1
|
Cheng Y, Zhai Y, Yuan Y, Li H, Zhao W, Fan Z, Zhou L, Gao X, Zhan Y, Sun H. Xenon inhalation attenuates neuronal injury and prevents epilepsy in febrile seizure Sprague-Dawley pups. Front Cell Neurosci 2023; 17:1155303. [PMID: 37645594 PMCID: PMC10461106 DOI: 10.3389/fncel.2023.1155303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/27/2023] [Indexed: 08/31/2023] Open
Abstract
Background Febrile seizures (FS) usually occur in childhood and may cause irreversible neuronal damage, cognitive functional defects, and an increase in the risk of epilepsy later in life. Anti-epileptic drugs (AEDs), currently used to treat FS in children, can relieve seizures. However, their effects in preventing the risk of developing epilepsy in later life are unsatisfactory. Moreover, AEDs may damage child brain development. Here, we evaluated the efficiency of xenon in treating prolonged FS (PFS) and preventing epilepsy in Sprague-Dawley pups. Methods Prolonged FS was induced by hyperthermic treatment. After 90 min of PFS, the pups in the xenon treatment group were immediately treated with 70% xenon/21% oxygen/9% nitrogen for 60 min. The levels of glutamate, mitochondrial oxidative stress, mitophagy, and neuronal injury, seizures, learning, and memory functions were measured at specific time points. Results Neonatal period PFS led to spontaneous seizure, learning and memory dysfunction, accompanied by increased levels of glutamate, mitochondrial oxidative stress, mitophagy, and neuronal injury. Xenon treatment alleviated the changes caused by PFS and reduced the risk of PFS developing into epilepsy later. Conclusion Our results suggest that xenon inhalation could be a potential therapeutic strategy to attenuate neuronal injury and prevent epilepsy in patients with FS.
Collapse
Affiliation(s)
- Yao Cheng
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Yujie Zhai
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Yi Yuan
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Hao Li
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Wenke Zhao
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Zhenhai Fan
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Ling Zhou
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Xue Gao
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Yan Zhan
- Department of Neurology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Hongliu Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| |
Collapse
|
2
|
Watanabe S, Hoshina T, Kojiro M, Kusuhara K. The recent characteristics of influenza-related hospitalization in Japanese children. Eur J Clin Microbiol Infect Dis 2021; 40:2011-2015. [PMID: 33661411 DOI: 10.1007/s10096-021-04208-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/22/2021] [Indexed: 11/29/2022]
Abstract
We investigated the recent epidemiology and characteristics of influenza-related hospitalization in Japanese children. This study included 3741 children with influenza. Children hospitalized for febrile seizures (FS) induced by etiologies other than influenza also served as a disease control. Most outpatients (92.8%) visited our hospital with complaints of respiratory symptoms, whereas FS were the most predominant symptoms of inpatients (58/154, 37.7%). Children with influenza-induced FS were significantly older than those with FS induced by other etiologies (P <0.001). Although the characteristics of severe influenza may vary throughout the world, the analysis of influenza-induced neurological disorders is important for understanding its epidemiology.
Collapse
Affiliation(s)
- Shunsuke Watanabe
- Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.,Department of Pediatrics, Kitakyushu General Hospital, Kitakyushu, Japan
| | - Takayuki Hoshina
- Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.
| | - Masumi Kojiro
- Department of Pediatrics, Kitakyushu General Hospital, Kitakyushu, Japan
| | - Koichi Kusuhara
- Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
3
|
Sugaya Y, Kano M. Control of excessive neural circuit excitability and prevention of epileptic seizures by endocannabinoid signaling. Cell Mol Life Sci 2018; 75:2793-2811. [PMID: 29737364 PMCID: PMC11105219 DOI: 10.1007/s00018-018-2834-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/23/2018] [Accepted: 05/02/2018] [Indexed: 12/12/2022]
Abstract
Progress in research on endocannabinoid signaling has greatly advanced our understanding of how it controls neural circuit excitability in health and disease. In general, endocannabinoid signaling at excitatory synapses suppresses seizures by inhibiting glutamate release. In contrast, endocannabinoid signaling promotes seizures by inhibiting GABA release at inhibitory synapses. The physiological distribution of endocannabinoid signaling molecules becomes disrupted with the development of epileptic focus in patients with mesial temporal lobe epilepsy and in animal models of experimentally induced epilepsy. Augmentation of endocannabinoid signaling can promote the development of epileptic focus at initial stages. However, at later stages, increased endocannabinoid signaling delays it and suppresses spontaneous seizures. Thus, the regulation of endocannabinoid signaling at specific synapses that cause hyperexcitability during particular stages of disease development may be effective for treating epilepsy and epileptogenesis.
