1
|
Wijaya YOS, Ar Rochmah M, Nurputra DK, Farmawati A. Performance of cellulose-based card for direct genetic testing of spinal muscular atrophy. BMC Biotechnol 2025; 25:17. [PMID: 39953527 PMCID: PMC11829459 DOI: 10.1186/s12896-024-00938-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/16/2024] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is a devastating neuromuscular condition resulting from the loss of the survival motor neuron 1 (SMN1) gene. Precise genetic testing has become essential after the authorization of several potent medications. To achieve this objective, the use of dried blood spot (DBS) has assured convenient and extensive testing from a distance. Nevertheless, developing countries such as Indonesia sometimes lack access to standard filter papers like FTA or Guthrie cards for DBS processing. Here, we aim to develop a cellulose-based card as an alternative filter paper for DBS preparation suitable for the genetic testing of SMA including but not limited to a direct polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and multiplex allele-specific amplification (multi-ASA). RESULTS An in-house paper was developed from a 180 gsm cellulose-based paper and was used for DBS preparation. The performance of dried blood spotted on the cellulose-based card (DBSc) was compared to pure genomic DNA (gDNA) isolate and dried blood spotted on FTA cards (DBSf) for genetic testing. The results of the genetic testing of our cellulose-based card were completely matched with those of gDNA and DBSf in both direct PCR-RFLP and Multi-ASA to separate SMN1 from SMN2. In addition, after three months of storing, the DBSc continued to exhibit a clear result, suggesting its high stability for DNA storage. CONCLUSION Our cellulose-based card has the potential to be used for DBS carrier and for further genetic testing using PCR. Our findings can assist physicians in sending DBS samples from SMA suspicion cases to genetic testing centers, thereby preventing diagnosis delay or misdiagnosis.
Collapse
Affiliation(s)
- Yogik Onky Silvana Wijaya
- Department of Biochemistry, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Jalan Farmako, Yogyakarta, 55281, Indonesia.
| | - Mawaddah Ar Rochmah
- Department of Neurology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Jalan Farmako, Yogyakarta, 55281, Indonesia
| | - Dian Kesumapramudya Nurputra
- Department of Pediatrics, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Jalan Farmako, Yogyakarta, 55281, Indonesia
| | - Arta Farmawati
- Department of Biochemistry, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Jalan Farmako, Yogyakarta, 55281, Indonesia
| |
Collapse
|
2
|
Lamadrid-González J, Castellar-Leones S, Contreras-Velásquez JC, Bermúdez V. SMN2 Copy Number Association with Spinal Muscular Atrophy Severity: Insights from Colombian Patients. J Clin Med 2024; 13:6402. [PMID: 39518541 PMCID: PMC11545890 DOI: 10.3390/jcm13216402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Spinal muscular atrophy (SMA) is a genetic neurodegenerative disease primarily affecting paediatric patients, often leading to significant morbidity and mortality. Our principal objective is to describe the sociodemographic characteristics and evaluate the association between the number of SMN2 copies and SMA type in patients from the Colombian Foundation for Spinal Muscular Atrophy (FAMECOL) database. Methodology: An analytical cross-sectional study was conducted on 201 patients with a genetic diagnosis of SMA. Data were identified, extracted, and collected from patient records provided by FAMECOL as patients registered with the association, including 201 patients from April 2013 to April 2024, when the database was delivered. Qualitative variables were described using relative and absolute frequencies, while quantitative variables were described using central tendency and dispersion measures according to their distribution. The association between the SMA type and the SMN2 number of copies was assessed by Fisher's exact test (1 to 5 copies). Results: Of the 201 patients studied, 42% were female (n = 85), and 58% were male (n = 116). The median age was 9 years (IQR 4-16 years). The median age at diagnosis was 9 years (IQR 4-16), varying by subgroup: 2, 7, 14, and 41.5 years for each type, respectively. A total of 25% patients were from Antioquia (n = 51). Eighty-nine per cent had gastrostomy (n = 18). The association between the two variables was statistically significant (p < 0.05). Conclusion: This study highlights SMA clinical variability and its association with the number of SMN2 copies, underscoring the importance of a personalised approach to diagnosing and managing this disease. The findings may guide more effective therapeutic strategies to improve patients' quality of life.
Collapse
Affiliation(s)
- José Lamadrid-González
- Programa de Maestría en Genética, Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla, Atlántico 080003, Colombia
| | - Sandra Castellar-Leones
- Departamento de Medicina Fisica y Rehabilitacion, Facultad de medicina, Universidad Nacional de Colombia, Bogotá DC 111321, Colombia;
| | | | - Valmore Bermúdez
- Facultad de Ciencias de la Salud, Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla, Atlántico 080003, Colombia;
| |
Collapse
|
3
|
Karasu N, Acer H, Akalin H, Turkgenc B, Demir M, Sahin IO, Gokce N, Gulec A, Ciplakligil A, Sarilar AC, Cuce I, Gumus H, Per H, Canpolat M, Dundar M. Molecular analysis of SMN2, NAIP, and GTF2H2 gene deletions and relationships with clinical subtypes of spinal muscular atrophy. J Neurogenet 2024:1-10. [PMID: 39321203 DOI: 10.1080/01677063.2024.2407332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
SMA (spinal muscular atrophy) is an autosomal recessive neuromuscular disease that causes muscle atrophy and weakness. SMA is diagnosed by a homozygous deletion in exon 7 of the SMN1 gene. However, mutations in genes located in the SMA region, such as SMN2, NAIP, SERF1, and GTF2H2, may also contribute to the severity of the disease. Within our study's scope, 58 SMA patients who applied in 2018-2021 and 40 healthy controls were analyzed. The study retrospectively included the SMN1 and SMN2 copy numbers previously determined by the MLPA method. Then, NAIP gene analyses with the multiplex PCR method and GTF2H2 gene analyses with the RFLP method were performed. There was a significant correlation (p = 0.00001) between SMN2 copy numbers and SMA subtypes. Also, the NAIP gene (p = 0.01) and the GTF2H2 gene (p = 0.0049) revealed a significant difference between healthy and SMA subjects, whereas the SMA subtypes indicated no significant differences. We detected a significant correlation between clinical subtypes and HFMSE scores in 32 pediatric SMA patients compared (p = 0.01). While pediatric patients with GTF2H2 deletions demonstrated higher motor functions, and those with NAIP deletions demonstrated lower motor functions. In this study, we examined the relationship between NAIP and GTF2H2, called SMN region modifier genes, and the clinical severity of the disease in Turkish SMA patients. Despite its small scale, this research will benefit future investigations into the pathogenesis of SMA disease.
Collapse
Affiliation(s)
- Nilgun Karasu
- Faculty of Medicine, Department of Medical Genetics, Erciyes University, Kayseri, Turkey
- Faculty of Medicine, Department of Medical Genetics, Uskudar University, Istanbul, Turkey
| | - Hamit Acer
- Department of Pediatric Neurology, Denizli State Hospital, Denizli, Turkey
| | - Hilal Akalin
- Faculty of Medicine, Department of Medical Genetics, Erciyes University, Kayseri, Turkey
| | - Burcu Turkgenc
- Faculty of Medicine, Department of Medical Biology, Uskudar University, Istanbul, Turkey
| | - Mikail Demir
- Faculty of Medicine, Department of Medical Genetics, Erciyes University, Kayseri, Turkey
| | - Izem Olcay Sahin
- Faculty of Medicine, Department of Medical Genetics, Erciyes University, Kayseri, Turkey
| | - Nuriye Gokce
- Faculty of Medicine, Department of Medical Genetics, Erciyes University, Kayseri, Turkey
| | - Ayten Gulec
- Faculty of Medicine, Department of Pediatric Neurology, Erciyes University, Kayseri, Turkey
| | - Asli Ciplakligil
- Faculty of Medicine, Department of Neurology, Erciyes University, Kayseri, Turkey
| | - Ayse Caglar Sarilar
- Faculty of Medicine, Department of Neurology, Erciyes University, Kayseri, Turkey
| | - Isa Cuce
- Faculty of Medicine, Department of Physical Medicine and Rehabilitation, Erciyes University, Kayseri, Turkey
| | - Hakan Gumus
- Faculty of Medicine, Department of Pediatric Neurology, Erciyes University, Kayseri, Turkey
| | - Huseyin Per
- Faculty of Medicine, Department of Pediatric Neurology, Erciyes University, Kayseri, Turkey
| | - Mehmet Canpolat
- Faculty of Medicine, Department of Pediatric Neurology, Erciyes University, Kayseri, Turkey
| | - Munis Dundar
- Faculty of Medicine, Department of Medical Genetics, Erciyes University, Kayseri, Turkey
| |
Collapse
|
4
|
Dosi C, Masson R. The impact of three SMN2 gene copies on clinical characteristics and effect of disease-modifying treatment in patients with spinal muscular atrophy: a systematic literature review. Front Neurol 2024; 15:1308296. [PMID: 38487326 PMCID: PMC10937544 DOI: 10.3389/fneur.2024.1308296] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/12/2024] [Indexed: 03/17/2024] Open
Abstract
Objective To review the clinical characteristics and effect of treatment in patients with spinal muscular atrophy (SMA) and three copies of the SMN2 gene. Methods We conducted a literature search in October 2022 to identify English-language clinical research on SMA that included SMN2 copy number according to PRISMA guidelines. Results Our search identified 44 studies examining the impact of three SMN2 copies on clinical characteristics (21 on phenotype, 13 on natural history, and 15 on functional status and other signs/symptoms). In children with type I SMA or presymptomatic infants with an SMN1 deletion, three SMN2 copies was associated with later symptom onset, slower decline in motor function and longer survival compared with two SMN2 copies. In patients with SMA type II or III, three SMN2 copies is associated with earlier symptom onset, loss of ambulation, and ventilator dependence compared with four SMN2 copies. Eleven studies examined treatment effects with nusinersen (nine studies), onasemnogene abeparvovec (one study), and a range of treatments (one study) in patients with three SMN2 copies. In presymptomatic infants, early treatment delayed the onset of symptoms and maintained motor function in those with three SMN2 copies. The impact of copy number on treatment response in symptomatic patients is still unclear. Conclusion SMN2 copy number is strongly correlated with SMA phenotype in patients with SMN1 deletion, while no correlation was found in patients with an SMN1 mutation. Patients with three SMN2 copies show a highly variable clinical phenotype. Early initiation of treatment is highly effective in presymptomatic patients with three SMN2 copies.
