1
|
Mouat JS, Krigbaum NY, Hakam S, Thrall E, Kuodza GE, Mellis J, Yasui DH, Cirillo PM, Ludena YJ, Schmidt RJ, La Merrill MA, Hertz-Picciotto I, Cohn BA, LaSalle JM. Sex-specific DNA methylation signatures of autism spectrum disorder from whole genome bisulfite sequencing of newborn blood. Biol Sex Differ 2025; 16:30. [PMID: 40307894 PMCID: PMC12042393 DOI: 10.1186/s13293-025-00712-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 04/15/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a group of neurodevelopmental conditions currently diagnosed through behavioral assessments in childhood, though neuropathological changes begin in utero. ASD is more commonly diagnosed in males, a disparity attributed to both biological sex differences and diagnostic biases. Identifying molecular biomarkers, such as DNA methylation signatures, could provide more objective screening for ASD-risk in newborns, allowing for early intervention. Epigenetic dysregulation has been reported in multiple tissues from newborns who are later diagnosed with ASD, but this is the first study to investigate sex-specific DNA methylation signatures for ASD in newborn blood, an accessible and widely banked tissue. METHODS We assayed DNA methylation from newborn blood of ASD and typically developing (TD) individuals (discovery set n = 196, replication set n = 90) using whole genome bisulfite sequencing (WGBS). Sex-stratified differentially methylated regions (DMRs) were assessed for replication, comparisons by sex, overlaps with DMRs from other tissues, and enrichment for biological processes and SFARI ASD-risk genes. RESULTS We found that newborn blood ASD DMRs from both sexes significantly replicated in an independent cohort and were enriched for hypomethylation in ASD compared to TD samples, as well as location in promoters, CpG islands, and CpG island shores. By comparing female to male samples, we found that most sex-associated DMRs in TD individuals were also found in ASD individuals, alongside additional ASD-specific sex differences. Female-specific DMRs were enriched for X chromosomal location. Across both sexes, newborn blood DMRs overlapped significantly with DMRs from umbilical cord blood and placenta but not post-mortem cerebral cortex. DMRs from all tissues were enriched for neurodevelopmental processes (females) and known ASD genes (both sexes). CONCLUSIONS Overall, we identified and replicated a sex-specific DNA methylation signature of ASD in newborn blood that supported the female protective effect and highlighted convergence of epigenetic and genetic signatures of ASD in newborns. Despite the study's limitations, particularly in female sample sizes, our results demonstrate the potential of newborn blood in ASD screening and emphasize the importance of sex-stratification in future studies.
Collapse
Affiliation(s)
- Julia S Mouat
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
| | - Nickilou Y Krigbaum
- Child Health and Development Studies, Public Health Institute, Berkeley, CA, USA
| | - Sophia Hakam
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
| | - Emily Thrall
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
| | - George E Kuodza
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
| | - Julia Mellis
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
| | - Dag H Yasui
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
| | - Piera M Cirillo
- Child Health and Development Studies, Public Health Institute, Berkeley, CA, USA
| | - Yunin J Ludena
- MIND Institute, University of California, Davis, CA, USA
- Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Rebecca J Schmidt
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
- Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Michele A La Merrill
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- Department of Environmental Toxicology, University of California, Davis, CA, USA
- Environmental Health Sciences Center, University of California, Davis, CA, USA
| | - Irva Hertz-Picciotto
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
- Department of Public Health Sciences, University of California, Davis, CA, USA
- Environmental Health Sciences Center, University of California, Davis, CA, USA
| | - Barbara A Cohn
- Child Health and Development Studies, Public Health Institute, Berkeley, CA, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA.
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA.
- Genome Center, University of California, Davis, CA, USA.
- MIND Institute, University of California, Davis, CA, USA.
| |
Collapse
|
2
|
Gao L, Zhang T, Zhang Y, Liu J, Guo X. Sex Differences in Spatiotemporal Consistency and Effective Connectivity of the Precuneus in Autism Spectrum Disorder. J Autism Dev Disord 2024:10.1007/s10803-024-06696-6. [PMID: 39731683 DOI: 10.1007/s10803-024-06696-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2024] [Indexed: 12/30/2024]
Abstract
Autism spectrum disorder (ASD) has been reported to exhibit altered local functional consistency. However, previous studies mainly focused on male samples and explored the temporal consistency in the ASD brain ignoring the spatial consistency. In this study, FOur-dimensional Consistency of local neural Activities (FOCA) analysis was used to investigate the sex differences of local spatiotemporal consistency of spontaneous brain activity in ASD. This study used resting-state functional magnetic resonance imaging data from the Autism Brain Imaging Data Exchange database, including 64 males/64 females with ASD and 64 male/64 female neurotypical controls (NCs). Two-way analysis of variance was performed to ascertain diagnosis-by-sex interaction effects on whole brain FOCA maps. Moreover, granger causal analysis was used to investigate effective connectivity between the brain regions with interaction effects and the whole-brain in ASD. Significant diagnosis-by-sex interaction effects on FOCA were observed in the bilateral precuneus (PCUN), bilateral medial prefrontal cortex and right dorsolateral superior frontal gyrus. Specifically, FOCA was significantly increased in males with ASD but decreased in females with ASD in the PCUN compared with the sex-matched NC group. In addition, the lack of sex differences in the causal influences from the bilateral anterior cingulate cortex/medial prefrontal cortex to the PCUN was observed in ASD. Our results reveal altered sex differences in the spatiotemporal consistency of spontaneous brain activity and functional interaction of the anterior and posterior default mode network (DMN) in ASD, highlighting the critical role of the DMN in the sex heterogeneity of ASD.