Collapse
Affiliation(s)
- Yuki Sugaya
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan.
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
4
|
Polymorphisms in the interleukin-1β (IL-1B) and interleukin-1α (IL-1A) genes on risk of febrile seizures: a meta-analysis. Neurol Sci 2018; 39:1529-1536. [PMID: 29808330 DOI: 10.1007/s10072-018-3449-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/11/2018] [Indexed: 10/14/2022]
Abstract
The aim of the current study was to clarify the role of four common genetic polymorphisms in the interleukin-1β (IL-1B) and interleukin-1α (IL-1A) genes on risk of febrile seizures (FS) by means of meta-analyses. We searched for studies published until February 2018 using ISI Web of Science, Pubmed, Wanfang, and Chinese National Knowledge Infrastructure databases. The pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using MetaAnalyst version Beta 3.13. Seventeen case-control studies were included for meta-analysis. For the IL-1B rs16944 polymorphism, the summary analysis of studies conducted among Caucasian populations showed a significant association in the CT+TT versus CC contrast (OR 1.434, 95% CI 1.153-1.785), while the pooled analysis for Asian populations yielded a significant estimate in the TT versus CC+CT comparison (OR 1.393, 95% CI 1.051-1.846). No association was observed between the IL-1B rs1143627, IL-1B rs1143634, and IL-1A rs1800587 polymorphisms and FS risk. Sensitivity analyses excluding studies showing deviation from Hardy-Weinberg equilibrium did not alter conclusions. The findings of our meta-analysis suggest that the IL-1B rs16944 polymorphism may be an important genetic determinant for FS in Caucasian and Asian populations.
Collapse
|
5
|
Hung KL, Liang JS, Wang JS, Chen HJ, Lin LJ, Lu JF. Association of a novel GABRG2 splicing variation and a PTGS2/COX-2 single nucleotide polymorphism with Taiwanese febrile seizures. Epilepsy Res 2017; 129:1-7. [DOI: 10.1016/j.eplepsyres.2016.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/07/2016] [Accepted: 11/12/2016] [Indexed: 01/20/2023]
|
6
|
Saitoh M, Kobayashi K, Ohmori I, Tanaka Y, Tanaka K, Inoue T, Horino A, Ohmura K, Kumakura A, Takei Y, Hirabayashi S, Kajimoto M, Uchida T, Yamazaki S, Shiihara T, Kumagai T, Kasai M, Terashima H, Kubota M, Mizuguchi M. Cytokine-related and sodium channel polymorphism as candidate predisposing factors for childhood encephalopathy FIRES/AERRPS. J Neurol Sci 2016; 368:272-6. [PMID: 27538648 DOI: 10.1016/j.jns.2016.07.040] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 11/15/2022]
Abstract
Febrile infection-related epilepsy syndrome (FIRES), or acute encephalitis with refractory, repetitive partial seizures (AERRPS), is an epileptic encephalopathy beginning with fever-mediated seizures. The etiology remains unclear. To elucidate the genetic background of FIRES/AERRPS (hereafter FIRES), we recruited 19 Japanese patients, genotyped polymorphisms of the IL1B, IL6, IL10, TNFA, IL1RN, SCN1A and SCN2A genes, and compared their frequency between the patients and controls. For IL1RN, the frequency of a variable number of tandem repeat (VNTR) allele, RN2, was significantly higher in the patients than in controls (p=0.0067), and A allele at rs4251981 in 5' upstream of IL1RN with borderline significance (p=0.015). Haplotype containing RN2 was associated with an increased risk of FIRES (OR 3.88, 95%CI 1.40-10.8, p=0.0057). For SCN1A, no polymorphisms showed a significant association, whereas a missense mutation, R1575C, was found in two patients. For SCN2A, the minor allele frequency of G allele at rs1864885 was higher in patients with borderline significance (p=0.011). We demonstrated the association of IL1RN haplotype containing RN2 with FIRES, and showed a possible association of IL1RN rs4251981 G>A and SCN2A rs1864885 A>G, in Japanese patients. These preliminary findings suggest the involvement of multiple genetic factors in FIRES, which needs to be confirmed by future studies in a larger number of FIRES cases.
