1
|
Jung Y, Mithani K, Suresh H, Warsi N, Harmsen IE, Breitbart S, Gorodetsky C, Fasano A, Fallah A, Hadjinicolaou A, Weil A, Ibrahim GM. Deep Brain Stimulation in Pediatric Populations: A Scoping Review of the Clinical Trial Landscape. Stereotact Funct Neurosurg 2025; 103:132-144. [PMID: 39756376 PMCID: PMC11965851 DOI: 10.1159/000543289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/19/2024] [Indexed: 01/07/2025]
Abstract
INTRODUCTION There has been rapid advancement in the development of deep brain stimulation (DBS) as a treatment option for adults for neurological and neuropsychiatric conditions. Here, we present a scoping review of completed and ongoing clinical trials focused on DBS in pediatric populations, highlighting key knowledge gaps. METHODS Three databases (PubMed, OVID, and Embase) and the clinicaltrials.gov registry were queried to identify clinical trials for DBS in pediatric cohorts (age ≤18 years). Prospective and retrospective case series were excluded. No restrictions were placed on the diagnoses or measured clinical outcomes. Individual patient demographics, diagnosis, DBS target, and primary endpoints were extracted and summarized. RESULTS A total of 13 clinical trials were included in the final review, consisting of 9 completed trials (357 screened) and 4 ongoing trials (82 screened). Of the completed trials, 6 studied dystonia (both inherited and acquired; participants aged 4-18 years) and 3 studied drug-resistant epilepsy (participants aged 4-17 years). Among the 6 trials for dystonia, 5 used the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) as the primary endpoint. There were a total of 18 adverse events documented across 63 participants, with 5 of 9 studies reporting adverse events. Ongoing clinical trials are evaluating DBS for dystonia (N = 2), epilepsy (N = 1), and self-injurious behavior (N = 1). CONCLUSIONS This scoping review summarizes the landscape of clinical trials for DBS in children and youth. In dystonia, further research is warranted with more relevant pediatric outcome measures and for understudied patient subgroups and targets. There are also significant gaps in our understanding of evaluating the role of DBS in other neurological and neurodevelopmental disorders in pediatric populations. INTRODUCTION There has been rapid advancement in the development of deep brain stimulation (DBS) as a treatment option for adults for neurological and neuropsychiatric conditions. Here, we present a scoping review of completed and ongoing clinical trials focused on DBS in pediatric populations, highlighting key knowledge gaps. METHODS Three databases (PubMed, OVID, and Embase) and the clinicaltrials.gov registry were queried to identify clinical trials for DBS in pediatric cohorts (age ≤18 years). Prospective and retrospective case series were excluded. No restrictions were placed on the diagnoses or measured clinical outcomes. Individual patient demographics, diagnosis, DBS target, and primary endpoints were extracted and summarized. RESULTS A total of 13 clinical trials were included in the final review, consisting of 9 completed trials (357 screened) and 4 ongoing trials (82 screened). Of the completed trials, 6 studied dystonia (both inherited and acquired; participants aged 4-18 years) and 3 studied drug-resistant epilepsy (participants aged 4-17 years). Among the 6 trials for dystonia, 5 used the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) as the primary endpoint. There were a total of 18 adverse events documented across 63 participants, with 5 of 9 studies reporting adverse events. Ongoing clinical trials are evaluating DBS for dystonia (N = 2), epilepsy (N = 1), and self-injurious behavior (N = 1). CONCLUSIONS This scoping review summarizes the landscape of clinical trials for DBS in children and youth. In dystonia, further research is warranted with more relevant pediatric outcome measures and for understudied patient subgroups and targets. There are also significant gaps in our understanding of evaluating the role of DBS in other neurological and neurodevelopmental disorders in pediatric populations.
Collapse
Affiliation(s)
- Youngkyung Jung
- Department of Neurosurgery, University of Toronto, Toronto, Ontario, Canada,
| | - Karim Mithani
- Department of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Hrishikesh Suresh
- Department of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Nebras Warsi
- Department of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Irene E Harmsen
- Division of Neurosurgery, University of Alberta, Edmonton, Alberta, Canada
| | - Sara Breitbart
- Department of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
- Division of Neurology, Hospital for SickKids, Toronto, Ontario, Canada
| | - Carolina Gorodetsky
- Division of Neurology, Hospital for SickKids, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Alfonso Fasano
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Division of Neurology, Hospital for SickKids, Toronto, Ontario, Canada
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada
- Krembil Brain Institute, Toronto, Ontario, Canada
| | - Aria Fallah
- Department of Neurosurgery, David Geffen School of Medicine at University of California, Los Angeles, California, USA
| | | | - Alexander Weil
- Division of Neurosurgery, Department of Surgery, Sainte-Justine University Hospital Centre, Montreal, Québec, Canada
- Division of Neurosurgery, Department of Surgery, University of Montréal Hospital Centre (CHUM), Montreal, Québec, Canada
- Division of Neurology, Department of Pediatrics, Sainte-Justine University Hospital Centre, Montreal, Québec, Canada
| | - George M Ibrahim
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Sarva H, Rodriguez-Porcel F, Rivera F, Gonzalez CD, Barkan S, Tripathi S, Gatto E, Ruiz PG. The role of genetics in the treatment of dystonia with deep brain stimulation: Systematic review and Meta-analysis. J Neurol Sci 2024; 459:122970. [PMID: 38520940 DOI: 10.1016/j.jns.2024.122970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Dystonia is a movement disorder characterized by sustained or intermittent muscle contractions that lead to involuntary postures or repetitive movements. Genetic mutations are being increasingly recognized as a cause of dystonia. Deep brain stimulation (DBS) is one of the limited treatment options available. However, there are varying reports on its efficacy in genetic dystonias. This systematic review of the characteristics of genetic dystonias treated with DBS and their outcomes aims to aid in the evaluation of eligibility for such treatment. METHODS We performed a PUBMED search of all papers related to genetic dystonias and DBS up until April 2022. In addition to performing a systematic review, we also performed a meta-analysis to assess the role of the mutation on DBS response. We included cases that had a confirmed genetic mutation and DBS along with pre-and post-operative BFMDRS. RESULTS Ninety-one reports met our inclusion criteria and from them, 235 cases were analyzed. Based on our analysis DYT-TOR1A dystonia had the best evidence for DBS response and Rapid-Onset Dystonia Parkinsonism was among the least responsive to DBS. CONCLUSION While our report supports the role of genetics in DBS selection and response, it is limited by the rarity of the individual genetic conditions, the reliance on case reports and case series, and the limited ability to obtain genetic testing on a large scale in real-time as opposed to retrospectively as in many cases.
Collapse
Affiliation(s)
- Harini Sarva
- Parkinson's Disease and Movement Disorders Institute, Weill Cornell Medicine, 428 E72nd Street, Suite 400, NY, NY 10021, USA.
| | | | - Francisco Rivera
- CEMIC University Institute, School of Medicine, Department of Pharmacology, Buenos Aires, Argentina
| | - Claudio Daniel Gonzalez
- CEMIC University Institute, School of Medicine, Department of Pharmacology, Buenos Aires, Argentina
| | - Samantha Barkan
- Parkinson's Disease and Movement Disorders Institute, Weill Cornell Medicine, 428 E72nd Street, Suite 400, NY, NY 10021, USA
| | - Susmit Tripathi
- Parkinson's Disease and Movement Disorders Institute, Weill Cornell Medicine, 428 E72nd Street, Suite 400, NY, NY 10021, USA
| | - Emilia Gatto
- Instituto de Neurociencias Buenos Aires, INEBA, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Pedro Garcia Ruiz
- Movement Disorders Unit, Department of Neurology, Fundacion Jimenez Diaz, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
3
|
Wang Q, Tang B, Hao S, Wu Z, Yang T, Tang J. Forniceal deep brain stimulation in a mouse model of Rett syndrome increases neurogenesis and hippocampal memory beyond the treatment period. Brain Stimul 2023; 16:1401-1411. [PMID: 37704033 PMCID: PMC11152200 DOI: 10.1016/j.brs.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Rett syndrome (RTT), caused by mutations in the X-linked gene encoding methyl-CpG binding protein 2 (MeCP2), severely impairs learning and memory. We previously showed that forniceal deep brain stimulation (DBS) stimulates hippocampal neurogenesis with concomitant improvements in hippocampal-dependent learning and memory in a mouse model of RTT. OBJECTIVES To determine the duration of DBS benefits; characterize DBS effects on hippocampal neurogenesis; and determine whether DBS influences MECP2 genotype and survival of newborn dentate granular cells (DGCs) in RTT mice. METHODS Chronic DBS was delivered through an electrode implanted in the fimbria-fornix. We tested separate cohorts of mice in contextual and cued fear memory at different time points after DBS. We then examined neurogenesis, DGC apoptosis, and the expression of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) after DBS by immunohistochemistry. RESULTS After two weeks of forniceal DBS, memory improvements lasted between 6 and 9 weeks. Repeating DBS every 6 weeks was sufficient to maintain the improvement. Forniceal DBS stimulated the birth of more MeCP2-positive than MeCP2-negative DGCs and had no effect on DGC survival. It also increased the expression of BDNF but not VEGF in the RTT mouse dentate gyrus. CONCLUSION Improvements in learning and memory from forniceal DBS in RTT mice extends well beyond the treatment period and can be maintained by repeated DBS. Stimulation of BDNF expression correlates with improvements in hippocampal neurogenesis and memory benefits.