Collapse
Affiliation(s)
- Le Gao
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, China
- Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao, 066004, China
| | - Tengda Zhang
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, China
- Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao, 066004, China
| | - Yigeng Zhang
- Department of Computer Science, University of Houston, Houston, TX, 77204-3010, USA
| | - Junfeng Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaonan Guo
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, China.
- Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao, 066004, China.
| |
Collapse
|
3
|
Andrews DS, Diers K, Lee JK, Harvey DJ, Heath B, Cordero D, Rogers SJ, Reuter M, Solomon M, Amaral DG, Nordahl CW. Sex differences in trajectories of cortical development in autistic children from 2-13 years of age. Mol Psychiatry 2024; 29:3440-3451. [PMID: 38755243 PMCID: PMC11541213 DOI: 10.1038/s41380-024-02592-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
Previous studies have reported alterations in cortical thickness in autism. However, few have included enough autistic females to determine if there are sex specific differences in cortical structure in autism. This longitudinal study aimed to investigate autistic sex differences in cortical thickness and trajectory of cortical thinning across childhood. Participants included 290 autistic (88 females) and 139 nonautistic (60 females) individuals assessed at up to 4 timepoints spanning ~2-13 years of age (918 total MRI timepoints). Estimates of cortical thickness in early and late childhood as well as the trajectory of cortical thinning were modeled using spatiotemporal linear mixed effects models of age-by-sex-by-diagnosis. Additionally, the spatial correspondence between cortical maps of sex-by-diagnosis differences and neurotypical sex differences were evaluated. Relative to their nonautistic peers, autistic females had more extensive cortical differences than autistic males. These differences involved multiple functional networks, and were mainly characterized by thicker cortex at ~3 years of age and faster cortical thinning in autistic females. Cortical regions in which autistic alterations were different between the sexes significantly overlapped with regions that differed by sex in neurotypical development. Autistic females and males demonstrated some shared differences in cortical thickness and rate of cortical thinning across childhood relative to their nonautistic peers, however these areas were relatively small compared to the widespread differences observed across the sexes. These results support evidence of sex-specific neurobiology in autism and suggest that processes that regulate sex differentiation in the neurotypical brain contribute to sex differences in the etiology of autism.
Collapse
Affiliation(s)
- Derek S Andrews
- Department of Psychiatry & Behavioral Sciences, the MIND Institute, University of California, Davis, CA, USA.
| | - Kersten Diers
- AI in Medical Imaging, German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Joshua K Lee
- Department of Psychiatry & Behavioral Sciences, the MIND Institute, University of California, Davis, CA, USA
| | - Danielle J Harvey
- Division of Biostatistics, Department of Public Health Sciences, University of California, University of California, Davis, CA, USA
| | - Brianna Heath
- Department of Psychiatry & Behavioral Sciences, the MIND Institute, University of California, Davis, CA, USA
| | - Devani Cordero
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Sally J Rogers
- Department of Psychiatry & Behavioral Sciences, the MIND Institute, University of California, Davis, CA, USA
| | - Martin Reuter
- AI in Medical Imaging, German Center for Neurodegenerative Diseases, Bonn, Germany
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Marjorie Solomon
- Department of Psychiatry & Behavioral Sciences, the MIND Institute, University of California, Davis, CA, USA
| | - David G Amaral
- Department of Psychiatry & Behavioral Sciences, the MIND Institute, University of California, Davis, CA, USA
| | - Christine Wu Nordahl
- Department of Psychiatry & Behavioral Sciences, the MIND Institute, University of California, Davis, CA, USA
| |
Collapse
|
4
|
Gao L, Cao Y, Zhang Y, Liu J, Zhang T, Zhou R, Guo X. Sex differences in the flexibility of dynamic network reconfiguration of autism spectrum disorder based on multilayer network. Brain Imaging Behav 2024; 18:1172-1185. [PMID: 39212890 DOI: 10.1007/s11682-024-00907-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2024] [Indexed: 09/04/2024]
Abstract
Dynamic network reconfiguration alterations in the autism spectrum disorder (ASD) brain have been frequently reported. However, since the prevalence of ASD in males is approximately 3.8 times higher than that in females, and previous studies of dynamic network reconfiguration of ASD have predominantly used male samples, it is unclear whether sex differences exist in dynamic network reconfiguration in ASD. This study used resting-state functional magnetic resonance imaging data from the Autism Brain Imaging Data Exchange database, which included balanced samples of 64 males and 64 females with ASD, along with 64 demographically-matched typically developing control (TC) males and 64 TC females. The multilayer network analysis was used to explore the flexibility of dynamic network reconfiguration. The two-way analysis of variance was further performed to examine the sex-related changes in ASD in flexibility of dynamic network reconfiguration. A diagnosis-by-sex interaction effect was identified in the cingulo-opercular network (CON), central executive network (CEN), salience network (SN), and subcortical network (SUB). Compared with TC females, females with ASD showed lower flexibility in CON, CEN, SN, and SUB. The flexibility of CEN and SUB in males with ASD was higher than that in females with ASD. In addition, the flexibility of CON, CEN, SN, and SUB predicted the severity of social communication impairments and stereotyped behaviors and restricted interests only in females with ASD. These findings highlight significant sex differences in the flexibility of dynamic network reconfiguration in ASD and emphasize the importance of further study of sex differences in future ASD research.