Collapse
Affiliation(s)
| | - Riccardo Masson
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Developmental Neurology Unit, Milan, Italy
| |
Collapse
|
5
|
Savad S, Ashrafi MR, Samadaian N, Heidari M, Modarressi MH, Zamani G, Amidi S, Younesi S, Amin MMT, Saadati P, Ronagh A, Ardakani HS, Eslami S, Ghafouri-Fard S. A comprehensive overview of SMN and NAIP copy numbers in Iranian SMA patients. Sci Rep 2023; 13:3202. [PMID: 36828874 PMCID: PMC9957985 DOI: 10.1038/s41598-023-30449-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 02/23/2023] [Indexed: 02/26/2023] Open
Abstract
Spinal muscular atrophy (SMA) is among the most common autosomal recessive disorders with different incidence rates in different ethnic groups. In the current study, we have determined SMN1, SMN2 and NAIP copy numbers in an Iranian population using MLPA assay. Cases were recruited from Genome-Nilou Laboratory, Tehran, Iran and Pars-Genome Laboratory, Karaj, Iran during 2012-2022. All enrolled cases had a homozygous deletion of exon 7 of SMN1. Moreover, except for 11 cases, all other cases had a homozygous deletion of exon 8 of SMN1. Out of 186 patients, 177 (95.16%) patients showed the same copy numbers of exons 7 and 8 of SMN2 gene. In addition, 53 patients (28.49%) showed 2 copies, 71 (38.17%) showed 3 copies and 53 patients (28.49%) showed 4 copies of SMN2 gene exons 7 and 8. The remaining 9 patients showed different copy numbers of exons 7 and 8 of SMN2 gene. The proportions of SMA patients with different numbers of normal NAIP were 0 copy in 73 patients (39.24%), 1 copy in 59 patients (31.72%), 2 copies in 53 patients (28.49%) and 4 copies in one patient (0.5%). These values are different from values reported in other populations. Integration of the data of the SMN1/2 and NAIP genes showed 17 genotypes. Patients with genotype 0-0-3-3-1 (0 copies of SMN1 (E7,8), 3 copies of SMN2 (E7,8) and 1 copy of NAIP (E5)) were the most common genotype in this study. Patients with 0-0-2-2-0 genotype were more likely to have type I SMA. The results of the current study have practical significance, particularly in the genetic counseling of at-risk families.
Collapse
Affiliation(s)
| | - Mahmoud Reza Ashrafi
- grid.411705.60000 0001 0166 0922Pediatric Neurology Division, Children’s Medical Center, Pediatrics Center of Excellence, Ataxia Clinic, Tehran University of Medical Sciences, Tehran, Iran ,grid.411705.60000 0001 0166 0922Department of Pediatrics Center, Growth and Development Research Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Morteza Heidari
- grid.411705.60000 0001 0166 0922Pediatric Neurology Division, Children’s Medical Center, Pediatrics Center of Excellence, Ataxia Clinic, Tehran University of Medical Sciences, Tehran, Iran ,grid.411705.60000 0001 0166 0922Pediatric Neurology Division, Children’s Medical Center, Pediatrics Center of Excellence, Myelin Disorders Clinic, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Hossein Modarressi
- grid.411705.60000 0001 0166 0922Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Zamani
- grid.411705.60000 0001 0166 0922Pediatric Neurology Division, Children’s Medical Center, Pediatrics Center of Excellence, Myelin Disorders Clinic, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Sarang Younesi
- Prenatal Screening Department, Nilou Laboratory, Tehran, Iran
| | | | | | - Alireza Ronagh
- grid.411705.60000 0001 0166 0922Department of Pediatrics Neurologists, Shahid Bahonar Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Hossein Shojaaldini Ardakani
- grid.411705.60000 0001 0166 0922Department of Medical, Faculty of Medical Sciences, Alborz University of Medical Sciences, Karaj, Iran
| | - Solat Eslami
- grid.411705.60000 0001 0166 0922Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran ,grid.411705.60000 0001 0166 0922Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Noguchi Y, Bo R, Nishio H, Matsumoto H, Matsui K, Yano Y, Sugawara M, Ueda G, Wijaya YOS, Niba ETE, Shinohara M, Bouike Y, Takeuchi A, Okamoto K, Saito T, Shimomura H, Lee T, Takeshima Y, Iijima K, Nozu K, Awano H. PCR-Based Screening of Spinal Muscular Atrophy for Newborn Infants in Hyogo Prefecture, Japan. Genes (Basel) 2022; 13:2110. [PMID: 36421785 PMCID: PMC9690968 DOI: 10.3390/genes13112110] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a common devastating neuromuscular disorder, usually involving homozygous deletion of the SMN1 gene. Newly developed drugs can improve the motor functions of infants with SMA when treated in the early stage. To ensure early diagnosis, newborn screening for SMA (SMA-NBS) via PCR-based genetic testing with dried blood spots (DBSs) has been spreading throughout Japan. In Hyogo Prefecture, we performed a pilot study of SMA-NBS to assess newborn infants who underwent routine newborn metabolic screening between February 2021 and August 2022. Hyogo Prefecture has ~40,000 live births per year and the estimated incidence of SMA is 1 in 20,000-25,000 based on genetic testing of symptomatic patients with SMA. Here, we screened 8336 newborns and 12 screen-positive cases were detected by real-time PCR assay. Multiplex ligation-dependent probe amplification assay excluded ten false positives and identified two patients. These false positives might be related to the use of heparinized and/or diluted blood in the DBS sample. Both patients carried two copies of SMN2, one was asymptomatic and the other was symptomatic at the time of diagnosis. SMA-NBS enables us to prevent delayed diagnosis of SMA, even if it does not always allow treatment in the pre-symptomatic stage.
Collapse
Affiliation(s)
- Yoriko Noguchi
- Department of Clinical Laboratory, Kobe University Hospital, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (Y.N.); (H.M.); (K.M.); (Y.Y.)
| | - Ryosuke Bo
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (R.B.); (K.I.); (K.N.); (H.A.)
| | - Hisahide Nishio
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (Y.O.S.W.); (E.T.E.N.); (M.S.)
- Department of Occupational Therapy, Faculty of Rehabilitation, Kobe Gakuin University, 518 Arise, Ikawadani-cho, Nishi-ku, Kobe 651-2180, Japan
| | - Hisayuki Matsumoto
- Department of Clinical Laboratory, Kobe University Hospital, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (Y.N.); (H.M.); (K.M.); (Y.Y.)
| | - Keiji Matsui
- Department of Clinical Laboratory, Kobe University Hospital, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (Y.N.); (H.M.); (K.M.); (Y.Y.)
| | - Yoshihiko Yano
- Department of Clinical Laboratory, Kobe University Hospital, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (Y.N.); (H.M.); (K.M.); (Y.Y.)
| | - Masami Sugawara
- Department of Pediatrics, Kobe City Medical Center General Hospital, 2-1-1 Minatojimaminami-machi, Chuo-ku, Kobe 650-0047, Japan;
| | - Go Ueda
- Department of Pediatrics, Ueda Hospital, 1-1-4 Kunikadori, Chuo-ku, Kobe 651-0066, Japan;
| | - Yogik Onky Silvana Wijaya
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (Y.O.S.W.); (E.T.E.N.); (M.S.)
- Department of Biochemistry, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Jalan Farmako, Yogyakarta 55281, Indonesia
| | - Emma Tabe Eko Niba
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (Y.O.S.W.); (E.T.E.N.); (M.S.)
- Laboratory of Molecular and Biochemical Research, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Masakazu Shinohara
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (Y.O.S.W.); (E.T.E.N.); (M.S.)
| | - Yoshihiro Bouike
- Faculty of Nutrition, Kobe Gakuin University, 518 Arise, Ikawadani-cho, Nishi-ku, Kobe 651-2180, Japan;
| | - Atsuko Takeuchi
- Instrumental Analysis Center, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada-ku, Kobe 658-8558, Japan;
| | - Kentaro Okamoto
- Department of Pediatrics, Ehime Prefectural Imabari Hospital, 4-5-5 Ishi-cho, Imabari 794-0006, Japan;
| | - Toshio Saito
- Department of Neurology, National Hospital Organization Osaka Toneyama Medical Center, 5-1-1 Toneyama, Toyonaka 560-8552, Japan;
| | - Hideki Shimomura
- Department of Pediatrics, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (H.S.); (T.L.); (Y.T.)
| | - Tomoko Lee
- Department of Pediatrics, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (H.S.); (T.L.); (Y.T.)
| | - Yasuhiro Takeshima
- Department of Pediatrics, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (H.S.); (T.L.); (Y.T.)
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (R.B.); (K.I.); (K.N.); (H.A.)
- Hyogo Prefectural Kobe Children’s Hospital, 1-6-7 Minatojimaminami-machi, Chuo-ku, Kobe 650-0047, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (R.B.); (K.I.); (K.N.); (H.A.)
| | - Hiroyuki Awano
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (R.B.); (K.I.); (K.N.); (H.A.)
| |
Collapse
|
7
|
Belter L, Mazzella A, O’Brien S, Jarecki J. Knowledge of genetic test results among caregivers and individuals with spinal muscular atrophy. PLoS One 2022; 17:e0276756. [PMID: 36346824 PMCID: PMC9642888 DOI: 10.1371/journal.pone.0276756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a progressive recessive genetic disease. Early identification is critical for achieving maximal treatment benefit. Survival motor neuron (SMN) 2 copy number may be a needed descriptor of disease severity than SMA type. Therefore, we assessed knowledge of SMN2 copy number among those with SMA and their caregivers via a phone survey. Only patients with SMA (or their caregivers) registered in the Cure SMA database with no SMN2 copy number on file were eligible. Descriptive results are reported. Backward stepwise multinomial logistic regressions determined if specific factors predicted knowledge of SMN2 copy number. Engagement with the SMA community (odds ratio [OR] 1.82; p<0.0001), ability to walk (OR 1.74; p = 0.006), and current age at time of survey (OR = 0.98; p<0.0001) each positively predicted knowledge of SMN2 copy number. Of 806 completed surveys, the majority (n = 452; 56.3%) did not know SMN2 copy numbers for themselves (n = 190; 62.5%) or their loved ones (n = 261; 52.4%). Of these, 66 respondents (8.2%) said genetic testing had not been done. Motor function increased linearly with increasing SMN2 copy number. SMN2 copy number is emerging as a critical descriptor of severity for SMA as type becomes more obsolete with early drug treatment. Communication of SMN2 copy numbers is recommended as a standard part of the treatment plan.
Collapse
Affiliation(s)
- Lisa Belter
- Research Department, Cure SMA, Elk Grove Village, IL, United States of America
- * E-mail:
| | - Allison Mazzella
- Research Department, Cure SMA, Elk Grove Village, IL, United States of America
- Division of Penn Translational Medicine and Human Genetics, Perleman Center for Advanced Medicine, Philadelphia, PA, United States of America
| | - Shannon O’Brien
- Community Support Department, Cure SMA, Elk Grove Village, IL, United States of America
| | - Jill Jarecki
- Research Department, Cure SMA, Elk Grove Village, IL, United States of America
- Department of Strategic Risk Management, BioMarin Pharmaceutical Inc., San Rafael, CA, United States of America
| |
Collapse
|
8
|
Yamadera M, Saito T, Shinohara M, Nishio H, Murayama S, Fujimura H. Spinal muscular atrophy type 2 patient who survived 61 years: an autopsy case report. Neuropathology 2022; 42:141-146. [PMID: 35144320 DOI: 10.1111/neup.12784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 11/27/2022]
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disease characterized by progressive muscle weakness due to degeneration of lower motor neurons in the anterior horn of the spinal cord. We analyzed autopsy findings of a male patient with SMA type 2 who survived until 61 years of age. Genetic analysis revealed a homozygous deletion of the survival motor neuron (SMN) gene 1 (SMN1) exon 7, confirming the diagnosis of SMA. Results of further analyses indicated that the patient had two copies of the genuine SMN gene 2 (SMN2) and one copy of a hybrid gene containing SMN2 exon 7 and SMN1 exon 8. Pathological examination revealed moderate neuronal loss of the anterior horn and appearance of heterotopic neurons in the lateral funiculus, whereas a few achromatic neurons were notably localized in the anterior horn of the lumbar segment. Microdysgenesis as a consequence of migration disturbance was found in the white matter of the frontal lobe, postulating the possibility of the maldevelopment of the nervous system.