Collapse
Affiliation(s)
- Qi Wang
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Bin Tang
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Shuang Hao
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zhenyu Wu
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Tingting Yang
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jianrong Tang
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Alkubaisi A, Sandhu MK, Polyhronopoulos NE, Honey CR. Deep brain stimulation as a rescue for pediatric dystonic storm. Case reports and literature review. INTERDISCIPLINARY NEUROSURGERY 2022. [DOI: 10.1016/j.inat.2022.101654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
5
|
Malatt C, Tagliati M. Long-Term Outcomes of Deep Brain Stimulation for Pediatric Dystonia. Pediatr Neurosurg 2022; 57:225-237. [PMID: 35439762 DOI: 10.1159/000524577] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/06/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) has been utilized for over two decades to treat medication-refractory dystonia in children. Short-term benefit has been demonstrated for inherited, isolated, and idiopathic cases, with less efficacy in heredodegenerative and acquired dystonia. The ongoing publication of long-term outcomes warrants a critical assessment of available information as pediatric patients are expected to live most of their lives with these implants. SUMMARY We performed a review of the literature for data describing motor and neuropsychiatric outcomes, in addition to complications, 5 or more years after DBS placement in patients undergoing DBS surgery for dystonia at an age younger than 21. We identified 20 articles including individual data on long-term motor outcomes after DBS for a total of 78 patients. In addition, we found five articles reporting long-term outcomes after DBS in 9 patients with status dystonicus. Most patients were implanted within the globus pallidus internus, with only a few cases targeting the subthalamic nucleus and ventrolateral posterior nucleus of the thalamus. The average follow-up was 8.5 years, with a range of up to 22 years. Long-term outcomes showed a sustained motor benefit, with median Burke-Fahn-Marsden dystonia rating score improvement ranging from 2.5% to 93.2% in different dystonia subtypes. Patients with inherited, isolated, and idiopathic dystonias had greater improvement than those with heredodegenerative and acquired dystonias. Sustained improvements in quality of life were also reported, without the development of significant cognitive or psychiatric comorbidities. Late adverse events tended to be hardware-related, with minimal stimulation-induced effects. KEY MESSAGES While data regarding long-term outcomes is somewhat limited, particularly with regards to neuropsychiatric outcomes and adverse events, improvement in motor outcomes appears to be preserved more than 5 years after DBS placement.
Collapse
Affiliation(s)
- Camille Malatt
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA,
| | - Michele Tagliati
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
6
|
Fan H, Zheng Z, Yin Z, Zhang J, Lu G. Deep Brain Stimulation Treating Dystonia: A Systematic Review of Targets, Body Distributions and Etiology Classifications. Front Hum Neurosci 2021; 15:757579. [PMID: 34899219 PMCID: PMC8663760 DOI: 10.3389/fnhum.2021.757579] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Deep brain stimulation (DBS) is a typical intervention treating drug-refractory dystonia. Currently, the selection of the better target, the GPi or STN, is debatable. The outcomes of DBS treating dystonia classified by body distribution and etiology is also a popular question. Objective: To comprehensively compare the efficacy, quality of life, mood, and adverse effects (AEs) of GPi-DBS vs. STN-DBS in dystonia as well as in specific types of dystonia classified by body distribution and etiology. Methods: PubMed, Embase, the Cochrane Library, and Google Scholar were searched to identify studies of GPi-DBS and STN-DBS in populations with dystonia. The efficacy, quality of life, mood, and adverse effects were quantitatively compared. Meta-regression analyses were also performed. This analysis has been registered in PROSPERO under the number CRD42020146145. Results: Thirty five studies were included in the main analysis, in which 319 patients underwent GPI-DBS and 113 patients underwent STN-DBS. The average follow-up duration was 12.48 months (range, 3–49 months). The GPI and STN groups were equivalent in terms of efficacy, quality of life, mood, and occurrence of AEs. The focal group demonstrated significantly better disability symptom improvement (P = 0.012) than the segmental and generalized groups but showed less SF-36 enhancement than the segmental group (P < 0.001). The primary groups exhibited significantly better movement and disability symptom improvements than the secondary non-hereditary group (P < 0.005), which demonstrated only disability symptom improvement compared with the secondary hereditary group (P < 0.005). The primary hereditary and idiopathic groups had a significantly lower frequency of AEs than the secondary non-hereditary group (P < 0.005). The correlation between disability symptom improvement and movement symptom improvement was also significant (P < 0.05). Conclusion: GPi-DBS and STN-DBS were both safe and resulted in excellent improvement in efficacy and quality of life in patients with dystonia. Compared with patients with segmental dystonia, patients with focal dystonia demonstrated better improvement in dystonia symptoms but less enhancement of quality of life. Those with primary dystonia had a better response to DBS in terms of efficacy than those with secondary dystonia. Patients who exhibit a significant improvement in movement symptoms might also exhibit excellent improvement in disability symptoms.
Collapse
Affiliation(s)
- Houyou Fan
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zijian Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zixiao Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guohui Lu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
7
|
Mulroy E, Vijiaratnam N, De Roquemaurel A, Bhatia KP, Zrinzo L, Foltynie T, Limousin P. A practical guide to troubleshooting pallidal deep brain stimulation issues in patients with dystonia. Parkinsonism Relat Disord 2021; 87:142-154. [PMID: 34074583 DOI: 10.1016/j.parkreldis.2021.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/18/2021] [Accepted: 05/19/2021] [Indexed: 11/17/2022]
Abstract
High frequency deep brain stimulation (DBS) of the internal portion of the globus pallidus has, in the last two decades, become a mainstream therapy for the management of medically-refractory dystonia syndromes. Such increasing uptake places an onus on movement disorder physicians to become familiar with this treatment modality, in particular optimal patient selection for the procedure and how to troubleshoot problems relating to sub-optimal efficacy and therapy-related side effects. Deep brain stimulation for dystonic conditions presents some unique challenges. For example, the frequent lack of immediate change in clinical status following stimulation alterations means that programming often relies on personal experience and local practice rather than real-time indicators of efficacy. Further, dystonia is a highly heterogeneous disorder, making the development of unifying guidelines and programming algorithms for DBS in this population difficult. Consequently, physicians may feel less confident in managing DBS for dystonia as compared to other indications e.g. Parkinson's disease. In this review, we integrate our years of personal experience of the programming of DBS systems for dystonia with a critical appraisal of the literature to produce a practical guide for troubleshooting common issues encountered in patients with dystonia treated with DBS, in the hope of improving the care for these patients.
Collapse
Affiliation(s)
- Eoin Mulroy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK.
| | - Nirosen Vijiaratnam
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Alexis De Roquemaurel
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Ludvic Zrinzo
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Patricia Limousin
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| |
Collapse
|
8
|
Tsuboi T, Cif L, Coubes P, Ostrem JL, Romero DA, Miyagi Y, Lozano AM, De Vloo P, Haq I, Meng F, Sharma N, Ozelius LJ, Wagle Shukla A, Cauraugh JH, Foote KD, Okun MS. Secondary Worsening Following DYT1 Dystonia Deep Brain Stimulation: A Multi-country Cohort. Front Hum Neurosci 2020; 14:242. [PMID: 32670041 PMCID: PMC7330126 DOI: 10.3389/fnhum.2020.00242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/02/2020] [Indexed: 12/16/2022] Open
Abstract
Objective: To reveal clinical characteristics of suboptimal responses to deep brain stimulation (DBS) in a multi-country DYT1 dystonia cohort. Methods: In this multi-country multi-center retrospective study, we analyzed the clinical data of DYT1 patients who experienced suboptimal responses to DBS defined as <30% improvement in dystonia scales at the last follow-up compared with baseline. We used a literature-driven historical cohort of 112 DYT1 patients for comparison. Results: Approximately 8% of our study cohort (11 out of 132) experienced suboptimal responses to DBS. Compared with the historical cohort, the multi-country cohort with suboptimal responses had a significantly younger age at onset (mean, 7.0 vs. 8.4 years; p = 0.025) and younger age at DBS (mean, 12.0 vs. 18.6 years; p = 0.019). Additionally, cranial involvement was more common in the multi-country cohort (before DBS, 64% vs. 45%, p = 0.074; before or after DBS, 91% vs. 47%, p = 0.001). Mean motor improvement at the last follow-up from baseline were 0% and 66% for the multi-country and historical cohorts, respectively. All 11 patients of the multi-country cohort had generalization of dystonia within 2.5 years after disease onset. All patients experienced dystonia improvement of >30% postoperatively; however, secondary worsening of dystonia commenced between 6 months and 3 years following DBS. The improvement at the last follow-up was less than 30% despite optimally-placed leads, a trial of multiple programming settings, and additional DBS surgeries in all patients. The on-/off-stimulation comparison at the long-term follow-up demonstrated beneficial effects of DBS despite missing the threshold of 30% improvement over baseline. Conclusion: Approximately 8% of patients represent a more aggressive phenotype of DYT1 dystonia characterized by younger age at onset, faster disease progression, and cranial involvement, which seems to be associated with long-term suboptimal responses to DBS (e.g., secondary worsening). This information could be useful for both clinicians and patients in clinical decision making and patient counseling before and following DBS implantations. Patients with this phenotype may have different neuroplasticity, neurogenetics, or possibly distinct neurophysiology.
Collapse
Affiliation(s)
- Takashi Tsuboi
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States.,Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Laura Cif
- Department of Neurology, University Hospital Montpellier, Montpellier, France
| | - Philippe Coubes
- Department of Neurosurgery, University Hospital Montpellier, Montpellier, France
| | - Jill L Ostrem
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Danilo A Romero
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Yasushi Miyagi
- Department of Stereotactic and Functional Neurosurgery, Fukuoka Mirai Hospital, Fukuoka, Japan
| | - Andres M Lozano
- Division of Neurosurgery, Toronto Western Hospital Krembil Neuroscience Center, Toronto, ON, Canada.,Department of Neurosurgery, University of Toronto, Toronto, ON, Canada
| | - Philippe De Vloo
- Department of Neurosurgery, University of Toronto, Toronto, ON, Canada.,Department of Neurosurgery, KU Leuven, Leuven, Belgium
| | - Ihtsham Haq
- Department of Neurology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Fangang Meng
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Nutan Sharma
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, United States
| | - Laurie J Ozelius
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, United States
| | - Aparna Wagle Shukla
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - James H Cauraugh
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Kelly D Foote
- Department of Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Michael S Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| |
Collapse
|
9
|
Tai CH, Hwu WL, Wu RM, Tseng SH. Modified Frameless Stereotactic System for Intracerebral Delivery of Viral Vector in Young Children. Oper Neurosurg (Hagerstown) 2020; 18:166-174. [PMID: 31214706 DOI: 10.1093/ons/opz119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 01/21/2019] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Stereotaxic surgery for viral vector delivery in young children is highly challenging because of their small cranial size, thin and fragile skull, and deformity of the skull or brain after prolonged bed ridden condition. OBJECTIVE To develop a modified frameless stereotactic system especially suitable for intracerebral delivery of viral vector in young children for accurate localization of intracerebral targets during stereotactic surgery. METHODS A modified frameless stereotactic system was developed for intracerebral delivery of viral vector in pediatric patients with congenital enzyme deficiency. Localization markers and a stereotactic stabilizer were designed specifically for surgery in pediatric patients, and this equipment is used along with a pre-existing frameless stereotactic and computer-assisted planning and navigation system. RESULTS We applied this modified frameless stereotactic system to treat 10 children with aromatic L-amino acid decarboxylase deficiency. CONCLUSION It is potentially suitable for stereotactic functional neurosurgery in pediatric patients as young as 1 yr and 8 mo of age.