Collapse
Affiliation(s)
- Le Gao
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, China
- Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao, 066004, China
| | - Yabo Cao
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, China
- Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao, 066004, China
| | - Yigeng Zhang
- Department of Computer Science, University of Houston, Houston, TX, 77204-3010, USA
| | - Junfeng Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tao Zhang
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, China
- Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao, 066004, China
| | - Rongjuan Zhou
- Maternity and Child Health Hospital of Qinhuangdao, Qinhuangdao, China
| | - Xiaonan Guo
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, China.
- Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao, 066004, China.
| |
Collapse
|
5
|
Saha P. Eigenvector Centrality Characterization on fMRI Data: Gender and Node Differences in Normal and ASD Subjects : Author name. J Autism Dev Disord 2024; 54:2757-2768. [PMID: 37142901 DOI: 10.1007/s10803-023-05922-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2023] [Indexed: 05/06/2023]
Abstract
With the budding interests of structural and functional network characteristics as potential parameters for abnormal brains, an essential and thus simpler representation and evaluations have become necessary. Eigenvector centrality measure of functional magnetic resonance imaging (fMRI) offer region wise network representations through fMRI diagnostic maps. The article investigates the suitability of network node centrality values to discriminate ASD subject groups compared to typically developing controls following a boxplot formalism and a classification and regression tree model. Region wise differences between normal and ASD subjects primarily belong to the frontoparietal, limbic, ventral attention, default mode and visual networks. The reduced number of regions-of-interests (ROI) clearly suggests the benefit of automated supervised machine learning algorithm over the manual classification method.
Collapse
Affiliation(s)
- Papri Saha
- Department of Computer Science, Derozio Memorial College, Rajarhat Road, P.O. - R- Gopalpur, Kolkata, 700136, India.
| |
Collapse
|
6
|
Li C, Wang J, Zhou Y, Li T, Wu B, Yuan X, Li L, Qin R, Liu H, Chen L, Wang X. Sex-related patterns of functional brain networks in children and adolescents with autism spectrum disorder. Autism Res 2024; 17:1344-1355. [PMID: 39051596 DOI: 10.1002/aur.3180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/13/2024] [Indexed: 07/27/2024]
Abstract
Although numerous studies have emphasized the male predominance in autism spectrum disorder (ASD), how sex differences are related to the topological organization of functional networks remains unclear. This study utilized imaging data from 86 ASD (43 females, aged 7-18 years) and 86 typically developing controls (TCs) (43 females, aged 7-18 years) obtained from Autism Brain Imaging Data Exchange databases, constructed individual whole-brain functional networks, used a graph theory analysis to compute topological metrics, and assessed sex-related differences in topological metrics using a 2 × 2 factorial design. At the global level, females with ASD exhibited significantly higher cluster coefficient and local efficiency than female TCs, while no significant difference was observed between males with ASD and male TCs. Meanwhile, the neurotypical sex differences in cluster coefficient and local efficiency observed in TCs were not present in ASD. At the nodal level, ASD exhibited abnormal nodal centrality in the left middle temporal gyrus.
Collapse
Affiliation(s)
- Cuicui Li
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jingxuan Wang
- Department of Painology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yunna Zhou
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tong Li
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Baolin Wu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Xianshun Yuan
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lin Li
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Rui Qin
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hongzhu Liu
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Linglong Chen
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Ximing Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
7
|
Shariatpanahi M, Sojoudi Z, Khodagholi F, Rahmati H, Jameie SB, Eftekharzadeh M, Karizmeh MS, Shabani M, Zamani E. Effect of sex differences and time of oxytocin administration on treatment of rat model of autism spectrum disorder: Focused on necroptosis markers. Int J Dev Neurosci 2023; 83:552-570. [PMID: 37503701 DOI: 10.1002/jdn.10286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/28/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Autism is a neurodevelopmental disorder. A variety of molecular and cellular abnormalities leads to behavioral deficits in autism. Nevertheless, its etiology and treatment strategy are not completely understood. Oxytocin has recently shown improvements in social functioning. This study aimed to evaluate the necroptosis pathway for the neuroprotective effects of oxytocin in the valproic acid-induced autism spectrum disorder model. The autism spectrum disorder was induced by valproic acid on gestational day 12.5 (600 mg/kg, intraperitoneally). Offspring received intranasal oxytocin (1 μg/μL) on the 21st and 40th days after birth. The offspring behaviors were scrutinized by self-grooming, marble-burying, three-chamber, and Morris water maze tests. Western blot was performed on the hippocampus and amygdala tissues to investigate the expression of RIP3 and MLKL markers. The valproic acid group demonstrated more anxiety, repetitive behaviors, and expression of RIP3 and MLKL markers, and less social interaction and spatial memory compared with the control group. Oxytocin considerably improved social interactions, preference for social novelty, and memory. The elevated expression of RIP3 and MLKL markers in valproic acid-induced autistic rats were alleviated after treatment with oxytocin. We also highlighted the importance of age and gender in autism spectrum disorder interventions. Our findings suggested that oxytocin administration was as an effective treatment in two areas of repetitive/stereotyped behaviors, social interactions/cognitive function. Notably, early administration of oxytocin resulted in better therapeutic responses in autism-like behaviors. The molecular tests introduce oxytocin as a potential candidate for reducing the expression of necroptosis mediators in the brain. This reinforced our hypothesis that the necroptosis pathway takes part in autism spectrum disorder.