Collapse
Affiliation(s)
- Misaki Yamadera
- Department of Neurology, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, Japan.,Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Toshio Saito
- Department of Neurology, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, Japan.,Division of Child Neurology, Department of Neurology, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, Japan
| | - Masakazu Shinohara
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hisahide Nishio
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, Kobe, Japan.,Department of Occupational Therapy, Faculty of Medical Rehabilitation, Kobe Gakuin University, Kobe, Japan
| | - Shigeo Murayama
- Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan.,Brain Bank for Aging Research, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Harutoshi Fujimura
- Department of Neurology, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, Japan
| |
Collapse
|
9
|
Salucci S, Bartoletti Stella A, Battistelli M, Burattini S, Bavelloni A, Cocco LI, Gobbi P, Faenza I. How Inflammation Pathways Contribute to Cell Death in Neuro-Muscular Disorders. Biomolecules 2021; 11:1109. [PMID: 34439778 PMCID: PMC8391499 DOI: 10.3390/biom11081109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
Neuro-muscular disorders include a variety of diseases induced by genetic mutations resulting in muscle weakness and waste, swallowing and breathing difficulties. However, muscle alterations and nerve depletions involve specific molecular and cellular mechanisms which lead to the loss of motor-nerve or skeletal-muscle function, often due to an excessive cell death. Morphological and molecular studies demonstrated that a high number of these disorders seem characterized by an upregulated apoptosis which significantly contributes to the pathology. Cell death involvement is the consequence of some cellular processes that occur during diseases, including mitochondrial dysfunction, protein aggregation, free radical generation, excitotoxicity and inflammation. The latter represents an important mediator of disease progression, which, in the central nervous system, is known as neuroinflammation, characterized by reactive microglia and astroglia, as well the infiltration of peripheral monocytes and lymphocytes. Some of the mechanisms underlying inflammation have been linked to reactive oxygen species accumulation, which trigger mitochondrial genomic and respiratory chain instability, autophagy impairment and finally neuron or muscle cell death. This review discusses the main inflammatory pathways contributing to cell death in neuro-muscular disorders by highlighting the main mechanisms, the knowledge of which appears essential in developing therapeutic strategies to prevent the consequent neuron loss and muscle wasting.
Collapse
Affiliation(s)
- Sara Salucci
- Department of Biomolecular Sciences (DiSB), Urbino University Carlo Bo, 61029 Urbino, Italy; (M.B.); (S.B.); (P.G.)
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy; (L.I.C.); (I.F.)
| | - Anna Bartoletti Stella
- Department of Diagnostic Experimental and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy;
| | - Michela Battistelli
- Department of Biomolecular Sciences (DiSB), Urbino University Carlo Bo, 61029 Urbino, Italy; (M.B.); (S.B.); (P.G.)
| | - Sabrina Burattini
- Department of Biomolecular Sciences (DiSB), Urbino University Carlo Bo, 61029 Urbino, Italy; (M.B.); (S.B.); (P.G.)
| | - Alberto Bavelloni
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Lucio Ildebrando Cocco
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy; (L.I.C.); (I.F.)
| | - Pietro Gobbi
- Department of Biomolecular Sciences (DiSB), Urbino University Carlo Bo, 61029 Urbino, Italy; (M.B.); (S.B.); (P.G.)
| | - Irene Faenza
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy; (L.I.C.); (I.F.)
| |
Collapse
|
10
|
Bowen BM, Truty R, Aradhya S, Bristow SL, Johnson BA, Morales A, Tan CA, Westbrook MJ, Winder TL, Chavez JC. SMA Identified: Clinical and Molecular Findings From a Sponsored Testing Program for Spinal Muscular Atrophy in More Than 2,000 Individuals. Front Neurol 2021; 12:663911. [PMID: 34025568 PMCID: PMC8134668 DOI: 10.3389/fneur.2021.663911] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/09/2021] [Indexed: 12/31/2022] Open
Abstract
Background: Spinal muscular atrophy (SMA) linked to chromosome 5q is an inherited progressive neuromuscular disorder with a narrow therapeutic window for optimal treatment. Although genetic testing provides a definitive molecular diagnosis that can facilitate access to effective treatments, limited awareness and other barriers may prohibit widespread testing. In this study, the clinical and molecular findings of SMA Identified—a no-charge sponsored next-generation sequencing (NGS)-based genetic testing program for SMA diagnosis—are reported. Methods: Between March 2018 and March 2020, unrelated individuals who had a confirmed or suspected SMA diagnosis or had a family history of SMA were eligible. All individuals underwent diagnostic genetic testing for SMA at clinician discretion. In total, 2,459 individuals were tested and included in this analysis. An NGS-based approach interrogated sequence and copy number of SMN1 and SMN2. Variants were confirmed by multiplex ligation-dependent probe amplification sequencing. Individuals were categorized according to genetic test results: diagnostic (two pathogenic SMN1 variants), nearly diagnostic (SMN1 exon-7 deletion with a variant of uncertain significance [VUS] in SMN1 or SMN2), indeterminate VUS (one VUS in SMN1 or SMN2), carrier (heterozygous SMN1 deletion only), or negative (no pathogenic variants or VUS in SMN1 or SMN2). Diagnostic yield was calculated. Genetic test results were analyzed based on clinician-reported clinical features and genetic modifiers (SMN2 copy number and SMN2 c.859G>C). Results: In total, 2,459 unrelated individuals (mean age 24.3 ± 23.0 years) underwent diagnostic testing. The diagnostic yield for diagnostic plus nearly diagnostic results was 31.3% (n = 771/2,459). Age of onset and clinical presentation varied considerably for individuals and was dependent on SMN2 copy number. Homozygous deletions represented the most common genetic etiology (96.2%), with sequence variants also observed in probands with clinical diagnoses of SMA. Conclusions: Using a high-yield panel test in a no-charge sponsored program early in the diagnostic odyssey may open the door for medical interventions in a substantial number of individuals with SMA. These findings have potential implications for clinical management of probands and their families.
Collapse
|
11
|
James R, Chaytow H, Ledahawsky LM, Gillingwater TH. Revisiting the role of mitochondria in spinal muscular atrophy. Cell Mol Life Sci 2021; 78:4785-4804. [PMID: 33821292 PMCID: PMC8195803 DOI: 10.1007/s00018-021-03819-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/22/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023]
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disease of variable clinical severity that is caused by mutations in the survival motor neuron 1 (SMN1) gene. Despite its name, SMN is a ubiquitous protein that functions within and outside the nervous system and has multiple cellular roles in transcription, translation, and proteostatic mechanisms. Encouragingly, several SMN-directed therapies have recently reached the clinic, albeit this has highlighted the increasing need to develop combinatorial therapies for SMA to achieve full clinical efficacy. As a subcellular site of dysfunction in SMA, mitochondria represents a relevant target for a combinatorial therapy. Accordingly, we will discuss our current understanding of mitochondrial dysfunction in SMA, highlighting mitochondrial-based pathways that offer further mechanistic insights into the involvement of mitochondria in SMA. This may ultimately facilitate translational development of targeted mitochondrial therapies for SMA. Due to clinical and mechanistic overlaps, such strategies may also benefit other motor neuron diseases and related neurodegenerative disorders.
Collapse
Affiliation(s)
- Rachel James
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Helena Chaytow
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Leire M Ledahawsky
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Thomas H Gillingwater
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK.
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.
| |
Collapse
|
12
|
Hiebeler M, Abicht A, Reilich P, Walter MC. Effect of Discontinuation of Nusinersen Treatment in Long-Standing SMA3. J Neuromuscul Dis 2021; 8:537-542. [PMID: 33682724 DOI: 10.3233/jnd-210644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Spinal muscular atrophy is an autosomal recessive neuromuscular disease leading to ongoing degeneration of anterior horn cells in the spinal cord. Nusinersen is the first approved treatment for the condition, an intrathecally administered antisense oligonucleotide. It modulates pre-RNA splicing of the SMN2 gene and increases full-length SMN protein expression, thereby increasing SMN protein levels. The benefit of Nusinersen for patients with spinal muscular atrophy type 3 (SMA3) has recently been shown in several real-world cohorts. OBJECTIVE We aim to elucidate not only the effect of therapy with Nusinersen, but the development of the disease course after discontinuation of treatment. To our knowledge, there are so far no reports on the effects of Nusinersen discontinuation. METHODS We report on a 45-year-old female patient with genetically confirmed SMA3 and a disease duration of 40 years prior to treatment onset. RESULTS The patient was non-ambulantory, best motor function at treatment onset was holding arms with support, reflected in MRC of 3/5 in upper limbs. After having received Nusinersen for 11 months without complications, the patient showed improvement in motor functions, as measured by hand grip measurement (HGS), Hammersmith Functional Rating Scale Expanded (HFMSE), and Revised Upper Limb Module (RULM). Due to worsening of a pre-existing anxiety disorder, treatment was discontinued after six injections. Sixteen months later, progression of the disease became evident with worsening of HFMSE and RULM scores, while hand strength remained stable. CONCLUSION Treatment with Nusinersen in SMA3 improves motor function in longstanding disease even in clinically advanced stages; however, after discontinuation of treatment, further progression mirroring the natural history of the disease is anticipated.
Collapse
Affiliation(s)
- Miriam Hiebeler
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Angela Abicht
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany.,Medical Genetics Center - MGZ, Munich, Germany
| | - Peter Reilich
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Maggie C Walter
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| |
Collapse
|
13
|
Wadman RI, Jansen MD, Stam M, Wijngaarde CA, Curial CAD, Medic J, Sodaar P, Schouten J, Vijzelaar R, Lemmink HH, van den Berg LH, Groen EJN, van der Pol WL. Intragenic and structural variation in the SMN locus and clinical variability in spinal muscular atrophy. Brain Commun 2020; 2:fcaa075. [PMID: 32954327 PMCID: PMC7425299 DOI: 10.1093/braincomms/fcaa075] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 11/15/2022] Open
Abstract
Clinical severity and treatment response vary significantly between patients with spinal muscular atrophy. The approval of therapies and the emergence of neonatal screening programmes urgently require a more detailed understanding of the genetic variants that underlie this clinical heterogeneity. We systematically investigated genetic variation other than SMN2 copy number in the SMN locus. Data were collected through our single-centre, population-based study on spinal muscular atrophy in the Netherlands, including 286 children and adults with spinal muscular atrophy Types 1–4, including 56 patients from 25 families with multiple siblings with spinal muscular atrophy. We combined multiplex ligation-dependent probe amplification, Sanger sequencing, multiplexed targeted resequencing and digital droplet polymerase chain reaction to determine sequence and expression variation in the SMN locus. SMN1, SMN2 and NAIP gene copy number were determined by multiplex ligation-dependent probe amplification. SMN2 gene variant analysis was performed using Sanger sequencing and RNA expression analysis of SMN by droplet digital polymerase chain reaction. We identified SMN1–SMN2 hybrid genes in 10% of spinal muscular atrophy patients, including partial gene deletions, duplications or conversions within SMN1 and SMN2 genes. This indicates that SMN2 copies can vary structurally between patients, implicating an important novel level of genetic variability in spinal muscular atrophy. Sequence analysis revealed six exonic and four intronic SMN2 variants, which were associated with disease severity in individual cases. There are no indications that NAIP1 gene copy number or sequence variants add value in addition to SMN2 copies in predicting the clinical phenotype in individual patients with spinal muscular atrophy. Importantly, 95% of spinal muscular atrophy siblings in our study had equal SMN2 copy numbers and structural changes (e.g. hybrid genes), but 60% presented with a different spinal muscular atrophy type, indicating the likely presence of further inter- and intragenic variabilities inside as well as outside the SMN locus. SMN2 gene copies can be structurally different, resulting in inter- and intra-individual differences in the composition of SMN1 and SMN2 gene copies. This adds another layer of complexity to the genetics that underlie spinal muscular atrophy and should be considered in current genetic diagnosis and counselling practices.
