available to control the surface density. Here, we report a strategy to tune the surface density of bioactive groups by blending a low molecular weight poly(ε-caprolactone)5k (PCL5k) containing orthogonally reactive azide groups with an unfunctionalized high molecular weight PCL75k at different ratios. Stable porous three-dimensional (3D) scaffolds were then fabricated using a high weight percentage (75 wt.%) of the low molecular weight PCL5k. As a proof-of-concept test, we prepared films of three different mass ratios of low and high molecular weight polymers with a thermopress and reacted with an alkynated fluorescent model compound on the surface, yielding a density of 201-561 pmol/cm2. Subsequently, a bone morphogenetic protein 2 (BMP-2)-derived peptide was grafted onto the films comprising different blend compositions, and the effect of peptide surface density on the osteogenic differentiation of human mesenchymal stromal cells (hMSCs) was assessed. After two weeks of culturing in a basic medium, cells expressed higher levels of BMP receptor II (BMPRII) on films with the conjugated peptide. In addition, we found that alkaline phosphatase activity was only significantly enhanced on films containing the highest peptide density (i.e., 561 pmol/cm2), indicating the importance of the surface density. Taken together, these results emphasize that the density of surface peptides on cell differentiation must be considered at the cell-material interface. Moreover, we have presented a viable strategy for ME-AM community that desires to tune the bulk and surface functionality via blending of (modified) polymers. Furthermore, the use of alkyne-azide "click" chemistry enables spatial control over bioconjugation of many tissue-specific moieties, making this approach a versatile strategy for tissue engineering applications. Graphic abstract Supplementary Information The online version contains supplementary material available at 10.1007/s42242-024-00286-2.
Collapse
Affiliation(s)
- I. A. O. Beeren
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - G. Dos Santos
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - P. J. Dijkstra
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - C. Mota
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - J. Bauer
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - H. Ferreira
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - N. Neves
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - S. Camarero-Espinosa
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
- POLYMAT, University of the Basque Country UPV/EHU, 20018 Donostia/San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - M. B. Baker
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - L. Moroni
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
3
|
Mascharak S, Guo JL, Griffin M, Berry CE, Wan DC, Longaker MT. Modelling and targeting mechanical forces in organ fibrosis. NATURE REVIEWS BIOENGINEERING 2024; 2:305-323. [PMID: 39552705 PMCID: PMC11567675 DOI: 10.1038/s44222-023-00144-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 11/19/2024]
Abstract
Few efficacious therapies exist for the treatment of fibrotic diseases, such as skin scarring, liver cirrhosis and pulmonary fibrosis, which is related to our limited understanding of the fundamental causes and mechanisms of fibrosis. Mechanical forces from cell-matrix interactions, cell-cell contact, fluid flow and other physical stimuli may play a central role in the initiation and propagation of fibrosis. In this Review, we highlight the mechanotransduction mechanisms by which various sources of physical force drive fibrotic disease processes, with an emphasis on central pathways that may be therapeutically targeted to prevent and reverse fibrosis. We then discuss engineered models of mechanotransduction in fibrosis, as well as molecular and biomaterials-based therapeutic approaches for limiting fibrosis and promoting regenerative healing phenotypes in various organs. Finally, we discuss challenges within fibrosis research that remain to be addressed and that may greatly benefit from next-generation bioengineered model systems.
Collapse
Affiliation(s)
- Shamik Mascharak
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- These authors contributed equally: Shamik Mascharak, Jason L. Guo, Michelle Griffin
| | - Jason L. Guo
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- These authors contributed equally: Shamik Mascharak, Jason L. Guo, Michelle Griffin
| | - Michelle Griffin
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- These authors contributed equally: Shamik Mascharak, Jason L. Guo, Michelle Griffin
| | - Charlotte E. Berry
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Derrick C. Wan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael T. Longaker
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
4
|
Kapat K, Kumbhakarn S, Sable R, Gondane P, Takle S, Maity P. Peptide-Based Biomaterials for Bone and Cartilage Regeneration. Biomedicines 2024; 12:313. [PMID: 38397915 PMCID: PMC10887361 DOI: 10.3390/biomedicines12020313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
The healing of osteochondral defects (OCDs) that result from injury, osteochondritis, or osteoarthritis and bear lesions in the cartilage and bone, pain, and loss of joint function in middle- and old-age individuals presents challenges to clinical practitioners because of non-regenerative cartilage and the limitations of current therapies. Bioactive peptide-based osteochondral (OC) tissue regeneration is becoming more popular because it does not have the immunogenicity, misfolding, or denaturation problems associated with original proteins. Periodically, reviews are published on the regeneration of bone and cartilage separately; however, none of them addressed the simultaneous healing of these tissues in the complicated heterogeneous environment of the osteochondral (OC) interface. As regulators of cell adhesion, proliferation, differentiation, angiogenesis, immunomodulation, and antibacterial activity, potential therapeutic strategies for OCDs utilizing bone and cartilage-specific peptides should be examined and investigated. The main goal of this review was to study how they contribute to the healing of OCDs, either alone or in conjunction with other peptides and biomaterials.