Collapse
Affiliation(s)
- M Saitoh
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Japan.
| | - K Kobayashi
- Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - I Ohmori
- Department of Special Needs Education, Graduate School of Education, Okayama University, Japan
| | - Y Tanaka
- Department of Pediatrics, Ohta Nishinouchi General Hospital, Japan
| | - K Tanaka
- Department of Pediatrics, Ohta Nishinouchi General Hospital, Japan
| | - T Inoue
- Department of Pediatrics, Child Medical Center, Osaka City General Hospital, Japan
| | - A Horino
- Department of Pediatrics, Child Medical Center, Osaka City General Hospital, Japan
| | - K Ohmura
- Department of Pediatrics, Kishiwada City Hospital, Japan
| | - A Kumakura
- Department of Pediatrics, Kitano Hospital, Japan
| | - Y Takei
- Division of Neurology, Nagano Childrens' Hospital, Japan
| | - S Hirabayashi
- Division of Neurology, Nagano Childrens' Hospital, Japan
| | - M Kajimoto
- Department of Pediatrics, Yamaguchi University, Japan
| | - T Uchida
- Department of Pediatrics, Sendai City, Hospital, Japan
| | - S Yamazaki
- Department of Pediatrics, Niigata City Hospital, Japan
| | - T Shiihara
- Department of Neurology, Gunma Children's Medical Center, Japan
| | - T Kumagai
- Division of Neurology, National Center for Child Health and Development, Japan
| | - M Kasai
- Division of Neurology, National Center for Child Health and Development, Japan
| | - H Terashima
- Division of Neurology, National Center for Child Health and Development, Japan
| | - M Kubota
- Division of Neurology, National Center for Child Health and Development, Japan
| | - M Mizuguchi
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Japan
| |
Collapse
|
7
|
Eyo UB, Murugan M, Wu LJ. Microglia-Neuron Communication in Epilepsy. Glia 2016; 65:5-18. [PMID: 27189853 DOI: 10.1002/glia.23006] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/20/2016] [Accepted: 04/28/2016] [Indexed: 12/22/2022]
Abstract
Epilepsy has remained a significant social concern and financial burden globally. Current therapeutic strategies are based primarily on neurocentric mechanisms that have not proven successful in at least a third of patients, raising the need for novel alternative and complementary approaches. Recent evidence implicates glial cells and neuroinflammation in the pathogenesis of epilepsy with the promise of targeting these cells to complement existing strategies. Specifically, microglial involvement, as a major inflammatory cell in the epileptic brain, has been poorly studied. In this review, we highlight microglial reaction to experimental seizures, discuss microglial control of neuronal activities, and propose the functions of microglia during acute epileptic phenotypes, delayed neurodegeneration, and aberrant neurogenesis. Future research that would help fill in the current gaps in our knowledge includes epilepsy-induced alterations in basic microglial functions, neuro-microglial interactions during chronic epilepsy, and microglial contribution to developmental seizures. Studying the role of microglia in epilepsy could inform therapies to better alleviate the disease. GLIA 2016;65:5-18.
Collapse
Affiliation(s)
- Ukpong B Eyo
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey
| | - Madhuvika Murugan
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey
| | - Long-Jun Wu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
8
|
Emsley HC, Appleton RE, Whitmore CL, Jury F, Lamb JA, Martin JE, Ollier WE, de la Morandière KP, Southern KW, Allan SM. Variations in inflammation-related genes may be associated with childhood febrile seizure susceptibility. Seizure 2014; 23:457-61. [DOI: 10.1016/j.seizure.2014.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 03/04/2014] [Accepted: 03/06/2014] [Indexed: 11/24/2022] Open
|
9
|
Yu HM, Liu WH, He XH, Peng BW. IL-1β: an important cytokine associated with febrile seizures? Neurosci Bull 2014; 28:301-8. [PMID: 22622830 DOI: 10.1007/s12264-012-1240-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Febrile seizures (FSs) are the most common convulsions in childhood. Studies have demonstrated a significant relationship between a history of prolonged FSs during early childhood and temporal sclerosis, which is responsible for intractable mesial temporal lobe epilepsy. It has been shown that interleukin-1β (IL-1β) is intrinsically involved in the febrile response in children and in the generation of FSs. We summarize the gene polymorphisms, changes of IL-1β levels and the putative role of IL-1β in the generation of FSs. IL-1β could play a role either in enhancing or in reducing neural excitability. If the enhancing and reducing effects are balanced, an FS does not occur. When the enhancing effect plays the leading role, an FS is generated. A mild imbalance can cause simple FSs while a severe imbalance can cause complex FSs and febrile status epilepticus. Therefore, anti-IL-1β therapy may help to treat FSs.