Collapse
Affiliation(s)
- Chun-Hwei Tai
- Department of Neurology, College of Medicine, National Taiwan Univeristy, Taipei, Taiwan.,Centre of Parkinson and Movement Disorders, Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Wu-Lian Hwu
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Ruey-Meei Wu
- Department of Neurology, College of Medicine, National Taiwan Univeristy, Taipei, Taiwan.,Centre of Parkinson and Movement Disorders, Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Sheng-Hong Tseng
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
10
|
Badhiwala JH, Karmur B, Elkaim LM, Alotaibi NM, Morgan BR, Lipsman N, De Vloo P, Kalia SK, Lozano AM, Ibrahim GM. Clinical phenotypes associated with outcomes following deep brain stimulation for childhood dystonia. J Neurosurg Pediatr 2019; 24:442-450. [PMID: 31299640 DOI: 10.3171/2019.5.peds1973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/08/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Although deep brain stimulation (DBS) is an accepted treatment for childhood dystonia, there is significant heterogeneity in treatment response and few data are available to identify ideal surgical candidates. METHODS Data were derived from a systematic review and individual patient data meta-analysis of DBS for dystonia in children that was previously published. Outcomes were assessed using the Burke-Fahn-Marsden Dystonia Rating Scale for movement (BFMDRS-M) and for disability (BFMDRS-D). The authors used partial least squares, bootstrapping, and permutation statistics to extract patterns of contributions of specific preoperative characteristics to relationship with distinct outcomes, in all patients and in patients with primary and secondary dystonia separately. RESULTS Of 301 children undergoing DBS for dystonia, 167 had primary dystonia, 125 secondary dystonia, and 9 myoclonus dystonia. Three dissociable preoperative phenotypes (latent variables) were identified and associated with the following: 1) BFMDRS-M at last follow-up; 2) relative change in BFMDRS-M score; and 3) relative change in BFMDRS-D score. The phenotype of patients with secondary dystonia, with a high BFMDRS-M score and truncal involvement, undergoing DBS at a younger age, was associated with a worse postoperative BFMDRS-M score. Children with primary dystonia involving the trunk had greater improvement in BFMDRS-M and -D scores. Those with primary dystonia of shorter duration and proportion of life with disease, undergoing globus pallidus DBS, had greater improvements in BFMDRS-D scores at long-term follow-up. CONCLUSIONS In a comprehensive, data-driven, multivariate analysis of DBS for childhood dystonia, the authors identified novel and dissociable patient phenotypes associated with distinct outcomes. The findings of this report may inform surgical candidacy for DBS.
Collapse
Affiliation(s)
| | - Brij Karmur
- 2Faculty of Medicine, University of Toronto, Toronto, Ontario
| | - Lior M Elkaim
- 3Faculty of Medicine, Université de Montréal, Montréal, Québec
| | | | | | - Nir Lipsman
- 1Division of Neurosurgery, Department of Surgery, and
- 4Division of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, Ontario
| | - Philippe De Vloo
- 1Division of Neurosurgery, Department of Surgery, and
- 5Division of Neurosurgery, Toronto Western Hospital, Toronto, Ontario; and
| | - Suneil K Kalia
- 1Division of Neurosurgery, Department of Surgery, and
- 5Division of Neurosurgery, Toronto Western Hospital, Toronto, Ontario; and
| | - Andres M Lozano
- 1Division of Neurosurgery, Department of Surgery, and
- 5Division of Neurosurgery, Toronto Western Hospital, Toronto, Ontario; and
| | - George M Ibrahim
- 1Division of Neurosurgery, Department of Surgery, and
- 6Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Psychiatric and Behavioral Complications of GPi DBS in an Adolescent with Myoclonus Dystonia. Case Rep Psychiatry 2019; 2019:1947962. [PMID: 31275687 PMCID: PMC6582850 DOI: 10.1155/2019/1947962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/15/2019] [Indexed: 11/18/2022] Open
Abstract
Myoclonus dystonia is a rare movement disorder that often causes significant disability. Deep brain stimulation of the internal pallidum (GPi DBS) is a recommended treatment for those who do not respond to pharmacotherapy or who have intolerable side effects. This paper reports on the case of a 17-year-old male who was admitted to a tertiary level mental healthcare facility for treatment of psychiatric and behavioral symptoms thought to be related to GPi DBS. Prior to GPi DBS insertion, the patient was diagnosed with anxiety and mild obsessive compulsive disorder (OCD). Following insertion, his OCD became severe and he developed depression, Tourette syndrome, and stuttering. His first admission to a psychiatric unit was for management of a manic episode following treatment for depression with fluoxetine, and he began to exhibit severe aggressive behavior. GPi DBS was turned off, but there were neither changes in dystonic movements nor improvement in aggressive behavior or psychiatric symptoms, though stuttering improved. The patient was transferred to a secure treatment centre where he was able to gain control over his behaviors with intense dialectical behavior therapy, but the aggressive behavior and safety concerns continue to persist today.
Collapse
|
12
|
Kim JH, Jung NY, Chang WS, Jung HH, Cho SR, Chang JW. Intrathecal Baclofen Pump Versus Globus Pallidus Interna Deep Brain Stimulation in Adult Patients with Severe Cerebral Palsy. World Neurosurg 2019; 126:e550-e556. [DOI: 10.1016/j.wneu.2019.02.092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 11/29/2022]
|
13
|
Tsuboi T, Jabarkheel Z, Foote KD, Okun MS, Wagle Shukla A. Importance of the initial response to GPi deep brain stimulation in dystonia: A nine year quality of life study. Parkinsonism Relat Disord 2019; 64:249-255. [PMID: 31060987 DOI: 10.1016/j.parkreldis.2019.04.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/05/2019] [Accepted: 04/29/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Long-term efficacy of deep brain stimulation (DBS) on health-related quality-of-life (HRQoL) for isolated dystonia is not well established. This study aims to determine the long-term impact of DBS on HRQoL outcomes and identify clinical predictors. METHODS We retrospectively investigated 16 inherited or idiopathic isolated dystonia patients treated with bilateral globus pallidus internus DBS who were followed beyond 9 years at our center. The cohort consisted of 9 males, 7 females; 10 generalized, 6 segmental; mean (range) age at implantation, 37.0 (8-67) years; mean follow-up duration after implantation, 10.9 (9-13) years. We employed the Unified Dystonia Rating Scale for motor and Short Form Health Survey for HRQoL assessments to monitor the change longitudinally. We analyzed the changes in motor and HRQoL at 1-2 years (short-term) and ≥9 years (long-term) follow-up as compared to baseline with a Wilcoxon signed-rank test. We assessed the factors that predicted motor and HRQoL improvement with univariate regression analyses. RESULTS Motor (41.6%; p = 0.004) and HRQoL (total score, p = 0.039) improvements remained significant at long-term follow-up and, in the regression analysis, change in HRQoL outcomes correlated significantly with change in motor outcomes (R2 = 0.384, p = 0.010). Additionally, short-term motor and HRQoL improvements predicted the long-term motor (R2 = 0.384, p = 0.010) and HRQoL (total score, R2 = 0.594, p < 0.001) outcomes, respectively. CONCLUSION Motor and HRQoL improvements with DBS in isolated dystonia remain sustained for nearly a decade and may largely be predictable by the short-term response to DBS.
Collapse
Affiliation(s)
- Takashi Tsuboi
- Department of Neurology, Fixel Center for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Zakia Jabarkheel
- Department of Neurology, Fixel Center for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Kelly D Foote
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Michael S Okun
- Department of Neurology, Fixel Center for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Aparna Wagle Shukla
- Department of Neurology, Fixel Center for Neurological Diseases, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
14
|
Elkaim LM, Alotaibi NM, Sigal A, Alotaibi HM, Lipsman N, Kalia SK, Fehlings DL, Lozano AM, Ibrahim GM. Deep brain stimulation for pediatric dystonia: a meta-analysis with individual participant data. Dev Med Child Neurol 2019; 61:49-56. [PMID: 30320439 DOI: 10.1111/dmcn.14063] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/28/2018] [Indexed: 12/31/2022]
Abstract
AIM We performed a meta-analysis with individual participant data of deep brain stimulation (DBS) for dystonia in children and young people. METHOD Three databases (PubMed, Embase, and Web of Science) were queried from January 1999 to August 2017 with no language restrictions to identify case studies and cohort studies reporting on pediatric patients (age ≤21y) with dystonia. The primary outcomes were changes in Burke-Fahn-Marsden (BFM) or Barry-Albright Dystonia Scale scores. A mixed-effects regression was used to identify associations between clinical covariates and outcomes. RESULTS Of 2509 citations reviewed, 72 articles (321 children) were eligible. At last follow-up (median 12mo, 25th centile=9.0; 75th centile=32.2), 277 (86.3%) patients showed improvement in dystonia, while 66.1 percent showed clinically significant (>20%) BFM Dystonia Rating Scale-motor improvement. On multivariable hierarchical regression, older age at dystonia onset, inherited dystonia without nervous system pathology and idiopathic dystonia (vs inherited with nervous system pathology or acquired dystonia), and truncal involvement indicated a better outcome (p<0.05). INTERPRETATION The data suggest that DBS is effective and should be considered in selected children with inherited or idiopathic dystonia. WHAT THIS PAPER ADDS Deep brain stimulation is effective in selected children with inherited or idiopathic dystonia.