Collapse
Affiliation(s)
- Marjan Shariatpanahi
- Department of Pharmacology and Toxicology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
- Neuroscience Research Center (NRC), Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Sojoudi
- Department of Pharmacology and Toxicology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hiva Rahmati
- Department of Pharmacology and Toxicology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
- Student Research Committee, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyed Behnamedin Jameie
- Neuroscience Research Center (NRC), Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mina Eftekharzadeh
- Neuroscience Research Center (NRC), Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Soleimani Karizmeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Science, Tehran, Iran
| | - Mostafa Shabani
- Department of Pharmacology and Toxicology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Ehsan Zamani
- Department of Pharmacology and Toxicology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
8
|
Nordahl CW. Why do we need sex-balanced studies of autism? Autism Res 2023; 16:1662-1669. [PMID: 37382167 PMCID: PMC10527473 DOI: 10.1002/aur.2971] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/03/2023] [Indexed: 06/30/2023]
Abstract
Males are diagnosed with autism much more frequently than females, and most research study samples reflect this male predominance. The result is that autistic females are understudied. There is a critical need to increase our understanding of autistic females, both biologically and clinically. The only way to do this is to recruit sex-balanced cohorts in studies so that similarities and differences between males and females can be evaluated in all autism research studies. The purpose of this commentary is to (1) provide historical context about how females came to be under-represented in all research, not just in the field of autism and (2) learn from other areas of health and medicine about the potentially dire consequences of not studying both sexes, and (3) draw attention to the need to recruit sex-balanced cohorts in autism research, particularly in neuroimaging studies.
Collapse
Affiliation(s)
- Christine Wu Nordahl
- Department of Psychiatry and Behavioral Sciences, MIND Institute, UC Davis, Sacramento, California, USA
| |
Collapse
|
9
|
Li C, Li T, Chen Y, Zhang C, Ning M, Qin R, Li L, Wang X, Chen L. Sex differences of the triple network model in children with autism: A resting-state fMRI investigation of effective connectivity. Autism Res 2023; 16:1693-1706. [PMID: 37565548 DOI: 10.1002/aur.2991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/06/2023] [Indexed: 08/12/2023]
Abstract
Autism spectrum disorder (ASD) has a pronounced male predominance, but the underlying neurobiological basis of this sex bias remains unclear. Gender incoherence (GI) theory suggests that ASD is more neurally androgynous than same-sex controls. Given its central role, altered structures and functions, and sex-dependent network differences in ASD, the triple network model, including the central executive network (CEN), default mode network (DMN), and salience network (SN), has emerged as a candidate for characterizing this sex difference. Here, we measured the sex-related effective connectivity (EC) differences within and between these three networks in 72 children with ASD (36 females, 8-14 years) and 72 typically developing controls (TCs) (36 females, 8-14 years) from 5 sites of the Autism Brain Imaging Data Exchange repositories using a 2 × 2 analysis of covariance factorial design. We also assessed brain-behavior relationships and the effects of age on EC. We found significant diagnosis-by-sex interactions on EC: females with ASD had significantly higher EC than their male counterparts within the DMN and between the SN and CEN. The interaction pattern supported the GI theory by showing that the higher EC observed in females with ASD reflected a shift towards the higher level of EC displayed in male TCs (neural masculinization), and the lower EC seen in males with ASD reflected a shift towards the lower level of EC displayed in female TCs (neural feminization). We also found significant brain-behavior correlations and significant effects of age on EC.
Collapse
Affiliation(s)
- Cuicui Li
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tong Li
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ying Chen
- Department of Radiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chunling Zhang
- Department of Radiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Mingmin Ning
- Department of Neurology, Guangzhou Women and Children's Medical Center, China
| | - Rui Qin
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lin Li
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ximing Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Linglong Chen
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, China
| |
Collapse
|
10
|
Xing L, Wu C, Wang J, Wei S, Yuan K, Qin D. Editorial: Using novel technologies and models to identify biomarkers and explore therapeutic strategies for neurological disorders. Front Behav Neurosci 2023; 17:1151667. [PMID: 37035626 PMCID: PMC10076828 DOI: 10.3389/fnbeh.2023.1151667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Affiliation(s)
- Liwei Xing
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Chengbiao Wu
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Jiaojian Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Sheng Wei
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kai Yuan
- The Second Clinical Medical School, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
11
|
Saure E, Castrén M, Mikkola K, Salmi J. Intellectual disabilities moderate sex/gender differences in autism spectrum disorder: a systematic review and meta-analysis. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2023; 67:1-34. [PMID: 36444668 DOI: 10.1111/jir.12989] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Girls/women with autism spectrum disorder (ASD) are suggested to exhibit different symptom profiles than boys/men with ASD. Accumulating evidence suggests that intellectual disability (ID) may affect sex/gender differences in ASD. However, a systematic review and meta-analysis on this topic is missing. METHODS Two databases (MEDLINE and PsycINFO) were used to search for studies reporting sex/gender differences (girls/women versus boys/men) in social communication and interaction, restrictive and repetitive behaviour and interests (RRBIs), sensory processing, and linguistic and motor abilities in ASD. The final sample consisted of 79 studies. The meta-analysis was performed with Review Manager using a random-effects model. Participants with ASD without and with ID were analysed as separate subgroups, and the effects in these two subgroups were also compared with each other. RESULTS Girls/women with ASD without ID displayed fewer RRBIs, more sensory symptoms and less problems in linguistic abilities than their boys/men counterparts. In contrast, girls/women with ASD with ID displayed more social difficulties and RRBIs, poorer linguistic abilities and more motor problems than boys/men with ASD with ID. Comparisons of groups of participants with ASD without ID versus participants with ASD with ID confirmed differences in sex/gender effects on social difficulties, sensory processing, linguistic abilities and motor abilities. CONCLUSIONS Our results clearly suggest that the female phenotype of ASD is moderated by ID. Among individuals with ASD with ID, girls/women seem to be more severely affected than boys/men, whereas among individuals with ASD without ID, girls/women with ASD may have less symptoms than boys/men. Such phenotypic differences could be a potential cause of underrecognition of girls/women with ASD, and it is also possible that observed phenotypic differences may reflect underdiagnosing of girls/women with ASD.