Collapse
Affiliation(s)
- Renske I Wadman
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Marc D Jansen
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Marloes Stam
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Camiel A Wijngaarde
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Chantall A D Curial
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Jelena Medic
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Peter Sodaar
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Jan Schouten
- MRC Holland BV, 1057 DL Amsterdam, the Netherlands
| | | | - Henny H Lemmink
- Department of Genetics, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands
| | - Leonard H van den Berg
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Ewout J N Groen
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - W Ludo van der Pol
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| |
Collapse
|
14
|
Zhang Y, He J, Zhang Y, Li L, Tang X, Wang L, Guo J, Jin C, Tighe S, Zhang Y, Zhu Y, Zhu B. The analysis of the association between the copy numbers of survival motor neuron gene 2 and neuronal apoptosis inhibitory protein genes and the clinical phenotypes in 40 patients with spinal muscular atrophy: Observational study. Medicine (Baltimore) 2020; 99:e18809. [PMID: 32011487 PMCID: PMC7220227 DOI: 10.1097/md.0000000000018809] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In this article, the correlation between the copy number of survival motor neuron 2 (SMN2) gene, neuronal apoptosis inhibitory protein (NAIP), and the phenotype of spinal muscular atrophy patients were analyzed.Forty patients with spinal muscular atrophy (SMA) were included in the study at the Department of Medical Genetics of the First People's Hospital and the Department of Neurology of the Second People's Hospital in Yunnan Province from January 2012 to September 2018. Multiplex ligation-dependent probe amplification assay was performed to determine the copy numbers of SMN2 and NAIP genes. Statistical analysis was performed to determine the correlation between copy numbers of the SMN2 and NAIP genes and the clinical phenotypes of SMA.Our results show that among the 40 SMA patients, there were 13 type I cases, 16 type II cases and 11 type III cases. A total of 37 patients possessed a homozygous deletion of SMN1 exons 7 and 8, while the other 3 SMA patients possessed a single copy of SMN1 exon 8. There was no correlation between SMA subtypes and the deletion types of SMN1 exon 7 and 8 (P = .611). The percentage of 2, 3, and 4 copies of SMN2 exon 7 was 25.0%, 62.5%, and 12.5%, respectively. The percentage of 0, 1, and 2 copies of NAIP exon 5 was 10%, 57.5%, and 32.5%, respectively. The distributions of SMN2 and NAIP copy numbers among various SMA types were significantly different (all P < .05). Five combined SMN1-SMN2-NAIP genotypes were detected, of which 0-3-1 genotype had the highest proportion than the others, accounting for 42.5%. The copy number of SMN2 and NAIP gene had synergistic effect on SMA phenotype. The combined SMN1-SMN2-NAIP genotypes with fewer copies were associated with earlier onset age, higher mortality, and smaller average age at death in SMA patients.Therefore, we conclude that the copy number variance of SMN2 and NAIP is correlated with the SMA phenotype. Analysis of the copy number structure of the SMN1-SMN2-NAIP gene is helpful for SMA typing, disease prognosis prediction, and genetic counseling.
Collapse
Affiliation(s)
- Yinhong Zhang
- Department of Medical Genetics, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology
| | - Jing He
- Department of Medical Genetics, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology
| | - Yunqian Zhang
- Department of Neurology, The Second People's Hospital of Yunnan Province
| | - Li Li
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology
- Department of Pediatrics, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Xinhua Tang
- Department of Medical Genetics, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology
| | - Lei Wang
- Department of Medical Genetics, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology
| | - Jingjing Guo
- Department of Medical Genetics, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology
| | - Chanchan Jin
- Department of Medical Genetics, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology
| | - Sean Tighe
- Tissue Tech, Inc., Ocular Surface Center, and Ocular Surface Research & Education Foundation, Miami, FL
| | - Yuan Zhang
- Tissue Tech, Inc., Ocular Surface Center, and Ocular Surface Research & Education Foundation, Miami, FL
| | - Yingting Zhu
- Tissue Tech, Inc., Ocular Surface Center, and Ocular Surface Research & Education Foundation, Miami, FL
| | - Baosheng Zhu
- Department of Medical Genetics, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology
| |
Collapse
|
15
|
Bozorg Qomi S, Asghari A, Salmaninejad A, Mojarrad M. Spinal Muscular Atrophy and Common Therapeutic Advances. Fetal Pediatr Pathol 2019; 38:226-238. [PMID: 31060440 DOI: 10.1080/15513815.2018.1520374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is an autosomal recessive destructive motor neuron disease which is characterized primarily by the degeneration of α-motor neurons in the ventral gray horn of the spinal cord. It mainly affects children and represents the most common reason of inherited infant mortality. MATERIAL AND METHODS We provide an overview of the recent therapeutic strategies for the treatment of SMA together with available and developing therapeutic strategies. For this purpose, Google Scholar and PubMed databases were searched for literature on SMA, therapy and treatment. Titles were reviewed and 96 were selected and assessed in this paper. RESULT Over the last two decades, different therapeutic strategies have been proposed for SMA. Some methods are in the pre-clinical, others the clinical phase. CONCLUSION By emergence of the new approaches, especially in gene therapy, effective treatment in the close future is probable.
Collapse
Affiliation(s)
- Saeed Bozorg Qomi
- a Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran.,b Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Amir Asghari
- c Department of Medical Physiology, School of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Arash Salmaninejad
- d Drug Applied Research Center, Student Research Committee, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Majid Mojarrad
- a Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran.,b Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
16
|
Saffari A, Kölker S, Hoffmann GF, Weiler M, Ziegler A. Novel challenges in spinal muscular atrophy - How to screen and whom to treat? Ann Clin Transl Neurol 2018; 6:197-205. [PMID: 30656198 PMCID: PMC6331314 DOI: 10.1002/acn3.689] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 12/27/2022] Open
Abstract
In recent years, disease‐modifying and life‐prolonging therapies for spinal muscular atrophy (SMA) have been developed. However, patients are currently diagnosed with significant delay and therapies are often administered in advanced stages of motor neuron degeneration, showing limited effects. Methods to identify children in presymptomatic stages are currently evaluated in newborn screening programs. Yet, not all children develop symptoms shortly after birth raising the question whom to treat and when to initiate therapy. Finally, monitoring disease progression becomes essential to individualize management. Here, we review the literature on screening approaches, strategies to predict disease severity, and biomarkers to monitor therapy.
Collapse
Affiliation(s)
- Afshin Saffari
- Division of Child Neurology and Metabolic Medicine Center for Child and Adolescent Medicine University Hospital Heidelberg Heidelberg Germany
| | - Stefan Kölker
- Division of Child Neurology and Metabolic Medicine Center for Child and Adolescent Medicine University Hospital Heidelberg Heidelberg Germany
| | - Georg F Hoffmann
- Division of Child Neurology and Metabolic Medicine Center for Child and Adolescent Medicine University Hospital Heidelberg Heidelberg Germany
| | - Markus Weiler
- Department of Neurology University Hospital Heidelberg Heidelberg Germany
| | - Andreas Ziegler
- Division of Child Neurology and Metabolic Medicine Center for Child and Adolescent Medicine University Hospital Heidelberg Heidelberg Germany
| |
Collapse
|
17
|
Florio M, Heide M, Pinson A, Brandl H, Albert M, Winkler S, Wimberger P, Huttner WB, Hiller M. Evolution and cell-type specificity of human-specific genes preferentially expressed in progenitors of fetal neocortex. eLife 2018; 7:32332. [PMID: 29561261 PMCID: PMC5898914 DOI: 10.7554/elife.32332] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 03/09/2018] [Indexed: 01/21/2023] Open
Abstract
Understanding the molecular basis that underlies the expansion of the neocortex during primate, and notably human, evolution requires the identification of genes that are particularly active in the neural stem and progenitor cells of the developing neocortex. Here, we have used existing transcriptome datasets to carry out a comprehensive screen for protein-coding genes preferentially expressed in progenitors of fetal human neocortex. We show that 15 human-specific genes exhibit such expression, and many of them evolved distinct neural progenitor cell-type expression profiles and levels compared to their ancestral paralogs. Functional studies on one such gene, NOTCH2NL, demonstrate its ability to promote basal progenitor proliferation in mice. An additional 35 human genes with progenitor-enriched expression are shown to have orthologs only in primates. Our study provides a resource of genes that are promising candidates to exert specific, and novel, roles in neocortical development during primate, and notably human, evolution.
Collapse
Affiliation(s)
- Marta Florio
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Michael Heide
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Anneline Pinson
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Holger Brandl
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Mareike Albert
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Sylke Winkler
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Pauline Wimberger
- Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| |
Collapse
|
18
|
Angelbello AJ, Chen JL, Childs-Disney JL, Zhang P, Wang ZF, Disney MD. Using Genome Sequence to Enable the Design of Medicines and Chemical Probes. Chem Rev 2018; 118:1599-1663. [PMID: 29322778 DOI: 10.1021/acs.chemrev.7b00504] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rapid progress in genome sequencing technology has put us firmly into a postgenomic era. A key challenge in biomedical research is harnessing genome sequence to fulfill the promise of personalized medicine. This Review describes how genome sequencing has enabled the identification of disease-causing biomolecules and how these data have been converted into chemical probes of function, preclinical lead modalities, and ultimately U.S. Food and Drug Administration (FDA)-approved drugs. In particular, we focus on the use of oligonucleotide-based modalities to target disease-causing RNAs; small molecules that target DNA, RNA, or protein; the rational repurposing of known therapeutic modalities; and the advantages of pharmacogenetics. Lastly, we discuss the remaining challenges and opportunities in the direct utilization of genome sequence to enable design of medicines.
Collapse
Affiliation(s)
- Alicia J Angelbello
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jonathan L Chen
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jessica L Childs-Disney
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Peiyuan Zhang
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Zi-Fu Wang
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Matthew D Disney
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
19
|
Verhaart IEC, Robertson A, Wilson IJ, Aartsma-Rus A, Cameron S, Jones CC, Cook SF, Lochmüller H. Prevalence, incidence and carrier frequency of 5q-linked spinal muscular atrophy - a literature review. Orphanet J Rare Dis 2017; 12:124. [PMID: 28676062 PMCID: PMC5496354 DOI: 10.1186/s13023-017-0671-8] [Citation(s) in RCA: 425] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/13/2017] [Indexed: 12/14/2022] Open
Abstract
Spinal muscular atrophy linked to chromosome 5q (SMA) is a recessive, progressive, neuromuscular disorder caused by bi-allelic mutations in the SMN1 gene, resulting in motor neuron degeneration and variable presentation in relation to onset and severity. A prevalence of approximately 1-2 per 100,000 persons and incidence around 1 in 10,000 live births have been estimated with SMA type I accounting for around 60% of all cases. Since SMA is a relatively rare condition, studies of its prevalence and incidence are challenging. Most published studies are outdated and therefore rely on clinical rather than genetic diagnosis. Furthermore they are performed in small cohorts in small geographical regions and only study European populations. In addition, the heterogeneity of the condition can lead to delays and difficulties in diagnosing the condition, especially outside of specialist clinics, and contributes to the challenges in understanding the epidemiology of the disease. The frequency of unaffected, heterozygous carriers of the SMN1 mutations appears to be higher among Caucasian and Asian populations compared to the Black (Sub-Saharan African ancestry) population. However, carrier frequencies cannot directly be translated into incidence and prevalence, as very severe (death in utero) and very mild (symptom free in adults) phenotypes carrying bi-allelic SMN1 mutations exist, and their frequency is unknown. More robust epidemiological data on SMA covering larger populations based on accurate genetic diagnosis or newborn screening would be helpful to support planning of clinical studies, provision of care and therapies and evaluation of outcomes.