Collapse
Affiliation(s)
- Kausik Kapat
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata 700054, West Bengal, India
| | - Sakshi Kumbhakarn
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata 700054, West Bengal, India
| | - Rahul Sable
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata 700054, West Bengal, India
| | - Prashil Gondane
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata 700054, West Bengal, India
| | - Shruti Takle
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata 700054, West Bengal, India
| | - Pritiprasanna Maity
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
5
|
Abdal Dayem A, Lee SB, Lim KM, Kim A, Shin HJ, Vellingiri B, Kim YB, Cho SG. Bioactive peptides for boosting stem cell culture platform: Methods and applications. Biomed Pharmacother 2023; 160:114376. [PMID: 36764131 DOI: 10.1016/j.biopha.2023.114376] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Peptides, short protein fragments, can emulate the functions of their full-length native counterparts. Peptides are considered potent recombinant protein alternatives due to their specificity, high stability, low production cost, and ability to be easily tailored and immobilized. Stem cell proliferation and differentiation processes are orchestrated by an intricate interaction between numerous growth factors and proteins and their target receptors and ligands. Various growth factors, functional proteins, and cellular matrix-derived peptides efficiently enhance stem cell adhesion, proliferation, and directed differentiation. For that, peptides can be immobilized on a culture plate or conjugated to scaffolds, such as hydrogels or synthetic matrices. In this review, we assess the applications of a variety of peptides in stem cell adhesion, culture, organoid assembly, proliferation, and differentiation, describing the shortcomings of recombinant proteins and their full-length counterparts. Furthermore, we discuss the challenges of peptide applications in stem cell culture and materials design, as well as provide a brief outlook on future directions to advance peptide applications in boosting stem cell quality and scalability for clinical applications in tissue regeneration.
Collapse
Affiliation(s)
- Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea
| | - Soo Bin Lee
- Department of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyung Min Lim
- Department of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea; R&D Team, StemExOne co., ltd. 303, Life Science Bldg, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Aram Kim
- Department of Urology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05029, Republic of Korea; R&D Team, StemExOne co., ltd. 303, Life Science Bldg, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyun Jin Shin
- Department of Ophthalmology, Research Institute of Medical Science, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05029, Republic of Korea; R&D Team, StemExOne co., ltd. 303, Life Science Bldg, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda 151401, Punjab, India
| | - Young Bong Kim
- Department of Biomedical Science & Engineering, KU Convergence Science and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea; R&D Team, StemExOne co., ltd. 303, Life Science Bldg, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
6
|
Rajzer I, Kurowska A, Frankova J, Sklenářová R, Nikodem A, Dziadek M, Jabłoński A, Janusz J, Szczygieł P, Ziąbka M. 3D-Printed Polycaprolactone Implants Modified with Bioglass and Zn-Doped Bioglass. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1061. [PMID: 36770074 PMCID: PMC9919585 DOI: 10.3390/ma16031061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
In this work, composite filaments in the form of sticks and 3D-printed scaffolds were investigated as a future component of an osteochondral implant. The first part of the work focused on the development of a filament modified with bioglass (BG) and Zn-doped BG obtained by injection molding. The main outcome was the manufacture of bioactive, strong, and flexible filament sticks of the required length, diameter, and properties. Then, sticks were used for scaffold production. We investigated the effect of bioglass addition on the samples mechanical and biological properties. The samples were analyzed by scanning electron microscopy, optical microscopy, infrared spectroscopy, and microtomography. The effect of bioglass addition on changes in the SBF mineralization process and cell morphology was evaluated. The presence of a spatial microstructure within the scaffolds affects their mechanical properties by reducing them. The tensile strength of the scaffolds compared to filaments was lower by 58-61%. In vitro mineralization experiments showed that apatite formed on scaffolds modified with BG after 7 days of immersion in SBF. Scaffold with Zn-doped BG showed a retarded apatite formation. Innovative 3D-printing filaments containing bioglasses have been successfully applied to print bioactive scaffolds with the surface suitable for cell attachment and proliferation.