Collapse
Affiliation(s)
- E Saure
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- BABA Center and Department of Clinical Neurophysiology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - M Castrén
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - K Mikkola
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - J Salmi
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| |
Collapse
|
12
|
Zielinski BA, Andrews DS, Lee JK, Solomon M, Rogers SJ, Heath B, Nordahl CW, Amaral DG. Sex-dependent structure of socioemotional salience, executive control, and default mode networks in preschool-aged children with autism. Neuroimage 2022; 257:119252. [PMID: 35500808 PMCID: PMC11107798 DOI: 10.1016/j.neuroimage.2022.119252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 03/12/2022] [Accepted: 04/16/2022] [Indexed: 12/26/2022] Open
Abstract
The structure of large-scale intrinsic connectivity networks is atypical in adolescents diagnosed with autism spectrum disorder (ASD or autism). However, the degree to which alterations occur in younger children, and whether these differences vary by sex, is unknown. We utilized structural magnetic resonance imaging (MRI) data from a sex- and age- matched sample of 122 autistic and 122 typically developing (TD) children (2-4 years old) to investigate differences in underlying network structure in preschool-aged autistic children within three large scale intrinsic connectivity networks implicated in ASD: the Socioemotional Salience, Executive Control, and Default Mode Networks. Utilizing structural covariance MRI (scMRI), we report network-level differences in autistic versus TD children, and further report preliminary findings of sex-dependent differences within network topology.
Collapse
Affiliation(s)
- Brandon A Zielinski
- Departments of Pediatrics and Neurology, University of Utah School of Medicine, University of Utah, Salt Lake City, UT, USA.
| | - Derek S Andrews
- The Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Joshua K Lee
- The Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Marjorie Solomon
- The Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Sally J Rogers
- The Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Brianna Heath
- The Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Christine Wu Nordahl
- The Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, University of California Davis, Sacramento, CA, USA
| | - David G Amaral
- The Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, University of California Davis, Sacramento, CA, USA
| |
Collapse
|
13
|
Lee JK, Andrews DS, Ozturk A, Solomon M, Rogers S, Amaral DG, Nordahl CW. Altered Development of Amygdala-Connected Brain Regions in Males and Females with Autism. J Neurosci 2022; 42:6145-6155. [PMID: 35760533 PMCID: PMC9351637 DOI: 10.1523/jneurosci.0053-22.2022] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/30/2022] [Accepted: 06/08/2022] [Indexed: 02/05/2023] Open
Abstract
Altered amygdala development is implicated in the neurobiology of autism, but little is known about the coordinated development of the brain regions directly connected with the amygdala. Here we investigated the volumetric development of an amygdala-connected network, defined as the set of brain regions with monosynaptic connections with the amygdala, in autism from early to middle childhood. A total of 950 longitudinal structural MRI scans were acquired from 282 children (93 female) with autism and 128 children with typical development (61 female) at up to four time points (mean ages: 39, 52, 64, and 137 months, respectively). Volumes from 32 amygdala-connected brain regions were examined using mixed effects multivariate distance matrix regression. The Social Responsiveness Scale-2 was administered to assess degree of autistic traits and social impairments. The amygdala-connected network exhibited persistent diagnostic differences (p values ≤ 0.03) that increased over time (p values ≤ 0.02). These differences were most prominent in autistics with more impacted social functioning at baseline. This pattern was not observed across regions without monosynaptic amygdala connection. We observed qualitative sex differences. In males, the bilateral subgenual anterior cingulate cortices were most affected, while in females the left fusiform and superior temporal gyri were most affected. In conclusion, (1) autism is associated with widespread alterations to the development of brain regions connected with the amygdala, which were associated with autistic social behaviors; and (2) autistic males and females exhibited different patterns of alterations, adding to a growing body of evidence of sex differences in the neurobiology of autism.SIGNIFICANCE STATEMENT Global patterns of development across brain regions with monosynaptic connection to the amygdala differentiate autism from typical development, and are modulated by social functioning in early childhood. Alterations to brain regions within the amygdala-connected network differed in males and females with autism. Results also indicate larger volumetric differences in regions having monosynaptic connection with the amygdala than in regions without monosynaptic connection.