Collapse
Affiliation(s)
- Lior M Elkaim
- Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Naif M Alotaibi
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - Alissa Sigal
- Faculty of Medicine, Université de Montréal, Montreal, Canada
| | | | - Nir Lipsman
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada.,Division of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Suneil K Kalia
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada.,Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, Toronto, Canada
| | - Darcy L Fehlings
- Child Development Program, Holland Bloorview Rehabilitation Hospital, University of Toronto, Toronto, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada.,Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, Toronto, Canada
| | - George M Ibrahim
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada.,Division of Neurosurgery, The Hospital for Sick Children, Program in Neuroscience and Mental Health, The Hospital for Sick Children Research Institute, Toronto, Canada.,Department of Surgery, Institute of Biomaterials and Biomedical Engineering, Institute of Medical Science, University of Toronto, Toronto, Canada
| | | |
Collapse
|
15
|
Candela S, Vanegas MI, Darling A, Ortigoza-Escobar JD, Alamar M, Muchart J, Climent A, Ferrer E, Rumià J, Pérez-Dueñas B. Frameless robot-assisted pallidal deep brain stimulation surgery in pediatric patients with movement disorders: precision and short-term clinical results. J Neurosurg Pediatr 2018; 22:416-425. [PMID: 30028274 DOI: 10.3171/2018.5.peds1814] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The purpose of this study was to verify the safety and accuracy of the Neuromate stereotactic robot for use in deep brain stimulation (DBS) electrode implantation for the treatment of hyperkinetic movement disorders in childhood and describe the authors' initial clinical results. METHODS A prospective evaluation of pediatric patients with dystonia and other hyperkinetic movement disorders was carried out during the 1st year after the start-up of a pediatric DBS unit in Barcelona. Electrodes were implanted bilaterally in the globus pallidus internus (GPi) using the Neuromate robot without the stereotactic frame. The authors calculated the distances between the electrodes and their respective planned trajectories, merging the postoperative CT with the preoperative plan using VoXim software. Clinical outcome was monitored using validated scales for dystonia and myoclonus preoperatively and at 1 month and 6 months postoperatively and by means of a quality-of-life questionnaire for children, administered before surgery and at 6 months' follow-up. We also recorded complications derived from the implantation technique, "hardware," and stimulation. RESULTS Six patients aged 7 to 16 years and diagnosed with isolated dystonia ( DYT1 negative) (3 patients), choreo-dystonia related to PDE2A mutation (1 patient), or myoclonus-dystonia syndrome SGCE mutations (2 patients) were evaluated during a period of 6 to 19 months. The average accuracy in the placement of the electrodes was 1.24 mm at the target point. At the 6-month follow-up, patients showed an improvement in the motor (65%) and functional (48%) components of the Burke-Fahn-Marsden Dystonia Rating Scale. Patients with myoclonus and SGCE mutations also showed an improvement in action myoclonus (95%-100%) and in functional tests (50%-75%) according to the Unified Motor-Rating Scale. The Neuro-QOL score revealed inconsistent results, with improvement in motor function and social relationships but worsening in anxiety, cognitive function, and pain. The only surgical complication was medial displacement of the first electrode, which limited intensity of stimulation in the lower contacts, in one case. CONCLUSIONS The Neuromate stereotactic robot is an accurate and safe tool for the placement of GPi electrodes in children with hyperkinetic movement disorders.
Collapse
Affiliation(s)
- Santiago Candela
- Departments of1Neurosurgery.,6Pediatric Movement Disorders Unit, Sant Joan de Déu Barcelona Children's Hospital, Universitat de Barcelona
| | - María Isabel Vanegas
- 2Neuropediatrics, and.,6Pediatric Movement Disorders Unit, Sant Joan de Déu Barcelona Children's Hospital, Universitat de Barcelona.,7Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Alejandra Darling
- 2Neuropediatrics, and.,6Pediatric Movement Disorders Unit, Sant Joan de Déu Barcelona Children's Hospital, Universitat de Barcelona
| | - Juan Darío Ortigoza-Escobar
- 2Neuropediatrics, and.,6Pediatric Movement Disorders Unit, Sant Joan de Déu Barcelona Children's Hospital, Universitat de Barcelona
| | - Mariana Alamar
- Departments of1Neurosurgery.,6Pediatric Movement Disorders Unit, Sant Joan de Déu Barcelona Children's Hospital, Universitat de Barcelona
| | - Jordi Muchart
- 3Diagnostic Imaging.,6Pediatric Movement Disorders Unit, Sant Joan de Déu Barcelona Children's Hospital, Universitat de Barcelona
| | - Alejandra Climent
- Departments of1Neurosurgery.,2Neuropediatrics, and.,4Intraoperative Neurophysiology Unit, and.,6Pediatric Movement Disorders Unit, Sant Joan de Déu Barcelona Children's Hospital, Universitat de Barcelona
| | - Enrique Ferrer
- Departments of1Neurosurgery.,5Department of Neurosurgery, Hospital Clinic de Barcelona, Universitat de Barcelona; and.,6Pediatric Movement Disorders Unit, Sant Joan de Déu Barcelona Children's Hospital, Universitat de Barcelona
| | - Jordi Rumià
- Departments of1Neurosurgery.,5Department of Neurosurgery, Hospital Clinic de Barcelona, Universitat de Barcelona; and.,6Pediatric Movement Disorders Unit, Sant Joan de Déu Barcelona Children's Hospital, Universitat de Barcelona
| | - Belén Pérez-Dueñas
- 2Neuropediatrics, and.,6Pediatric Movement Disorders Unit, Sant Joan de Déu Barcelona Children's Hospital, Universitat de Barcelona.,7Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
16
|
Alterman RL, Stone S. Deep Brain Stimulation for Dystonia. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00076-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Johans SJ, Swong KN, Hofler RC, Anderson DE. A Stepwise Approach: Decreasing Infection in Deep Brain Stimulation for Childhood Dystonic Cerebral Palsy. J Child Neurol 2017; 32:871-875. [PMID: 28604158 DOI: 10.1177/0883073817713900] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dystonia is a movement disorder characterized by involuntary muscle contractions, which cause twisting movements or abnormal postures. Deep brain stimulation has been used to improve the quality of life for secondary dystonia caused by cerebral palsy. Despite being a viable treatment option for childhood dystonic cerebral palsy, deep brain stimulation is associated with a high rate of infection in children. The authors present a small series of patients with dystonic cerebral palsy who underwent a stepwise approach for bilateral globus pallidus interna deep brain stimulation placement in order to decrease the rate of infection. Four children with dystonic cerebral palsy who underwent a total of 13 surgical procedures (electrode and battery placement) were identified via a retrospective review. There were zero postoperative infections. Using a multistaged surgical plan for pediatric patients with dystonic cerebral palsy undergoing deep brain stimulation may help to reduce the risk of infection.
Collapse
Affiliation(s)
- Stephen J Johans
- 1 Department of Neurological Surgery, Loyola University Medical Center, Maywood, IL, USA
| | - Kevin N Swong
- 1 Department of Neurological Surgery, Loyola University Medical Center, Maywood, IL, USA
| | - Ryan C Hofler
- 1 Department of Neurological Surgery, Loyola University Medical Center, Maywood, IL, USA
| | - Douglas E Anderson
- 1 Department of Neurological Surgery, Loyola University Medical Center, Maywood, IL, USA
| |
Collapse
|
18
|
Deep brain stimulation for childhood dystonia: Is 'where' as important as in 'whom'? Eur J Paediatr Neurol 2017; 21:176-184. [PMID: 28220756 DOI: 10.1016/j.ejpn.2016.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 10/03/2016] [Indexed: 01/07/2023]
Abstract
Deep brain stimulation (DBS) has become a mainstay of dystonia management in adulthood. Typically targeting electrode placement in the GPi, sustained improvement in dystonic symptoms are anticipated in adults with isolated genetic dystonias. Dystonia in childhood is more commonly a symptomatic condition, with dystonia frequently expressed on the background of a structurally abnormal brain. Outcomes following DBS in this setting are much more variable, the reasons for which have yet to be elucidated. Much of the focus on improving outcomes following DBS in dystonia management has been on the importance of patient selection, with, until recently, little discussion of the choice of target. In this review, we advance the argument that patient selection for DBS in childhood cannot be made separate from the choice of target nuclei. The anatomy of common DBS targets is considered, and factors influencing their choice for electrode insertion are discussed. We propose an "ABC" for DBS in childhood dystonia is proposed: Appropriate Child selected; Best nuclei chosen for electrode insertion; Correct position within that nucleus.
Collapse
|
19
|
Long-term results of deep brain stimulation in a cohort of eight children with isolated dystonia. J Neurol 2016; 263:2319-2326. [DOI: 10.1007/s00415-016-8253-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/30/2016] [Accepted: 08/01/2016] [Indexed: 10/21/2022]
|
20
|
TODA H, SAIKI H, NISHIDA N, IWASAKI K. Update on Deep Brain Stimulation for Dyskinesia and Dystonia: A Literature Review. Neurol Med Chir (Tokyo) 2016; 56:236-48. [PMID: 27053331 PMCID: PMC4870178 DOI: 10.2176/nmc.ra.2016-0002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/01/2016] [Indexed: 12/11/2022] Open
Abstract
Deep brain stimulation (DBS) has been an established surgical treatment option for dyskinesia from Parkinson disease and for dystonia. The present article deals with the timing of surgical intervention, selecting an appropriate target, and minimizing adverse effects. We provide an overview of current evidences and issues for dyskinesia and dystonia as well as emerging DBS technology.
Collapse
Affiliation(s)
- Hiroki TODA
- Department of Neurosurgery, Tazuke Kofukai Medical Research Institute and Kitano Hospital, Kita, Osaka
| | - Hidemoto SAIKI
- Department of Neurology, Tazuke Kofukai Medical Research Institute and Kitano Hospital, Kita, Osaka
| | - Namiko NISHIDA
- Department of Neurosurgery, Tazuke Kofukai Medical Research Institute and Kitano Hospital, Kita, Osaka
| | - Koichi IWASAKI
- Department of Neurosurgery, Tazuke Kofukai Medical Research Institute and Kitano Hospital, Kita, Osaka
| |
Collapse
|
21
|
Krause P, Brüggemann N, Völzmann S, Horn A, Kupsch A, Schneider GH, Lohmann K, Kühn A. Long-term effect on dystonia after pallidal deep brain stimulation (DBS) in three members of a family with a THAP1 mutation. J Neurol 2015; 262:2739-44. [DOI: 10.1007/s00415-015-7908-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/11/2015] [Accepted: 09/13/2015] [Indexed: 11/29/2022]
|
22
|
Abstract
OPINION STATEMENT Dystonia is a movement disorder caused by diverse etiologies. Its treatment in children is particularly challenging due to the complexity of the development of the nervous system from birth to young adulthood. The treatment options of childhood dystonia include several oral pharmaceutical agents, botulinum toxin injections, and deep brain stimulation (DBS) therapy. The choice of drug therapy relies on the suspected etiology of the dystonia and the adverse effect profile of the drugs. Dystonic syndromes with known etiologies may require specific interventions, but most dystonias are treated by trying serially a handful of medications starting with those with the best risk/benefit profile. In conjunction to drug therapy, botulinum toxin injections may be used to target a problematic group dystonic muscles. The maximal botulinum toxin dose is limited by the weight of the child, therefore limiting the number of the muscles amenable to such treatment. When drugs and botulinum toxin injections fail to control the child's disabling dystonia, DBS therapy may be offered as a last remedy. Delivering optimal DBS therapy to children with dystonia requires a multidisciplinary team of experienced pediatric neurosurgeons, neurologists, and nurses to select adequate candidates, perform this delicate stereotactic procedure, and optimize DBS delivery. Even in the best hands, the response of childhood dystonia to DBS therapy varies greatly. Future therapy of childhood dystonia will parallel the advancement of knowledge of the pathophysiology of dystonic syndromes and the development of clinical and research tools for their study.