Collapse
Affiliation(s)
- Izabella Rajzer
- Department of Mechanical Engineering Fundamentals, Faculty of Mechanical Engineering and Computer Science, University of Bielsko-Biala, 43-300 Bielsko-Biała, Poland
| | - Anna Kurowska
- Department of Mechanical Engineering Fundamentals, Faculty of Mechanical Engineering and Computer Science, University of Bielsko-Biala, 43-300 Bielsko-Biała, Poland
| | - Jana Frankova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University Olomouc, 77515 Olomouc, Czech Republic
| | - Renáta Sklenářová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University Olomouc, 77515 Olomouc, Czech Republic
| | - Anna Nikodem
- Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, 50-370 Wrocław, Poland
| | - Michał Dziadek
- Department of Glass Technology and Amorphous Coatings, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30-059 Kraków, Poland
- Faculty of Chemistry, Jagiellonian University, 31-007 Kraków, Poland
| | - Adam Jabłoński
- Department of Mechanical Engineering Fundamentals, Faculty of Mechanical Engineering and Computer Science, University of Bielsko-Biala, 43-300 Bielsko-Biała, Poland
| | - Jarosław Janusz
- Department of Mechanical Engineering Fundamentals, Faculty of Mechanical Engineering and Computer Science, University of Bielsko-Biala, 43-300 Bielsko-Biała, Poland
| | - Piotr Szczygieł
- Department of Mechanical Engineering Fundamentals, Faculty of Mechanical Engineering and Computer Science, University of Bielsko-Biala, 43-300 Bielsko-Biała, Poland
| | - Magdalena Ziąbka
- Department of Ceramics and Refractories, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30-059 Kraków, Poland
| |
Collapse
|
7
|
Bedell ML, Wang Z, Hogan KJ, Torres AL, Pearce HA, Chim LK, Grande-Allen KJ, Mikos AG. The effect of multi-material architecture on the ex vivo osteochondral integration of bioprinted constructs. Acta Biomater 2023; 155:99-112. [PMID: 36384222 PMCID: PMC9805529 DOI: 10.1016/j.actbio.2022.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/14/2022]
Abstract
Extrusion bioprinted constructs for osteochondral tissue engineering were fabricated to study the effect of multi-material architecture on encapsulated human mesenchymal stem cells' tissue-specific matrix deposition and integration into an ex vivo porcine osteochondral explant model. Two extrusion fiber architecture groups with differing transition regions and degrees of bone- and cartilage-like bioink mixing were employed. The gradient fiber (G-Fib) architecture group showed an increase in chondral integration over time, 18.5 ± 0.7 kPa on Day 21 compared to 9.6 ± 1.6 kPa on Day 1 for the required peak push-out force, and the segmented fiber (S-Fib) architecture group did not, which corresponded to the increase in sulfated glycosaminoglycan deposition noted only in the G-Fib group and the staining for cellularity and tissue-specific matrix deposition at the fiber-defect boundary. Conversely, the S-Fib architecture was associated with significant mineralization over time, but the G-Fib architecture was not. Notably, both fiber groups also had similar chondral integration as a re-inserted osteochondral tissue control. While architecture did dictate differences in the cells' responses to their environment, architecture was not shown to distinguish a statistically significant difference in tissue integration via fiber push-out testing within a given time point or explant region. Use of this three-week osteochondral model demonstrates that these bioink formulations support the fabrication of cell-laden constructs that integrate into explanted tissue as capably as natural tissue and encapsulate osteochondral matrix-producing cells, and it also highlights the important role that spatial architecture plays in the engineering of multi-phasic tissue environments. STATEMENT OF SIGNIFICANCE: Here, an ex vivo model was used to interrogate fundamental questions about the effect of multi-material scaffold architectural choices on osteochondral tissue integration. Cell-encapsulating constructs resembling stratified osteochondral tissue were 3D printed with architecture consisting of either gradient transitions or segmented transitions between the bone-like and cartilage-like bioink regions. The printed constructs were assessed alongside re-inserted natural tissue plugs via mechanical tissue integration push-out testing, biochemical assays, and histology. Differences in osteochondral matrix deposition were observed based on architecture, and both printed groups demonstrated cartilage integration similar to the native tissue plug group. As 3D printing becomes commonplace within biomaterials and tissue engineering, this work illustrates critical 3D co-culture interactions and demonstrates the importance of considering architecture when interpreting the results of studies utilizing spatially complex, multi-material scaffolds.