Collapse
Affiliation(s)
- Joshua K Lee
- MIND Institute, University of California Davis School of Medicine, Sacramento, California 95817
- Department of Psychiatry and Behavioral Sciences
| | - Derek S Andrews
- MIND Institute, University of California Davis School of Medicine, Sacramento, California 95817
- Department of Psychiatry and Behavioral Sciences
| | - Arzu Ozturk
- Department of Radiology, University of California Davis School of Medicine, Sacramento, California 95817
| | - Marjorie Solomon
- MIND Institute, University of California Davis School of Medicine, Sacramento, California 95817
- Department of Psychiatry and Behavioral Sciences
| | - Sally Rogers
- MIND Institute, University of California Davis School of Medicine, Sacramento, California 95817
- Department of Psychiatry and Behavioral Sciences
| | - David G Amaral
- MIND Institute, University of California Davis School of Medicine, Sacramento, California 95817
- Department of Psychiatry and Behavioral Sciences
| | - Christine Wu Nordahl
- MIND Institute, University of California Davis School of Medicine, Sacramento, California 95817
- Department of Psychiatry and Behavioral Sciences
| |
Collapse
|
14
|
Xu S, Li M, Yang C, Fang X, Ye M, Wu Y, Yang B, Huang W, Li P, Ma X, Fu S, Yin Y, Tian J, Gan Y, Jiang G. Abnormal Degree Centrality in Children with Low-Function Autism Spectrum Disorders: A Sleeping-State Functional Magnetic Resonance Imaging Study. Neuropsychiatr Dis Treat 2022; 18:1363-1374. [PMID: 35818374 PMCID: PMC9270980 DOI: 10.2147/ndt.s367104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/23/2022] [Indexed: 12/04/2022] Open
Abstract
PURPOSE This study used the graph-theory approach, degree centrality (DC) to analyze whole-brain functional networks at the voxel level in children with ASD, and investigated whether DC changes were correlated with any clinical variables in ASD children. METHODS The current study included 86 children with ASD and 54 matched healthy subjects Aged 2-5.5 years. Next, chloral hydrate induced sleeping-state functional magnetic resonance imaging (ss-fMRI) datasets were acquired from these ASD and healthy subjects. For a given voxel, the DC was calculated by calculating the number of functional connections with significantly positive correlations at the individual level. Group differences were tested using two-sample t-tests (p < 0.01, AlphaSim corrected). Finally, relationships between abnormal DCs and clinical variables were investigated via Pearson's correlation analysis. RESULTS Children with ASD exhibited low DC values in the right middle frontal gyrus (MFG) (p < 0.01, AlphaSim corrected). Furthermore, significantly negative correlations were established between the decreased average DC values within the right MFG in ASD children and the total ABC scores, as well as with two ABC subscales measuring highly relevant impairments in ASD (ie, stereotypes and object-use behaviors and difficulties in language). CONCLUSION Taken together, the results of our ss-fMRI study suggest that abnormal DC may represent an important contribution to elucidation of the neuropathophysiological mechanisms of preschoolers with ASD.
Collapse
Affiliation(s)
- Shoujun Xu
- Department of Radiology, Shenzhen Children’s Hospital, Shenzhen, People’s Republic of China
| | - Meng Li
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, People’s Republic of China
| | - Chunlan Yang
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, People’s Republic of China
| | - Xiangling Fang
- Department of Department of Children Healthcare, Shenzhen Children’s Hospital, Shenzhen, People’s Republic of China
| | - Miaoting Ye
- Department of Department of Children Healthcare, Shenzhen Children’s Hospital, Shenzhen, People’s Republic of China
| | - Yunfan Wu
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, People’s Republic of China
| | - Binrang Yang
- Department of Department of Children Healthcare, Shenzhen Children’s Hospital, Shenzhen, People’s Republic of China
| | - Wenxian Huang
- Department of Department of Children Healthcare, Shenzhen Children’s Hospital, Shenzhen, People’s Republic of China
| | - Peng Li
- Department of Radiology, Shenzhen Children’s Hospital, Shenzhen, People’s Republic of China
| | - Xiaofen Ma
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, People’s Republic of China
| | - Shishun Fu
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, People’s Republic of China
| | - Yi Yin
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, People’s Republic of China
| | - Junzhang Tian
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, People’s Republic of China
| | - Yungen Gan
- Department of Radiology, Shenzhen Children’s Hospital, Shenzhen, People’s Republic of China
| | - Guihua Jiang
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, People’s Republic of China
| |
Collapse
|
15
|
Wang Y, Fu Y, Luo X. Identification of Pathogenetic Brain Regions via Neuroimaging Data for Diagnosis of Autism Spectrum Disorders. Front Neurosci 2022; 16:900330. [PMID: 35655751 PMCID: PMC9152096 DOI: 10.3389/fnins.2022.900330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a kind of neurodevelopmental disorder that often occurs in children and has a hidden onset. Patients usually have lagged development of communication ability and social behavior and thus suffer an unhealthy physical and mental state. Evidence has indicated that diseases related to ASD have commonalities in brain imaging characteristics. This study aims to study the pathogenesis of ASD based on brain imaging data to locate the ASD-related brain regions. Specifically, we collected the functional magnetic resonance image data of 479 patients with ASD and 478 normal subjects matched in age and gender and used a machine-learning framework named random support vector machine cluster to extract distinctive brain regions from the preprocessed data. According to the experimental results, compared with other existing approaches, the method used in this study can more accurately distinguish patients from normal individuals based on brain imaging data. At the same time, this study found that the development of ASD was highly correlated with certain brain regions, e.g., lingual gyrus, superior frontal gyrus, medial gyrus, insular lobe, and olfactory cortex. This study explores the effectiveness of a novel machine-learning approach in the study of ASD brain imaging and provides a reference brain area for the medical research and clinical treatment of ASD.