Collapse
Affiliation(s)
- Samer D Tabbal
- Department of Neurology, American University of Beirut, Riad El-Solh, PO Box 11-0236, Beirut, 1107 2020, Lebanon,
| |
Collapse
|
23
|
Keen JR, Przekop A, Olaya JE, Zouros A, Hsu FPK. Deep brain stimulation for the treatment of childhood dystonic cerebral palsy. J Neurosurg Pediatr 2014; 14:585-93. [PMID: 25325412 DOI: 10.3171/2014.8.peds141] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECT Deep brain stimulation (DBS) for dystonic cerebral palsy (CP) has rarely been reported, and its efficacy, though modest when compared with that for primary dystonia, remains unclear, especially in the pediatric population. The authors present a small series of children with dystonic CP who underwent bilateral pallidal DBS, to evaluate the treatment's efficacy and safety in the pediatric dystonic CP population. METHODS The authors conducted a retrospective review of patients (under the age of 18 years) with dystonic CP who had undergone DBS of the bilateral globus pallidus internus between 2010 and 2012. Two of the authors independently assessed outcomes using the Barry-Albright Dystonia Scale (BADS) and the Burke-Fahn-Marsden Dystonia Rating Scale-movement (BFMDRS-M). RESULTS Five children were diagnosed with dystonic CP due to insults occurring before the age of 1 year. Mean age at surgery was 11 years (range 8-17 years), and the mean follow-up was 26.6 months (range 2-42 months). The mean target position was 20.6 mm lateral to the midcommissural point. The mean preoperative and postoperative BADS scores were 23.8 ± 4.9 (range 18.5-29.0) and 20.0 ± 5.5 (range 14.5-28.0), respectively, with a mean overall percent improvement of 16.0% (p = 0.14). The mean preoperative and postoperative BFMDRS-M scores were 73.3 ± 26.6 (range 38.5-102.0) and 52.4 ± 21.5 (range 34.0-80.0), respectively, with a mean overall percent improvement of 28.5% (p = 0.10). Those stimulated at least 23 months (4 patients) improved 18.3% (p = 0.14) on the BADS and 30.5% (p = 0.07) on the BFMDRS-M. The percentage improvement per body region yielded conflicting results between rating scales; however, BFMDRS-M scores for speech showed some of the greatest improvements. Two patients required hardware removal (1 complete system, 1 unilateral electrode) within 4 months after implantation because of infections that resolved with antibiotics. CONCLUSIONS All postoperative dystonia rating scale scores improved with pallidal stimulation, and the greatest improvements occurred in those stimulated the longest. The results were modest but comparable to findings in other similar series. Deep brain stimulation remains a viable treatment option for childhood dystonic CP, although young children may have an increased risk of infection. Of particular note, improvements in the BFMDRS-M subscores for speech were comparable to those for other muscle groups, a finding not previously reported.
Collapse
|
24
|
Abstract
Oral medication, botulinum toxin injections, and deep brain stimulation are the current mainstays of treatment for dystonia. In addition, physical and other supportive therapies may help prevent further complications (eg, contractures) and improve function. This review discusses evidence-based medical treatment of dystonia with an emphasis on recent advances in treatment. We will also review the current treatment approaches and suggest ways in which these therapies can be applied to individuals with dystonia.
Collapse
Affiliation(s)
- D Cristopher Bragg
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | | |
Collapse
|
25
|
Albanese A, Sorbo FD, Comella C, Jinnah HA, Mink JW, Post B, Vidailhet M, Volkmann J, Warner TT, Leentjens AFG, Martinez-Martin P, Stebbins GT, Goetz CG, Schrag A. Dystonia rating scales: critique and recommendations. Mov Disord 2014; 28:874-83. [PMID: 23893443 DOI: 10.1002/mds.25579] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 05/22/2013] [Indexed: 01/04/2023] Open
Abstract
Many rating scales have been applied to the evaluation of dystonia, but only few have been assessed for clinimetric properties. The Movement Disorders Society commissioned this task force to critique existing dystonia rating scales and place them in the clinical and clinimetric context. A systematic literature review was conducted to identify rating scales that have either been validated or used in dystonia. Thirty-six potential scales were identified. Eight were excluded because they did not meet review criteria, leaving 28 scales that were critiqued and rated by the task force. Seven scales were found to meet criteria to be "recommended": the Blepharospasm Disability Index is recommended for rating blepharospasm; the Cervical Dystonia Impact Scale and the Toronto Western Spasmodic Torticollis Rating Scale for rating cervical dystonia; the Craniocervical Dystonia Questionnaire for blepharospasm and cervical dystonia; the Voice Handicap Index (VHI) and the Vocal Performance Questionnaire (VPQ) for laryngeal dystonia; and the Fahn-Marsden Dystonia Rating Scale for rating generalized dystonia. Two "recommended" scales (VHI and VPQ) are generic scales validated on few patients with laryngeal dystonia, whereas the others are disease-specific scales. Twelve scales met criteria for "suggested" and 7 scales met criteria for "listed." All the scales are individually reviewed in the online information. The task force recommends 5 specific dystonia scales and suggests to further validate 2 recommended generic voice-disorder scales in dystonia. Existing scales for oromandibular, arm, and task-specific dystonia should be refined and fully assessed. Scales should be developed for body regions for which no scales are available, such as lower limbs and trunk.
Collapse
Affiliation(s)
- Alberto Albanese
- Istituto di Neurologia, Università Cattolica del Sacro Cuore, Milano, Italy; Neurologia I, Istituto Neurologico Carlo Besta, Milano, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Saunders-Pullman R, Fuchs T, San Luciano M, Raymond D, Brashear A, Ortega R, Deik A, Ozelius LJ, Bressman SB. Heterogeneity in primary dystonia: lessons from THAP1, GNAL, and TOR1A in Amish-Mennonites. Mov Disord 2014; 29:812-8. [PMID: 24500857 DOI: 10.1002/mds.25818] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/20/2013] [Accepted: 12/30/2013] [Indexed: 12/23/2022] Open
Abstract
A founder mutation in the Thanatos-associated (THAP) domain containing, apoptosis associated protein 1 (THAP1) gene causing primary dystonia was originally described in the Amish-Mennonites. However, there may be both genotypic and phenotypic heterogeneity of dystonia in this population that may also inform studies in other ethnic groups. Genotyping for THAP1 and for guanine nucleotide binding protein (G protein), α-activating activity polypeptide, olfactory type (GNAL) mutations and genotype-phenotype comparisons were performed for 76 individuals of Amish-Mennonites heritage with primary dystonia. Twenty-seven individuals had mutations in THAP1-most with the founder indel mutation-but two had different THAP1 mutations, 8 had mutations in GNAL, and 1 had a de novo GAG deletion in torsin 1A (TOR1A) (dystonia 1 [DYT1]). In the primary analysis comparing THAP1 carriers versus all non-THAP1, non-GNAL, non-TOR1A individuals, age at onset was lower in THAP1 carriers (mean age ± standard deviation, 15.5 ± 9.2 years [range, 5-38 years] vs. 39.2 ± 17.7 years [range, 1-70 years]; P < 0.001), and THAP1 carriers were more likely to have onset of dystonia in an arm (44.4% vs. 15.0%; P = 0.02) and to have arm involvement (88.9% vs. 22.5%; P < 0.01), leg involvement (51.9% vs. 10.0%; P = 0.01), and jaw/tongue involvement (33.3% vs. 7.5%; P = 0.02) involvement at their final examination. Carriers were less likely to have dystonia restricted to a single site (11.11% in carriers vs. 65.9% in noncarriers; P < 0.01) and were less likely to have dystonia onset in cervical regions (25.9% of THAP1 carriers vs. 52.5% of noncarriers; P = 0.04). Primary dystonia in the Amish-Mennonites is genetically diverse and includes not only the THAP1 indel founder mutation but also different mutations in THAP1 and GNAL as well as the TOR1A GAG deletion. Phenotype, particularly age at onset combined with final distribution, may be highly specific for the genetic etiology.
Collapse
Affiliation(s)
- Rachel Saunders-Pullman
- Department of Neurology, Beth Israel Medical Center, New York, New York, USA; Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hu W, Stead M. Deep brain stimulation for dystonia. Transl Neurodegener 2014; 3:2. [PMID: 24444300 PMCID: PMC3902434 DOI: 10.1186/2047-9158-3-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 01/19/2014] [Indexed: 12/27/2022] Open
Abstract
Deep brain stimulation (DBS) is an effective surgical treatment for medication-refractory movement disorders, and has been approved by the United States Food and Drug Administration for treatment of dystonia. The success of DBS in the treatment of dystonia depends on our understanding of the anatomy and physiology of this disorder and close collaboration between neurosurgeons, neurologists, clinical neurophysiologists, neuroradiologists and neuropsychologists. Currently, pallidal DBS is an established treatment option for medically refractive dystonia. This review is intended to provide a comprehensive review of the use of DBS for dystonia, focusing mainly on the surgical aspects, clinical outcome, MRI findings and side effects of DBS.
Collapse
Affiliation(s)
- Wei Hu
- Department of Neurology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55901, USA.
| | | |
Collapse
|
28
|
Abstract
The authors report on 2 cases of pediatric generalized dystonia with a DYT1 mutation; the patients, an 11-year-old girl and a 9-year-old boy, underwent chronic, pallidal deep brain stimulation (DBS) of the globus pallidus internus (GPi). The dystonic postures in both cases showed dramatic improvements with pallidal DBS, but each patient's symptoms gradually recurred within a year, irrespective of exhaustive readjustments of the stimulation settings. After the recurrence of the dystonic symptoms, the DBS leads were replaced within the GPi in one patient (Case 1) and additional DBS leads were implanted into the bilateral subthalamic nuclei in the other patient (Case 2). Neither measure produced any further clinical benefit, and the patient in Case 2 died of status dystonicus 2 days after reoperation. These findings suggest that early pallidal DBS for pediatric dystonia is indeed effective, although there are some cases in which its therapeutic effect is lost. One possible reason may be the ability of the preadolescent brain to tolerate chronic electrical stimuli during the active maturation process.