Collapse
Affiliation(s)
| | - Ziwen Wang
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Katie J Hogan
- Department of Bioengineering, Rice University, Houston, TX, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | | | - Hannah A Pearce
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Letitia K Chim
- Department of Bioengineering, Rice University, Houston, TX, USA
| | | | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX, USA; NIBIB/NIH Center for Engineering Complex Tissues, USA.
| |
Collapse
|
8
|
Bioprinted Hydrogels for Fibrosis and Wound Healing: Treatment and Modeling. Gels 2022; 9:gels9010019. [PMID: 36661787 PMCID: PMC9857994 DOI: 10.3390/gels9010019] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Three-dimensional (3D) printing has been used to fabricate biomaterial scaffolds with finely controlled physical architecture and user-defined patterning of biological ligands. Excitingly, recent advances in bioprinting have enabled the development of highly biomimetic hydrogels for the treatment of fibrosis and the promotion of wound healing. Bioprinted hydrogels offer more accurate spatial recapitulation of the biochemical and biophysical cues that inhibit fibrosis and promote tissue regeneration, augmenting the therapeutic potential of hydrogel-based therapies. Accordingly, bioprinted hydrogels have been used for the treatment of fibrosis in a diverse array of tissues and organs, including the skin, heart, and endometrium. Furthermore, bioprinted hydrogels have been utilized for the healing of both acute and chronic wounds, which present unique biological microenvironments. In addition to these therapeutic applications, hydrogel bioprinting has been used to generate in vitro models of fibrosis in a variety of soft tissues such as the skin, heart, and liver, enabling high-throughput drug screening and tissue analysis at relatively low cost. As biological research begins to uncover the spatial biological features that underlie fibrosis and wound healing, bioprinting offers a powerful toolkit to recapitulate spatially defined pro-regenerative and anti-fibrotic cues for an array of translational applications.
Collapse
|
9
|
Wang S, Zhao S, Yu J, Gu Z, Zhang Y. Advances in Translational 3D Printing for Cartilage, Bone, and Osteochondral Tissue Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201869. [PMID: 35713246 DOI: 10.1002/smll.202201869] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The regeneration of 3D tissue constructs with clinically relevant sizes, structures, and hierarchical organizations for translational tissue engineering remains challenging. 3D printing, an additive manufacturing technique, has revolutionized the field of tissue engineering by fabricating biomimetic tissue constructs with precisely controlled composition, spatial distribution, and architecture that can replicate both biological and functional native tissues. Therefore, 3D printing is gaining increasing attention as a viable option to advance personalized therapy for various diseases by regenerating the desired tissues. This review outlines the recently developed 3D printing techniques for clinical translation and specifically summarizes the applications of these approaches for the regeneration of cartilage, bone, and osteochondral tissues. The current challenges and future perspectives of 3D printing technology are also discussed.
Collapse
Affiliation(s)
- Shenqiang Wang
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Sheng Zhao
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jicheng Yu
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Zhen Gu
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
- Department of General Surgery, Sir Run Run Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
| | - Yuqi Zhang
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of Burns and Wound Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| |
Collapse
|
10
|
Staros R, Michalak A, Rusinek K, Mucha K, Pojda Z, Zagożdżon R. Perspectives for 3D-Bioprinting in Modeling of Tumor Immune Evasion. Cancers (Basel) 2022; 14:cancers14133126. [PMID: 35804898 PMCID: PMC9265021 DOI: 10.3390/cancers14133126] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/31/2022] [Accepted: 06/23/2022] [Indexed: 02/07/2023] Open
Abstract
In a living organism, cancer cells function in a specific microenvironment, where they exchange numerous physical and biochemical cues with other cells and the surrounding extracellular matrix (ECM). Immune evasion is a clinically relevant phenomenon, in which cancer cells are able to direct this interchange of signals against the immune effector cells and to generate an immunosuppressive environment favoring their own survival. A proper understanding of this phenomenon is substantial for generating more successful anticancer therapies. However, classical cell culture systems are unable to sufficiently recapture the dynamic nature and complexity of the tumor microenvironment (TME) to be of satisfactory use for comprehensive studies on mechanisms of tumor immune evasion. In turn, 3D-bioprinting is a rapidly evolving manufacture technique, in which it is possible to generate finely detailed structures comprised of multiple cell types and biomaterials serving as ECM-analogues. In this review, we focus on currently used 3D-bioprinting techniques, their applications in the TME research, and potential uses of 3D-bioprinting in modeling of tumor immune evasion and response to immunotherapies.