Collapse
Affiliation(s)
- Yu Wang
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha, China
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
- Hunan Xiangjiang Artificial Intelligence Academy, Changsha, China
| | - Yu Fu
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha, China
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
- Hunan Xiangjiang Artificial Intelligence Academy, Changsha, China
- *Correspondence: Yu Fu
| | - Xun Luo
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha, China
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
- Hunan Xiangjiang Artificial Intelligence Academy, Changsha, China
| |
Collapse
|
16
|
Nordahl CW, Andrews DS, Dwyer P, Waizbard-Bartov E, Restrepo B, Lee JK, Heath B, Saron C, Rivera SM, Solomon M, Ashwood P, Amaral DG. The Autism Phenome Project: Toward Identifying Clinically Meaningful Subgroups of Autism. Front Neurosci 2022; 15:786220. [PMID: 35110990 PMCID: PMC8801875 DOI: 10.3389/fnins.2021.786220] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/20/2021] [Indexed: 12/23/2022] Open
Abstract
One of the most universally accepted facts about autism is that it is heterogenous. Individuals diagnosed with autism spectrum disorder have a wide range of behavioral presentations and a variety of co-occurring medical and mental health conditions. The identification of more homogenous subgroups is likely to lead to a better understanding of etiologies as well as more targeted interventions and treatments. In 2006, we initiated the UC Davis MIND Institute Autism Phenome Project (APP) with the overarching goal of identifying clinically meaningful subtypes of autism. This ongoing longitudinal multidisciplinary study now includes over 400 children and involves comprehensive medical, behavioral, and neuroimaging assessments from early childhood through adolescence (2-19 years of age). We have employed several strategies to identify sub-populations within autistic individuals: subgrouping by neural, biological, behavioral or clinical characteristics as well as by developmental trajectories. In this Mini Review, we summarize findings to date from the APP cohort and describe progress made toward identifying meaningful subgroups of autism.
Collapse
Affiliation(s)
- Christine Wu Nordahl
- MIND Institute, University of California, Davis, Davis, CA, United States
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Derek Sayre Andrews
- MIND Institute, University of California, Davis, Davis, CA, United States
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Patrick Dwyer
- Center for Mind and Brain, University of California, Davis, Davis, CA, United States
- Department of Psychology, University of California, Davis, Davis, CA, United States
| | - Einat Waizbard-Bartov
- MIND Institute, University of California, Davis, Davis, CA, United States
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Bibiana Restrepo
- MIND Institute, University of California, Davis, Davis, CA, United States
- Department of Pediatrics, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Joshua K. Lee
- MIND Institute, University of California, Davis, Davis, CA, United States
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Brianna Heath
- MIND Institute, University of California, Davis, Davis, CA, United States
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Clifford Saron
- MIND Institute, University of California, Davis, Davis, CA, United States
- Center for Mind and Brain, University of California, Davis, Davis, CA, United States
| | - Susan M. Rivera
- MIND Institute, University of California, Davis, Davis, CA, United States
- Center for Mind and Brain, University of California, Davis, Davis, CA, United States
- Department of Psychology, University of California, Davis, Davis, CA, United States
| | - Marjorie Solomon
- MIND Institute, University of California, Davis, Davis, CA, United States
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Paul Ashwood
- MIND Institute, University of California, Davis, Davis, CA, United States
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - David G. Amaral
- MIND Institute, University of California, Davis, Davis, CA, United States
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
17
|
Danesh AA, Howery S, Aazh H, Kaf W, Eshraghi AA. Hyperacusis in Autism Spectrum Disorders. Audiol Res 2021; 11:547-556. [PMID: 34698068 PMCID: PMC8544234 DOI: 10.3390/audiolres11040049] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 11/30/2022] Open
Abstract
Hyperacusis is highly prevalent in the autism spectrum disorder (ASD) population. This auditory hypersensitivity can trigger pragmatically atypical reactions that may impact social and academic domains. Objective: The aim of this report is to describe the relationship between decreased sound tolerance disorders and the ASD population. Topics covered: The main topics discussed include (1) assessment and prevalence of hyperacusis in ASD; (2) etiology of hyperacusis in ASD; (3) treatment of hyperacusis in ASD. Conclusions: Knowledge of the assessment and treatment of decreased sound tolerance disorders within the ASD population is growing and changing.
Collapse
Affiliation(s)
- Ali A. Danesh
- Department of Communication Sciences and Disorders, Florida Atlantic University, Boca Raton, FL 33431, USA;
- Department of Integrated Medical Sciences, Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
- Correspondence:
| | - Stephanie Howery
- Department of Communication Sciences and Disorders, Florida Atlantic University, Boca Raton, FL 33431, USA;
| | - Hashir Aazh
- Department of Audiology, Tinnitus and Hyperacusis Specialty Clinic, Royal Surrey Hospital, Guildford GU2 7XX, UK;
| | - Wafaa Kaf
- Communication Sciences and Disorders Department, Missouri State University, Springfield, MO 65897, USA;
| | - Adrien A. Eshraghi
- Department of Otolaryngology and Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL 33146, USA;
| |
Collapse
|
18
|
Floris DL, Filho JOA, Lai MC, Giavasis S, Oldehinkel M, Mennes M, Charman T, Tillmann J, Dumas G, Ecker C, Dell'Acqua F, Banaschewski T, Moessnang C, Baron-Cohen S, Durston S, Loth E, Murphy DGM, Buitelaar JK, Beckmann CF, Milham MP, Di Martino A. Towards robust and replicable sex differences in the intrinsic brain function of autism. Mol Autism 2021; 12:19. [PMID: 33648569 PMCID: PMC7923310 DOI: 10.1186/s13229-021-00415-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Marked sex differences in autism prevalence accentuate the need to understand the role of biological sex-related factors in autism. Efforts to unravel sex differences in the brain organization of autism have, however, been challenged by the limited availability of female data. METHODS We addressed this gap by using a large sample of males and females with autism and neurotypical (NT) control individuals (ABIDE; Autism: 362 males, 82 females; NT: 409 males, 166 females; 7-18 years). Discovery analyses examined main effects of diagnosis, sex and their interaction across five resting-state fMRI (R-fMRI) metrics (voxel-level Z > 3.1, cluster-level P < 0.01, gaussian random field corrected). Secondary analyses assessed the robustness of the results to different pre-processing approaches and their replicability in two independent samples: the EU-AIMS Longitudinal European Autism Project (LEAP) and the Gender Explorations of Neurogenetics and Development to Advance Autism Research. RESULTS Discovery analyses in ABIDE revealed significant main effects of diagnosis and sex across the intrinsic functional connectivity of the posterior cingulate cortex, regional homogeneity and voxel-mirrored homotopic connectivity (VMHC) in several cortical regions, largely converging in the default network midline. Sex-by-diagnosis interactions were confined to the dorsolateral occipital cortex, with reduced VMHC in females with autism. All findings were robust to different pre-processing steps. Replicability in independent samples varied by R-fMRI measures and effects with the targeted sex-by-diagnosis interaction being replicated in the larger of the two replication samples-EU-AIMS LEAP. LIMITATIONS Given the lack of a priori harmonization among the discovery and replication datasets available to date, sample-related variation remained and may have affected replicability. CONCLUSIONS Atypical cross-hemispheric interactions are neurobiologically relevant to autism. They likely result from the combination of sex-dependent and sex-independent factors with a differential effect across functional cortical networks. Systematic assessments of the factors contributing to replicability are needed and necessitate coordinated large-scale data collection across studies.