Collapse
Affiliation(s)
- Yasushi Miyagi
- Department of Stereotactic and Functional Neurosurgery, Kaizuka Hospital
| | | |
Collapse
|
29
|
Woopen C, Pauls KAM, Koy A, Moro E, Timmermann L. Early application of deep brain stimulation: Clinical and ethical aspects. Prog Neurobiol 2013; 110:74-88. [DOI: 10.1016/j.pneurobio.2013.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 04/10/2013] [Accepted: 04/16/2013] [Indexed: 11/25/2022]
|
30
|
Abstract
Primary myoclonus-dystonia is a childhood-onset autosomal-dominant movement disorder with myoclonic jerks and dystonia. The authors report 9 children (4 boys, 5 girls) with myoclonus-dystonia from 8 families seen over a 4-year period at Cleveland Clinic. The mean age of onset of symptoms was 2.8 years, but the diagnosis was made at a mean of 7.3 years. Myoclonus was the presenting symptom in 8 children. A known pathogenic mutation in the ε-sarcoglycan gene (SGCE) was identified in 4 of the 9 children, and 2 other children had novel mutations in the same gene. Good response to trihexyphenidyl and clonazepam was seen. Two patients underwent deep brain stimulation surgery of the bilateral globus pallidus pars interna. In 7 children, the diagnosis of myoclonus-dystonia was not considered by the referring child neurologists, which led to extensive investigations and a delay in the final diagnosis. In this report, the authors highlight the need for increased awareness of this entity among child neurologists.
Collapse
Affiliation(s)
- Debabrata Ghosh
- Supplementary material for this article is available on the Journal of Child Neurology website at http://jcn.sagepub.com/supplemental
| | | |
Collapse
|
31
|
Olaya JE, Christian E, Ferman D, Luc Q, Krieger MD, Sanger TD, Liker MA. Deep brain stimulation in children and young adults with secondary dystonia: the Children's Hospital Los Angeles experience. Neurosurg Focus 2013; 35:E7. [DOI: 10.3171/2013.8.focus13300] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background
Dystonia is a movement disorder in which involuntary sustained or intermittent muscle contractions cause twisting and repetitive movements, abnormal postures, or both. It can be classified as primary or secondary. There is no cure for dystonia and the goal of treatment is to provide a better quality of life for the patient.
Surgical intervention is considered for patients in whom an adequate trial of medical treatment has failed. Deep brain stimulation (DBS), specifically of the globus pallidus interna (GPi), has been shown to be extremely effective in primary generalized dystonia. There is much less evidence for the use of DBS in patients with secondary dystonia. However, given the large number of patients with secondary dystonia, the significant burden on the patients and their families, and the potential for DBS to improve their functional status and comfort level, it is important to continue to investigate the use of DBS in the realm of secondary dystonia.
Object
The objective of this study is to review a series of cases involving patients with secondary dystonia who have been treated with pallidal DBS.
Methods
A retrospective review of 9 patients with secondary dystonia who received treatment with DBS between February 2011 and February 2013 was performed. Preoperative and postoperative videos were scored using the Barry-Albright Dystonia Scale (BADS) and Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) by a neurologist specializing in movement disorders. In addition, the patients' families completed a subjective questionnaire to assess the perceived benefit of DBS.
Results
The average age at DBS unit implantation was 15.1 years (range 6–20 years). The average time to follow-up for the BADS evaluation from battery implantation was 3.8 months (median 3 months). The average time to follow-up for the subjective benefit evaluation was 10.6 months (median 9.5 months). The mean BADS scores improved by 9% from 26.5 to 24 (p = 0.04), and the mean BFMDRS scores improved by 9.3% (p = 0.055). Of note, even in patients with minimal functional improvement, there seemed to be decreased contractures and spasms leading to improved comfort. There were no complications such as infections or hematoma in this case series. In the subjective benefit evaluation, 3 patients' families reported “good” benefit, 4 reported “minimal” benefit, and 1 reported no benefit.
Conclusions
These early results of GPi stimulation in a series of 9 patients suggest that DBS is useful in the treatment of secondary generalized dystonia in children and young adults. Objective improvements in BADS and BFMDRS scores are demonstrated in some patients with generalized secondary dystonia but not in others. Larger follow-up studies of DBS for secondary dystonia, focusing on patient age, history, etiology, and patterns of dystonia, are needed to learn which patients will respond best to DBS.
Collapse
Affiliation(s)
- Joffre E. Olaya
- 1Division of Neurosurgery and
- 2Department of Neurological Surgery,
| | - Eisha Christian
- 1Division of Neurosurgery and
- 2Department of Neurological Surgery,
| | - Diana Ferman
- 3Division of Child Neurology, Children's Hospital Los Angeles; and
- 4Division of Pediatric Neurology, and
| | - Quyen Luc
- 3Division of Child Neurology, Children's Hospital Los Angeles; and
- 4Division of Pediatric Neurology, and
| | - Mark D. Krieger
- 1Division of Neurosurgery and
- 2Department of Neurological Surgery,
| | - Terence D. Sanger
- 3Division of Child Neurology, Children's Hospital Los Angeles; and
- 4Division of Pediatric Neurology, and
- 5Department of Biomedical Engineering and BioKinesiology, The Keck School of Medicine at USC, University of Southern California, Los Angeles, California
| | - Mark A. Liker
- 1Division of Neurosurgery and
- 2Department of Neurological Surgery,
| |
Collapse
|
32
|
|
33
|
Mills KA, Starr PA, Ostrem JL. Neuromodulation for dystonia: target and patient selection. Neurosurg Clin N Am 2013; 25:59-75. [PMID: 24262900 DOI: 10.1016/j.nec.2013.08.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Treatment of dystonia refractory to oral medications or botulinum toxin injections includes the use of deep brain stimulation (DBS). Expectations should be established based on patient-related factors, including type of dystonia, genetic cause, target symptoms, age at the time of surgery, disease duration, or the presence of fixed skeletal deformities. Premorbid conditions such as psychiatric illness and cognitive impairment should be considered. Target selection is an emerging issue in DBS for dystonia. Although efficacy has been established for targeting the globus pallidus internus for dystonia, other brain targets such as the subthalamic nucleus, thalamus, or cortex may be promising alternatives.
Collapse
Affiliation(s)
- Kelly A Mills
- UCSF Department of Neurology, PADRECC, San Francisco VA Medical Center, UCSF Box 1838, 1635 Divisadero Street, Suite 520, San Francisco, CA 94143-1838, USA
| | | | | |
Collapse
|
34
|
Abstract
The few controlled studies that have been carried out have shown that bilateral internal globus pallidum stimulation is a safe and long-term effective treatment for hyperkinetic disorders. However, most recent published data on deep brain stimulation (DBS) for dystonia, applied to different targets and patients, are still mainly from uncontrolled case reports (especially for secondary dystonia). This precludes clear determination of the efficacy of this procedure and the choice of the 'good' target for the 'good' patient. We performed a literature analysis on DBS for dystonia according to the expected outcome. We separated those with good evidence of favourable outcome from those with less predictable outcome. In the former group, we review the main results for primary dystonia (generalised/focal) and highlight recent data on myoclonus-dystonia and tardive dystonia (as they share, with primary dystonia, a marked beneficial effect from pallidal stimulation with good risk/benefit ratio). In the latter group, poor or variable results have been obtained for secondary dystonia (with a focus on heredodegenerative and metabolic disorders). From this overview, the main results and limits for each subgroup of patients that may help in the selection of dystonic patients who will benefit from DBS are discussed.
Collapse
Affiliation(s)
- Marie Vidailhet
- AP-HP, Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France.
| | | | | | | |
Collapse
|
35
|
Marks W, Bailey L, Reed M, Pomykal A, Mercer M, Macomber D, Acosta F, Honeycutt J. Pallidal stimulation in children: comparison between cerebral palsy and DYT1 dystonia. J Child Neurol 2013; 28:840-8. [PMID: 23666041 DOI: 10.1177/0883073813488674] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The authors compared the outcomes of 17 children aged 7 to 15 years with DYT1 dystonia or cerebral palsy following deep brain stimulation. While patients with cerebral palsy presented with significantly greater motor disability than the DYT1 cohort at baseline, both groups demonstrated improvement at 1 year (cerebral palsy = 24%; DYT1 = 6%). The group as a whole demonstrated significant improvement on the Barry-Albright Dystonia Scale across time. Gains in motor function were apparent in both axial and appendicular distributions involving both upper and lower extremities. Gains achieved by 6 months were sustained in the cerebral palsy group, whereas the DYT1 group demonstrated continued improvement with ongoing pallidal stimulation beyond 18 months. Young patients with dystonia due to cerebral palsy responded comparably to patients with DYT1 dystonia. The severity of motor impairment in patients with cerebral palsy at baseline and follow-up raises the issue of even earlier intervention with neuromodulation in this population to limit long-term motor impairments due to dystonia.
Collapse
Affiliation(s)
- Warren Marks
- Department of Neurology, Cook Children's Medical Center, Fort Worth, TX 76104, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Koy A, Hellmich M, Pauls KAM, Marks W, Lin JP, Fricke O, Timmermann L. Effects of deep brain stimulation in dyskinetic cerebral palsy: A meta-analysis. Mov Disord 2013; 28:647-54. [DOI: 10.1002/mds.25339] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 11/27/2012] [Accepted: 12/03/2012] [Indexed: 01/26/2023] Open
Affiliation(s)
| | - Martin Hellmich
- Institute of Medical Statistics, Informatics and Epidemiology; University of Cologne; Germany
| | | | - Warren Marks
- Department of Pediatric Neurology; Cook Children's Medical Center; Fort Worth; Texas; United States of America
| | - Jean-Pierre Lin
- Complex Motor Disorders Service, Pediatric Neuroscience; Guy's & St Thomas' Hospitals Foundation Trust & King's College Hospital Foundation Trust, King's Health Partners; London; United Kingdom
| | - Oliver Fricke
- Department of Pediatric Neurology; University Hospital; Cologne; Germany
| | - Lars Timmermann
- Department of Neurology; University Hospital Cologne; Germany
| |
Collapse
|
37
|
Vidailhet M, Jutras MF, Roze E, Grabli D. Deep brain stimulation for dystonia. HANDBOOK OF CLINICAL NEUROLOGY 2013; 116:167-187. [PMID: 24112893 DOI: 10.1016/b978-0-444-53497-2.00014-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The few reported controlled studies show that bilateral stimulation of the globus pallidus interna (GPi) is a safe and effective long-term treatment for hyperkinetic disorders. However, the recently published data on deep brain stimulation (DBS) applied to different targets or patients (especially those with secondary dystonia) are mainly uncontrolled case reports, precluding a clear determination of its efficacy, and providing little guidance as to the choice of a "good" target in a "good" patient. This chapter reviews the literature on DBS in primary dystonia, paying particular attention to the risk:benefit ratio in focal and segmental dystonias (cervical dystonia, cranial dystonia) and to the predictive factors for a good outcome. The chapter also highlights recent data on the marked benefits of the technique in myoclonus dystonia (in which pallidal, as opposed to thalamic, stimulation is more effective) and in tardive dystonia-dyskinesia. Although, the decision to treat appears relatively straightforward in patients with primary dystonia, myoclonus-dystonia, and tardive dystonia who have a normal findings on magnetic resonance imaging and normal cognitive function, there are still no reliable tools to help predict the timescale of postoperative benefit. This chapter provides a comprehensive analysis of the use of the treatment in various types of secondary dystonia, with little to moderate benefit in most cases, based on single cases or small series. Beyond the reduction in the severity of dystonia, the global motor and functional outcome is difficult to determine owing to the paucity of adequate evaluation tools. Because of the large interpatient variability, different targets may be effective depending on the symptoms in each individual.