Collapse
Affiliation(s)
- Hong-Mei Yu
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | | | | | | |
Collapse
|
10
|
Patterson KP, Baram TZ, Shinnar S. Origins of temporal lobe epilepsy: febrile seizures and febrile status epilepticus. Neurotherapeutics 2014; 11:242-50. [PMID: 24604424 PMCID: PMC3996115 DOI: 10.1007/s13311-014-0263-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Temporal lobe epilepsy (TLE) and hippocampal sclerosis (HS) commonly arise following early-life long seizures, and especially febrile status epilepticus (FSE). However, there are major gaps in our knowledge regarding the causal relationships of FSE, TLE, HS and cognitive disturbances that hamper diagnosis, biomarker development and prevention. The critical questions include: What is the true probability of developing TLE after FSE? Are there predictive markers for those at risk? A fundamental question is whether FSE is simply a marker of individuals who are destined to develop TLE, or if FSE contributes to the risk of developing TLE. If FSE does contribute to epileptogenesis, then does this happen only in the setting of a predisposed brain? These questions are addressed within this review, using information gleaned over the past two decades from clinical studies as well as animal models.
Collapse
Affiliation(s)
- Katelin P. Patterson
- />Department of Anatomy and Neurobiology, University of California-Irvine, Irvine, CA USA
| | - Tallie Z. Baram
- />Department of Anatomy and Neurobiology, University of California-Irvine, Irvine, CA USA
- />Department of Pediatrics, University of California-Irvine, Irvine, CA USA
- />Department of Neurology, University of California-Irvine Medical Center, Irvine, CA USA
| | - Shlomo Shinnar
- />Department of Neurology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY USA
- />Department of Pediatrics, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY USA
- />Department of Epidemiology and Population Health, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY USA
- />Comprehensive Epilepsy Management Center, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY USA
| |
Collapse
|
11
|
Febrile seizures: recent developments and unanswered questions. Childs Nerv Syst 2013; 29:2011-7. [PMID: 23846392 DOI: 10.1007/s00381-013-2224-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 06/28/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Febrile seizures (FS) are typically observed in infants and children affecting 2-5 % of the pediatric population and are the commonest seizures in childhood. OBJECTIVES The present review summarizes epidemiology, etiology, clinical picture, and diagnostic procedures as well as the therapeutic options and the different courses this disorder may take. METHOD An extensive review of literature is performed, while views and aspects towards the pathogenesis of FS are stated. Risk factors for multiple recurrences of FS and for subsequent epilepsy are analyzed. Questions regarding the treatment and follow-up of children with FS are answered. RESULTS Whereas the frequency of epilepsy following simple FS is estimated to be 1.0-2.2 % of patients, and thus does not differ from the risk of normal population, complicated FS are associated with an increased risk of subsequent epilepsy in 4.1-6.0 %. Febrile status epilepticus with focal symptoms may result in approximately 5 % of cases in complex partial epilepsy. Furthermore, multiple recurrences increase the risk for generalized epilepsy (>4 %). The immediate management of FS, intermittent prophylaxis, and the effectiveness of the treatment in combination with antipyretics are presented in detail. CONCLUSION FS can cause a great anxiety and even panic to parents and to the whole family. Parents should be educated about the benign condition and the good prognosis. Although much information has been gained, much remains to be learned.