Collapse
Affiliation(s)
- Ingrid E. C. Verhaart
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Agata Robertson
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Ian J. Wilson
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Annemieke Aartsma-Rus
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Shona Cameron
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | | | | | - Hanns Lochmüller
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
- John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ UK
| |
Collapse
|
20
|
Gender-Specific Amelioration of SMA Phenotype upon Disruption of a Deep Intronic Structure by an Oligonucleotide. Mol Ther 2017; 25:1328-1341. [PMID: 28412171 DOI: 10.1016/j.ymthe.2017.03.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/18/2017] [Accepted: 03/28/2017] [Indexed: 01/01/2023] Open
Abstract
Spinal muscular atrophy (SMA), the leading genetic disease of children, is caused by low levels of survival motor neuron (SMN) protein. Here, we employ A15/283, an antisense oligonucleotide targeting a deep intronic sequence/structure, to examine the impact of restoration of SMN in a mild SMA mouse model. We show gender-specific amelioration of tail necrosis upon subcutaneous administrations of A15/283 into SMA mice at postnatal days 1 and 3. We also demonstrate that a modest increase in SMN due to early administrations of A15/283 dramatically improves testicular development and spermatogenesis. Our results reveal near total correction of expression of several genes in adult testis upon temporary increase in SMN during early postnatal development. This is the first demonstration of in vivo efficacy of an antisense oligonucleotide targeting a deep intronic sequence/structure. This is also the first report of gender-specific amelioration of SMA pathology upon a modest peripheral increase of SMN.
Collapse
|
21
|
Medrano S, Monges S, Gravina LP, Alías L, Mozzoni J, Aráoz HV, Bernal S, Moresco A, Chertkoff L, Tizzano E. Genotype-phenotype correlation of SMN locus genes in spinal muscular atrophy children from Argentina. Eur J Paediatr Neurol 2016; 20:910-917. [PMID: 27510309 DOI: 10.1016/j.ejpn.2016.07.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/08/2016] [Accepted: 07/19/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND/PURPOSE Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder, considered one of the leading causes of infant mortality. It is caused by mutations in the SMN1 gene. A highly homologous copy of this gene named SMN2 and other neighbouring genes, SERF1A and NAIP, are considered phenotypic modifiers of the disease. In recent years, notable advances have been made in SMA research regarding evaluation, prognosis, and therapeutic options. Thus, genotype-phenotype studies in SMA are important to stratify patients for motor function tests and for envisaged clinical trials. The aim of this study was to provide clinical and molecular data of a series of Argentinean children with SMA to establish a comprehensive genotype-phenotype correlation. METHODS 144 Argentinean children with SMA (56 children with type I, 58 with type II, and 30 with type III) were evaluated. The copy number of SMN2, SERF1A, and NAIP genes was established using MLPA (Multiplex Ligation-dependent Probe Amplification) and then correlated with the patients clinical subtypes. To improve clinical characterization we considered the initial symptoms that prompted the consultation, age of acquisition of motor abilities to independent walking and age at loss of gait. We also evaluated clinical and molecular features of sibling pairs in seven families. RESULTS A strong correlation was observed between the SMN2 copy number and SMA phenotype while SERF1A and NAIP copy number showed a moderate correlation. We observed intra- and inter-family differences among the SMA types. CONCLUSION This first genotype-phenotype correlation study in Argentinean SMA children provides data to improve patient stratification and define more adequate follow-up parameters.
Collapse
Affiliation(s)
- Sofía Medrano
- Laboratorio de Biología Molecular, Servicio de Genética, Hospital de Pediatría Garrahan, Buenos Aires, Argentina
| | - Soledad Monges
- Servicio de Neurología, Hospital de Pediatría Garrahan, Buenos Aires, Argentina
| | - Luis Pablo Gravina
- Laboratorio de Biología Molecular, Servicio de Genética, Hospital de Pediatría Garrahan, Buenos Aires, Argentina
| | - Laura Alías
- Servicio de Genética, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; CIBERER U-705, Barcelona, Spain
| | - Julieta Mozzoni
- Servicio de Kinesiología, Hospital de Pediatría Garrahan, Buenos Aires, Argentina
| | - Hilda Verónica Aráoz
- Laboratorio de Biología Molecular, Servicio de Genética, Hospital de Pediatría Garrahan, Buenos Aires, Argentina
| | - Sara Bernal
- Servicio de Genética, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; CIBERER U-705, Barcelona, Spain
| | - Angélica Moresco
- Servicio de Genética, Hospital de Pediatría Garrahan, Buenos Aires, Argentina
| | - Lilien Chertkoff
- Laboratorio de Biología Molecular, Servicio de Genética, Hospital de Pediatría Garrahan, Buenos Aires, Argentina
| | - Eduardo Tizzano
- Department of Clinical and Molecular Genetics, Hospital Valle Hebron, Barcelona, Spain; CIBERER U-705, Barcelona, Spain.
| |
Collapse
|
22
|
Ahn EJ, Yum MS, Kim EH, Yoo HW, Lee BH, Kim GH, Ko TS. Genotype-Phenotype Correlation of SMN1 and NAIP Deletions in Korean Patients with Spinal Muscular Atrophy. J Clin Neurol 2016; 13:27-31. [PMID: 27730768 PMCID: PMC5242148 DOI: 10.3988/jcn.2017.13.1.27] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/02/2016] [Accepted: 06/02/2016] [Indexed: 01/27/2023] Open
Abstract
Background and Purpose Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disease characterized by progressive muscle weakness and atrophy. Most SMA patients have a homozygous deletion in survival of motor neuron 1 (SMN1) gene, and neuronal apoptosis inhibitory protein (NAIP) gene is considered a phenotype modifier. We investigated the genotype-phenotype correlation of SMN1 and NAIP deletions in Korean SMA patients. Methods Thirty-three patients (12 males and 21 females) treated at the Asan Medical Center between 1999 and 2013 were analyzed retrospectively. The polymerase chain reaction (PCR), restriction-fragment-length polymorphism analysis, and multiplex PCR were used to detect deletions in SMN1 (exons 7 and 8) and NAIP (exons 4 and 5). We reviewed clinical presentations and outcomes and categorized the patients into three clinical types. NAIP deletion-driven differences between the two genotypes were analyzed. Results Deletion analysis identified homozygous deletions of SMN1 exons 7 and 8 in 30 patients (90.9%). Among these, compared with patients without an NAIP deletion, those with an NAIP deletion showed a significantly lower age at symptom onset (1.9±1.7 months vs. 18.4±20.4 months, mean±SD; p=0.007), more frequent type 1 phenotype (6/6 vs. 8/24, p=0.005), and worse outcomes, with early death or a requirement for ventilator support (4/4 vs. 2/12, p=0.008). Conclusions Homozygous deletion in SMN1 and a concurrent NAIP deletion were associated with an early onset, severe hypotonia, and worse outcome in SMA patients. Deletion analysis of NAIP and SMN1 can help to accurately predict prognostic outcomes in SMA.
Collapse
Affiliation(s)
- Eun Ji Ahn
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Mi Sun Yum
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun Hee Kim
- Department of Pediatrics, CHA Gangnam Medical Center, CHA University, Seoul, Korea
| | - Han Wook Yoo
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea.,Department of Medical Genetics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Beom Hee Lee
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea.,Department of Medical Genetics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Gu Hwan Kim
- Department of Medical Genetics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Tae Sung Ko
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
23
|
Transcript, methylation and molecular docking analyses of the effects of HDAC inhibitors, SAHA and Dacinostat, on SMN2 expression in fibroblasts of SMA patients. J Hum Genet 2016; 61:823-30. [PMID: 27251006 DOI: 10.1038/jhg.2016.61] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 04/25/2016] [Accepted: 05/06/2016] [Indexed: 01/14/2023]
Abstract
Several histone deacetylase inhibitors (HDACis) are known to increase Survival Motor Neuron 2 (SMN2) expression for the therapy of spinal muscular atrophy (SMA). We aimed to compare the effects of suberoylanilide hydroxamic acid (SAHA) and Dacinostat, a novel HDACi, on SMN2 expression and to elucidate their acetylation effects on the methylation of the SMN2. Cell-based assays using type I and type II SMA fibroblasts examined changes in transcript expressions, methylation levels and protein expressions. In silico methods analyzed the intermolecular interactions between each compound and HDAC2/HDAC7. SMN2 mRNA transcript levels and SMN protein levels showed notable increases in both cell types, except for Dacinostat exposure on type II cells. However, combined compound exposures showed less pronounced increase in SMN2 transcript and SMN protein level. Acetylation effects of SAHA and Dacinostat promoted demethylation of the SMN2 promoter. The in silico analyses revealed identical binding sites for both compounds in HDACs, which could explain the limited effects of the combined exposure. With the exception on the effect of Dacinostat in Type II cells, we have shown that SAHA and Dacinostat increased SMN2 transcript and protein levels and promoted demethylation of the SMN2 gene.
Collapse
|
24
|
Sharma N, Jha S. NLR-regulated pathways in cancer: opportunities and obstacles for therapeutic interventions. Cell Mol Life Sci 2016; 73:1741-64. [PMID: 26708292 PMCID: PMC11108278 DOI: 10.1007/s00018-015-2123-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/09/2015] [Accepted: 12/15/2015] [Indexed: 02/08/2023]
Abstract
NLRs (nucleotide-binding domain, leucine-rich repeat containing receptors) are pattern recognition receptors associated with immunity and inflammation in response to endogenous and exogenous pathogen and damage associated molecular patterns (PAMPs and DAMPs respectively). Dysregulated NLR function is associated with several diseases including cancers, metabolic diseases, autoimmune disorders and autoinflammatory syndromes. In the last decade, distinct cell and organ specific roles for NLRs have been identified however; their roles in cancer initiation, development and progression remain controversial. This review summarizes the emerging role of NLRs in cancer and their possible future as targets for cancer therapeutics.
Collapse
Affiliation(s)
- Nidhi Sharma
- Department of Biology, Indian Institute of Technology Jodhpur, Old Residency Road, Ratanada, Jodhpur, Rajasthan, 342011, India
| | - Sushmita Jha
- Department of Biology, Indian Institute of Technology Jodhpur, Old Residency Road, Ratanada, Jodhpur, Rajasthan, 342011, India.
| |
Collapse
|
25
|
Bora-Tatar G, Yesbek-Kaymaz A, Bekircan-Kurt CE, Erdem-Özdamar S, Erdem-Yurter H. Spinal muscular atrophy type III: Molecular genetic characterization of Turkish patients. Eur J Med Genet 2015; 58:654-8. [PMID: 26548498 DOI: 10.1016/j.ejmg.2015.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 10/21/2015] [Accepted: 11/02/2015] [Indexed: 10/22/2022]
Abstract
Spinal Muscular Atrophy (SMA) is a neurodegenerative disease with autosomal recessive inheritance. Homozygous loss of exon 7 of the Survival of motor neuron 1 (SMN1) gene is the main cause of SMA. Although progressive muscle weakness and atrophy are common symptoms, disease severity varies from severe to mild. Type III is one of the milder and less frequent forms of SMA. In this study, we report molecular genetic characteristics of 24 Turkish type III SMA patients. Homozygous loss of SMN1 exon 7 and 8 was analysed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and multiplex ligation dependent probe amplification (MLPA). SMN2, homologue of SMN1, and Neuronal apoptosis inhibitory protein (NAIP) genes were also evaluated considering their influence on disease severity. We determined that male patients who were born in consanguineous families were predominant in our cohort and these patients mostly carry the homozygous loss of SMN1 exon 7 and 8 and four copies of SMN2 gene without NAIP deletions.