Collapse
Affiliation(s)
- Dorothea L Floris
- Donders Center for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - José O A Filho
- Autism Center, The Child Mind Institute, 101 E 56 Street, New York City, New York, 10026, USA
| | - Meng-Chuan Lai
- The Margaret and Wallace McCain Centre for Child, Youth and Family Mental Health, Azrieli Adult Neurodevelopmental Centre, and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Department of Psychiatry and Autism Research Unit, The Hospital for Sick Children, Toronto, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Steve Giavasis
- Autism Center, The Child Mind Institute, 101 E 56 Street, New York City, New York, 10026, USA
| | - Marianne Oldehinkel
- Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Maarten Mennes
- Donders Center for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Tony Charman
- Department of Psychology, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Julian Tillmann
- Department of Psychology, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- Department of Applied Psychology: Health, Development, Enhancement, and Intervention, University of Vienna, Vienna, Austria
| | - Guillaume Dumas
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, Université de Paris, Paris, France
- CHU Sainte-Justine Research Center, Department of Psychiatry, Université de Montréal, Montreal, QC, Canada
| | - Christine Ecker
- Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt am Main, Goethe University, Frankfurt, Germany
| | - Flavio Dell'Acqua
- Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Carolin Moessnang
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Sarah Durston
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Eva Loth
- Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Declan G M Murphy
- Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Jan K Buitelaar
- Donders Center for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
- Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands
| | - Christian F Beckmann
- Donders Center for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
- Centre for Functional MRI of the Brain, University of Oxford, Oxford, UK
| | - Michael P Milham
- Autism Center, The Child Mind Institute, 101 E 56 Street, New York City, New York, 10026, USA
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Adriana Di Martino
- Autism Center, The Child Mind Institute, 101 E 56 Street, New York City, New York, 10026, USA.
| |
Collapse
|
19
|
Yin F, Wang H, Liu Z, Gao J. Association between peripheral blood levels of C-reactive protein and Autism Spectrum Disorder in children: A systematic review and meta-analysis. Brain Behav Immun 2020; 88:432-441. [PMID: 32272227 DOI: 10.1016/j.bbi.2020.04.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION In the past five years, a growing number of studies have tried to illustrate the association between the peripheral blood level of C-reactive protein (CRP) and Autism Spectrum Disorders (ASD). However, the results have been inconsistent. To assess whether abnormal CRP in peripheral blood was associated with ASD, we conducted a systematic review and meta-analysis. METHODS A systematic literature search was performed using the Embase, PubMed, Web of Knowledge, PsycINFO, and Cochrane databases through August 27, 2019. Reference lists were also checked by hand-searching. Clinical studies exploring CRP concentration in the peripheral blood of autistic children and healthy controls were included in our meta-analysis. Overlapping samples were excluded. We pooled obtained data using a fixed- or random-effect model based on a heterogeneity test with Comprehensive Meta-Analysis software and STATA software. Standardized mean differences were converted to Hedges' g statistic in order to obtain the effect size adjusted for sample size. Subgroup analyses, sensitivity analyses, meta-regression, and publication bias tests were also undertaken. RESULTS Nine studies with 592 ASD children and 604 healthy children were included in our meta-analysis. Significantly elevated CRP levels in peripheral blood were found in ASD children compared with healthy controls (Hedges' g = 0.527, 95% CI: 0.224-0.830, p = 0.001). Subgroup analyses based on sample types and ethnicity also showed similar results, except for the plasma subgroup. There was also a significant association between peripheral CRP concentration and ASD after removing the studies identified by Galbraith plots. The results of the sensitivity analysis revealed that no single study could reverse our results. Meta-regression analyses revealed that the gender of autistic children had a moderating effect on the outcome of the meta-analysis. In addition, no obvious publication bias was found in the meta-analysis. CONCLUSIONS AND RELEVANCE In our study, peripheral CRP levels were significantly elevated in autistic children compared with healthy children. These results may provide us some new insights about ASD.
Collapse
Affiliation(s)
- Fangna Yin
- Clinical Laboratory, Cangzhou Central Hospital, Cangzhou, Hebei 061000, China
| | - Hongbing Wang
- Department of Radiotherapy Oncology, Cangzhou Central Hospital, Cangzhou, Hebei 061000, China
| | - Zeya Liu
- Department of Blood Transfusion, China-Japan Friendship Hospital, Beijing 100029, China
| | - Junwei Gao
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|