Collapse
Affiliation(s)
- Marie Vidailhet
- Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France; Research Center of the Brain and Spinal Cord Institute, Université Paris 6/Inserm UMR S975, Paris, France; Pierre et Marie Curie Paris-6 University, Paris, France
| | | | | | | |
Collapse
|
38
|
DiFrancesco MF, Halpern CH, Hurtig HH, Baltuch GH, Heuer GG. Pediatric indications for deep brain stimulation. Childs Nerv Syst 2012; 28:1701-14. [PMID: 22828866 DOI: 10.1007/s00381-012-1861-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Accepted: 07/10/2012] [Indexed: 12/16/2022]
Abstract
PURPOSE Based on the success of deep brain stimulation (DBS) in the treatment of adult disorders, it is reasonable to assume that the application of DBS in the pediatric population is an emerging area worthy of study. The purpose of this paper is to outline the current movement disorder indications for DBS in the pediatric population, and to describe areas of investigation, including possible medically refractory psychiatric indications. METHODS We performed a structured review of the English language literature from 1990 to 2011 related to studies of DBS in pediatrics using Medline and PubMed search results. RESULTS Twenty-four reports of DBS in the pediatric population were found. Based on published data on the use of DBS for pediatric indications, there is a spectrum of clinical evidence for the use of DBS to treat different disorders. Dystonia, a disease associated with a low rate of remission and significant disability, is routinely treated with DBS and is currently the most promising pediatric application of DBS. We caution the application of DBS to conditions associated with a high remission rate later in adulthood, like obsessive-compulsive disorder and Tourette's syndrome. Moreover, epilepsy and obesity are currently being investigated as indications for DBS in the adult population; however, both are associated with significant morbidity in pediatrics. CONCLUSION While currently dystonia is the most promising application of DBS in the pediatric population, multiple conditions currently being investigated in adults also afflict children and adolescents, and thus warrant further research.
Collapse
Affiliation(s)
- Matthew F DiFrancesco
- Center for Functional and Restorative Neurosurgery, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104-4399, USA
| | | | | | | | | |
Collapse
|
39
|
Markun LC, Starr PA, Air EL, Marks WJ, Volz MM, Ostrem JL. Shorter Disease Duration Correlates With Improved Long-term Deep Brain Stimulation Outcomes in Young-Onset DYT1 Dystonia. Neurosurgery 2012; 71:325-30. [DOI: 10.1227/neu.0b013e318258e21b] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
BACKGROUND:
Treatment with deep brain stimulation (DBS) of the globus pallidus internus in children with DYT1 primary torsion dystonia is highly effective; however, individual response to stimulation is variable, and a greater understanding of predictors of long-term outcome is needed.
OBJECTIVE:
To report the long-term outcomes of subjects with young-onset DYT1 primary torsion dystonia treated with bilateral globus pallidus DBS.
METHODS:
Fourteen subjects (7 male, 7 female) treated consecutively from 2000 to 2010 at our center were included in this retrospective study. The Burke-Fahn-Marsden Dystonia Rating Scale was performed at baseline and at 1, 2, and up to 6 years postoperatively.
RESULTS:
Pallidal DBS was well tolerated and highly effective, with mean Burke-Fahn-Marsden Dystonia Rating Scale movement scores improving from baseline by 61.5% (P < .001) at 1 year, 64.4% (P < .001) at 2 years, and 70.3% (P < .001) at the final follow-up visit (mean, 32 months; range, 7–77 months). Disability scores also improved significantly. Multiple linear regression analysis revealed a significant influence of duration of disease as a predictor of percent improvement in Burke-Fahn-Marsden Dystonia Rating Scale movement score at long-term follow-up (duration of disease, P < .05). Subjects with fixed orthopedic deformities (4) had less improvement in these regions. Location of the active DBS electrode used at final follow-up visit was not predictive of clinical outcome.
CONCLUSION:
Our findings highlight the sustained benefit from DBS and the importance of early referral for DBS in children with medically refractory DYT1 primary torsion dystonia, which can lead to improved long-term benefits.
Collapse
Affiliation(s)
- Leslie C. Markun
- Department of Neurology and University of California, San Francisco, California
| | - Philip A. Starr
- Department of Neurology and University of California, San Francisco, California
- San Francisco Veterans Affairs Medical Center, San Francisco, California
| | - Ellen L. Air
- Department of Neurological Surgery, University of California, San Francisco, California
- San Francisco Veterans Affairs Medical Center, San Francisco, California
| | - William J. Marks
- Department of Neurology and University of California, San Francisco, California
- San Francisco Veterans Affairs Medical Center, San Francisco, California
| | - Monica M. Volz
- Department of Neurology and University of California, San Francisco, California
- San Francisco Veterans Affairs Medical Center, San Francisco, California
| | - Jill L. Ostrem
- Department of Neurology and University of California, San Francisco, California
- San Francisco Veterans Affairs Medical Center, San Francisco, California
| |
Collapse
|
40
|
Kim JP, Chang WS, Cho SR, Chang JW. The effect of bilateral globus pallidus internus deep brain stimulation plus ventralis oralis thalamotomy on patients with cerebral palsy. Stereotact Funct Neurosurg 2012; 90:292-9. [PMID: 22797720 DOI: 10.1159/000338093] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Accepted: 02/28/2012] [Indexed: 12/14/2022]
Abstract
OBJECTIVE We compared bilateral globus pallidus internus (GPi) deep brain stimulation (DBS) with bilateral GPi DBS plus ventralis oralis (Vo) thalamotomy to analyze the effect of the combined Vo thalamotomy. METHODS Between March 2003 and December 2008, 10 patients underwent DBS and/or Vo thalamotomy for treatment of cerebral palsy in our institute of neurosurgery and rehabilitation medicine. Four patients received bilateral posteroventral GPi DBS as group I and 6 patients received GPi DBS plus unilateral thalamotomy as group II. RESULTS The movement and disability scores of group I improved by 32 and 14.3%, respectively, at the last follow-up compared with baseline. The movement and disability scores of group II improved by 31.5 and 0.18%. The BFMDRS-movement subscores of group II demonstrated statistically significant improvement in the contralateral arm compared to group I (p = 0.042). Body pain, vitality and mental health seemed to improve in group II, in terms of health-related quality of life. CONCLUSIONS Contrary to our expectations, we were unable to demonstrate clear improvements in overall BFMDRS scores between group I and group II. However, movements of the contralateral upper extremities improved and health-related quality of life in group II showed satisfactory results.
Collapse
Affiliation(s)
- Joo Pyung Kim
- Department of Neurosurgery, Severance Hospital, Brain Korea 21 Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | | | | | | |
Collapse
|
41
|
Roubertie A, Mariani LL, Fernandez-Alvarez E, Doummar D, Roze E. Treatment for dystonia in childhood. Eur J Neurol 2012; 19:1292-9. [DOI: 10.1111/j.1468-1331.2011.03649.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Ghosh PS, Machado AG, Deogaonkar M, Ghosh D. Deep brain stimulation in children with dystonia: experience from a tertiary care center. Pediatr Neurosurg 2012; 48:146-51. [PMID: 23296077 DOI: 10.1159/000345830] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 11/01/2012] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To investigate the efficacy and safety of deep brain stimulation (DBS) of the globus pallidus internus (GPi) in children with dystonia. METHODS Retrospective chart review of patients (≤21 years) with dystonia who underwent GPi DBS. Outcome measures were assessed by the Burke-Fahn-Marsden Dystonia Rating (BFMDR) movement and disability scales pre- and post-DBS. RESULTS Eight patients underwent DBS; mean age of onset was 7.5 ± 4.8 years (7 were male). Mean age at DBS was 14.1 ± 4.6 years. Etiology of dystonia was primary in 6 patients and secondary in 2. There was significant improvement of BFMDR movement as well as BFMDR disability scales in 6 patients with primary dystonia with modest improvement in those scales in 2 patients with secondary dystonia. Hardware-related problems were observed in 2 and infection was noted in 1. CONCLUSIONS GPi DBS is an effective and safe therapy in pediatric patients with primary as well as selected cases of secondary dystonia.
Collapse
Affiliation(s)
- Partha S Ghosh
- Pediatric Neurology Center, Children's Hospital, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | |
Collapse
|
43
|
Kaminska M, Lumsden DE, Ashkan K, Malik I, Selway R, Lin JP. Rechargeable Deep Brain Stimulators in the Management of Paediatric Dystonia: Well Tolerated with a Low Complication Rate. Stereotact Funct Neurosurg 2012; 90:233-9. [DOI: 10.1159/000337768] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 02/29/2012] [Indexed: 11/19/2022]
|
44
|
Air EL, Ostrem JL, Sanger TD, Starr PA. Deep brain stimulation in children: experience and technical pearls. J Neurosurg Pediatr 2011; 8:566-74. [PMID: 22132914 DOI: 10.3171/2011.8.peds11153] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Deep brain stimulation (DBS) is an established technique for the treatment of several movement disorders in adults. However, the technical approach, complications, and results of DBS in children have not been well documented. METHODS A database of DBS implantations performed at a single institution, prospectively established in 1998, was reviewed for patients who received DBS prior to the age of 18. Diagnoses, surgical technique, and complications were noted. Outcomes were assessed using standard rating scales of neurological function. RESULTS Of 815 patients undergoing DBS implantation over a 12-year period, 31 were children (mean age at surgery 13.2 years old, range 4-17 years old). Diagnoses included the following: DYT1 primary dystonia (autosomal dominant, Tor1AΔGAG mutation, 10 cases), non-DYT1 primary dystonia (3 cases), secondary dystonia (11 cases), neurodegeneration with brain iron accumulation (NBIA, 3 cases), levodopa-responsive parkinsonism (2 cases), Lesch-Nyhan disease (1 case), and glutaric aciduria Type 1 (1 case). Six children ages 15-17 years old underwent awake microelectrode-guided surgery. For 25 children operated under general anesthesia, the surgical technique evolved from microelectrode-guided surgery to image-guided surgeries using real-time intraoperative MR imaging or CT for lead location confirmation. Complications included 5 hardware infections, all in children younger than 10 years old. At 1 year after implantation, patients with DYT1 dystonia had a mean improvement in the Burke-Fahn-Marsden Dystonia Rating Scale movement subscore of 75%, while those with secondary dystonia had only small improvements. Outcomes in the 3 children with NBIA were disappointing. CONCLUSIONS Results of DBS in children with primary and secondary dystonias were similar to those in adults, with excellent results for DYT1 dystonia in children without fixed orthopedic deformity and much more modest results in secondary dystonia. In contrast to reported experience in adults with NBIA, these results in children with NBIA were poor. Infection risk was highest in the youngest patients.