Collapse
Affiliation(s)
- Gamze Bora-Tatar
- Hacettepe University, Faculty of Medicine, Department of Medical Biology, 06100, Sıhhiye, Ankara, Turkey.
| | - Ayse Yesbek-Kaymaz
- Hacettepe University, Faculty of Medicine, Department of Medical Biology, 06100, Sıhhiye, Ankara, Turkey
| | - Can Ebru Bekircan-Kurt
- Hacettepe University, Faculty of Medicine, Department of Neurology, 06100, Sıhhiye, Ankara, Turkey
| | - Sevim Erdem-Özdamar
- Hacettepe University, Faculty of Medicine, Department of Neurology, 06100, Sıhhiye, Ankara, Turkey
| | - Hayat Erdem-Yurter
- Hacettepe University, Faculty of Medicine, Department of Medical Biology, 06100, Sıhhiye, Ankara, Turkey
| |
Collapse
|
26
|
Qu YJ, Ge XS, Bai JL, Wang LW, Cao YY, Lu YY, Jin YW, Wang H, Song F. Association of copy numbers of survival motor neuron gene 2 and neuronal apoptosis inhibitory protein gene with the natural history in a Chinese spinal muscular atrophy cohort. J Child Neurol 2015; 30:429-36. [PMID: 25330799 DOI: 10.1177/0883073814553271] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 09/07/2014] [Indexed: 11/16/2022]
Abstract
We evaluated survival motor neuron 2 (SMN2) and neuronal apoptosis inhibitory protein (NAIP) gene copy distribution and the association of copy number with survival in 232 Chinese spinal muscular atrophy (SMA) patients. The SMN2 and NAIP copy numbers correlated positively with the median onset age (r = 0.72 and 0.377). The risk of death for patients with fewer copies of SMN2 or NAIP was much higher than for those with more copies (P < .01). The survival probabilities at 5 years were 5.1%, 90.7%, and 100% for 2, 3, and 4 SMN2 copies and 27.9%, 66.7%, and 87.2% for 0, 1, and 2 NAIP copies, respectively. Our results indicated that combined SMN1-SMN2-NAIP genotypes with fewer copies were associated with earlier onset age and poorer survival probability. Better survival status for Chinese type I SMA might due to a higher proportion of 3 SMN2 and a lower rate of zero NAIP.
Collapse
Affiliation(s)
- Yu-jin Qu
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, P. R. China
| | - Xiu-shan Ge
- Department of Neurology, Children's Hospital Affiliated Capital Institute of Pediatrics, Beijing, P. R. China
| | - Jin-li Bai
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, P. R. China
| | - Li-wen Wang
- Department of Neurology, Children's Hospital Affiliated Capital Institute of Pediatrics, Beijing, P. R. China
| | - Yan-yan Cao
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, P. R. China
| | - Yan-yu Lu
- Department of Health Development, Capital Institute of Pediatrics, Beijing, P. R. China
| | - Yu-wei Jin
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, P. R. China
| | - Hong Wang
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, P. R. China
| | - Fang Song
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, P. R. China
| |
Collapse
|
27
|
Fang P, Li L, Zeng J, Zhou WJ, Wu WQ, Zhong ZY, Yan TZ, Xie JS, Huang J, Lin L, Zhao Y, Xu XM. Molecular characterization and copy number of SMN1, SMN2 and NAIP in Chinese patients with spinal muscular atrophy and unrelated healthy controls. BMC Musculoskelet Disord 2015; 16:11. [PMID: 25888055 PMCID: PMC4328246 DOI: 10.1186/s12891-015-0457-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 01/12/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is caused by SMN1 dysfunction, and the copy number of SMN2 and NAIP can modify the phenotype of SMA. The aim of this study was to analyze the copy numbers and gene structures of SMA-related genes in Chinese SMA patients and unrelated healthy controls. METHODS Forty-two Chinese SMA patients and two hundred and twelve unrelated healthy Chinese individuals were enrolled in our study. The copy numbers and gene structures of SMA-related genes were measured by MLPA assay. RESULTS We identified a homozygous deletion of SMN1 in exons 7 and 8 in 37 of 42 patients (88.1%); the other 5 SMA patients (11.9%) had a single copy of SMN1 exon 8. The proportions of the 212 unrelated healthy controls with different copy numbers for the normal SMN1 gene were 1 copy in 4 individuals (1.9%), 2 copies in 203 (95.7%) and 3 copies in 5 (2.4%). Three hybrid SMN genes and five genes that lack partial sequences were found in SMA patients and healthy controls. Distributions of copy numbers for normal SMN2 and NAIP were significantly different (P < 0.001) in people with and without SMA. CONCLUSION The copy numbers and gene structures of SMA-related genes were different in Chinese SMA patients and healthy controls.
Collapse
Affiliation(s)
- Ping Fang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Avenue North1838, Guangzhou, Guangdong, People's Republic of China.
| | - Liang Li
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Avenue North1838, Guangzhou, Guangdong, People's Republic of China.
| | - Jian Zeng
- Department of Clinical Laboratory, The Fuzhou General Hospital, Nanjing Military Command, Fuzhou, Fujian, People's Republic of China.
| | - Wan-Jun Zhou
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Avenue North1838, Guangzhou, Guangdong, People's Republic of China.
| | - Wei-Qing Wu
- Prenatal Diagnosis Center, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong, People's Republic of China.
| | - Ze-Yan Zhong
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Avenue North1838, Guangzhou, Guangdong, People's Republic of China.
| | - Ti-Zhen Yan
- Liuzhou Key Laboratory of birth defects prevention and control, Liuzhou Municipal Maternity and Child Healthcare Hospital, Liuzhou, Guangxi, People's Republic of China.
| | - Jian-Sheng Xie
- Prenatal Diagnosis Center, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong, People's Republic of China.
| | - Jing Huang
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| | - Li Lin
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Avenue North1838, Guangzhou, Guangdong, People's Republic of China.
| | - Ying Zhao
- Prenatal Diagnostic Center, Dongguan Maternal and Children Health Hospital, Dongguan, Guangdong, People's Republic of China.
| | - Xiang-Min Xu
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Avenue North1838, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
28
|
Alsaman AS, Alshaikh NM. Type III spinal muscular atrophy mimicking muscular dystrophies. Pediatr Neurol 2013; 48:363-6. [PMID: 23583053 DOI: 10.1016/j.pediatrneurol.2012.12.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 12/31/2012] [Indexed: 11/28/2022]
Abstract
Types III and IV spinal muscular atrophy represent a diagnostic challenge due to the great variability in their presentation. We report a series of eight patients with type III spinal muscular atrophy who were followed for a long time for possible muscular dystrophy or myopathy, confirming its clinical heterogeneity and propensity to delayed diagnosis. Clinical examination revealed heterogeneous findings, where the diagnosis of type III spinal muscular atrophy was not immediately apparent in many patients as their clinical and laboratory abnormalities were consistent with muscular dystrophy or myopathy. The presence of dystrophic features such as hypertrophy of the calves, weakness of the limb girdle, high serum creatine kinase levels, and myopathic histopathology should not divert attention from the possibility of spinal muscular atrophy. It is strongly recommended to give variable presentations enough thought and to consider the autosomal recessive type III spinal muscular atrophy in the diagnostic evaluation.
Collapse
Affiliation(s)
- Abdulaziz S Alsaman
- Pediatric Neurology Department, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia.
| | | |
Collapse
|
29
|
Anderton RS, Meloni BP, Mastaglia FL, Boulos S. Spinal muscular atrophy and the antiapoptotic role of survival of motor neuron (SMN) protein. Mol Neurobiol 2013; 47:821-32. [PMID: 23315303 DOI: 10.1007/s12035-013-8399-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 01/03/2013] [Indexed: 11/26/2022]
Abstract
Spinal muscular atrophy (SMA) is a devastating and often fatal neurodegenerative disease that affects spinal motor neurons and leads to progressive muscle wasting and paralysis. The survival of motor neuron (SMN) gene is mutated or deleted in most forms of SMA, which results in a critical reduction in SMN protein. Motor neurons appear particularly vulnerable to reduced SMN protein levels. Therefore, understanding the functional role of SMN in protecting motor neurons from degeneration is an essential prerequisite for the design of effective therapies for SMA. To this end, there is increasing evidence indicating a key regulatory antiapoptotic role for the SMN protein that is important in motor neuron survival. The aim of this review is to highlight key findings that support an antiapoptotic role for SMN in modulating cell survival and raise possibilities for new therapeutic approaches.
Collapse
Affiliation(s)
- Ryan S Anderton
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia and Australian Neuromuscular Research Institute, Nedlands, Western Australia, Australia.
| | | | | | | |
Collapse
|
30
|
de Souza Godinho FM, Bock H, Gheno TC, Saraiva-Pereira ML. Molecular Analysis of Spinal Muscular Atrophy: A genotyping protocol based on TaqMan(®) real-time PCR. Genet Mol Biol 2012; 35:955-9. [PMID: 23412967 PMCID: PMC3571419 DOI: 10.1590/s1415-47572012000600010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive inherited disorder caused by alterations in the survival motor neuron I (SMN1) gene. SMA patients are classified as type I-IV based on severity of symptoms and age of onset. About 95% of SMA cases are caused by the homozygous absence of SMN1 due to gene deletion or conversion into SMN2. PCR-based methods have been widely used in genetic testing for SMA. In this work, we introduce a new approach based on TaqMan(®)real-time PCR for research and diagnostic settings. DNA samples from 100 individuals with clinical signs and symptoms suggestive of SMA were analyzed. Mutant DNA samples as well as controls were confirmed by DNA sequencing. We detected 58 SMA cases (58.0%) by showing deletion of SMN1 exon 7. Considering clinical information available from 56 of them, the patient distribution was 26 (46.4%) SMA type I, 16 (28.6%) SMA type II and 14 (25.0%) SMA type III. Results generated by the new method was confirmed by PCR-RFLP and by DNA sequencing when required. In conclusion, a protocol based on real-time PCR was shown to be effective and specific for molecular analysis of SMA patients.