Collapse
|
12
|
Cantalupo G, Meletti S, Miduri A, Mazzotta S, Rios-Pohl L, Benuzzi F, Pisani F, Tassinari CA, Cossu G. Facial emotion recognition in childhood: the effects of febrile seizures in the developing brain. Epilepsy Behav 2013; 29:211-6. [PMID: 23994831 DOI: 10.1016/j.yebeh.2013.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 07/04/2013] [Accepted: 07/07/2013] [Indexed: 01/16/2023]
Abstract
It has been documented that anteromedial temporal lobe dysfunction can cause impairment in emotional intelligence. In particular, medial temporal lobe epilepsy (MTLE) is associated with disorders in emotion recognition from facial expressions. About one-third of patients with MTLE experienced febrile seizures (FSs) during childhood. In the present study, we investigated facial emotion recognition ability in a group of 38 school-aged children with antecedent FSs and in an age- and sex-matched control group. Children with abnormal general visuoperceptual abilities were excluded. Children with FSs showed lower recognition scores versus controls in both matching (28.64 vs 33.47; p<.0001) and labeling (21.25 vs 23.03; p=.001) facial emotions. Our findings support the hypothesis that FSs can be associated during childhood with a dysfunction within the neural network subserving the processing of facial expressions of the basic emotions.
Collapse
Affiliation(s)
- Gaetano Cantalupo
- Child Neuropsychiatry Unit, Department of Neuroscience, University-Hospital of Parma, Via Gramsci 14, Parma, Italy; Department of Life and Reproduction Sciences, University of Verona, P.le Scuro 10, Verona, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abdel Rasol HA, Issac MSM, Abdel Ghaffar H, El-Mously S. Interleukin-1 receptor antagonist and interleukin-1β-511 gene polymorphisms among Egyptian children with febrile seizures. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s00580-012-1635-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Hunt RF, Hortopan GA, Gillespie A, Baraban SC. A novel zebrafish model of hyperthermia-induced seizures reveals a role for TRPV4 channels and NMDA-type glutamate receptors. Exp Neurol 2012; 237:199-206. [PMID: 22735490 DOI: 10.1016/j.expneurol.2012.06.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 05/31/2012] [Accepted: 06/16/2012] [Indexed: 12/22/2022]
Abstract
Febrile seizures are the most common seizure type in children under the age of five, but mechanisms underlying seizure generation in vivo remain unclear. Animal models to address this issue primarily focus on immature rodents heated indirectly using a controlled water bath or air blower. Here we describe an in vivo model of hyperthermia-induced seizures in larval zebrafish aged 3 to 7 days post-fertilization (dpf). Bath controlled changes in temperature are rapid and reversible in this model. Acute electrographic seizures following transient hyperthermia showed age-dependence, strain independence, and absence of mortality. Electrographic seizures recorded in the larval zebrafish forebrain were blocked by adding antagonists to the transient receptor potential vanilloid (TRPV4) channel or N-methyl-d-aspartate (NMDA) glutamate receptor to the bathing medium. Application of GABA, GABA re-uptake inhibitors, or TRPV1 antagonist had no effect on hyperthermic seizures. Expression of vanilloid channel and glutamate receptor mRNA was confirmed by quantitative PCR analysis at each developmental stage in larval zebrafish. Taken together, our findings suggest a role of heat-activation of TRPV4 channels and enhanced NMDA receptor-mediated glutamatergic transmission in hyperthermia-induced seizures.
Collapse
Affiliation(s)
- Robert F Hunt
- Epilepsy Research Laboratory, Department of Neurological Surgery, Biomedical Graduate Program, University of California San Francisco, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
15
|
Tiwari P, Dwivedi R, Mansoori N, Alam R, Chauhan UK, Tripathi M, Mukhopadhyay AK. Do gene polymorphism in IL-1β, TNF-α and IL-6 influence therapeutic response in patients with drug refractory epilepsy? Epilepsy Res 2012; 101:261-7. [PMID: 22578659 DOI: 10.1016/j.eplepsyres.2012.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/27/2012] [Accepted: 04/16/2012] [Indexed: 10/28/2022]
Abstract
PURPOSE Pro-inflammatory cytokines may play an important pathophysiological role in patients with epilepsy. To understand the role of genes encoding pro-inflammatory cytokines in epilepsy, this study aimed to evaluate the polymorphisms of the promoter regions of IL-1β-511C>T (rs16944), TNF-α-308G>A (rs1800629) and IL-6-174G>C (rs1800795) genes and to look into the interaction between these genes in influencing seizure susceptibility, seizure frequency and response to therapy. METHODS The comparative frequency of polymorphism was determined in rs16944, rs1800629 and rs1800795 using PCR-RFLP in a group of 120 persons with epilepsy (PWE) and 110 ethnically matched healthy subjects of comparable age and sex in the North Indian population. RESULTS Alleles and genotypes of rs16944, rs1800629 and rs1800795 were not found to influence the odds ratio of having susceptibility to epilepsy. Also gene-gene interaction of possible nine combinations of these genes did not show any positive association with epilepsy. The genotype and allelic frequency of rs1800795 showed a significant association (p<0.05) in seizure frequency (number of seizures/6-months) and drug refractory epilepsy. However, the genotype and allelic frequency of rs16944 and rs1800629 were not found to have such effect. CONCLUSION This study demonstrates that the rs16944, rs1800629 and rs1800795 polymorphism does not act as a strong susceptibility factor for epilepsy in North Indian population. The genotypic association of rs1800795 with seizure frequency and drug-refractory epilepsy raises the issue that a specific set of polymorphic genes can influence seizures and therapeutic response in epilepsy.