Collapse
Affiliation(s)
- Ellen L Air
- Department of Neurosurgery, University of California, San Francisco, CA 94143-0221, USA
| | | | | | | |
Collapse
|
45
|
Treatment of secondary dystonia with a combined stereotactic procedure: long-term surgical outcomes. Acta Neurochir (Wien) 2011; 153:2319-27; discussion 2328. [PMID: 21909834 DOI: 10.1007/s00701-011-1147-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 08/24/2011] [Indexed: 12/18/2022]
Abstract
OBJECTIVE There is some debate about the effects of pallidal deep brain stimulation (DBS) or lesioning on secondary dystonia. We applied a multimodal method to maximize the treatment effects of deep brain stimulation in patients with secondary dystonia. METHODS Between March 2003 and January 2009, four patients underwent bilateral globus pallidus internus (GPi) DBS and six patients underwent bilateral GPi DBS plus unilateral thalamotomy for treatment of cerebral palsy (CP). Among the patients with secondary dystonia without CP, five were also treated by DBS. We classified patients with generalized secondary dystonia with cerebral palsy into group I and patients with focal dystonia without CP into group II. Clinical outcome assessments were based on Burke-Fahn-Marsden Dystonia Rating Scale movement and disability scores. Heath-related quality of life was assessed with a 36-item short-form general health survey questionnaire preoperatively and at the last follow-up. RESULTS The movement and disability scores of group I-A had improved by 32.0% (P = 0.285) and 14.3% (P = 0.593), respectively, at the last follow-up compared with baseline. The movement and disability scores of group I-B had improved by 31.5% and 0.18% at the last follow-up compared with baseline, respectively. In comparison with patients in group I-A, patients in group I-B showed a significant improvement in movement scores for the contralateral arm (P = 0.042). Group II patients showed a marked improvement in movement and disability scores of 77.7% (P = 0.039) and 80.0% (P = 0.041), respectively. CONCLUSIONS We demonstrated that DBS plus unilateral ventralis oralis thalamotomy for CP patients with fixed states in the upper extremities is useful not only to treat secondary dystonic movement but also to improve quality of life. In group II patients with post-traumatic dystonia and tardive dyskinesia, we achieved excellent clinical outcomes using a stereotactic procedure.
Collapse
|
46
|
Bronte-Stewart H, Taira T, Valldeoriola F, Merello M, Marks WJ, Albanese A, Bressman S, Moro E. Inclusion and exclusion criteria for DBS in dystonia. Mov Disord 2011; 26 Suppl 1:S5-16. [PMID: 21692112 DOI: 10.1002/mds.23482] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
When considering a patient with dystonia for deep brain stimulation (DBS) surgery several factors need to be considered. Level B evidence has shown that all motor features and associated pain in primary generalized and segmental dystonia are potentially responsive to globus pallidus internus (GPi) DBS. However, improvements in clinical series of ≥ 90% may reflect methods that need improvement, and larger prospective studies are needed to address these factors. Nevertheless, to date the selection criteria for DBS-specifically in terms of patient features (severity and nature of symptoms, age, time of evolution, or any other demographic or disease aspects)--have not been assessed in a systematic fashion. In general, dystonia patients are not considered for DBS unless medical therapies have been previously and extensively tested. The vast majority of reported patients have had DBS surgery when the disease was provoking important disability, with loss of independence and impaired quality of life. There does not appear to be an upper age limit or a minimum age limit, although there are no published data regarding the outcome of GPi DBS for dystonia in children younger than 7 years of age. There is currently no enough evidence to prove that subjects with primary--generalized dystonia who undergo DBS at an early age and sooner rather than later after disease onset may gain more benefit from DBS than those undergoing DBS after the development of fixed skeletal deformities. There is no enough evidence to refuse or support consideration of DBS in patients with previous ablative procedures.
Collapse
Affiliation(s)
- Helen Bronte-Stewart
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The last 25 years have seen remarkable advances in our understanding of the genetic etiologies of dystonia, new approaches into dissecting underlying pathophysiology, and independent progress in identifying effective treatments. In this review we highlight some of these advances, especially the genetic findings that have taken us from phenomenological to molecular-based diagnoses. Twenty DYT loci have been designated and 10 genes identified, all based on linkage analyses in families. Hand in hand with these genetic findings, neurophysiological and imaging techniques have been employed that have helped illuminate the similarities and differences among the various etiological dystonia subtypes. This knowledge is just beginning to yield new approaches to treatment including those based on DYT1 animal models. Despite the lag in identifying genetically based therapies, effective treatments, including impressive benefits from deep brain stimulation and botulinum toxin chemodenervation, have marked the last 25 years. The challenge ahead includes continued advancement into understanding dystonia's many underlying causes and associated pathology and using this knowledge to advance treatment including preventing genetic disease expression.
Collapse
Affiliation(s)
- Laurie J Ozelius
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, USA
| | | | | |
Collapse
|
48
|
Albanese A, Asmus F, Bhatia KP, Elia AE, Elibol B, Filippini G, Gasser T, Krauss JK, Nardocci N, Newton A, Valls-Solé J. EFNS guidelines on diagnosis and treatment of primary dystonias. Eur J Neurol 2011; 18:5-18. [PMID: 20482602 DOI: 10.1111/j.1468-1331.2010.03042.x] [Citation(s) in RCA: 270] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVES to provide a revised version of earlier guidelines published in 2006. BACKGROUND primary dystonias are chronic and often disabling conditions with a widespread spectrum mainly in young people. DIAGNOSIS primary dystonias are classified as pure dystonia, dystonia plus or paroxysmal dystonia syndromes. Assessment should be performed using a validated rating scale for dystonia. Genetic testing may be performed after establishing the clinical diagnosis. DYT1 testing is recommended for patients with primary dystonia with limb onset before age 30, and in those with an affected relative with early-onset dystonia. DYT6 testing is recommended in early-onset or familial cases with cranio-cervical dystonia or after exclusion of DYT1. Individuals with early-onset myoclonus should be tested for mutations in the DYT11 gene. If direct sequencing of the DYT11 gene is negative, additional gene dosage is required to improve the proportion of mutations detected. A levodopa trial is warranted in every patient with early-onset primary dystonia without an alternative diagnosis. In patients with idiopathic dystonia, neurophysiological tests can help with describing the pathophysiological mechanisms underlying the disorder. TREATMENT botulinum toxin (BoNT) type A is the first-line treatment for primary cranial (excluding oromandibular) or cervical dystonia; it is also effective on writing dystonia. BoNT/B is not inferior to BoNT/A in cervical dystonia. Pallidal deep brain stimulation (DBS) is considered a good option, particularly for primary generalized or cervical dystonia, after medication or BoNT have failed. DBS is less effective in secondary dystonia. This treatment requires a specialized expertise and a multidisciplinary team.
Collapse
Affiliation(s)
- A Albanese
- Istituto Neurologico Carlo Besta, Milan, Italy Università Cattolica del Sacro Cuore, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Haridas A, Tagliati M, Osborn I, Isaias I, Gologorsky Y, Bressman SB, Weisz D, Alterman RL. Pallidal Deep Brain Stimulation for Primary Dystonia in Children. Neurosurgery 2011; 68:738-43; discussion 743. [DOI: 10.1227/neu.0b013e3182077396] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
BACKGROUND:
Deep brain stimulation (DBS) at the internal globus pallidus (GPi) has replaced ablative procedures for the treatment of primary generalized dystonia (PGD) because it is adjustable, reversible, and yields robust clinical improvement that appears to be long lasting.
OBJECTIVE:
To describe the long-term responses to pallidal DBS of a consecutive series of 22 pediatric patients with PGD.
METHODS:
Retrospective chart review of 22 consecutive PGD patients, ≤21 years of age treated by one DBS team over an 8-year period. The Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) was used to evaluate symptom severity and functional disability, pre- and post-operatively. Adverse events and medication changes were also noted.
RESULTS:
The median follow-up was 2 years (range, 1-8 years). All 22 patients reached 1-year follow-up; 14 reached 2 years, and 11 reached 3 years. The BFMDRS motor subscores were improved 84%, 93%, and 94% (median) at these time points. These motor responses were matched by equivalent improvements in function, and the response to DBS resulted in significant reductions in oral and intrathecal medication requirements after 12 and 24 months of stimulation. There were no hemorrhages or neurological complications related to surgery and no adverse effects from stimulation. Significant hardware-related complications were noted, in particular, infection (14%), which delayed clinical improvement.
CONCLUSION:
Pallidal DBS is a safe and effective treatment for PGD in patients <21 years of age. The improvement appears durable. Improvement in device design should reduce hardware-related complications over time.
Collapse
Affiliation(s)
- Abilash Haridas
- Department of Neurosurgery, Mount Sinai School of Medicine, New York, NY
| | - Michele Tagliati
- Department of Neurology, Mount Sinai School of Medicine, New York, NY
| | - Irene Osborn
- Department of Anesthesiology, Mount Sinai School of Medicine, New York, NY
| | - Ioannis Isaias
- Department of Neurology, Mount Sinai School of Medicine, New York, NY
| | - Yakov Gologorsky
- Department of Neurosurgery, Mount Sinai School of Medicine, New York, NY
| | - Susan B Bressman
- Department of Neurology, Beth Israel Medical Center, New York, NY
| | - Donald Weisz
- Department of Neurosurgery, Mount Sinai School of Medicine, New York, NY
| | - Ron L Alterman
- Department of Neurosurgery, Mount Sinai School of Medicine, New York, NY
| |
Collapse
|