Collapse
Affiliation(s)
- Fernanda Marques de Souza Godinho
- Laboratório de Identificação Genética, Centro de Pesquisa Experimental e Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, RS, Brazil. ; Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | |
Collapse
|
31
|
Marivin A, Berthelet J, Plenchette S, Dubrez L. The Inhibitor of Apoptosis (IAPs) in Adaptive Response to Cellular Stress. Cells 2012; 1:711-37. [PMID: 24710527 PMCID: PMC3901146 DOI: 10.3390/cells1040711] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/14/2012] [Accepted: 09/27/2012] [Indexed: 12/31/2022] Open
Abstract
Cells are constantly exposed to endogenous and exogenous cellular injuries. They cope with stressful stimuli by adapting their metabolism and activating various "guardian molecules." These pro-survival factors protect essential cell constituents, prevent cell death, and possibly repair cellular damages. The Inhibitor of Apoptosis (IAPs) proteins display both anti-apoptotic and pro-survival properties and their expression can be induced by a variety of cellular stress such as hypoxia, endoplasmic reticular stress and DNA damage. Thus, IAPs can confer tolerance to cellular stress. This review presents the anti-apoptotic and survival functions of IAPs and their role in the adaptive response to cellular stress. The involvement of IAPs in human physiology and diseases in connection with a breakdown of cellular homeostasis will be discussed.
Collapse
Affiliation(s)
- Arthur Marivin
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR866, Dijon F-21079, France.
| | - Jean Berthelet
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR866, Dijon F-21079, France.
| | - Stéphanie Plenchette
- Institut Fédératif de Recherche (IFR), Université de Bourgogne, 100, Dijon F-21079, France.
| | - Laurence Dubrez
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR866, Dijon F-21079, France.
| |
Collapse
|
32
|
Wieme MH, Monia Ben H, Yosr B, Sihem S, Nawel T, Ines MA, Wajdi B, Najla K, Houda N, Faycal H, Rim A. Confirmation of the spinal motor neuron gene 2 (SMN2) copy numbers by real-time PCR. DIAGNOSTIC MOLECULAR PATHOLOGY : THE AMERICAN JOURNAL OF SURGICAL PATHOLOGY, PART B 2012; 21:172-175. [PMID: 22847162 DOI: 10.1097/pdm.0b013e31824696b6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive disease caused by mutation or deletion of the survival motor neuron gene 1 (SMN1). SMN2, a copy gene, influences the severity of SMA and may be used in somatic gene therapy of patients with SMA in the future. The SMA carrier analysis developed at the Institute of Medical Genetics, Catholic University (Rome), on the Applied Biosystems real-time PCR instruments by Dr Danilo Tiziano and his group, provides a robust workflow to evaluate SMA carrier status. In this study, the SMN2 copy number was confirmed on 22 patients by developing our own assay on the basis of a relative real-time PCR system using the 7500 Fast Real-Time PCR System.
Collapse
Affiliation(s)
- Maamouri-Hicheri Wieme
- Department of Molecular Neurobiology and Neuropathology, La Rabta, National Institute of Neurology, Tunis, Tunisia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Inhibition of apoptosis blocks human motor neuron cell death in a stem cell model of spinal muscular atrophy. PLoS One 2012; 7:e39113. [PMID: 22723941 PMCID: PMC3378532 DOI: 10.1371/journal.pone.0039113] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 05/18/2012] [Indexed: 01/10/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a genetic disorder caused by a deletion of the survival motor neuron 1 gene leading to motor neuron loss, muscle atrophy, paralysis, and death. We show here that induced pluripotent stem cell (iPSC) lines generated from two Type I SMA subjects–one produced with lentiviral constructs and the second using a virus-free plasmid–based approach–recapitulate the disease phenotype and generate significantly fewer motor neurons at later developmental time periods in culture compared to two separate control subject iPSC lines. During motor neuron development, both SMA lines showed an increase in Fas ligand-mediated apoptosis and increased caspase-8 and-3 activation. Importantly, this could be mitigated by addition of either a Fas blocking antibody or a caspase-3 inhibitor. Together, these data further validate this human stem cell model of SMA, suggesting that specific inhibitors of apoptotic pathways may be beneficial for patients.
Collapse
|
34
|
Marini M, Sasongko TH, Watihayati MS, Atif AB, Hayati F, Zabidi-Hussin ZAMH, Ravichandran M, Nishio H, Zilfalil BA. Allele-specific PCR for a cost-effective & time-efficient diagnostic screening of spinal muscular atrophy. Indian J Med Res 2012; 135:31-5. [PMID: 22382180 PMCID: PMC3307181 DOI: 10.4103/0971-5916.93421] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Background & objectives: Genetic diagnosis of spinal muscular atrophy (SMA) is complicated by the presence of SMN2 gene as majority of SMA patients show absence or deletion of SMN1 gene. PCR may amplify both the genes non selectively in presence of high amount of DNA. We evaluated whether allele-specific PCR for diagnostic screening of SMA is reliable in the presence of high amount of genomic DNA, which is commonly used when performing diagnostic screening using restriction enzymes. Methods: A total of 126 blood DNA samples were tested in amounts ranging 80-200 ng, referred for the genetic diagnosis of SMA using both conventional PCR-RFLP and allele-specific PCR. Results: The results from both methods showed agreement. Further, allele-specific PCR was found to be a time-efficient and cost-effective method. Interpretation & conclusions: Our study demonstrated the accuracy of our allele-specific PCR and the results were comparable compatible with that of PCR-RFLP, indicating its practical application in SMA diagnostic screening.
Collapse
Affiliation(s)
- M Marini
- Department of Paediatrics, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Dobrowolski SF, Pham HT, Downes FP, Prior TW, Naylor EW, Swoboda KJ. Newborn screening for spinal muscular atrophy by calibrated short-amplicon melt profiling. Clin Chem 2012; 58:1033-9. [PMID: 22490618 DOI: 10.1373/clinchem.2012.183038] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND The management options for the autosomal recessive neurodegenerative disorder spinal muscular atrophy (SMA) are evolving; however, their efficacy may require presymptom diagnosis and continuous treatment. To identify presymptomatic SMA patients, we created a DNA-based newborn screening assay to identify the homozygous deletions of the SMN1 (survival of motor neuron 1, telomeric) gene observed in 95%-98% of affected patients. METHODS We developed primers that amplify a 52-bp PCR product from homologous regions in the SMN1 and SMN2 (survival of motor neuron 2, centromeric) genes that flank a divergent site at site c.840. Post-PCR high-resolution melt profiling assessed the amplification product, and we used a unique means of melt calibration to normalize profiles. Samples that we had previously characterized for the numbers of SMN1 and SMN2 copies established genotypes associated with particular profiles. The system was evaluated with approximately 1000 purified DNA samples, 100 self-created dried blood spots, and >1200 dried blood spots from newborn screening tests. RESULTS Homozygous deletion of SMN1 exon 7 produced a distinctive melt profile that identified SMA patients. Samples with different numbers of SMN1 and SMN2 copies were resolved by their profiles. All samples with homozygous deletions were unambiguously recognized, and no normal sample was misidentified as a positive. CONCLUSIONS This assay has characteristics suitable for population-based screening. A reliable screening test will facilitate the identification of an SMA-affected cohort to receive early intervention to maximize the benefit from treatment. A prospective screening trial will allow the efficacy of treatment options to be assessed, which may justify the inclusion of SMA as a target for population screening.
Collapse
Affiliation(s)
- Steven F Dobrowolski
- Department of Pathology, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Amara A, Adala L, Ben Charfeddine I, Mamaï O, Mili A, Lazreg TB, H'mida D, Amri F, Salem N, Boughammura L, Saad A, Gribaa M. Correlation of SMN2, NAIP, p44, H4F5 and Occludin genes copy number with spinal muscular atrophy phenotype in Tunisian patients. Eur J Paediatr Neurol 2012; 16:167-74. [PMID: 21821450 DOI: 10.1016/j.ejpn.2011.07.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 05/29/2011] [Accepted: 07/18/2011] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder which is characterized by a high clinical variability with severe, intermediate, mild and adult forms. These forms are caused, in 95% of cases, by a homozygous deletion of exon 7 of SMN1 gene. Our purpose was the determination of a possible genotype-phenotype correlation between the copy number of SMN2, NAIP, p44, H4F5 and occludin genes localized in the same SMN1 region (5q13) and the severity of the disease in SMA Tunisian patients. PATIENTS AND METHODS Twenty six patients affected by SMA were enrolled in our study. MLPA and QMPSF were used to measure copy numbers of these genes. RESULTS We found that 31.3% of type I patients carried one copy of SMN2, while all patients of other forms had at least 2 copies. NAIP was absent in 87.5% of type I patients. Furthermore, all SMA type I patients had one copy of H4F5. No correlation was found for p44 and occludin genes. CONCLUSION There is a close relationship between SMN2, NAIP and H4F5 gene copy number and SMA disease severity, which is compatible with the previous reports.
Collapse
Affiliation(s)
- Abdelbasset Amara
- Laboratory of Human Cytogenetics, Molecular Genetics and Reproductive Biology, Farhat Hached University Hospital, Street Ibn ELJAZZAR, 4000 Sousse, Tunisia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Role of positive selection in functional divergence of mammalian neuronal apoptosis inhibitor proteins during evolution. J Biomed Biotechnol 2011; 2011:809765. [PMID: 22131819 PMCID: PMC3216670 DOI: 10.1155/2011/809765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 06/28/2011] [Accepted: 08/26/2011] [Indexed: 01/22/2023] Open
Abstract
Neuronal apoptosis inhibitor proteins (NAIPs) are members of Nod-like receptor (NLR) protein family. Recent research demostrated that some NAIP genes were strongly associated with both innate immunity and many inflammatory diseases in humans. However, no similar phenomena have been reported in other mammals. Furthermore, some NAIP genes have undergone pseudogenization or have been lost during the evolution of some higher mammals. We therefore aimed to determine if functional divergence had occurred, and if natural selection had played an important role in the evolution of these genes. The results showed that NAIP genes have undergone pseudogenization and functional divergence, driven by positive selection. Positive selection has also influenced NAIP protein structure, resulting in further functional divergence.
Collapse
|
38
|
Mason DR, Beck PL, Muruve DA. Nucleotide-binding oligomerization domain-like receptors and inflammasomes in the pathogenesis of non-microbial inflammation and diseases. J Innate Immun 2011; 4:16-30. [PMID: 22067846 DOI: 10.1159/000334247] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 10/10/2011] [Indexed: 12/18/2022] Open
Abstract
The nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) or nucleotide-binding domain leucine-rich repeat-containing family of genes plays an important role in the development of innate immune responses. Some family members are known to form multiprotein complexes known as inflammasomes that regulate the processing and secretion of proinflammatory mediators, such as interleukin-1β and interleukin-18. Activity of the inflammasome is triggered not only by microbial infection, but also by a wide range of both exogenous and endogenous noninfectious stimuli. Consequently, the dysregulation of inflammasome activity is associated with numerous proinflammatory, non-microbial human diseases. The discovery of NLRP3 gene mutations in autoinflammatory diseases such as Muckle-Wells syndrome has led to the association of NLRs in the pathogenesis of many non-microbial diseases that include arthritis, neurodegenerative disorders, metabolic disorders (obesity and diabetes), cardiovascular disease (atherosclerosis, myocardial infarction), inflammatory bowel disease, kidney disease and hypersensitivity dermatitis. A number of NLRs are also associated with human disease in the absence of inflammasome activity, suggesting additional roles for NLRs in the regulation of inflammation and disease. This review serves to provide a summary of NLR-associated diseases and, where possible, the mechanisms behind the associations.