Collapse
Affiliation(s)
- Rafał Staros
- Department of Immunology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-006 Warsaw, Poland; (R.S.); (K.M.)
| | - Agata Michalak
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Institute of Oncology, 02-781 Warsaw, Poland; (A.M.); (K.R.); (Z.P.)
| | - Kinga Rusinek
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Institute of Oncology, 02-781 Warsaw, Poland; (A.M.); (K.R.); (Z.P.)
| | - Krzysztof Mucha
- Department of Immunology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-006 Warsaw, Poland; (R.S.); (K.M.)
| | - Zygmunt Pojda
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Institute of Oncology, 02-781 Warsaw, Poland; (A.M.); (K.R.); (Z.P.)
| | - Radosław Zagożdżon
- Department of Immunology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-006 Warsaw, Poland; (R.S.); (K.M.)
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Institute of Oncology, 02-781 Warsaw, Poland; (A.M.); (K.R.); (Z.P.)
- Department of Clinical Immunology, Medical University of Warsaw, 02-006 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-502-14-72; Fax: +48-22-502-21-59
| |
Collapse
|
11
|
Xu J, Ji J, Jiao J, Zheng L, Hong Q, Tang H, Zhang S, Qu X, Yue B. 3D Printing for Bone-Cartilage Interface Regeneration. Front Bioeng Biotechnol 2022; 10:828921. [PMID: 35237582 PMCID: PMC8882993 DOI: 10.3389/fbioe.2022.828921] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/25/2022] [Indexed: 12/12/2022] Open
Abstract
Due to the vasculature defects and/or the avascular nature of cartilage, as well as the complex gradients for bone-cartilage interface regeneration and the layered zonal architecture, self-repair of cartilage and subchondral bone is challenging. Currently, the primary osteochondral defect treatment strategies, including artificial joint replacement and autologous and allogeneic bone graft, are limited by their ability to simply repair, rather than induce regeneration of tissues. Meanwhile, over the past two decades, three-dimension (3D) printing technology has achieved admirable advancements in bone and cartilage reconstruction, providing a new strategy for restoring joint function. The advantages of 3D printing hybrid materials include rapid and accurate molding, as well as personalized therapy. However, certain challenges also exist. For instance, 3D printing technology for osteochondral reconstruction must simulate the histological structure of cartilage and subchondral bone, thus, it is necessary to determine the optimal bioink concentrations to maintain mechanical strength and cell viability, while also identifying biomaterials with dual bioactivities capable of simultaneously regenerating cartilage. The study showed that the regeneration of bone-cartilage interface is crucial for the repair of osteochondral defect. In this review, we focus on the significant progress and application of 3D printing technology for bone-cartilage interface regeneration, while also expounding the potential prospects for 3D printing technology and highlighting some of the most significant challenges currently facing this field.
Collapse
Affiliation(s)
- Jialian Xu
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jindou Ji
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Juyang Jiao
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liangjun Zheng
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qimin Hong
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haozheng Tang
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shutao Zhang
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Xinhua Qu, ; Bing Yue,
| | - Bing Yue
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Xinhua Qu, ; Bing Yue,
| |
Collapse
|
12
|
Fabrication of 3D Printed Poly(lactic acid)/Polycaprolactone Scaffolds Using TGF-β1 for Promoting Bone Regeneration. Polymers (Basel) 2021; 13:polym13213731. [PMID: 34771286 PMCID: PMC8588076 DOI: 10.3390/polym13213731] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/27/2022] Open
Abstract
Our research was designed to evaluate the effect on bone regeneration with 3-dimensional (3D) printed polylactic acid (PLA) and 3D printed polycaprolactone (PCL) scaffolds, determine the more effective option for enhancing bone regeneration, and offer tentative evidence for further research and clinical application. Employing the 3D printing technique, the PLA and PCL scaffolds showed similar morphologies, as confirmed via scanning electron microscopy (SEM). Mechanical strength was significantly higher in the PLA group (63.4 MPa) than in the PCL group (29.1 MPa) (p < 0.01). Average porosity, swelling ratio, and degeneration rate in the PCL scaffold were higher than those in the PLA scaffold. SEM observation after cell coculture showed improved cell attachment and activity in the PCL scaffolds. A functional study revealed the best outcome in the 3D printed PCL-TGF-β1 scaffold compared with the 3D printed PCL and the 3D printed PCL-Polydopamine (PDA) scaffold (p < 0.001). As confirmed via SEM, the 3D printed PCL- transforming growth factor beta 1 (TGF-β1) scaffold also exhibited improved cell adhesion after 6 h of cell coculture. The 3D printed PCL scaffold showed better physical properties and biocompatibility than the 3D printed PLA scaffold. Based on the data of TGF-β1, this study confirms that the 3D printed PCL scaffold may offer stronger osteogenesis.
Collapse
|