Collapse
Affiliation(s)
- Prabhakar Tiwari
- Center for Biotechnology, School of Environmental Biology, Awahdesh Pratap Singh University, Rewa 486003, India
| | | | | | | | | | | | | |
Collapse
|
16
|
Interleukin 1 beta −511 C/T gene polymorphism and susceptibility to febrile seizures: a meta-analysis. Mol Biol Rep 2011; 39:5401-7. [DOI: 10.1007/s11033-011-1340-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Accepted: 12/03/2011] [Indexed: 10/14/2022]
|
17
|
Vezzani A, Aronica E, Mazarati A, Pittman QJ. Epilepsy and brain inflammation. Exp Neurol 2011; 244:11-21. [PMID: 21985866 DOI: 10.1016/j.expneurol.2011.09.033] [Citation(s) in RCA: 421] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Revised: 09/15/2011] [Accepted: 09/26/2011] [Indexed: 02/06/2023]
Abstract
During the last decade, experimental research has demonstrated a prominent role of glial cells, activated in brain by various injuries, in the mechanisms of seizure precipitation and recurrence. In particular, alterations in the phenotype and function of activated astrocytes and microglial cells have been described in experimental and human epileptic tissue, including modifications in potassium and water channels, alterations of glutamine/glutamate cycle, changes in glutamate receptor expression and transporters, release of neuromodulatory molecules (e.g. gliotransmitters, neurotrophic factors), and induction of molecules involved in inflammatory processes (e.g. cytokines, chemokines, prostaglandins, complement factors, cell adhesion molecules) (Seifert et al., 2006; Vezzani et al., 2011; Wetherington et al., 2008). In particular, brain injury or proconvulsant events can activate microglia and astrocytes to release a number of proinflammatory mediators, thus initiating a cascade of inflammatory processes in brain tissue. Proinflammatory molecules can alter neuronal excitability and affect the physiological functions of glia by paracrine or autocrine actions, thus perturbing the glioneuronal communications. In experimental models, these changes contribute to decreasing the threshold to seizures and may compromise neuronal survival (Riazi et al., 2010; Vezzani et al., 2008). In this context, understanding which are the soluble mediators and the molecular mechanisms crucially involved in glio-neuronal interactions is instrumental to shed light on how brain inflammation may contribute to neuronal hyperexcitability in epilepsy. This review will report the clinical observations in drug-resistant human epilepsies and the experimental findings in adult and immature rodents linking brain inflammation to the epileptic process in a causal and reciprocal manner. By confronting the clinical evidence with the experimental findings, we will discuss the role of specific soluble inflammatory mediators in the etiopathogenesis of seizures, reporting evidence for both their acute and long term effects on seizure threshold. The possible contribution of these mediators to co-morbidities often described in epilepsy patients will be also discussed. Finally, we will report on the anti-inflammatory treatments with anticonvulsant actions in experimental models highlighting possible therapeutic options for treating drug-resistant seizures and for prevention of epileptogenesis.
Collapse
Affiliation(s)
- Annamaria Vezzani
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Via G. La Masa 19, 20156 Milano, Italy.
| | | | | | | |
Collapse
|
18
|
Millichap JG. Focality and Heterogeneity of Febrile Seizures. Pediatr Neurol Briefs 2010. [DOI: 10.15844/pedneurbriefs-24-1-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|