Collapse
Affiliation(s)
- D Randal Mason
- Department of Medicine, Immunology Research Group and the Institute of Infection, Immunity and Inflammation, University of Calgary, Calgary, Alta., Canada
| | | | | |
Collapse
|
39
|
The protective effects of β-lactam antibiotics in motor neuron disorders. Exp Neurol 2011; 231:14-8. [PMID: 21693120 DOI: 10.1016/j.expneurol.2011.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/27/2011] [Accepted: 06/04/2011] [Indexed: 01/08/2023]
Abstract
In the June issue of Experimental Neurology, Nizzardo and colleagues demonstrate that the beta-lactam antibiotic ceftriaxone is neuroprotective in a mouse model of spinal muscular atrophy. Here I review their main findings and the relevance to previous and future work on motor neuron disorders and for developing therapeutic strategies.
Collapse
|
40
|
Kawashima H, Ishii C, Yamanaka G, Ioi H, Nishimata S, Kashiwagi Y, Takekuma K, Miyajima T, Hoshika A, Nishino I, Nonaka I. Myopathy and neurogenic muscular atrophy in unexpected cardiopulmonary arrest. Pediatr Int 2011; 53:159-61. [PMID: 21501304 DOI: 10.1111/j.1442-200x.2010.03211.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Neuromuscular disorders can be the cause of sudden death of infants because of their weakness and gastroesophageal reflux (GER). METHODS Muscle biopsy and genetic studies were performed by usual method. RESULTS In this report four cases of infants with neuromuscular disorders (two cases of congenital myopathy and two cases of spinal muscular atrophy) who had unexpected cardiopulmonary arrest on arrival (CPAOA) are presented. Two of the cases did not show any symptoms, such as muscle weakness prior to CPAOA. The diagnosis was based on the results of the muscle biopsy and genetic examination. CONCLUSION These results suggest that sudden infant death caused by neuromuscular disorders should be considered.
Collapse
Affiliation(s)
- Hisashi Kawashima
- Department of Pediatrics, Tokyo Medical University Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Karimpour S, Davoodi J, Ghahremani MH. Integrity of ATP binding site is essential for effective inhibition of the intrinsic apoptosis pathway by NAIP. Biochem Biophys Res Commun 2011; 407:158-62. [PMID: 21371431 DOI: 10.1016/j.bbrc.2011.02.130] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Accepted: 02/25/2011] [Indexed: 11/30/2022]
Abstract
The importance of the ATP binding site of human Neuronal Apoptosis Inhibitory Protein (NAIP) on its ability in prevention of intrinsic apoptotic pathway was investigated. Thus, ATP binding lysine 476 of NAIP, which is located at the Nucleotide Binding Oligomerization Domain (NOD) was mutated to threonine and the effect of this mutation on autoproteolysis of procaspase-9 and the cleavage of procaspase-3 by apoptosome was investigated. Formation of apoptosome was induced by the addition of cytochrome c and dATP to lysates of HeLa cells transfected with pcDNA-NAIP or pcDNA-NAIP (K476T). Full length wild type NAIP prevented the cleavage of both procaspase-9 to caspase-9 and procaspase-3 to caspase-3. However, K476T variant of NAIP did not block autocleavage of procaspase-9 efficiently. Furthermore, cleavage pattern of procaspase-9 was altered in the presence of mutant NAIP. Interestingly no effect on the procaspase-3 cleavage by apoptosome was observed. The presence of NOD domain by itself had no effect on autocleavage of procaspase-9 yet slightly reduced the cleavage of procaspase-3 by apoptosome. Pull down experiment showed direct interaction of the NOD domain of NAIP with the CARD-NOD domain of Apoptotic Protease Activating Factor 1 (APAF-1). The physical association of these domains was confirmed by pull-down assays. These observations taken with previous findings indicate that the integrity of the NOD domain is essential for effective inhibition of procaspase-9 and procaspase-3 cleavage by the NAIP protein.
Collapse
Affiliation(s)
- Sarvenaz Karimpour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417653761, Iran
| | | | | |
Collapse
|
42
|
Park HB, Lee SM, Lee JS, Park MS, Park KI, Namgung R, Lee C. Survival analysis of spinal muscular atrophy type I. KOREAN JOURNAL OF PEDIATRICS 2010; 53:965-70. [PMID: 21218019 PMCID: PMC3012277 DOI: 10.3345/kjp.2010.53.11.965] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 10/11/2010] [Accepted: 10/19/2010] [Indexed: 11/30/2022]
Abstract
Purpose The life expectancy of patients with spinal muscular atrophy (SMA) type I is generally considered to be less than 2 years. Recently, with the introduction of proactive treatments, a longer survival and an improved survival rate have been reported. In this study, we analyzed the natural courses and survival statistics of SMA type I patients and compared the clinical characteristics of the patients based on their survival periods. Methods We reviewed the medical records of 14 pediatric patients diagnosed with SMA type I during a 9-year period. We examined the demographic and clinical characteristics of these patients, calculated their survival probabilities, and plotted survival curves as on the censoring date, January 1, 2010. We also compared the characteristics of the patients who died before the age of 24 months (early-death, ED group) and those who survived for 24 months or longer (long-survival, LS group). Results The mean survival time was 22.8±2.0 months. The survival probabilities at 6 months, 12 months, 18 months, 24 months, and 30 months were 92.9%, 92.9%, 76.0%, 76.0%, and 65.1%, respectively. Birth weight was the only factor that showed a statistically significant difference between the ED and LS groups (P=0.048). Conclusion In this study, the survival probabilities at 2 years were far greater than expected. Because of the limited number of patients and information in this study, the contribution of improved supportive care on longer survival could not be clarified; this may be elucidated in larger cohort studies.
Collapse
Affiliation(s)
- Hyun Bin Park
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
43
|
Gladman JT, Bebee TW, Edwards C, Wang X, Sahenk Z, Rich MM, Chandler DS. A humanized Smn gene containing the SMN2 nucleotide alteration in exon 7 mimics SMN2 splicing and the SMA disease phenotype. Hum Mol Genet 2010; 19:4239-52. [PMID: 20705738 PMCID: PMC2951869 DOI: 10.1093/hmg/ddq343] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 07/15/2010] [Accepted: 08/09/2010] [Indexed: 11/14/2022] Open
Abstract
Proximal spinal muscular atrophy (SMA) is a neurodegenerative disease caused by low levels of the survival motor neuron (SMN) protein. In humans, SMN1 and SMN2 encode the SMN protein. In SMA patients, the SMN1 gene is lost and the remaining SMN2 gene only partially compensates. Mediated by a C>T nucleotide transition in SMN2, the inefficient recognition of exon 7 by the splicing machinery results in low levels of SMN. Because the SMN2 gene is capable of expressing SMN protein, correction of SMN2 splicing is an attractive therapeutic option. Although current mouse models of SMA characterized by Smn knock-out alleles in combination with SMN2 transgenes adequately model the disease phenotype, their complex genetics and short lifespan have hindered the development and testing of therapies aimed at SMN2 splicing correction. Here we show that the mouse and human minigenes are regulated similarly by conserved elements within in exon 7 and its downstream intron. Importantly, the C>T mutation is sufficient to induce exon 7 skipping in the mouse minigene as in the human SMN2. When the mouse Smn gene was humanized to carry the C>T mutation, keeping it under the control of the endogenous promoter, and in the natural genomic context, the resulting mice exhibit exon 7 skipping and mild adult onset SMA characterized by muscle weakness, decreased activity and an alteration of the muscle fibers size. This Smn C>T mouse represents a new model for an adult onset form of SMA (type III/IV) also know as the Kugelberg-Welander disease.
Collapse
Affiliation(s)
- Jordan T. Gladman
- Department of Pediatrics, The Research Institute at Nationwide Children's Hospital
- The Integrated Biomedical Science Graduate Program (IBGP) and
| | - Thomas W. Bebee
- Department of Pediatrics, The Research Institute at Nationwide Children's Hospital
- The Molecular, Cellular and Developmental Biology (MCDB) Graduate Program, The Ohio State University, Columbus, OH, USA and
| | - Chris Edwards
- Department of Pediatrics, The Research Institute at Nationwide Children's Hospital
| | - Xueyong Wang
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, OH, USA
| | - Zarife Sahenk
- Department of Pediatrics, The Research Institute at Nationwide Children's Hospital
| | - Mark M. Rich
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, OH, USA
| | - Dawn S. Chandler
- Department of Pediatrics, The Research Institute at Nationwide Children's Hospital
- The Integrated Biomedical Science Graduate Program (IBGP) and
- The Molecular, Cellular and Developmental Biology (MCDB) Graduate Program, The Ohio State University, Columbus, OH, USA and
| |
Collapse
|
44
|
Sasongko TH, Salmi AR, Zilfalil BA, Albar MA, Mohd Hussin ZA. Permissibility of prenatal diagnosis and abortion for fetuses with severe genetic disorder: type 1 spinal muscular atrophy. Ann Saudi Med 2010; 30:427-31. [PMID: 21060155 PMCID: PMC2994156 DOI: 10.4103/0256-4947.72259] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Abortion has been largely avoided in Muslim communities. However, Islamic jurists have established rigorous parameters enabling abortion of fetuses with severe congenital abnormalities. This decision-making process has been hindered by an inability to predict the severity of such prenatally-diagnosed conditions, especially in genetic disorders with clinical heterogeneity, such as spinal muscular atrophy (SMA). Heterogeneous phenotypes of SMA range from extremely severe type 1 to very mild type 4. Advances in molecular genetics have made it possible to perform prenatal diagnosis and to predict the types of SMA with its potential subsequent severity. Such techniques will make it possible for clinicians working in predominantly Muslim countries to counsel their patients accurately and in harmony with their religious beliefs. In this paper, we discuss and postulate that with our current knowledge of determining SMA types and severity with great accuracy, abortion is legally applicable for type 1 SMA.
Collapse
Affiliation(s)
- Teguh H Sasongko
- Department of Pediatrics, School of Medical Sciences, University Sains Malaysia, Kelantan, Malaysia
| | | | | | | | | |
Collapse
|
45
|
Sasongko TH, Yusoff S, Atif AB, Fatemeh H, Rani A, Marini M, Ab Aziz CB, Zabidi-Hussin ZAMH, Nishio H, Zilfalil BA. Screening of the LIX1 gene in Japanese and Malaysian patients with SMA and/or SMA-like disorder. Brain Dev 2010; 32:385-9. [PMID: 19664890 DOI: 10.1016/j.braindev.2009.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 06/25/2009] [Accepted: 06/30/2009] [Indexed: 11/19/2022]
Abstract
BACKGROUND The majority of spinal muscular atrophy (SMA) patients showed homozygous deletion or other mutations of SMN1. However, the genetic etiology of a significant number of SMA patients has not been clarified. Recently, mutation in the gene underlying cat SMA, limb expression 1 (LIX1), has been reported. Similarity in clinical and pathological features of cat and human SMA may give an insight into possible similarity of the genetic etiology. PATIENTS AND METHODS In this study, we screened for a mutation in LIX1 using direct DNA sequencing in our SMA and/or SMA-like patients who retained SMN1. A total of 33 patients were enrolled in this study, of which 22 were Japanese and 11 were Malaysians. All these patients possessed at least two copies of SMN1. RESULTS We did not identify any pathogenic mutations in the coding regions or splice sites of LIX1 in the patients. In addition, we described a polymorphism within LIX1 intron 3, c.387+107A>T. We found that A-allele is significantly more frequent in SMA patients compared to normal individuals. CONCLUSION Molecular genetic analysis of our SMA and/or SMA-like patients suggests that LIX1 is not associated with the development of their disorders. However, the number of patients analyzed in this study was very limited, and a larger study with bigger sample size is needed to confirm this result.
Collapse
Affiliation(s)
- Teguh Haryo Sasongko
- Human Genome Center, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
|